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Abstract We present a derivation of various discrete-time population models
within a single unifying mechanistic context. By systematically varying the within-
year patterns of reproduction and aggression between individuals we can derive
various discrete-time population models. These models include classical examples
such as the Ricker model, the Beverton–Holt model, the Skellam model, the Has-
sell model, and others. Some of these models until now lacked a good mechanistic
interpretation or have been derived in a different context. By using this mecha-
nistic approach, the model parameters can be interpreted in terms of individual
behavior.

Keywords Beverton–Holt model · Discrete-time population model · Hassell
model · Ricker model · Skellam model

1. Introduction

Models of ecological systems may be broadly categorized as “top-down” or
“bottom-up” models (Sumpter and Broomhead, 2001). The structure of a top-
down (or “phenomenological”) population model can be interpreted in terms of
population characteristics but typically lacks an interpretation on a more basic
level. For example, a phenomenological model may contain parameters that are
referred to as the “intrinsic rate of increase” or the “carrying capacity,” but their
relationship to characteristics of the individuals that make up the population is
unclear. In contrast, bottom-up (or “mechanistic”) models are derived from as-
sumptions and processes on a more basic level such that the parameters can be
interpreted in terms of the behavior of the individuals. For this reason, mecha-
nistic approach might give better insight and ultimately may be more predictive
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(see, e.g., Sumpter and Broomhead, 2001; Johansson and Sumpter, 2003; Geritz
and Kisdi, 2004).

Generally, discrete-time population models are of the form xn+1 = f (xn), where
different values of n refer to different years. We therefore shall refer to this as the
between-year dynamics. In a mechanistic model the function f is not merely given,
but instead is derived from processes in continuous time within a year, also in this
context called the within-year dynamics. The population density xn is the input of
the within-year dynamics (on which the initial conditions depend), and xn+1 is the
output which is directly calculated from the state of the within-year dynamics at
the end of the year.

In this paper we consider a population consisting of adults and juveniles of the
same annual species. We show that by systematically varying the patterns of repro-
duction and aggression, various discrete-time population models can be derived.
These models include classical examples such as the Ricker (1951) model, the
Beverton and Holt (1957) model, the Skellam (1951) model, the Hassell (1975)
model, and others. Some of the models until now lacked a good mechanistic in-
terpretation or have been derived in a different context. However, we must em-
phasize that the aim of this paper is not to give realistic, as in very detailed, mod-
els. Instead, our goal is to emphasize the general relationship between the various
discrete-time population models within a single context.

The basic idea is the following. Consider a population consisting of adults and
juveniles of the same annual species. The population densities of adults and juve-
niles at the time t ∈ [0, 1] within a year are, respectively, u(t) and v(t), and xn is the
amount of adults in the beginning of year n = 0, 1, 2, . . .. The within-year dynam-
ics is modelled according to the law of mass action (see, e.g., Thieme, 2003). This
means that interactions occur at a rate proportional to the population density of
both interacting types. Thus, adults (population density u) interact with each other
at a rate proportional to u2, juveniles (population density v) interact with adults at
a rate proportional to uv, and juveniles interact with other juveniles at a rate pro-
portional to v2. At the end of the year (t = 1) all the adults die, and the population
of the following year is recruited from the juveniles that survive the winter. The
between-year dynamics is thus given by xn+1 = σv(1), where σ denotes the winter
survival probability for the juveniles.

Within this framework, there are four basic types of aggressive interaction:
adults attack other adults, adults attack juveniles, juveniles attack adults, and ju-
veniles attack other juveniles. Concerning the timing of reproduction, we consider
three different strategies, namely

(a) continuous reproduction at a constant per capita rate throughout the year,
(b) single reproductive burst at the beginning of the year, and
(c) single reproductive burst at the end of the year.

However, most of the resulting within-year systems cannot be solved explicitly,
that is, no explicit expression for the between-year dynamics can be given. We ig-
nore these cases and only consider the following six types of aggressive interaction.

(i) adults attack adults,
(ii) adults attack juveniles,
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(iii) juveniles attack adults,
(iv) juveniles attack juveniles,
(v) adults and juveniles attack juveniles, and

(vi) adults attack adults and juveniles.

This way we have 18 different combinations of the patterns of aggression and
reproduction, and for all these cases we give the resulting between-year dynamics.
A well-known combination is that of (b) a single reproductive burst at the
beginning of the year with (ii) adults attack juveniles, which was used by Ricker
(1951) to derive what is now known as the Ricker model. In this paper we de-
rive a much larger family of models of which the Ricker model is but a specific one.

Remark 1 In the model formulations it has been assumed that the individual who
attacks does not die. Of course, it could be discussed how realistic this assumption
is. In nature, aggression usually is a risk to both the individuals involved. When the
individuals involved are of the same type, i.e., adults attack adults or juveniles attack
juveniles, the model would still be the same, but when the types involved are differ-
ent, the situation changes. In the same formulation, this would lead to a model where
adults attack juveniles and juveniles attack adults. However, the resulting between-
year dynamics cannot be solved explicitly, and for this reason the situation has not
been considered here.

2. Continuous reproduction

First consider the case where the reproduction happens continuously during the
whole year, and let α be the constant per capita birth rate of the population. Fur-
ther, let u(t) and v(t) denote the population densities of, respectively, adults and
juveniles at time t within a year. By varying the pattern of aggression between
individuals, we get the following models.

2.1. Adults attack adults: The “log-model”

Suppose that adults attack other adults with the constant per unit rate γ . Using
the principle of mass action, the dynamics of the population in year n are given by
the following pair of differential equations, where u̇ and v̇ denote the derivatives
of the population densities with respect to time.





u̇ = −1

2
γ u2, u(0) = xn

v̇ = αu, v(0) = 0
(1)

which has the solution





u(t) = xn

1
2
γ xnt + 1

v(t) = 2α

γ
log

(
1
2
γ xnt + 1

)
.

(2)
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Fig. 1 Type of the between-year dynamics of the derived models, with a) xn+1 monotonously
increasing function of xn with unbounded increase, b) xn+1 monotonously increasing function of
xn, but with asymptotical approach to a finite value, and c) overcompensation. Curves a) and b)
give monotonic growth or decline to an equilibrium, whereas c) can also give cycles or even chaotic
between-year dynamics.

Assuming a unit year length, the population for the following year then becomes

xn+1 = a
b

log (bxn + 1) , (3)

where a = σα and b = 1
2γ .

Denote now xn+1 = f (xn). One readily verifies that f ′(x) > 0 and f ′′(x) < 0 for
all x ≥ 0, and thus xn+1 is a monotonously increasing and concave function of xn
(Fig. 1a). If f ′(0) = a ≤ 1, then x̂ = 0 is a globally attracting equilibrium, so the
population will go extinct, and when a > 1 there exists a positive, globally attract-
ing equilibrium x̂, but it cannot be calculated explicitly.

We call this model the log-model, where “log” refers to the natural logarithm
and which is not to be confused with the logistic model.

2.2. Adults attack juveniles: The Skellam model

Suppose now that adults attack juveniles with the constant per unit rate β. The
dynamics of the population in year n are given by the following.

{
u̇ = 0, u(0) = xn

v̇ = −βuv + αu, v(0) = 0
(4)

Because there is no change in the amount of adults during the year, we have u(t) =
xn for all t . With this we can directly solve

v(t) = α

β
(1 − e−βxnt ), (5)
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and the population for the following year becomes

xn+1 = a(1 − e−bxn ) (6)

for xn ≥ 0 and with a = σα
β

and b = β. We have recovered the model of Skellam
(1951). However, Skellam derived the model in a totally different context, namely
for annual plants with competition for germination sites and Poisson-distributed
seed numbers per site.

2.3. Juveniles attack either adults or juveniles: The “tanh-model”

The following model can be recovered from two different patterns of aggression,
namely if juveniles attack either adults or other juveniles.
Mechanism 1 Assume first that juveniles attack adults with the constant per unit
rate ε. Then the dynamics of the population in year n are given by the following
pair of differential equations.

{
u̇ = −εuv, u(0) = xn

v̇ = αu, v(0) = 0
(7)

The details of the solution can be found in Appendix A. For now it suffices to say
that we find for the juveniles

v(t) =
√

2αxn

ε
tanh

(
t
√

αεxn

2

)
, (8)

and the population for the following year thus becomes

xn+1 = a
b
√

xn tanh (b
√

xn) , (9)

where a = σα and b =
√

1
2αε.

Like in the case of the log-model, denote xn+1 = f (xn). Because f ′(x) > 0 and
f ′′(x) < 0 for all x ≥ 0, xn+1 is a monotonously increasing and concave function
of xn (Fig. 1a), and limx→0 f ′(x) = a. For the existence of a positive equilibrium,
we must have a > 1, and in this case the positive equilibrium is globally stable,
but it cannot be calculated explicitly. If a ≤ 1, then x̂ = 0 is a globally attracting
equilibrium and the population will go extinct.

We call this model the tanh-model, where “tanh” refers to the hyperbolic tangent
function.

Mechanism 2 Assume now that juveniles attack other juveniles with the constant
per unit rate δ, and the dynamics of the population on year n are given by

{
u̇ = 0, u(0) = xn

v̇ = − 1
2δv2 + αu, v(0) = 0

(10)
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This can easily be solved, and the population for the following year again becomes

xn+1 = a
b
√

xn tanh (b
√

xn) , (11)

where a = σα and b =
√

1
2αδ.

Both of these models have the same kind of dynamics, but notice that the inter-
pretation of the parameters on the individual level is different.

2.4. Adults and juveniles attack juveniles: The “tanh-arctanh-model”

Assume now that adults attack juveniles with the constant per unit rate β and
juveniles attack other juveniles with the constant per unit rate δ. The dynamics of
the population in year n are given by the following differential equations.

{
u̇ = 0, u(0) = xn

v̇ = −βuv − 1
2δv2 + αu, v(0) = 0

(12)

Like in the case that lead to the Skellam model, there is no change in the amount
of adults during the year and we have u(t) = xn for all t . With this we can solve the
equation for the juveniles, which gives

v(t) =
−βxn +

√
xn

(
β2xn + 2αδ

)
tanh

(
1
2 (t + 2c)

√
xn (β2xn + 2αδ)

)

δ
, (13)

where c is the constant of integration. From the initial condition v(0) = 0 we find

c =
arctanh

(
βxn√

xn(β2xn+2αδ)

)

√
xn(β2xn + 2αδ)

. (14)

The between-year dynamics thus becomes

xn+1 = σ

δ

(
−βxn +

√
xn (β2xn + 2αδ)

)

tanh

(
1
2

√
xn (β2xn + 2αδ) + arctanh

(
βxn√

xn (β2xn + 2αδ)

))

, (15)

and we refer to this model as the tanh-arctanh-model.
In its basic form, this model looks somewhat intimidating. However, if we de-

note ξn := βxn, η := σ
δ

and θ := 2αδ
β

, it becomes clear that we have essentially a
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two-parameter model with

ξn+1 = η(−ξn +
√

ξn (ξn + θ)) (16)

tanh

(
1
2

√
ξn (ξn + θ) + arctanh

(
ξn√

ξn (ξn + θ)

))

. (17)

We don’t pursue a full analysis of the tanh-arctanh-model in this paper, but
some numerical results are presented in Appendix B. Numerically it appears
that ξn+1 is a concave and monotonously increasing function of ξn for all posi-
tive θ and η (Fig. 1a). Assuming this, we can deduce that if 1

2η(2 + θ) < 1 there
exists a positive equilibrium and it is stable. In case 1

2η(2 + θ) ≥ 1 there ex-
ists no positive equilibrium and value ξ̂ = 0 is stable, so the population will go
extinct.

2.5. Adults attack adults and juveniles: The “modified Beverton–Holt model”

Suppose that adults attack other adults with the constant per unit rate γ and juve-
niles with the constant per unit rate β. The dynamics of the population in year n
are given by the following.

{
u̇ = − 1

2γ u2, u(0) = xn

v̇ = −βuv + αu, v(0) = 0
(18)

which has as solution





u(t) = xn
1
2γ xnt + 1

v(t) = α

β

(

1 −
(

1
2
γ xnt + 1

)−2β/γ
)

.

(19)

Hence, the population in the beginning of the following year becomes

xn+1 = a
(

1 − 1
(bxn + 1)c

)
, (20)

where a = σα
β

, b = 1
2γ and c = 2β

γ
.

Denote again xn+1 = f (xn). One can verify that f ′(x) > 0 and f ′′(x) < 0 for all
x ≥ 0, and thus xn+1 is a concave monotonously increasing function of xn, but now
xn+1 is asymptotically approaching value σα

β
as xn → ∞ (Fig. 1b). If f ′(0) = a > 1,

there exists a single positive equilibrium which is globally stable, but it cannot be
solved explicitly. If a ≤ 1, there exists no positive equilibrium and the population
goes extinct.

If we set c = 1, the model reduces to the model of Beverton and Holt (1957).
Also, for values c greater or smaller than one, the dynamics of the model are
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very much like that of the Beverton-Holt model. Therefore, we refer to this
model as the modified Beverton–Holt model. Brännström and Sumpter (2005)
have also given a derivation of the model, but in a different context, namely for
negative binomially distributed individuals and contest competition for resource
sites.

3. Reproductive burst at the beginning of the year

Consider now the case where the reproduction happens in a single reproduc-
tive burst at the beginning of the year, and let α be the amount of juveniles
produced by a single adult. With this pattern of reproduction, we only get four
meaningful population models by varying the pattern of aggression between the
individuals. The reason is that if we consider the cases where juveniles are not
being attacked, neither by adults nor by other juveniles, there is no change
in the amount of juveniles during the year. Hence, the between-year dynam-
ics becomes xn+1 = σαxn, which cannot be a stable situation, so we ignore these
cases.

3.1. Adults attack juveniles: The Ricker model

Assume that adults attack juveniles with the constant per unit rate β. The dynamics
of the population on year n are given by the following pair of differential equations,
where u̇ and v̇ still denote the time derivatives of the population densities of adults
and juveniles, respectively.

{
u̇ = 0, u(0) = xn

v̇ = −βuv, v(0) = αxn
(21)

There is no change in the amount of adults during the year, so we have u(t) = xn
for all t . Thus, we can directly solve

v(t) = αxne−βxnt , (22)

and the population for the following year becomes

xn+1 = axne−bxn (23)

for xn ≥ 0 and with a = σα and b = β, which is the model of Ricker (1951).
Note that the same aggression pattern but with continuous reproduction pro-

duces the Skellam model (see Section 2.2). The mechanism that Ricker (1951)
himself proposed is the same as presented in here. Geritz and Kisdi (2004) have
given another mechanistic underpinning of the Ricker model in a totally different
context, namely using a resource-consumer within-year dynamics.
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3.2. Juveniles attack juveniles: The Beverton–Holt model

Assume that juveniles attack other juveniles with the constant per unit rate δ. The
dynamics of the population on year n are now given by the following.

{
u̇ = 0, u(0) = xn

v̇ = − 1
2δv2, v(0) = αxn

(24)

There is no interaction between adults and juveniles after reproduction, and we
can directly solve

v(t) = αxn
1
2δαxnt + 1

, (25)

so the population in the beginning of the following year becomes

xn+1 = axn

bxn + 1
(26)

for xn ≥ 0 and with a = σα and b = δα
2 , which is the model of Beverton and Holt

(1957). In fact, Beverton and Holt derived the model in essentially the same
way, but with competitive interaction. Furthermore, Geritz and Kisdi (2004) and
Brännström and Sumpter (2005) have given derivations different from the one
represented in here.

3.3. Adults and juveniles attack juveniles: The “modified Ricker model”

Assume that adults attack juveniles with the constant per unit rate β and juve-
niles attack other juveniles with the constant per unit rate δ. The dynamics of the
population on year n are given by the following pair of differential equations.

{
u̇ = 0, u(0) = xn

v̇ = −βuv − 1
2δv2, v(0) = αxn

(27)

There is no change in the amount of adults during the year, so we have u(t) = xn
for all t . Hence, after simplification we get for the juveniles

v(t) = αβxne−βxn

1 + αδ
2β

(1 − e−βxnt )
. (28)

Furthermore, the population in the beginning of next year becomes

xn+1 = axne−bxn

1 + c (1 − e−bxn )
(29)

for xn ≥ 0 and with a = σαβ, b = β and c = αδ
2β

.
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Now xn+1 is not a monotonously increasing function of xn, but instead we have
overcompensation in our model, i.e., xn+1 becomes a decreasing function of xn for
large values of xn (Fig. 1c). If we reduce the number of parameters in the equilib-
rium equation by denoting µ := αδ

2β
and ξ̂ := β x̂, we can solve the possible equilib-

ria ξ̂ = 0 and ξ̂ = log µ+σα
1+µ

. We present some numerical results for the stability of
the equilibria in Appendix D, but we don’t pursue a full analysis in this paper. For
now, it suffices to say that the model shows signs of very interesting dynamics.

For both small and large values of xn, the dynamics of this new model is very
much like that of the model of Ricker (1951). Therefore, we refer to it as the mod-
ified Ricker model.

3.4. Adults attack adults and juveniles: The Hassell model

Assume that adults attack other adults with the constant per unit rate γ and juve-
niles with the constant per unit rate β. The dynamics of the population on year n
are given by the following pair of differential equations.

{
u̇ = − 1

2γ u2, u(0) = xn

v̇ = −βuv, v(0) = αxn
(30)

We can solve






u(t) = xn
1
2γ xnt + 1

v(t) = αxn
( 1

2γ xnt + 1
)2β/γ

(31)

and the population in the beginning of the following year becomes

xn+1 = axn

(bxn + 1)c (32)

for xn ≥ 0 and with a = σα, b = γ /2 and c = 2β
γ

.
Thus, we have recovered the model of Hassell (1975). Hassell himself introduced

the model without mechanistic derivation. Derivations based on different mecha-
nisms from the one shown here have been given by Geritz and Kisdi (2004) and
Brännström and Sumpter (2005). Notice that if c = 1, the model reduces to the
model of Beverton and Holt (1957).

4. Reproductive burst at the end of the year

Assume that the reproduction happens in a single reproductive burst at the end
of the year, and let α again be the amount of juveniles produced by a single
adult. However, this kind of framework always leads to exponential growth for
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the between-year dynamics except if adults attack other adults, in which case we
recover the Beverton–Holt model, as shown below.

4.1. The Beverton–Holt model

Suppose now that adults attack other adults with the constant per unit rate γ . The
dynamics of the population in year n are thus given by the following.

u̇ = −1
2
γ u2 with initial condition u(0) = xn, and

v(t) =
{

0 for t ∈ [0, 1), and
αu(1) at t = 1.

(33)

which has as solution

u(t) = xn
1
2γ xnt + 1

v(t) =






0 for t ∈ [0, 1), and
αxn

1
2γ xn + 1

at t = 1.

(34)

The population for the following year becomes

xn+1 = axn

bxn + 1
(35)

for xn ≥ 0 and with a = σα and b = δα
2 . Thus, like in the case of a reproductive

burst at the beginning of the year and with juveniles attacking other juveniles, we
have recovered the model of Beverton and Holt (1957).

5. Conclusions

In this paper we presented a single ecological context for the derivation of vari-
ous discrete-time population models. These include a number of well-known mod-
els such as the Ricker (1951) model, the Beverton and Holt (1957) model, the
Skellam (1951) model, and the Hassell (1975) model, but also several new models
that we have not seen elsewhere (see Table 1). The derivation of the Ricker model
in this paper is identical to that given by Ricker (1951) himself. However, here we
embedded the Ricker model in a larger family of models. An advantage of this
approach is that it shows how the different models are related to one another, and
how their parameters can be interpreted within the same ecological setting.

Some of the models derived here can also be derived in different and unre-
lated contexts. For example, Geritz and Kisdi (2004) derived the Ricker (1951)
model, the Beverton and Holt (1957) model, and the Hassell (1975) model
(and others) from within-year dynamics featuring resource–consumer interactions.
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Table 1 Summary of the resulting models for specific combinations of timing of reproduction and type of aggressive interaction. In addition, the
combination of a reproductive burst at the end of the year and adults attacking adults leads to the Beverton and Holt (1957) model

Aggression Continuous reproduction Reproductive burst at the beginning of the year

Adults attack adults log-model xn+1 = a log(bxn + 1) Exponential growth xn+1 = axn
Adults attack juveniles Skellam model xn+1 = a(1 − e−bxn ) Ricker model xn+1 = axne−bxn

Juveniles attack adults tanh-model xn+1 = a
b
√

xn tanh(b
√

xn) Exponential growth xn+1 = axn
Juveniles attack juveniles tanh-model xn+1 = a

b
√

xn tanh(b
√

xn) Beverton–Holt model xn+1 = axn
bxn+1

Adults and juveniles attack juveniles tanh-arctanh-model ξn+1 = η(−ξn +
√

ξn(ξn + θ)) Modified Ricker model xn+1 = axne−bxn

1+c(1−e−bxn )
tanh

( 1
2

√
ξn(ξn + θ) + arctanh

( ξn√
ξn(ξn+θ)

))
with ξn := bxn

Adults attack adults and juveniles Modified Beverton–Holt model xn+1 = a[1 − (bxn + 1)−c] Hassell model xn+1 = axn
(bxn+1)c
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Skellam (1951) used a site-based approach to derive his model. Sumpter and
Broomhead (2001) also used a site-based approach to derive the Ricker (1951)
model. Brännström and Sumpter (2005) extended the site-based framework
proposed by Sumpter and Broomhead (2001) and Johansson and Sumpter
(2003) and derived the Ricker (1951) model, the Hassell (1975) model,
both the modified and original Beverton and Holt (1957) models and the
Skellam (1951) model (and others) by varying the type of competition and the
spatial clustering of the individuals. Thieme (2003, p. 237) derived the Beverton
and Holt (1957) model, and the Hassell (1975) model (and others) as variations on
the derivation by the Ricker (1951) model by changing the (stochastic) duration of
the juvenile period to cannibalism by the adults.

Of course, the different derivations for the models don’t take anything away
from each other. Instead, when dealing with real population data, the availability
of mechanistic underpinnings for different models in different ecological settings
may eventually enable the choice of an appropriate model based on the biological
background of the system at hand.
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Appendix

A Solving the model for continuous reproduction and juveniles attacking adults

Here we give the detailed calculations for solving the model given by






du
dt

= −εuv, u(0) = xn

dv

dt
= αu, v(0) = 0

in Section 2.3.
First, in order to solve the dynamics of the adults, we write

du
dv

= − ε

α
v, (A.1)

which leads to

u(v) = − ε

2α
v2 + C, (A.2)
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where C is the constant of integration. From the initial condition u(v(0)) = u(0) =
xn we can solve C = xn, so

u(v) = xn − ε

2α
v2. (A.3)

Because the amount of adults must always be positive, i.e., u > 0, we also have con-
dition v2 < 2αxn

ε
. As a consequence of this, when we solve the differential equation

dv

dt
= αu(v) = αxn − ε

2
v2 (A.4)

using the separation of variables we get the solution

v(t) =
√

2αxn

ε
tanh

(
t
√

αεxn

2

)
. (A.5)

B Numerical analysis of the dynamics of the tanh-arctanh-model

In Section 2.4 we concluded that the tanh-arctanh-model can be written as a two-
parameter model

ξn+1 = η(−ξn +
√

ξn (ξn + θ)) (B.1)

tanh

(
1
2

√
ξn (ξn + θ) + arctanh

(
ξn√

ξn (ξn + θ)

))

, (B.2)

where ξn := βxn, η := σ
δ

and θ := 2αδ
β

, and moreover η is only a scaling parameter.
The value of ξn+1 is plotted as a function of ξn and θ and with η = 1 in Fig. B.1.

Numerically it seems that ξn+1 is monotonically increasing and concave, but we

Fig. B.1 The scaled between-year dynamics of the tanh-arctanh-model.
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Fig. B.2 a Equilibrium values for the tanh-arctanh-model. b The tanh-arctanh-model equilibrium
contour lines as a function of η and θ . The value of the function increases as the color gets lighter.

don’t pursue to show this analytically in this paper. The equilibrium value ξ̂ is
numerically plotted in Fig. B.2a as a function of η and θ , and the contours of this
equilibrium are shown in Fig. B.2b.

Actually, if we denote ξn+1 = f (ξn) and assume that f is monotonically increas-
ing and concave, we can say more about these equilibria. First, we can calculate
that f (ξ) → ηθ/2 = σα/β as ξ → ∞, and the derivative

f ′(ξ) → 1
2
η(2 + θ) = σ

δ
+ σα

β
(B.3)

as ξ → 0. So, if 1
2η(2 + θ) > 1 we know that a positive equilibrium ξ̂ exists and it

is stable. On the other hand, if 1
2η(2 + θ) < 1, then a positive equilibrium doesn’t

exist and ξ̂ = 0 is stable, so the population goes extinct.

C Numerical analysis of the dynamics of the modified Beverton–Holt model

In Section 2.5 we had the result that the between-year dynamics of the modified
Beverton–Holt model is given by

xn+1 = a
(

1 − 1
(bxn + 1)c

)
, (C.1)

where a = σα
β

, b = 1
2γ and c = 2β

γ
. We also concluded that xn+1 is a monotonously

increasing and concave function of xn, and xn+1 is asymptotically approaching
value σα

β
as the value of xn increases.
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Fig. C.1 a Equilibrium values for the modified Beverton–Holt model. b The modified Beverton–
Holt model equilibrium contour lines as a function of µ and σα. The value of the function in-
creases as the color gets lighter.

For the existence of a positive equilibrium we need to have σα > 1 again, oth-
erwise the population will go extinct. The equilibrium is given by

x̂ = σα

β

(

1 −
(

1
2
γ x̂ + 1

)−2β/γ
)

, (C.2)

but x̂ cannot be calculated analytically. For the numerical calculation of the equi-
librium we first scale the population size by factor γ

2 . So, if we denote µ := 2β
γ

and
ξ̂ := γ

2x̂ , after substitution our equilibrium equation becomes

ξ̂ = σα

µ
(1 − (ξ̂ + 1)−µ). (C.3)

This new equilibrium ξ̂ is plotted in Fig. C.1a as a function of µ and σα, and the
contours of the equilibrium are shown in Fig. C.1b. Because xn+1 is a monotonously
increasing and concave function of xn, as we concluded in Section 2.5, the equilib-
rium is globally stable for σα > 1.

D Numerical analysis of the dynamics of the modified Ricker model

In Section 3.3 we concluded that the between-year dynamics of the modified
Ricker model is given by

xn+1 = axne−bxn

1 + c (1 − e−bxn )
(D.1)
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Fig. D.1 Between-year dynamics of the modified Ricker model.

Fig. D.2 a Equilibrium values for the modified Ricker model. b The modified Ricker model
equilibrium contour lines as a function of µ and σα. The value of the function increases as the
color gets lighter. The equilibrium becomes unstable in the upper left-hand corner in both of the
figures.

for xn ≥ 0 and with a = σαβ, b = β and c = αδ
2β

, and a typical case of xn+1 as a
function of xn is shown in Fig. D.1. As mentioned in Section 3.3, we have overcom-
pensation in this model. Now we see numerically how the equilibrium behaves
depending on the parameters.

The equilibrium is given by

x̂ = σαβ x̂e−β x̂

1 + 1
2

αδ
β

(1 − e−β x̂)
. (D.2)

If we reduce the number of parameters in the equilibrium equation by denoting
µ := αδ

2β
and ξ̂ := β x̂, we have after substitution

ξ̂ = σαξ̂e−ξ̂

1 + µ(1 − e−ξ̂ )
. (D.3)
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This has solutions ξ̂ = 0 and ξ̂ = log µ+σα
1+µ

, which are plotted in Fig. D.2a as a func-
tion of µ and σα, and the contours of the equilibrium are shown in Fig. D.2b. A
positive equilibrium only exists if σα > 1, so the range σα < 1 is left out from the
figures. Moreover, the curve that separates the area of a stable equilibrium was
calculated numerically and plotted in the figures. The equilibrium loses its stability
in the upper left-hand corner in both of the figures.

Even though this model shows signs of very interesting dynamics, we are not
going to pursue the details in this paper.
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