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Gaussian vs Lebesgue measure

In probability theory , usually we work on an abstract
measurable space (Ω,F) equipped with a probability measure
P .
In analysis instead we usually work concretely with the
euclidean space Rd equipped with Lebesgue measure.
The Lebesgue measure on Rd is σ-finite, meaning that Rd is
covered by a countable union of unit cubes (z + [0, 1]d),
z ∈ Zd .
On each finite dimensional unit cube the Lebesgue measure is
a probability, i.e. integrates to 1.
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By Kolmogorov consistency theorem, we can define the
product Lebesgue measure on the infinite dimensional unit
cube [0, 1]N, However the infinite product RN cannot be
covered by a countable union of unit cubes, ZN is not
countable.
The infinite product of the Lebesgue measure on RN is not
σ-finite.
On RN we work instead with Gaussian probability measures.
We start woking in finite dimension.

γ(x)dx =
1√
2πσ2

exp
(
− x2

2σ2

)
dx

is the standard Gaussian measure on (R,B(R). On Rd ,
γ⊗d(x) = γ(x1) . . . γ(xd) is the product density.
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Gaussian integration by parts

Lemma
Let G (ω) a real valued gaussian random variable with
E (G ) = 0 and variance E (G 2) = σ2, If f , h are absolutely
continuous functions,

f (x) = f (0) +

∫ x

0
f ′(y)dy , h(x) = h(0) +

∫ x

0
h′(y)dy ,

with f ′, h′ ∈ L2(R, γ), (i.e. f ′(G ), h′(G ) ∈ L2(Ω)) then
f (G ), h(G ) ∈ L2(Ω) and

E (f ′(G )h(G )) = E
(
f (G )

(
h(G )G
E (G 2)

− h′(G )

))
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Proof
P(G ∈ dx) = γ(x)dx with density

γ(x) =
1√
2πσ2

exp
(
− x2

2σ2

)
.

Note that

d
dx
γ(x) = −γ(x)x

σ2

Integrating by parts∫ ∞
−∞

f ′(x)h(x)γ(x)dx = −
∫ ∞
−∞

f (x)
d
dx

(
h(x)γ(x)

)
dx

=

∫ ∞
−∞

f (x)

(
h(x)x
σ2 − h′(x)

)
γ(x)dx �
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More precisely, it hold when f (x) is supported on a finite
interval [a, b],

EP(f ′(G )h(G ))

∫ b

−a
f ′(x)h(x)γ(x)dx =

f (b)h(b)− f (a)h(a)−
∫ b

a
f (x)

d
dx

(
h(x)γ(x)

)
dx

Otherwise, take fn(x) = f (x)ηn(x) with ηn(X )
(
1− x/n

)+,
which as support on [−n, n] and ηn(x)→ 1 ∀x as n→∞.
Note that η′n(x) = − 1

nsign(x). By Lebesgue dominated
convergence h(G )ηn(G )→ h(G ) in L2(γ).

EP(f ′n(G )h(G )) = EP(f ′(G )ηn(G )h(G )
)
− 1

n
EP(f (G )sign(G )h(G )

)
−→ EP(f ′(G )h(G ))
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Denote

∂f (x) := f ′(x) and ∂∗h(x) :=

(
h(x)x
σ2 − h′(x)

)

Then

(∂f , h)L2(R,γ) = (f , ∂∗h)L2(R,γ)

∂∗ is the adjoint of the derivative operator in L2(R, γ).

Definition
We say that f ∈ L2(R, γ), has weak derivative g ∈ L2(R, γ) in
Sobolev sense if ∀h with classical derivative h′ such that
∂∗h ∈ L2(γ),∫

R
g(x)h(x)γ(x)dx =

∫
R
f (x)∂∗h(x)γ(x)dx

and we denote ∂f = f ′ := g.
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This definition extends the classical derivative. We introduce
the weighted Sobolev space

W 1,2(R, γ) := {f ∈ L2 : f Sobolev differentiable }

as the L2-closure of Domain(∂) with norm

‖ f ‖2W 1,2(γ)=‖ f ‖2L2(γ) + ‖ ∂f ‖2L2(γ)

We extend also ∂∗ to the L2(R, γ) closure of Domain(∂∗)
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Lemma

Let fn
L2(γ)→ 0 a sequence of smooth functions with ∂fn

L2(γ)→ g.
Then g(x) = 0 almost everywhere.

Proof
For every h ∈ L2(γ) smooth with ∂∗h ∈ L2(γ),

EP(∂fn(G )h(G ))→ EP(g(G )h(G ))

= EP(fn(G )∂∗h(G ))→ 0

Therefore E (g(G )h(G )) = 0. For every A ∈ B(R) by
smoothing 1A(x) we find smooth and uniformly bounded
hε(x)→ 1A(x). By bounded convergence theorem it follows
that E (g(G )1A(G )) = 0.
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Proposition
The gaussian integration by parts formula

EP(∂f (G )h(G )) = EP(f (G )∂∗h(G ))

extends to f ∈ W 1,2(R, γ) h ∈ Domain(∂∗).

Corollary

For h(x) ≡ 1, f ∈ W 1,2(R, γ)

E (f ′(G )) =
E (f (G )G )

E (G 2)
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Linear regression

Let X (ω),Y (ω) ∈ L2(P) . Then

X̂ (ω) = b̂ + âY (ω) with (0.1)

â =
E (X (Y − E (Y )))

E (Y 2)− E (Y )2 (0.2)

b̂ = E (X )− âE (Y ) (0.3)

is the L2-projection of X on the linear subspace generated by
Y , such that

E ((X̂ − X )2) = min
a,b∈R

E
(

(a + bY − X )2
)
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b̂ = E (X )− âE (Y ) (0.3)

is the L2-projection of X on the linear subspace generated by
Y , such that

E ((X̂ − X )2) = min
a,b∈R

E
(

(a + bY − X )2
)

Dario Gasbarra ABC of Malliavin calculus



In general X̂ (ω) 6= E (X |σ(Y ))(ω), which is the projection of
X on the subspace L2(Ω, σ(Y ),P).

When (X ,Y ) is jointly gaussian, X̂ = E (X |σ(Y )).
Let W ∼ N (0, σ2) and consider F = f (W ) for some
non-linear function f ∈ W 1,2(R, γ). By 0.1 the best linear
estimator of f (W ) given W is

f̂ (W ) = E (f (W )) +
E (f (W )W )

E (W 2)
W

= E (f (W )) + E (f ′(W ))W

f (W ) = EP(f (W )|σ(W )) = E (f (W )) + E (f ′(W ))W + M f
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Clearly E (M f ) = 0, but also

E (M f W ) = E
({

f (W )− E (f (W ))− E (f ′(W ))W
}
W
)

= E
({

f (W )− E (f (W ))− E (f (W )W )

E (W 2)
W
}
W
)

= 0

The linearization error M f is uncorrelated with W .
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Lemma

When the derivatives f ′, f ′′ are bounded and continuous,

E
(
(M f )2

)
σ2 → 0 as σ → 0

Proof. Let G with EP(G ) = 0, EP(G 2) = 1, not necessarily
Gaussian. By Taylor expansion, as σ → 0,

f (σG ) = f (0) + f ′(0)σG +
1
2
f ′′(0)σ2G 2 + oP(1)σ2

E
(
f (σG )

)
= f (0) +

1
2
f ′′(0)σ2 + o(1)σ2

Var(f (σG )
)

= f ′(0)2σ2 + o(1)σ2

oP(1) denotes a sequence of uniformly bounded random
variables converging a.s. to 0 as σ → 0.
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As σ → 0,

1
σ2

{
f (0)− E

(
f (σG )

)}2 → 0,
1
σ2

{
f ′(0)− E

(
f ′(σG )

)}2 → 0

By Cauchy Schwartz

1
σ
EP

({
f (σG )− EP(f (σG ))− EP(f ′(σG ))σG

}2)1/2

≤ 1
σ
EP(
{
f (σG )− f (0)− f ′(0)σG

}2)1/2
+

∣∣f (0)− EP(f (σ)G )
∣∣

σ
+

∣∣f ′(0)− EP(f (σ)G )
∣∣

σ
σEP(G 2)1/2 −→ 0
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When G is standard Gaussian, integrating by parts

1
σ2EP

({
f (σG )− EP

(
f (σG )

)
−

EP
(
f (σG )σG

)
σ2 σG

}2)
−→ 0

as σ → 0, in colour you have the linear regression coefficents.
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Multivariate case

Let ∆W1, . . . ,∆Wn i.i.d. Gaussian with E (∆W1) = 0
E (∆W 2

1 ) = ∆T = T/n.
These are consecutive increments of the random walk
Wm =

m∑
k=1

∆Wk .

Let

F (ω) = f (∆W1(ω), . . . ,∆Wn(ω))

with f (x1, . . . , xn) ∈ W 1,2(Rn, γ⊗n).
Introduce the σ-algebrae Fk = σ(∆W1, . . . ,∆Wk),
k = 1, . . . , n.
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Lemma
We have the martingale representation

F = EP(F ) +
n∑

k=1

E (∂k f (∆W1, . . . ,∆Wn)|Fk−1)∆Wk + Mn

where M is a (Fk)-martingale with M0 = 0 and 〈M,W 〉 = 0.
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By induction it is enough to show that

E (F |Fk) =

E (F |Fk−1) + E (∂k f (∆W1, . . . ,∆Wn)|Fk−1)∆Wk + ∆Mk

with

E (∆Mk |Fk−1) = 0, E (∆Wk∆Mk |Fk−1) = 0 (0.4)

Note that from independence,

EP

(
∂k f (∆W1, . . . ,∆Wn)

∣∣∣∣Fk−1

)
(ω) =∫

Rn−k+1
∂k f (∆W1(ω), . . . ,∆Wk−1(ω), xk , . . . , xn)γ⊗(n−k+1)(x)dx

Let’s fix k and consider the enlarged σ-algebra

Gk−1 = σ(∆W1, . . . ,∆Wk−1,∆Wk+1, . . .∆Wn) ⊇ Fk−1
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By fixing (∆Wi , i 6= k), applying the 1-dimensional result to
the k-the coordinate ∆Wk

F = E (F |Gk−1) + E (∂k(∆W1, . . .∆Wk)|Gk−1)∆Wk + ∆M̃k

By the independence of the increments

f (∆W1, . . .∆Wn)

= E
(
f (x1, . . . , xk−1,∆Wk , xk+1, . . . xn)

)∣∣∣∣
xi =∆Wi , i 6=k

+E
(
∂k f (x1, . . . , xk−1,∆Wk , xk+1, . . . xn)

)∣∣∣∣
xi =∆Wi , i 6=k

∆Wk

+∆M̃k

with

E (∆M̃k |Gk−1) = 0, E (∆M̃k∆Wk |Gk−1) = 0,

which implies

E (∆M̃k |Fk−1) = 0, E (∆M̃k∆Wk |Fk−1) = 0.
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By taking conditional expectation w.r.t. Fk and using
independence of increments

E (F |Fk) =

E
(
f (x1, . . . , xk−1,∆Wk ,∆Wk+1, . . .∆Wn)

)∣∣∣∣
xi =∆Wi , i<k

+

E
(
∂k f (x1, . . . , xk−1,∆Wk ,∆Wk+1, . . .∆Wn)

)∣∣∣∣
xi =∆Wi , i<k

∆Wk

+∆Mk

where

∆Mk := E (∆M̃k |Fk)

with

E (∆Mk |Fk−1) = E (∆Mk∆Wk |Fk−1) = 0 �
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Assuming that the derivatives ∂k f , ∂2
kk f are bounded and

continuous, by Jensen’s inequality for conditional expectation
and lemma 3

EP
(
(∆Mk)2

∣∣Fk−1
)
(ω) ≤ EP

(
(∆M̃k)2

∣∣Fk−1
)
(ω) = oP(1)∆t

where oP(1)→ 0 a.s with bounded convergence as ∆t → 0
uniformly over t.
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By the martingale property, when ∆t = T/n for T fixed and
n→∞

EP

({ n∑
k=1

∆Mt

}2)
=

n∑
k=1

EP
({

∆Mt
}2) ≤ oP(1)T
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Definition
The (finite-dimensional) Malliavin derivative is the random
gradient

DF := ∇f (∆W1, . . . ,∆Wn) ∈ Rn
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Definition
Brownian motion, (Wt : t ∈ [0,T ]) is a gaussian process with
W0 = 0 and such that for every n, 0 = t0 ≤ t1 ≤ · · · ≤ tn = T
the increments (Wti −Wti−1) are independent and gaussian
with variances (ti − ti−1).

Brownian motion can be constructed as a random continuous
function [0, t] :→ R.
Suppose that we have a random variable F (ω) which is
measurable with respect to the Brownian σ-algebra
FW

t = σ(Ws : 0 ≤ s ≤ t). When EP(F 2) <∞, by Doob’s
martingale convergence theorem and that this can be
approximated a.s. and in L2(Ω) by random variables of the
form

Fn(ω) := fn
(
Wt(n)

1
−Wt(n)

0
, . . . ,Wt(n)

n
−Wt(n)

n−1

)
where fn(x1, . . . , xn) is Borel measurable and t(n)

k := Tk/n.
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When F (ω) is Malliavin differentiable, fn(x1, . . . , xn) are
smooth functions. As n→∞ the orthogonal linearization error
in

Fn = E (Fn) +
n∑

k=1

E (∇kFn|F (n)
k−1)∆W (n)

k + Mn
n

vanishes (in L2(P) sense ) and the limit is the Ito-Clark-Ocone
martingale representation

F = E (F ) +

∫ T

0
E (DsF |FW

s )dWs

where the Ito integral appears.
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Skorokhod integral

In L2(Rn, γ⊗n(x)dx) the Malliavin derivative of
F = f (∆W1, . . . ,∆Wn) as the random gradient
DF = ∇f (∆W1, . . . ,∆Wn), where ∆Wk are i.i.d. N (0,∆t)
Let uk = uk(∆W1, . . . ,∆Wn) for k = 1, . . . , n.
Let’s introduce the scalar product

〈u, v〉 := ∆t
n∑

k=1

ukvk
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We give the n-dimensional generalization of the 1-dimensional
integration by parts formula.
We need a random variable which we denote by δ(u) (the
Skorokhod integral or divergence integral ) such that

EP
(
〈DF , u〉

)
= EP

(
F δ(u)

)
for all smooth random variables F . This extends the
one-dimensional Gaussian integration by parts formula

EP
(
∂f (G )h(G )〉

)
= EP

(
f (G )∂∗(G )

)
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Rewrite the left hand side

∆t
n∑

k=1

E
(
uk(∆W1, . . . ,∆Wn)∂k f (∆W1, . . . ,∆Wn)

)
by independence and the 1-dimensional gaussian integration by
parts

= ∆t
n∑

k=1

E (∂∗kuk(∆W1, . . . ,∆Wn)f (∆W1, . . . ,∆Wn))

= E
(
F∆t

( n∑
k=1

uk∆Wk

∆t
−

n∑
k=1

∂kuk

))

so that

δ(u) =
n∑

k=1

uk∆Wk −
n∑

k=1

Dkuk∆t

The first term is a Riemann sum, while the second term is
called Malliavin trace.
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When uk = uk(∆W1, . . . ,∆Wk−1,∆Wk+1, . . . ,∆Wn) does
not depend on ∆Wk , the Malliavin trace vanishes.

For F ≡ 1, DF ≡ 0 and when exists δ(u) ∈ L2(Ω), necessarily

E (δ(u)) = E (〈u, 0〉) = 0

In the continuous time case the Skorokhod integral with
respect to the Brownian motion is given by

δ(u) :=

∫ T

0
usδWs =

∫ T

0
usdWs −

∫ T

0
Dsusds

where
∫ T

0 usdWs is a forward integral defined as the limit in
probability or L2(P)-sense of the Riemann sums, and the last
term is the Malliavin trace.
When u is adapted, that is u is FW

s -measurable for all s the
Malliavin trace vanishes and the Skorokhod integral coincides
with the Ito integral.
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Note that if ϕ is smooth, Dϕ(F ) = ϕ′(F )DF . We have also
the product rule D(FG ) = G DF + F DG .
Consider a process uk = uk(∆W1, . . . ,∆Wn)

E
(
δ

(
u

〈u,DF 〉

)
ϕ(F )

)
= E

(〈
u

〈u,DF 〉
,Dϕ(F )

〉)
= E

(
ϕ′(F )

〈u,DF 〉
〈u,DF 〉

)
= E

(
ϕ′(F )

)
This holds for all choices of (uk) and ϕ. By taking u = DF we
obtain

E
(
ϕ′(F )

)
= E

(
ϕ(F )δ

(
DF
‖ DF ‖2

))
where

‖ DF ‖2= 〈DF ,DF 〉 = ∆t
n∑
k

(DkF )2
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Computation of densities
Let F = f (∆W1, . . . ,∆Wn) a random variable with Malliavin
Sobolev derivative. For a < b ∈ R consider

ψ(x) =

∫ b

a
1(r ≤ x)dr

with Sobolev derivative ψ′(x) = 1[a,b](x).

P(a < F ≤ b) =

∫ b

a
pF (r)dr (when F has density )

= EP
(
1(a < F ≤ b)

)
= EP

(
ψ′(F )

)
= EP

(
ψ(F )δ

(
DF
‖ DF ‖2

))
= EP

(
δ

(
DF
‖ DF ‖2

)∫ b

a
1(r ≤ F )dr

)
= (Fubini)

=

∫ b

a
EP

(
1(r ≤ F )δ

(
DF
‖ DF ‖2

))
dr
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This implies

pF (r) = EP

(
1(r ≤ F )δ

(
DF
‖ DF ‖2

))
= EP

(
1(r ≤ F )Y

)
with Malliavin weight

Y := δ

(
DF
‖ DF ‖2

)
=

1
‖ DF ‖2

n∑
k=1

DkF∆Wk −
n∑

k=1

Dk

(
DkF
‖ DF ‖2

)
∆t

=
1

‖ DF ‖2
n∑

k=1

DkF∆Wk −
1

‖ DF ‖2
n∑

k=1

D2
kkF∆t

+
2

‖ DF ‖4
n∑

k=1

n∑
h=1

DkF DhF D2
khF ∆t ∆t
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For F = f (∆W1, . . . ,∆Wn) we need that f twice
differentiable in Sobolev sense and integrability conditions.
This extends to the infinite-dimensional case when F is a
smooth functional of the Brownian path.

For i ∈ N let (∆W (i)
1 , . . . ,∆W (i)

n ), i.i.d copies of the gaussian
vector, let

F (i) := f (∆W (i)
1 , . . . ,∆W (i)

n ),

Y (i) := Y (∆W (i)
1 , . . . ,∆W (i)

n )

We estimate pF (t) by Monte Carlo

p̂(M)
F (r) =

1
M

M∑
i=1

Y (i)1(F (i) ≥ r)
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There are other choices for the Malliavin weight: for

uk =
1

n∆t DkF

we obtain

E (〈u,Dϕ(F )〉) =
1

n∆t
E
(
ϕ′(F )〈DF , (DF )−1〉

)
=

=
1

n∆t
E
(
ϕ′(F )

n∑
k=1

(DkF )−1DkF∆t
)

= E (ϕ′(F )) = E
(
ϕ(F )U

)
with Malliavin weight

U =
1

n∆t
δ
(
(DF )−1) =

1
n∆t

n∑
k=1

1
DkF

∆Wk +
1
n

n∑
k=1

D2
kkF

(DkF )2
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Example: quadratic functional

Let

Wk = (∆W1 + · · ·+ ∆Wk), F =
n∑

k=1

W 2
k ∆t

DhF = 2
n∑

k=h

Wk∆t, D2
h,kF = 2(n − (h ∨ k) + 1)∆t

We compute the Malliavin weight U
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U =
1

n∆t

( n∑
h=1

1
DhF

dWh −
n∑

h=1

Dh
(
(DhF )−1)

)
∆t
)

=
1

2n∆t

n∑
h=1

( n∑
k=h

Wk∆t
)−1

∆Wh

+
1

n∆t

n∑
h=1

(
2

n∑
k=h

Wk∆t
)−2

2(n − h + 1)(∆t)2 =

1
2n(∆t)2

{ n∑
h=1

( n∑
k=h

Wk

)−1

∆Wh +

+
n∑

h=1

( n∑
k=h

Wk

)−2

(n − h + 1)∆t
}
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Counterexample: Maximum of gaussian random
walk

Let W0 = 0, Wm =
∑m

k=1 ∆Wk for m = 1, . . . , n the gaussian
random walk, and let

F = W ∗
n := max

m=0,1,...,n

{
Wm
}

= f (∆W1, . . . ,∆Wn)

Let

τn = τn(W1, . . . ,Wn) = arg max
m=0,1,...,n

Wm

the random time where the maximum is achieved. Note that
with positive probability W ∗

n = 0 and τn = 0 when the random
walk stays on the negative side, so we know that there is point
mass at 0, W ∗

n does not have a density.
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Clearly for k = 1, . . . , n

DkW ∗
n = ∂k fn(∆W1, . . . ,∆Wn) = 1

(
τn ≥ k

)
= 1

(
W ∗

k−1 < max
h=k,...,n

Wh
)

a.s.

The problem is that the indicator of a set is never Malliavin
differentiable and the second order Malliavin derivative
D2

hkX
∗
n = Dh1

(
τn ≥ k

)
doesn’t exist as random variables in L2

and the Malliavin weights are not well defined.
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Skorohod integral with correlated Gaussian noise

Consider correlated Gaussian increments, with density

γK (∆Z1, . . . ,∆Zn) = |K |−1/2π−n/2 exp
(
−1
2

∆Z K−1∆Z>
)

with E (∆Z`) = 0 and Kh` = E
(

∆Zh∆Z`

)
.

In the correlated case, Gaussian integration by parts reads as

EP
(
∂`f (∆Z1, . . . ,∆Zn)g(∆Z1, . . . ,∆Zn)

)
=

EP

(
f (∆Z1, . . . ,∆Zn)×{

g(∆Z1, . . . ,∆Zn)
∑

h

K−1
h` ∆Zh − ∂`g(∆Z1, . . . ,∆Zn)

})
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If uk = uk(∆Z1, . . . ,∆Zn), we define the Skorokhod integral
w.r.t. Zn as δZ (u) satisfying

EP
(
〈DF , u〉K

)
= EP

(
F δZ (u)

)
with the scalar product

〈x , y〉K = x K y>

for all random variables
F (ω) = f (∆Z1, . . . ,∆Zn) ∈ W 1,2(Rn, γK ), This gives

δZ (u) =
n∑

h=1

uk∆Zk −
n∑

h=1

n∑
`=1

Kh`Dhu`

In the continuous case this gives

δZ (u) :=

∫ T

0
usδZs =

∫ T

0
usdZs −

∫ T

0

∫ T

0
DtusK (dt, ds)

where the first integral exists as the limit of Riemann sums in
L2(P),
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Hermite polynomials

Let γ(x) be the standard gaussian density in R.

Lemma
The polynomials are dense in L2(R, γ).

Proof Otherwise there is a random variable
F = f (G ) ∈ L2(P) with E (f (G )G n) = 0 ∀n ∈ N where G is
standard gaussian. Consider the (signed) measure on R

µ(A) := EP
(
f (G )1A(G )

)
We show that µ ≡ 0 which implies f (G ) = 0 P a.s.
The Fourier transform of µ is

µ̂(t) := EP(f (G ) exp(itG ))
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For t = (σ + τ i) ∈ C with σ, τ ∈ R,

µ̂(t) := EP
(
f (G ) exp(iσG ) exp(−τG )

)
Since

EP

(∣∣∣∣ ∂∂σ
{
f (G ) exp(−τG ) exp(iσG )

}∣∣∣∣)
= EP

(∣∣f (G ) exp(−τG )iG exp(iσG )
∣∣)

≤ EP
(
|f (G )G exp(−τG )|

)
≤ EP

(
|f (G )G (exp(−aG ) + exp(−bG ))|

)
where exp(−τG ) ≤ exp(−aG ) + exp(−bG ) ∀τ ∈ (a, b) ⊆ R.
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By Cauchy-Schwartz inequality

≤ EP(f (G )2)1/2E (G 2{exp(−aG ) + exp(−bG ))2)1/2

= EP(f (G )2)1/2{E (G 2 exp(−2aG )) +

+E (G 2 exp(−2bG )) + 2E (G 2 exp(−(a + b)G ))
}1/2

<∞

by Lebesgue’s dominated convergence theorem we can change
the order of derivation and integration (Theorem A 16.1 in
Williams’ book)

∂

∂σ
µ̂(τ + iσ) = i EP

(
f (G )G exp(iσG ) exp(−τG )

)
Similarly

∂

∂τ
µ̂(τ + iσ) = −EP

(
f (G )G exp(iσG ) exp(−τG )

)
= i

∂

∂σ
µ̂(τ + iσ)

µ̂ : C→ C is analytic since satisfies the Cauchy-Riemann
condition.
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Therefore has the power series expansion

µ̂(t) =
∞∑

t=0

µ̂(n)(0)
tn

n!

µ(n)(t) =
dn

dtn µ̂(t) = inEP(f (G ) exp(itG )G n),

µ̂(n)(0) = inEP(f (G )G n) = 0 ∀n ∈ N

where by adapting the previous argument we can take
derivatives inside the expectation. Therefore µ̂(t) = 0 and by
Lévy inversion theorem µ(dx) = 0, which implies
EP(f (G )2) = 0 �.
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Hermite polynomials in L2(R, γ).
Let G be a standard gaussian random variable with density
γ(x).
Define the (unnormalized) Hermite polynomials

h0(x) ≡ 1, hn(x) = (∂∗hn−1)(x) = (∂∗n1)(x)

By using repeatedly the commutation relation

∂∂∗f − ∂∗∂f = f

we get

∂∂∗nf − ∂∗n∂f = n∂∗(n−1)f

when f (x) = 1

∂hn(x) = nhn−1(x)

∂ and ∂∗ are annihilation and creation operators.
We also have

N f (x) = ∂∗∂f (x) = xf ′(x)− f ′′(x)

Since N = ∂∗∂ = ∂∂∗ − 1,

∂∗∂hn = ∂∂∗hn − hn = (n + 1)hn − hn = nhn

This is the number operator.
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hn(x) = exp(x2/2)
dn

dxn exp(−x2/2)

Ex: h1(x) = x , h2(x) = (x2 − 1), h3(x) = (x3 − 3x),
h4(x) = x4 − 6x2 + 3, h5(x) = (x5 − 10x3 + 15x)

EP
(
hn(G )hm(G )

)
= EP

(
(∂∗n1)(G )(∂∗m1)(G )

)
=

EP
(
(∂n∂∗m1)(G ) 1

)
= δn,mn!

(assuming n ≥ m)
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Since the polynomials are dense in L2(R, γ), the normalized
Hermite polynomials

Hn(x) :=
hn(x)√

n!
n ∈ N

form an orthonormal basis in L2(R, γ): for f (G ) ∈ L2(P),

f (G ) =
∞∑

n=0

EP(f (G )Hn(G ))Hn(G ) =
∞∑

n=0

EP(f (G )hn(G ))
hn(G )

n!

and when f (x) is infinitely differentiable in Sobolev sense

=
∞∑

n=0

EP(f (G )(∂∗n1)(G ))
hn(G )

n!
=
∞∑

n=0

EP(∂nf (G ))
hn(G )

n!

(one-dimensional Stroock formula)
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the convergence is in L2(P) sense

EP

({
f (G )−

N∑
n=1

EP(f (G )Hn(G ))Hn(G )

}2)
→ 0 as N ↑ ∞

Define the generating function

f (t, x) := exp
(
tx − t2/2

)
=
γ(x − t)

γ(x)
=

dN (t, 1)

dN (0, 1)
(x)

which is the density ratio for the gaussian shift G → (t + G )
Note that EP(f (t,G )) = 1. Since f (t, x) ∈ C∞, by Stroock
formula

exp
(
tx − t2/2

)
=
∞∑

n=0

EP

(
dn

dxn f (t,G )

)
hn(x)

n!

=
∞∑

n=0

EP
(
tnf (t,G )

)hn(x)

n!
=
∞∑

n=0

hn(x)
tn

n!
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)
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∞∑
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EP
(
tnf (t,G )

)hn(x)

n!
=
∞∑

n=0

hn(x)
tn

n!
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Note that

tn = EP

(
hn(G ) exp

(
tG − t2/2

))
= EP

(
hn(t + G )

)
where on the right side we have changed the measure.
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Hermite polynomials in L2(Rn, γ⊗n).

Let G = (G1, . . . ,Gn) a random vector with indepedent
standard gaussian coordinates.
Since L2(Rn, γ⊗n) = spanL2(R, γ)n, which is the L2-closure of
the linear space containing the products f1(x1)f2(x1) . . . fn(xn)
with fi ∈ L2(R, γ),
the polynomials in the variables x1, . . . , xn are dense in
L2(Rn, γ⊗n).

Definition
α = (α1, . . . , αn) with αi ∈ N is a multi-index.
α! :=

∏n
i=1 αi !
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For x = (x1, . . . , xn) define the unnormalized and normalized
multivariate Hermite polynomials

hα(x) =
n∏

i=1

hαi (xi)

Hα(x) =
n∏

i=1

Hαi (xi) =
n∏

i=1

hαi (x)√
αi !

=
hα(x)√
α!

Lemma
{Hα(x) : α multi-index} is an orthonormal basis in L2(Rn, γ⊗n)
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Proof Let β = (β1, . . . , βn) βi ∈ N,

EP(Hα(G )Hβ(G )) = EP

( n∏
i=1

Hαi (Gi)
n∏

j=1

Hβj (Gj)

)
=

n∏
i=1

EP
(
Hαi (Gi)Hβi (Gi)

)
=

n∏
i=1

δαi ,βi = δα,β
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F (ω) = f (G1, . . . ,∆Gn) =
∑
α

EP
(
Hα(G )F

)
Hα(G ) =

∑
α

cαHα(G )

with F ∈ L2(Rnγ⊗n)⇐⇒
∑
α

c2
α <∞ DF = ∇f (G ) =

∑
α

cαDHα(G ) =
∑
α

cα
n∑

i=1

{ ∏
j 6=i

1√
αj !

hαj (Gj)

}
1√
αi !

∂hαi (Gi)ei =
∑
α

cα
n∑

i=1

{ ∏
j 6=i

1√
αj !

hαj (Gj)

}
αi√
αi !

∂hαi−1(Gi)ei =
∑
α

n∑
i=1

cα+ei

√
αieiHα(G ) =

∑
α

cα
√
αi − 1eiHα−ei (G )
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Infinite dimensional gaussian space

L2(RN, γ⊗N) is the space of sequences x = (xi : i ∈ N).
On this space we use the product σ-algebra B(RN) = B(R)⊗N

which is the smallest σ-algebra such that the coordinate
evaluations x 7→ xi are measurable.
The Borel σ-algebra B(R) is the smallest σ algebra containing
the open sets.
The product measure γ⊗N is such that ∀n ∈ N,
B1, . . . ,Bn ∈ B(R)

γ⊗N
({

x : x1 ∈ B1, . . . , xn ∈ Bn}
)

=
n∏

i=1

γ(Bi)
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Definition
α = (αi : i ∈ N) with αi ∈ N and

|α| :=
∞∑
i=1

αi <∞

is a multi-index

Definition
A polynomial in the variables (xi : i ∈ N) is given by

p(x) = c0 +
∞∑
i=1

cix
αi
i

ci ∈ R, and α is a multiindex, |α| <∞, which depends on
finitely many coordinates.
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L2(RN, γ⊗N) =
⊕
n∈N

L2(Rn, γ⊗n)

An orthonormal basis is given by{
Hα(G ) :=

∞∏
i=1

Hαi (Gi), α multindex , |α| <∞
}

where (Gi : i ∈ N) is the canonical sequence of independent
standard gaussian r.v.
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Gaussian measures in Banach space

Lemma
If (ξn : n ∈ N) are Gaussian random variables with
ξn ∼ N (µn, σ

2
n), and ξn

d→ ξ (in distribution), then ξ has
Gaussian distribution N (µ, σ2) with µ = limn µn and
σ2 = limn σ

2
n.

When σ2 = 0, we agree that the constant random variable µ is
Gaussian.

Corollary

If (ξn : n ∈ N) are Gaussian and ξn
P→ ξ in probability, since

Gaussian variables have all moments it follows (ξn : nN) is
bounded in Lp ∀p <∞. and we have convergence also in
Lp(Ω).
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Random variables with values on a separable
Banach space

Let (E , ‖ · ‖) be a separable Banach space, and E ∗ is the
topological dual.
By separability we mean that there is {en : n ∈ N} which is
dense in E .
The elements of E ∗ are linear continuous functionals ϕ with
|ϕ(x)| ≤ C ‖ x ‖E .
We denote also ϕ(x) = 〈ϕ, x〉E∗,E .
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Example
The space C ([0, 1],R) of continuous functions with the norm

‖f ‖∞ = sup
t∈[0,1]

|f (t)|

is separable: by Bernstein’s theorem which says that
continuous functions can be approximated by polynomials
uniformly on compacts. To obtain a dense countable set we
take the polynomial functions with rational coefficients.
Its dual is the space of signed measures with finite total
variation on [0, 1].
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The topological dual E ∗ is equipped with the strong operator
norm

|ϕ|E∗ = sup{|ϕ(x)| : x ∈ E , ‖x‖ = 1} .

By using the duality we define the weak topology on E , where
xn

w→ x weakly if ϕ(xn)→ ϕ(x) ∀ϕ ∈ E ∗.
We define also the weak-∗ topology on E ∗, where ϕn

w−∗→ ϕ
∗-weakly if ϕn(x)→ ϕ(x) ∀x ∈ E .

Example
The weak topology is weaker than the ‖.‖ norm topology in E
and the weak-∗ topology is weaker than the |.|E∗ norm
topology in E ∗.
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We have a probability space (Ω,F ,P) and a random variable
X which is measurable from (Ω,F) into (E ,B(E )). where
B(E ) is the Borel σ-algebra generated by the open sets.

Definition
A simple E-valued random variable has the form

X (ω) =
N∑

i=1

xi1(Ai), with xi ∈ E , Ai ∈ F .
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Lemma

Let X be random variable defined on a probability (Ω,F ,P)
space with values in (E ,B(E )).
There exist a sequence of simple E-valued random variables
{Xn : n ∈ N} such that

‖ X ‖≥‖ X − Xn ‖↓ 0 (monotonically), almost surely .

Proof: Choose Xn(ω) as the element of {e1, . . . , en} which is
closest to X (ω).
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We will use this corollary of the Hahn-Banach Theorem:

Lemma

For every x ∈ E ∃ ϕ ∈ E ∗ with ‖ ϕ ‖E∗= 1 and ‖ x ‖E = ϕ(x)
.

Theorem

If E is a separable Banach space the Borel σ-algebra is
generated by the sets

{x ∈ E : ϕ(x) ≤ α}

with ϕ ∈ E ∗ and α ∈ R.
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E ∗ as a space of random variables

Note that ϕ(X (ω)) for ϕ ∈ E ∗ and ‖X (ω)‖ are real valued
random variables, i.e. measurable functions from (Ω,F) into
(E ,B(E )), since they are composition of a continuous and a
measurable function.
For a simple E -valued r.v. X (ω) =

∑N
i=1 xi1(Ai) , with xi ∈ E ,

Ai ∈ F we define the integral∫
Ω

X (ω)P(dω) =
N∑

i=1

xiP(Ai)
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Bochner integral

Assume that X is a E -valued r.v. and that∫
Ω

‖ X (ω) ‖ P(dω) <∞

Since E is separable, we can approximate X by a sequence of
simple E -valued r.v. {Xn} with
‖X‖ ≥‖ Xn − X ‖↓ 0 (monotonically).

∥∥∥∥∫
Ω

XndP −
∫

B
XmdP

∥∥∥∥ ≤ ∫
Ω

‖ Xn − Xm ‖ dP

≤
∫

Ω

‖ X − Xm ‖ dP +

∫
Ω

‖ X − Xm ‖ dP → 0
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By the monotone convergence theorem it follows that
{
∫

Ω
XndP} is a Cauchy sequence in E , therefore since the

space is complete it has a limit in E . By the same argument
the limit does not depend on the choice of the approximating
sequence, so that the Bochner integral of the r.v. X is well
defined.
Note that if X is a E -valued r.v., to every ϕ ∈ E ∗ corresponds
a real valued r.v. ϕ(ω) := ϕ(X (ω)). We identify the r.v. and
the element of E ∗.
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Lemma
If ϕ ∈ E ∗ and X (ω) is Bochner integrable on E under P,

ϕ

(∫
Ω

X (ω)P(dω)

)
=

∫
Ω

ϕ(X (ω))P(dω)

Proof Let Xn a sequence of simple E -valued r.v. with
‖ X ‖≥‖ X − Xn ‖↓ 0. Since ϕ is linear the lemma holds for
simple random variables, and by continuity∣∣∣∣ϕ(∫

Ω

XdP
)
−
∫

Ω

ϕ(X )dP
∣∣∣∣ =

≤
∣∣∣∣ϕ(∫

Ω

XdP
)
− ϕ

(∫
Ω

Xn)dP
)

+

∫
Ω

ϕ(Xn)dP −
∫

Ω

ϕ(X )dP
∣∣∣∣ ≤

‖ϕ‖E∗

∥∥∥∥∫ XndP −
∫

XdP
∥∥∥∥+

∣∣∣∣ ∫ ϕ(Xn)dP −
∫
ϕ(X )dP

∣∣∣∣→ 0 as n→∞
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Definition
If µ is a probability distribution on the Banach space E we
define the characteristic function as

µ̂(φ) :=

∫
E
exp(i ψ(x))µ(dx)

where ϕ ∈ E ∗.

Definition
A cylynder set is of the form

{x ∈ E : (ϕ1(x), . . . , ϕn(x)) ∈ B}

where B ∈ B(Rn), n ∈ N, ϕi ∈ E ∗.

Follows from theorem 12 that for separable Banach spaces the
cylinder sets generate the Borel σ-algebra of E . In particular
two measures on (E ,B(E )) coincide if they coincide on the
cylinder sets. Since the characteristic function characterizes
the measure in the euclidean (finite dimensional) space, that
the µ̂(·) characterizes the measure µ on E .
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Gaussian random variables on E

Definition
A measure γ on the Banach space E is (centered) gaussian iff
for every ϕ ∈ E ∗ the real valued r.v. ϕ(x) is (centered)
gaussian.

Lemma
If X is a E-valued r.v. with gaussian distribution, then for
every n, ϕ1, . . . , ϕn ∈ E ∗, then the random variables
(ϕ1(X ), . . . , ϕn(X )) are jointly gaussian.

Proof Use the finite dimensional gaussian characterization
with the characteristic function together with the linearity

EP

(
exp
(
i

n∑
i=1

θiϕi(X )
))

= EP

(
exp
(
iϕ
({ n∑

i=1

θi

}
X
)))
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The family {ϕ(X ) : ϕ ∈ E ∗} is a gaussian process indexed by
E ∗.
Since Gaussian r.v. have all moments,

Lemma
The embedding of E ∗ into Lp(E ,B(E ), γ), 0 < p <∞ is
continuous w.r.t. the weak-∗ topology of E ∗, (and therefore
also in the | · |E∗ topology).

Proof Let ϕn, ϕ ∈ E ∗ with ϕn
w−∗→ ϕ in the weak-∗ topology,

that is for every fixed x ∈ E ϕn(x)→ ϕ(x).
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In particular (ϕn − ϕ)→ 0, γ(dx) a.s. Since (ϕn − ϕ)(x) are
centered gaussiam random variables, it follows from ?? that
Var(ϕn − ϕ)→ 0, and by using gaussianity that for p <∞

Eγ((ϕn(X )− ϕ(X ))p) ≤ cpEγ((ϕn(X )− ϕ(X ))2)p/2 → 0

, that is ϕn(X )→ ϕ(X ) in Lp(E ,B(E ), γ). �.
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Definition

We denote by Ē ∗ the closure of E ∗ in L2(γ).

Note that if ϕ ∈ Ē ∗ there is a sequence ϕn → ϕ in L2(γ).
In case ϕ ∈ Ē ∗ \ E ∗ , ϕ(x) is not defined pointwise but as a
random variable for γ-almost every x ∈ E .
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Note that in the one dimensional situation, if X is centered
gaussian with variance σ2, then clearly E (exp(λX 2)) <∞ for
λ <

(
2σ2
)−1. For the infinite-dimensional case we prove that

the r.v. ‖ X ‖2 has exponential moment for some λ > 0.

Theorem
(Fernique lemma) Let γ be a centered gaussian measure on
(E ,B) . If λ > 0, r > 0 such that

log
(
1− γ(B̄(0, r))

γ(B̄(0, r))

)
+ 32λr 2 ≤ −1 ,

then ∫
E
exp(λ ‖ x ‖2)γ(dx) ≤ exp(16λr 2) +

e2

e2 − 1

Since the r.v. ‖ X ‖2 has exponential moment for some λ > 0,
we have Eγ(‖ X ‖p) <∞ , for all p > 0.
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The Kernel
Let γ be a centered gaussian measure on a separable Banach
space E .

Definition
The operator K : E ∗ −→ E,

Kϕ :=

∫
E
xϕ(x)γ(dx) as Bochner integral

is called Kernel .
Note that Kϕ is in E since

‖ Kϕ ‖E≤
∫

E
‖ xϕ(x) ‖ γ(dx) ≤

∫
E
‖ x ‖ |ϕ(x)|γ(dx)

≤
(∫

E
‖ x ‖2 γ(dx)

)1/2(∫
E
|ϕ(x)|2γ(dx)

)1/2

<∞

by Fernique lemma and since E ∗ is imbedded in L2(γ).
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Note that if ϕ, ψ ∈ E ∗

〈ψ,Kϕ〉 =

∫
E
ψ(x)ϕ(x)γ(dx) = Eγ

(
ψ(X ), ϕ(X )

)
= 〈ϕ,Kψ〈

This map extends to E
∗
, the closure in L2(γ) of E ∗.
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We introduce the Cameron-Martin’s space.

H =

{
h = Kϕ : ϕ ∈ E ∗

}
⊆ E

This is called Kernel or Cameron Martin space. It is an Hilbert
space equipped with the scalar product

(h1, h2)H = 〈ϕ1,Kϕ2〉 = Eγ
(
ϕ1(X )ϕ2(X )

)
The scalar product

(h, x)H = ϕ(x)

makes sense also when h = Kϕ with ϕ ∈ E
∗
as a random

variable in L2(γ).
We also have the reproducing kernel property:∫

E
〈h, x〉H〈g , x〉Hγ(dx) = 〈h, g〉H
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the Cameron-Martin space of Brownian motion

{Bt : t ∈ [0, 1]}.
Let E = C0([0, 1],R) = {x ∈ C ([0, 1]) : x(0) = 0}, and E ∗

consists of signed measures µ on [0, 1] with finite variation,
with the duality

〈µ, x〉 :=

∫ 1

0
x(s)µ(ds)

which is defined as an usual Riemann-Stiletjes integral, since
x(·) is continuous and µ has finite variation. We have the
continuity property

|〈µ, x〉| ≤ ‖x‖∞
∫ 1

0
|µ(ds)| .
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The covariance is E (BsBt) = E (B2
s ) + E (Bs(Bt − Bs)) = s for

s ≤ t, so we can write K (s, t) = (s ∧ t). By changing the
order of integration and then using integration by parts

(Kµ)(t) =

∫
E
x(t)〈µ, x〉Γ(dx) =

∫
E
x(t)

(∫ 1

0
x(s)µ(ds)

)
Γ(dx) =

∫ 1

0

(∫
E
x(s)x(t)Γ(dx)

)
µ(ds) =∫ 1

0
K (t, s)µ(ds) =

∫ 1

0
(t ∧ s)µ(ds) =

µ([0, 1])t −
∫ t

0
µ([0, s])ds =

∫ t

0
µ((s, 1])ds

which is an absolutely continuous function, since the function
s 7→ µ((s, 1]) is bounded.
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We have that

E (〈µ,B〉〈ν,B〉) = νKµ =

∫ 1

0

(∫ t

0
µ((s, 1])ds

)
ν(dt)

=

∫ 1

0
ν((t, 1])µ((t, 1])dt := (Kµ,Kν)H

By completing K (E ∗) w.r.t. the scalar product (·, ·)H we
obtain the Cameron-Martin space of Brownian motion

H = W 1,2([0, 1], dt) =

{
h ∈ C0([0, 1]) : h(t) =

∫ t

0
ḣ(s)ds with

∫ 1

0
ḣ(s)2ds <∞

}
(h, g)H =

∫ 1

0
ḣ(s)ġ(s)ds = (ḣ, ġ)L2([0,1],dt), for h, g ∈ H
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Note that we can extend the scalar product (h, x)H to the case
where h ∈ H and x ∈ E .
For µ ∈ E ∗ and the Brownian path x(t) = Bt(ω) we obtain

〈µ,B〉 = (Kµ,B)H :=

∫ 1

0
B(s)µ(ds) =

∫ 1

0
µ((s, 1])dBs

and this can be extended to any h ∈ H

(h,B)H :=

∫ 1

0
ḣ(s)dBs ,

which is the Wiener integral .
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The reproducing Kernel property of Brownian motion reads as

(h, g)H = EP

(∫ 1

0
ḣ(s)dBs

∫ 1

0
ġ(s)dBs

)
= EP

(∫ 1

0
ḣ(s)ġ(s)ds

)
Let’s fix t and take g(s) = K (t, s) = t ∧ s = E

(
BtBs) with

∂
∂sK (t, s) = 1(s ≤ t). We obtain

(h,K (t, ·))H = EP

(
Bt

∫ t

0
ḣ(s)dBs

)
=

∫ t

0
ḣ(s)ds = h(t)
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