ABC of Malliavin calculus

Dario Gasbarra

16. toukokuuta 2013

Dario Gasbarra ABC of Malliavin calculus

In probability theory , usually we work on an abstract measurable space (Ω, \mathcal{F}) equipped with a probability measure P.

In analysis instead we usually work concretely with the euclidean space \mathbb{R}^d equipped with Lebesgue measure. The Lebesgue measure on \mathbb{R}^d is σ -finite, meaning that \mathbb{R}^d is covered by a countable union of unit cubes $(z + [0, 1]^d)$, $z \in \mathbb{Z}^d$.

On each finite dimensional unit cube the Lebesgue measure is a probability, i.e. integrates to 1.

By Kolmogorov consistency theorem, we can define the product Lebesgue measure on the infinite dimensional unit cube $[0,1]^{\mathbb{N}}$, However the infinite product $\mathbb{R}^{\mathbb{N}}$ cannot be covered by a countable union of unit cubes, $\mathbb{Z}^{\mathbb{N}}$ is not countable.

The infinite product of the Lebesgue measure on $\mathbb{R}^{\mathbb{N}}$ is not $\sigma\text{-finite.}$

On $\mathbb{R}^{\mathbb{N}}$ we work instead with Gaussian probability measures. We start woking in finite dimension.

$$\gamma(x)dx = rac{1}{\sqrt{2\pi\sigma^2}}\exp{\left(-rac{x^2}{2\sigma^2}
ight)}dx$$

is the standard Gaussian measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. On \mathbb{R}^d , $\gamma^{\otimes d}(x) = \gamma(x_1) \dots \gamma(x_d)$ is the product density.

Lemma

Let $G(\omega)$ a real valued gaussian random variable with E(G) = 0 and variance $E(G^2) = \sigma^2$, If f, h are absolutely continuous functions,

$$f(x) = f(0) + \int_0^x f'(y) dy, \quad h(x) = h(0) + \int_0^x h'(y) dy,$$

with $f', h' \in L^2(\mathbb{R}, \gamma)$, (i.e. $f'(G), h'(G) \in L^2(\Omega)$) then $f(G), h(G) \in L^2(\Omega)$ and

$$E(f'(G)h(G)) = E\left(f(G)\left(\frac{h(G)G}{E(G^2)} - h'(G)\right)\right)$$

Proof

$P(G \in dx) = \gamma(x)dx$ with density

$$\gamma(x) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-rac{x^2}{2\sigma^2}
ight) \,.$$

Note that

$$\frac{d}{dx}\gamma(x) = -\frac{\gamma(x)x}{\sigma^2}$$

・ロト ・聞 ト ・ ヨト ・ ヨトー

3

Proof

$$P(G \in dx) = \gamma(x)dx$$
 with density

$$\gamma(x) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-rac{x^2}{2\sigma^2}
ight) \,.$$

Note that

$$\frac{d}{dx}\gamma(x) = -\frac{\gamma(x)x}{\sigma^2}$$

Integrating by parts

$$\int_{-\infty}^{\infty} f'(x)h(x)\gamma(x)dx = -\int_{-\infty}^{\infty} f(x)\frac{d}{dx}\left(h(x)\gamma(x)\right)dx$$
$$= \int_{-\infty}^{\infty} f(x)\left(\frac{h(x)x}{\sigma^2} - h'(x)\right)\gamma(x)dx \Box$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

æ

More precisely, it hold when f(x) is supported on a finite interval [a, b],

$$E_P(f'(G)h(G))\int_{-a}^{b} f'(x)h(x)\gamma(x)dx =$$

$$f(b)h(b) - f(a)h(a) - \int_{a}^{b} f(x)\frac{d}{dx}\left(h(x)\gamma(x)\right)dx$$

Otherwise, take $f_n(x) = f(x)\eta_n(x)$ with $\eta_n(X)(1 - x/n)^+$, which as support on [-n, n] and $\eta_n(x) \to 1 \ \forall x$ as $n \to \infty$. Note that $\eta'_n(x) = -\frac{1}{n} \operatorname{sign}(x)$. By Lebesgue dominated convergence $h(G)\eta_n(G) \to h(G)$ in $L^2(\gamma)$.

$$E_P(f'_n(G)h(G)) = E_P(f'(G)\eta_n(G)h(G)) - \frac{1}{n}E_P(f(G)\operatorname{sign}(G)h(G))$$
$$\longrightarrow E_P(f'(G)h(G))$$

Denote

$$\partial f(x) := f'(x) ext{ and } \partial^* h(x) := \left(rac{h(x)x}{\sigma^2} - h'(x)
ight)$$

◆□> ◆□> ◆豆> ◆豆>

Ξ.

Denote

$$\partial f(x) := f'(x) \text{ and } \partial^* h(x) := \left(\frac{h(x)x}{\sigma^2} - h'(x)\right)$$

Then

$$(\partial f, h)_{L^2(\mathbb{R},\gamma)} = (f, \partial^* h)_{L^2(\mathbb{R},\gamma)}$$

 ∂^* is the adjoint of the derivative operator in $L^2(\mathbb{R},\gamma)$.

Denote

$$\partial f(x) := f'(x) \text{ and } \partial^* h(x) := \left(\frac{h(x)x}{\sigma^2} - h'(x)\right)$$

Then

$$(\partial f, h)_{L^2(\mathbb{R},\gamma)} = (f, \partial^* h)_{L^2(\mathbb{R},\gamma)}$$

 ∂^* is the adjoint of the derivative operator in $L^2(\mathbb{R},\gamma)$.

Definition

We say that $f \in L^2(\mathbb{R}, \gamma)$, has weak derivative $g \in L^2(\mathbb{R}, \gamma)$ in Sobolev sense if $\forall h$ with classical derivative h' such that $\partial^* h \in L^2(\gamma)$,

$$\int_{\mathbb{R}} g(x)h(x)\gamma(x)dx = \int_{\mathbb{R}} f(x)\partial^*h(x)\gamma(x)dx$$

and we denote $\partial f = f' := g$.

This definition extends the classical derivative. We introduce the weighted Sobolev space

 $W^{1,2}(\mathbb{R},\gamma) := \{ f \in L^2 : f \text{ Sobolev differentiable } \}$

as the L^2 -closure of Domain(∂) with norm

$$\parallel f \parallel^{2}_{W^{1,2}(\gamma)} = \parallel f \parallel^{2}_{L^{2}(\gamma)} + \parallel \partial f \parallel^{2}_{L^{2}(\gamma)}$$

We extend also ∂^* to the $L^2(\mathbb{R},\gamma)$ closure of Domain (∂^*)

Lemma

Let $f_n \stackrel{L^2(\gamma)}{\to} 0$ a sequence of smooth functions with $\partial f_n \stackrel{L^2(\gamma)}{\to} g$. Then g(x) = 0 almost everywhere.

Proof

For every $h \in L^2(\gamma)$ smooth with $\partial^* h \in L^2(\gamma)$,

$$E_P(\partial f_n(G)h(G)) \to E_P(g(G)h(G))$$

= $E_P(f_n(G)\partial^*h(G)) \to 0$

Therefore E(g(G)h(G)) = 0. For every $A \in \mathcal{B}(\mathbb{R})$ by smoothing $\mathbf{1}_A(x)$ we find smooth and uniformly bounded $h_{\varepsilon}(x) \to \mathbf{1}_A(x)$. By bounded convergence theorem it follows that $E(g(G)\mathbf{1}_A(G)) = 0$.

▲冊♪ ▲屋♪ ▲屋♪

Proposition

The gaussian integration by parts formula

$$E_P(\partial f(G)h(G)) = E_P(f(G)\partial^*h(G))$$

extends to $f \in W^{1,2}(\mathbb{R},\gamma)$ $h \in Domain(\partial^*)$.

Corollary

For
$$h(x) \equiv 1$$
, $f \in W^{1,2}(\mathbb{R},\gamma)$
 $E(f'(G)) = rac{E(f(G)G)}{E(G^2)}$

・ロト ・四ト ・ヨト ・ヨト

æ

Linear regression

Let $X(\omega), Y(\omega) \in L^2(P)$. Then

$$\widehat{X}(\omega) = \widehat{b} + \widehat{a}Y(\omega)$$
 with (0.1)

$$\widehat{a} = \frac{E(X(Y - E(Y)))}{E(Y^2) - E(Y)^2}$$
(0.2)

$$\widehat{b} = E(X) - \widehat{a}E(Y)$$
 (0.3)

▲□→ ▲ □→ ▲ □→ …

臣

Linear regression

Let $X(\omega), Y(\omega) \in L^2(P)$. Then

$$\widehat{X}(\omega) = \widehat{b} + \widehat{a}Y(\omega)$$
 with (0.1)

$$\widehat{a} = \frac{E(X(Y - E(Y)))}{E(Y^2) - E(Y)^2}$$
(0.2)

$$\widehat{b} = E(X) - \widehat{a}E(Y)$$
 (0.3)

▶ < 문 ▶ < 문 ▶</p>

is the L^2 -projection of X on the linear subspace generated by Y, such that

$$E((\widehat{X} - X)^2) = \min_{a,b \in \mathbb{R}} E\left((a + bY - X)^2\right)$$

In general $\widehat{X}(\omega) \neq E(X|\sigma(Y))(\omega)$, which is the projection of X on the subspace $L^2(\Omega, \sigma(Y), P)$.

In general $\widehat{X}(\omega) \neq E(X|\sigma(Y))(\omega)$, which is the projection of X on the subspace $L^2(\Omega, \sigma(Y), P)$. When (X, Y) is jointly gaussian, $\widehat{X} = E(X|\sigma(Y))$. In general $\widehat{X}(\omega) \neq E(X|\sigma(Y))(\omega)$, which is the projection of X on the subspace $L^2(\Omega, \sigma(Y), P)$. When (X, Y) is jointly gaussian, $\widehat{X} = E(X|\sigma(Y))$. Let $W \sim \mathcal{N}(0, \sigma^2)$ and consider F = f(W) for some non-linear function $f \in W^{1,2}(\mathbb{R}, \gamma)$. By 0.1 the best linear estimator of f(W) given W is

$$\widehat{f(W)} = E(f(W)) + \frac{E(f(W)W)}{E(W^2)}W$$

In general $\widehat{X}(\omega) \neq E(X|\sigma(Y))(\omega)$, which is the projection of X on the subspace $L^2(\Omega, \sigma(Y), P)$. When (X, Y) is jointly gaussian, $\widehat{X} = E(X|\sigma(Y))$. Let $W \sim \mathcal{N}(0, \sigma^2)$ and consider F = f(W) for some non-linear function $f \in W^{1,2}(\mathbb{R}, \gamma)$. By 0.1 the best linear estimator of f(W) given W is

$$\widehat{f(W)} = E(f(W)) + \frac{E(f(W)W)}{E(W^2)}W$$
$$= E(f(W)) + E(f'(W))W$$

 $f(W) = E_P(f(W)|\sigma(W)) = E(f(W)) + E(f'(W))W + M^f$

Clearly $E(M^f) = 0$, but also

$$E(M^{f}W) = E\left(\left\{f(W) - E(f(W)) - E(f'(W))W\right\}W\right)$$
$$= E\left(\left\{f(W) - E(f(W)) - \frac{E(f(W)W)}{E(W^{2})}W\right\}W\right) = 0$$

- ★ 臣 ▶

< ∃ >

臣

Clearly $E(M^f) = 0$, but also

$$E(M^{f}W) = E\left(\left\{f(W) - E(f(W)) - E(f'(W))W\right\}W\right)$$
$$= E\left(\left\{f(W) - E(f(W)) - \frac{E(f(W)W)}{E(W^{2})}W\right\}W\right) = 0$$

The linearization error M^f is uncorrelated with W.

Lemma

When the derivatives f', f'' are bounded and continuous,

$$rac{Eig((M^f)^2ig)}{\sigma^2} o 0 \quad \ \ \,$$
as $\sigma o 0$

Proof. Let G with $E_P(G) = 0$, $E_P(G^2) = 1$, not necessarily Gaussian. By Taylor expansion, as $\sigma \to 0$,

$$f(\sigma G) = f(0) + f'(0)\sigma G + \frac{1}{2}f''(0)\sigma^2 G^2 + o_P(1)\sigma^2$$
$$E(f(\sigma G)) = f(0) + \frac{1}{2}f''(0)\sigma^2 + o(1)\sigma^2$$
$$Var(f(\sigma G)) = f'(0)^2\sigma^2 + o(1)\sigma^2$$

 $o_P(1)$ denotes a sequence of uniformly bounded random variables converging a.s. to 0 as $\sigma \rightarrow 0$.

As
$$\sigma \to 0$$
,
 $\frac{1}{\sigma^2} \{ f(0) - E(f(\sigma G)) \}^2 \to 0$, $\frac{1}{\sigma^2} \{ f'(0) - E(f'(\sigma G)) \}^2 \to 0$

By Cauchy Schwartz

$$\begin{aligned} &\frac{1}{\sigma} E_P \left(\left\{ f(\sigma G) - E_P(f(\sigma G)) - E_P(f'(\sigma G))\sigma G \right\}^2 \right)^{1/2} \\ &\leq \frac{1}{\sigma} E_P \left(\left\{ f(\sigma G) - f(0) - f'(0)\sigma G \right\}^2 \right)^{1/2} \\ &+ \frac{\left| f(0) - E_P(f(\sigma)G) \right|}{\sigma} + \frac{\left| f'(0) - E_P(f(\sigma)G) \right|}{\sigma} \sigma E_P(G^2)^{1/2} \longrightarrow 0 \end{aligned}$$

< ∃ >

Э

When G is standard Gaussian, integrating by parts

$$\frac{1}{\sigma^2} E_P\left(\left\{f(\sigma G) - E_P(f(\sigma G)) - \frac{E_P(f(\sigma G)\sigma G)}{\sigma^2}\sigma G\right\}^2\right) \longrightarrow 0$$

as $\sigma \rightarrow 0$, in colour you have the linear regression coefficents.

Let $\Delta W_1, \ldots, \Delta W_n$ i.i.d. Gaussian with $E(\Delta W_1) = 0$ $E(\Delta W_1^2) = \Delta T = T/n$. These are consecutive increments of the random walk $W_m = \sum_{k=1}^m \Delta W_k$. Let

$$F(\omega) = f(\Delta W_1(\omega), \ldots, \Delta W_n(\omega))$$

with $f(x_1, \ldots, x_n) \in W^{1,2}(\mathbb{R}^n, \gamma^{\otimes n})$. Introduce the σ -algebrae $\mathcal{F}_k = \sigma(\Delta W_1, \ldots, \Delta W_k)$, $k = 1, \ldots, n$.

• • = • • = •

Lemma

We have the martingale representation

$$F = E_P(F) + \sum_{k=1}^n E(\partial_k f(\Delta W_1, \ldots, \Delta W_n) | \mathcal{F}_{k-1}) \Delta W_k + M_n$$

where M is a (\mathcal{F}_k) -martingale with $M_0 = 0$ and $\langle M, W \rangle = 0$.

・ロト ・四ト ・ヨト ・ヨト

臣

By induction it is enough to show that

$$\begin{split} E(F|\mathcal{F}_k) &= \\ E(F|\mathcal{F}_{k-1}) + E(\partial_k f(\Delta W_1, \dots, \Delta W_n)|\mathcal{F}_{k-1})\Delta W_k + \Delta M_k \end{split}$$
 with

$$E(\Delta M_k | \mathcal{F}_{k-1}) = 0, \ E(\Delta W_k \Delta M_k | \mathcal{F}_{k-1}) = 0 \qquad (0.4)$$

Note that from independence,

$$E_{P}\left(\partial_{k}f(\Delta W_{1},\ldots,\Delta W_{n})\Big|\mathcal{F}_{k-1}\right)(\omega) = \int_{\mathbb{R}^{n-k+1}}\partial_{k}f(\Delta W_{1}(\omega),\ldots,\Delta W_{k-1}(\omega),x_{k},\ldots,x_{n})\gamma^{\otimes(n-k+1)}(x)dx$$

Let's fix k and consider the enlarged σ -algebra

$$\mathcal{G}_{k-1} = \sigma(\Delta W_1, \ldots, \Delta W_{k-1}, \Delta W_{k+1}, \ldots \Delta W_n) \supseteq \mathcal{F}_{k-1}$$

By fixing $(\Delta W_i, i \neq k)$, applying the 1-dimensional result to the k-the coordinate ΔW_k

$$F = E(F|\mathcal{G}_{k-1}) + E(\partial_k(\Delta W_1, \dots \Delta W_k)|\mathcal{G}_{k-1})\Delta W_k + \Delta \widetilde{M}_k$$

By the independence of the increments

$$\begin{aligned} f(\Delta W_1, \dots \Delta W_n) \\ &= E\left(f(x_1, \dots, x_{k-1}, \Delta W_k, x_{k+1}, \dots x_n)\right)\Big|_{x_i = \Delta W_i, \ i \neq k} \\ &+ E\left(\partial_k f(x_1, \dots, x_{k-1}, \Delta W_k, x_{k+1}, \dots x_n)\right)\Big|_{x_i = \Delta W_i, \ i \neq k} \Delta W_k \\ &+ \Delta \widetilde{M}_k \end{aligned}$$

By fixing $(\Delta W_i, i \neq k)$, applying the 1-dimensional result to the k-the coordinate ΔW_k

$$F = E(F|\mathcal{G}_{k-1}) + E(\partial_k(\Delta W_1, \dots \Delta W_k)|\mathcal{G}_{k-1})\Delta W_k + \Delta \widetilde{M}_k$$

By the independence of the increments

$$\begin{aligned} f(\Delta W_1, \dots \Delta W_n) \\ &= E\left(f(x_1, \dots, x_{k-1}, \Delta W_k, x_{k+1}, \dots x_n)\right)\Big|_{x_i = \Delta W_i, \ i \neq k} \\ &+ E\left(\partial_k f(x_1, \dots, x_{k-1}, \Delta W_k, x_{k+1}, \dots x_n)\right)\Big|_{x_i = \Delta W_i, \ i \neq k} \Delta W_k \\ &+ \Delta \widetilde{M}_k \end{aligned}$$

with

$$E(\Delta \widetilde{M}_k | \mathcal{G}_{k-1}) = 0, \quad E(\Delta \widetilde{M}_k \Delta W_k | \mathcal{G}_{k-1}) = 0,$$

which implies

$$E(\Delta \widetilde{M}_k | \mathcal{F}_{k-1}) = 0, \quad E(\Delta \widetilde{M}_k \Delta W_k | \mathcal{F}_{k-1}) = 0$$

By taking conditional expectation w.r.t. \mathcal{F}_k and using independence of increments

$$E(F|\mathcal{F}_{k}) = E\left(f(x_{1}, \dots, x_{k-1}, \Delta W_{k}, \Delta W_{k+1}, \dots \Delta W_{n})\right)\Big|_{x_{i}=\Delta W_{i}, i < k} + E\left(\partial_{k}f(x_{1}, \dots, x_{k-1}, \Delta W_{k}, \Delta W_{k+1}, \dots \Delta W_{n})\right)\Big|_{x_{i}=\Delta W_{i}, i < k} \Delta W_{k} + \Delta M_{k}$$

where

$$\Delta M_k := E(\Delta \widetilde{M}_k | \mathcal{F}_k)$$

with

$$E(\Delta M_k | \mathcal{F}_{k-1}) = E(\Delta M_k \Delta W_k | \mathcal{F}_{k-1}) = 0$$

Assuming that the derivatives $\partial_k f$, $\partial_{kk}^2 f$ are bounded and continuous, by Jensen's inequality for conditional expectation and lemma 3

$$\mathsf{E}_{\mathsf{P}}ig((\Delta M_k)^2ig|\mathcal{F}_{k-1}ig)(\omega) \leq \mathsf{E}_{\mathsf{P}}ig((\Delta \widetilde{M}_k)^2ig|\mathcal{F}_{k-1}ig)(\omega) = o_{\mathsf{P}}(1)\Delta t$$

where $o_P(1) \rightarrow 0$ a.s with bounded convergence as $\Delta t \rightarrow 0$ uniformly over *t*.

By the martingale property, when $\Delta t = T/n$ for T fixed and $n
ightarrow \infty$

$$E_P\left(\left\{\sum_{k=1}^n \Delta M_t\right\}^2\right) = \sum_{k=1}^n E_P\left(\left\{\Delta M_t\right\}^2\right) \le o_P(1)T$$

▶ ★ 문 ▶ ★ 문 ▶

臣

Definition

The (finite-dimensional) Malliavin derivative is the random gradient

$$DF := \nabla f(\Delta W_1, \ldots, \Delta W_n) \in \mathbb{R}^n$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

臣

Definition

Brownian motion, $(W_t : t \in [0, T])$ is a gaussian process with $W_0 = 0$ and such that for every $n, 0 = t_0 \le t_1 \le \cdots \le t_n = T$ the increments $(W_{t_i} - W_{t_{i-1}})$ are independent and gaussian with variances $(t_i - t_{i-1})$.

Brownian motion can be constructed as a random continuous function $[0, t] :\to \mathbb{R}$. Suppose that we have a random variable $F(\omega)$ which is measurable with respect to the Brownian σ -algebra $\mathcal{F}_t^W = \sigma(W_s : 0 \le s \le t)$. When $E_P(F^2) < \infty$, by Doob's martingale convergence theorem and that this can be approximated a.s. and in $L^2(\Omega)$ by random variables of the form

$$F_n(\omega) := f_n\big(W_{t_1^{(n)}} - W_{t_0^{(n)}}, \dots, W_{t_n^{(n)}} - W_{t_{n-1}^{(n)}}\big)$$

where $f_n(x_1, \ldots, x_n)$ is Borel measurable and $t_{k_{\mathcal{O}}}^{(n)} := Tk/n$.

When $F(\omega)$ is Malliavin differentiable, $f_n(x_1, \ldots, x_n)$ are smooth functions. As $n \to \infty$ the orthogonal linearization error in

$$F_n = E(F_n) + \sum_{k=1}^n E(\nabla_k F_n | \mathcal{F}_{k-1}^{(n)}) \Delta W_k^{(n)} + M_n^n$$

vanishes (in $L^2(P)$ sense) and the limit is the Ito-Clark-Ocone martingale representation

$$F = E(F) + \int_0^T E(D_s F | \mathcal{F}_s^W) dW_s$$

where the Ito integral appears.

In $L^2(\mathbb{R}^n, \gamma^{\otimes n}(x)dx)$ the Malliavin derivative of $F = f(\Delta W_1, \ldots, \Delta W_n)$ as the random gradient $DF = \nabla f(\Delta W_1, \ldots, \Delta W_n)$, where ΔW_k are i.i.d. $\mathcal{N}(0, \Delta t)$ Let $u_k = u_k(\Delta W_1, \ldots, \Delta W_n)$ for $k = 1, \ldots, n$. Let's introduce the scalar product

$$\langle u, v \rangle := \Delta t \sum_{k=1}^{n} u_k v_k$$

• • = • • = •
We give the *n*-dimensional generalization of the 1-dimensional integration by parts formula.

We need a random variable which we denote by $\delta(u)$ (the Skorokhod integral or divergence integral) such that

$$E_P(\langle DF, u \rangle) = E_P(F\delta(u))$$

for all smooth random variables F. This extends the one-dimensional Gaussian integration by parts formula

$$E_P(\partial f(G)h(G)\rangle) = E_P(f(G)\partial^*(G))$$

Rewrite the left hand side

$$\Delta t \sum_{k=1}^{n} E(u_k(\Delta W_1,\ldots,\Delta W_n)\partial_k f(\Delta W_1,\ldots,\Delta W_n))$$

by independence and the 1-dimensional gaussian integration by parts

$$= \Delta t \sum_{k=1}^{n} E(\partial_{k}^{*} u_{k}(\Delta W_{1}, \dots, \Delta W_{n}) f(\Delta W_{1}, \dots, \Delta W_{n}))$$
$$= E\left(F\Delta t\left(\sum_{k=1}^{n} \frac{u_{k}\Delta W_{k}}{\Delta t} - \sum_{k=1}^{n} \partial_{k} u_{k}\right)\right)$$

- 3 ≥ >

Rewrite the left hand side

$$\Delta t \sum_{k=1}^{n} E(u_k(\Delta W_1,\ldots,\Delta W_n)\partial_k f(\Delta W_1,\ldots,\Delta W_n))$$

by independence and the 1-dimensional gaussian integration by parts

$$= \Delta t \sum_{k=1}^{n} E(\partial_{k}^{*} u_{k}(\Delta W_{1}, \dots, \Delta W_{n}) f(\Delta W_{1}, \dots, \Delta W_{n}))$$
$$= E\left(F\Delta t\left(\sum_{k=1}^{n} \frac{u_{k}\Delta W_{k}}{\Delta t} - \sum_{k=1}^{n} \partial_{k} u_{k}\right)\right)$$

so that

$$\delta(u) = \sum_{k=1}^{n} u_k \Delta W_k - \sum_{k=1}^{n} D_k u_k \Delta t$$

The first term is a Riemann sum, while the second term is called Malliavin trace.

When $u_k = u_k(\Delta W_1, \ldots, \Delta W_{k-1}, \Delta W_{k+1}, \ldots, \Delta W_n)$ does not depend on ΔW_k , the Malliavin trace vanishes.

▲ 同 ▶ → 注 ▶ → 注 ▶ →

æ

When $u_k = u_k(\Delta W_1, \ldots, \Delta W_{k-1}, \Delta W_{k+1}, \ldots, \Delta W_n)$ does not depend on ΔW_k , the Malliavin trace vanishes. For $F \equiv 1$, $DF \equiv 0$ and when exists $\delta(u) \in L^2(\Omega)$, necessarily

 $E(\delta(u)) = E(\langle u, 0 \rangle) = 0$

伺 とう ほう とう とう

When $u_k = u_k(\Delta W_1, \ldots, \Delta W_{k-1}, \Delta W_{k+1}, \ldots, \Delta W_n)$ does not depend on ΔW_k , the Malliavin trace vanishes. For $F \equiv 1$, $DF \equiv 0$ and when exists $\delta(u) \in L^2(\Omega)$, necessarily

$$E(\delta(u)) = E(\langle u, 0 \rangle) = 0$$

In the continuous time case the Skorokhod integral with respect to the Brownian motion is given by

$$\delta(u) := \int_0^T u_s \delta W_s = \int_0^T u_s dW_s - \int_0^T D_s u_s ds$$

where $\int_0^T u_s dW_s$ is a forward integral defined as the limit in probability or $L^2(P)$ -sense of the Riemann sums, and the last term is the Malliavin trace.

When u is adapted, that is u is \mathcal{F}_s^W -measurable for all s the Malliavin trace vanishes and the Skorokhod integral coincides with the Ito integral.

Note that if φ is smooth, $D\varphi(F) = \varphi'(F)DF$. We have also the product rule D(FG) = G DF + F DG. Consider a process $u_k = u_k(\Delta W_1, \dots, \Delta W_n)$

$$E\left(\delta\left(\frac{u}{\langle u, DF \rangle}\right)\varphi(F)\right) = E\left(\left\langle\frac{u}{\langle u, DF \rangle}, D\varphi(F)\right\rangle\right)$$
$$= E\left(\frac{\varphi'(F)}{\langle u, DF \rangle}\langle u, DF \rangle\right) = E\left(\varphi'(F)\right)$$

This holds for all choices of (u_k) and φ . By taking u = DF we obtain

$$E(\varphi'(F)) = E\left(\varphi(F)\delta\left(\frac{DF}{\parallel DF \parallel^2}\right)\right)$$

where

$$\parallel DF \parallel^2 = \langle DF, DF \rangle = \Delta t \sum_{k}^{n} (D_k F)^2$$

Computation of densities

Let $F = f(\Delta W_1, \dots, \Delta W_n)$ a random variable with Malliavin Sobolev derivative. For $a < b \in \mathbb{R}$ consider

$$\psi(x) = \int_a^b \mathbf{1}(r \le x) dr$$

with Sobolev derivative $\psi'(x) = \mathbf{1}_{[a,b]}(x)$.

$$P(a < F \le b) = \int_{a}^{b} p_{F}(r) dr \text{ (when } F \text{ has density)}$$

= $E_{P}(\mathbf{1}(a < F \le b)) = E_{P}(\psi'(F)) = E_{P}(\psi(F)\delta\left(\frac{DF}{\parallel DF\parallel^{2}}\right))$
= $E_{P}\left(\delta\left(\frac{DF}{\parallel DF\parallel^{2}}\right)\int_{a}^{b}\mathbf{1}(r \le F)dr\right) = \text{ (Fubini)}$
= $\int_{a}^{b} E_{P}\left(\mathbf{1}(r \le F)\delta\left(\frac{DF}{\parallel DF\parallel^{2}}\right)\right)dr$

This implies

$$p_F(r) = E_P\left(\mathbf{1}(r \leq F)\delta\left(\frac{DF}{\parallel DF \parallel^2}\right)\right) = E_P(\mathbf{1}(r \leq F)Y)$$

with Malliavin weight

$$Y := \delta \left(\frac{DF}{\| DF \|^2} \right) = \frac{1}{\| DF \|^2} \sum_{k=1}^n D_k F \Delta W_k - \sum_{k=1}^n D_k \left(\frac{D_k F}{\| DF \|^2} \right) \Delta t$$
$$= \frac{1}{\| DF \|^2} \sum_{k=1}^n D_k F \Delta W_k - \frac{1}{\| DF \|^2} \sum_{k=1}^n D_{kk}^2 F \Delta t$$
$$+ \frac{2}{\| DF \|^4} \sum_{k=1}^n \sum_{h=1}^n D_k F D_h F D_{kh}^2 F \Delta t \Delta t$$

・日本 ・モト ・モト

æ

For $F = f(\Delta W_1, \ldots, \Delta W_n)$ we need that f twice differentiable in Sobolev sense and integrability conditions. This extends to the infinite-dimensional case when F is a smooth functional of the Brownian path. For $F = f(\Delta W_1, \ldots, \Delta W_n)$ we need that f twice differentiable in Sobolev sense and integrability conditions. This extends to the infinite-dimensional case when F is a smooth functional of the Brownian path. For $i \in \mathbb{N}$ let $(\Delta W_1^{(i)}, \ldots, \Delta W_n^{(i)})$, i.i.d copies of the gaussian vector, let

$$F^{(i)} := f(\Delta W_1^{(i)}, \dots, \Delta W_n^{(i)}),$$

$$Y^{(i)} := Y(\Delta W_1^{(i)}, \dots, \Delta W_n^{(i)})$$

We estimate $p_F(t)$ by Monte Carlo

$$\widehat{p}_{F}^{(M)}(r) = \frac{1}{M} \sum_{i=1}^{M} Y^{(i)} \mathbf{1}(F^{(i)} \ge r)$$

There are other choices for the Malliavin weight: for

$$u_k = \frac{1}{n\Delta t \ D_k F}$$

we obtain

$$E(\langle u, D\varphi(F) \rangle) = \frac{1}{n\Delta t} E(\varphi'(F) \langle DF, (DF)^{-1} \rangle) =$$

= $\frac{1}{n\Delta t} E\left(\varphi'(F) \sum_{k=1}^{n} (D_k F)^{-1} D_k F \Delta t\right)$
= $E(\varphi'(F)) = E(\varphi(F)U)$

with Malliavin weight

$$U = \frac{1}{n\Delta t} \delta((DF)^{-1}) = \frac{1}{n\Delta t} \sum_{k=1}^{n} \frac{1}{D_k F} \Delta W_k + \frac{1}{n} \sum_{k=1}^{n} \frac{D_{kk}^2 F}{(D_k F)^2}$$

< ∃ >

臣

Example: quadratic functional

Let

$$W_k = (\Delta W_1 + \dots + \Delta W_k), \quad F = \sum_{k=1}^n W_k^2 \Delta t$$

 $D_h F = 2 \sum_{k=h}^n W_k \Delta t, \quad D_{h,k}^2 F = 2(n - (h \lor k) + 1) \Delta t$

n

We compute the Malliavin weight U

$$U = \frac{1}{n\Delta t} \left(\sum_{h=1}^{n} \frac{1}{D_h F} dW_h - \sum_{h=1}^{n} D_h ((D_h F)^{-1}) \Delta t \right)$$

= $\frac{1}{2n\Delta t} \sum_{h=1}^{n} \left(\sum_{k=h}^{n} W_k \Delta t \right)^{-1} \Delta W_h$
+ $\frac{1}{n\Delta t} \sum_{h=1}^{n} \left(2 \sum_{k=h}^{n} W_k \Delta t \right)^{-2} 2(n-h+1)(\Delta t)^2 =$
 $\frac{1}{2n(\Delta t)^2} \left\{ \sum_{h=1}^{n} \left(\sum_{k=h}^{n} W_k \right)^{-1} \Delta W_h + \sum_{h=1}^{n} \left(\sum_{k=h}^{n} W_k \right)^{-2} (n-h+1)\Delta t \right\}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Counterexample: Maximum of gaussian random walk

Let $W_0 = 0$, $W_m = \sum_{k=1}^m \Delta W_k$ for m = 1, ..., n the gaussian random walk, and let

$$F = W_n^* := \max_{m=0,1,\ldots,n} \{W_m\} = f(\Delta W_1,\ldots,\Delta W_n)$$

Let

$$\tau_n = \tau_n(W_1, \ldots, W_n) = \arg \max_{m=0,1,\ldots,n} W_m$$

the random time where the maximum is achieved. Note that with positive probability $W_n^* = 0$ and $\tau_n = 0$ when the random walk stays on the negative side, so we know that there is point mass at 0, W_n^* does not have a density.

Clearly for
$$k = 1, ..., n$$

 $D_k W_n^* = \partial_k f_n(\Delta W_1, ..., \Delta W_n) = \mathbf{1}(\tau_n \ge k)$
 $= \mathbf{1}(W_{k-1}^* < \max_{h=k,...,n} W_h)$ a.s.

The problem is that the indicator of a set is never Malliavin differentiable and the second order Malliavin derivative $D_{hk}^2 X_n^* = D_h \mathbf{1}(\tau_n \ge k)$ doesn't exist as random variables in L^2 and the Malliavin weights are not well defined.

Skorohod integral with correlated Gaussian noise

Consider correlated Gaussian increments, with density

$$\gamma_{\mathcal{K}}(\Delta Z_1,\ldots,\Delta Z_n) = |\mathcal{K}|^{-1/2}\pi^{-n/2}\exp\left(-\frac{1}{2}\Delta Z \ \mathcal{K}^{-1}\Delta Z^{\top}\right)$$

with
$$E(\Delta Z_\ell)=0$$
 and $K_{h\ell}=Eig(\Delta Z_h\Delta Z_\ellig).$

Skorohod integral with correlated Gaussian noise

Consider correlated Gaussian increments, with density

$$\gamma_{\mathcal{K}}(\Delta Z_1,\ldots,\Delta Z_n) = |\mathcal{K}|^{-1/2} \pi^{-n/2} \exp\left(-\frac{1}{2} \Delta Z \ \mathcal{K}^{-1} \Delta Z^{\top}\right)$$

with
$$E(\Delta Z_{\ell}) = 0$$
 and $K_{h\ell} = E\left(\Delta Z_{h}\Delta Z_{\ell}\right)$.

In the correlated case, Gaussian integration by parts reads as

$$E_{P}(\partial_{\ell}f(\Delta Z_{1},\ldots,\Delta Z_{n})g(\Delta Z_{1},\ldots,\Delta Z_{n})) = E_{P}\left(f(\Delta Z_{1},\ldots,\Delta Z_{n})\times\right)$$
$$\left\{g(\Delta Z_{1},\ldots,\Delta Z_{n})\sum_{h}K_{h\ell}^{-1}\Delta Z_{h}-\partial_{\ell}g(\Delta Z_{1},\ldots,\Delta Z_{n})\right\}$$

If $u_k = u_k(\Delta Z_1, \dots, \Delta Z_n)$, we define the Skorokhod integral w.r.t. Z_n as $\delta_Z(u)$ satisfying

$$E_P(\langle DF, u \rangle_K) = E_P(F\delta_Z(u))$$

with the scalar product

$$\langle x, y \rangle_{\mathcal{K}} = x \mathcal{K} y^{\top}$$

for all random variables $F(\omega) = f(\Delta Z_1, \dots, \Delta Z_n) \in W^{1,2}(\mathbb{R}^n, \gamma_K), \text{ This gives}$ $\delta_Z(u) = \sum_{h=1}^n u_k \Delta Z_k - \sum_{h=1}^n \sum_{\ell=1}^n K_{h\ell} D_h u_\ell$

In the continuous case this gives

$$\delta_{Z}(u) := \int_{0}^{T} u_{s} \delta Z_{s} = \int_{0}^{T} u_{s} dZ_{s} - \int_{0}^{T} \int_{0}^{T} D_{t} u_{s} K(dt, ds)$$

where the first integral exists as the limit of Riemann sums in $L^2(P)$,

Hermite polynomials

Let $\gamma(x)$ be the standard gaussian density in \mathbb{R} .

Lemma

The polynomials are dense in $L^2(\mathbb{R}, \gamma)$.

Proof Otherwise there is a random variable $F = f(G) \in L^2(P)$ with $E(f(G)G^n) = 0 \ \forall n \in \mathbb{N}$ where G is standard gaussian. Consider the (signed) measure on \mathbb{R}

$$\mu(A) := E_P(f(G)\mathbf{1}_A(G))$$

We show that $\mu \equiv 0$ which implies f(G) = 0 *P* a.s. The Fourier transform of μ is

$$\widehat{\mu}(t) := E_P(f(G) \exp(itG))$$

For
$$t = (\sigma + \tau i) \in \mathbb{C}$$
 with $\sigma, \tau \in \mathbb{R}$,
 $\widehat{\mu}(t) := E_P(f(G) \exp(i\sigma G) \exp(-\tau G))$

Since

$$E_{P}\left(\left|\frac{\partial}{\partial\sigma}\left\{f(G)\exp(-\tau G)\exp(i\sigma G)\right\}\right|\right)$$

= $E_{P}(|f(G)\exp(-\tau G)iG\exp(i\sigma G)|)$
 $\leq E_{P}(|f(G)G\exp(-\tau G)|)$
 $\leq E_{P}(|f(G)G(\exp(-aG)+\exp(-bG))|)$

where $\exp(-\tau G) \leq \exp(-aG) + \exp(-bG) \ \forall \tau \in (a, b) \subseteq \mathbb{R}$.

・ロト ・ 日 ・ ・ 目 ・ ・ 日 ・ ・

æ

By Cauchy-Schwartz inequality

$$\leq E_P(f(G)^2)^{1/2} E(G^2 \{\exp(-aG) + \exp(-bG))^2)^{1/2}$$

= $E_P(f(G)^2)^{1/2} \{ E(G^2 \exp(-2aG)) + E(G^2 \exp(-2bG)) + 2E(G^2 \exp(-(a+b)G)) \}^{1/2} < \infty$

by Lebesgue's dominated convergence theorem we can change the order of derivation and integration (Theorem A 16.1 in Williams' book)

$$\frac{\partial}{\partial \sigma}\widehat{\mu}(\tau + i\sigma) = i \, E_P(f(G)G\exp(i\sigma G)\exp(-\tau G))$$

Similarly

$$\frac{\partial}{\partial \tau}\widehat{\mu}(\tau + i\sigma) = -E_P(f(G)G\exp(i\sigma G)\exp(-\tau G)) = i\frac{\partial}{\partial \sigma}\widehat{\mu}(\tau + i\sigma)$$

 $\widehat{\mu}:\mathbb{C}\to\mathbb{C} \text{ is analytic since satisfies the Cauchy-Riemann condition.}}$

Therefore has the power series expansion

$$\widehat{\mu}(t) = \sum_{t=0}^{\infty} \widehat{\mu}^{(n)}(0) \frac{t^n}{n!}$$
$$\mu^{(n)}(t) = \frac{d^n}{dt^n} \widehat{\mu}(t) = i^n E_P(f(G) \exp(itG)G^n),$$
$$\widehat{\mu}^{(n)}(0) = i^n E_P(f(G)G^n) = 0 \ \forall n \in \mathbb{N}$$

where by adapting the previous argument we can take derivatives inside the expectation. Therefore $\hat{\mu}(t) = 0$ and by Lévy inversion theorem $\mu(dx) = 0$, which implies $E_P(f(G)^2) = 0 \square$.

Hermite polynomials in $L^2(\mathbb{R},\gamma)$.

Let G be a standard gaussian random variable with density $\gamma(x)$. Define the (unnormalized) Hermite polynomials

$$h_0(x) \equiv 1, \ h_n(x) = (\partial^* h_{n-1})(x) = (\partial^{*n} 1)(x)$$

By using repeatedly the commutation relation

$$\partial \partial^* f - \partial^* \partial f = f$$

we get

$$\partial \partial^{*n} f - \partial^{*n} \partial f = n \partial^{*(n-1)} f$$

when f(x) = 1

 $\partial h_n(x) = nh_{n-1}(x)$

 ∂ and ∂^* are annihilation and creation operators.

Dario Gasbarra

ABC of Malliavin calculus

$$h_n(x) = \exp(x^2/2) \frac{d^n}{dx^n} \exp(-x^2/2)$$

Ex: $h_1(x) = x$, $h_2(x) = (x^2 - 1)$, $h_3(x) = (x^3 - 3x)$,
 $h_4(x) = x^4 - 6x^2 + 3$, $h_5(x) = (x^5 - 10x^3 + 15x)$

$$E_P(h_n(G)h_m(G)) = E_P((\partial^{*n}1)(G)(\partial^{*m}1)(G)) = E_P((\partial^n\partial^{*m}1)(G) \mathbf{1}) = \delta_{n,m}n!$$

(assuming $n \ge m$)

۲

・ロト ・回ト ・ヨト ・ヨト

æ

Since the polynomials are dense in $L^2(\mathbb{R},\gamma)$, the normalized Hermite polynomials

$$H_n(x) := rac{h_n(x)}{\sqrt{n!}} \ n \in \mathbb{N}$$

form an orthonormal basis in $L^2(\mathbb{R},\gamma)$: for $f(G) \in L^2(P)$,

$$f(G) = \sum_{n=0}^{\infty} E_P(f(G)H_n(G))H_n(G) = \sum_{n=0}^{\infty} E_P(f(G)h_n(G))\frac{h_n(G)}{n!}$$

and when f(x) is infinitely differentiable in Sobolev sense

$$=\sum_{n=0}^{\infty}E_P(f(G)(\partial^{*n}1)(G))\frac{h_n(G)}{n!}=\sum_{n=0}^{\infty}E_P(\partial^n f(G))\frac{h_n(G)}{n!}$$

(one-dimensional Stroock formula)

the convergence is in $L^2(P)$ sense

$$E_P\left(\left\{f(G)-\sum_{n=1}^N E_P(f(G)H_n(G))H_n(G)\right\}^2\right)\to 0 \text{ as } N\uparrow\infty$$

< 🗗

▶ < 문 ▶ < 문 ▶</p>

æ

the convergence is in $L^2(P)$ sense

$$E_P\left(\left\{f(G)-\sum_{n=1}^N E_P(f(G)H_n(G))H_n(G)\right\}^2\right)\to 0 \text{ as } N\uparrow\infty$$

Define the generating function

$$f(t,x) := \exp(tx - t^2/2) = \frac{\gamma(x-t)}{\gamma(x)} = \frac{d\mathcal{N}(t,1)}{d\mathcal{N}(0,1)}(x)$$

which is the density ratio for the gaussian shift $G \to (t + G)$ Note that $E_P(f(t, G)) = 1$. Since $f(t, x) \in C^{\infty}$, by Stroock formula

$$\exp(tx - t^2/2) = \sum_{n=0}^{\infty} E_P\left(\frac{d^n}{dx^n}f(t,G)\right)\frac{h_n(x)}{n!}$$
$$= \sum_{n=0}^{\infty} E_P\left(t^n f(t,G)\right)\frac{h_n(x)}{n!} = \sum_{n=0}^{\infty} h_n(x)\frac{t^n}{n!}$$

Note that

$$t^n = E_P\left(h_n(G)\exp(tG - t^2/2)\right) = E_P(h_n(t+G))$$

where on the right side we have changed the measure.

Let $G = (G_1, \ldots, G_n)$ a random vector with indepedent standard gaussian coordinates. Since $L^2(\mathbb{R}^n, \gamma^{\otimes n}) = \overline{\operatorname{span} L^2(\mathbb{R}, \gamma)^n}$, which is the L^2 -closure of the linear space containing the products $f_1(x_1)f_2(x_1) \ldots f_n(x_n)$ with $f_i \in L^2(\mathbb{R}, \gamma)$, the polynomials in the variables x_1, \ldots, x_n are dense in $L^2(\mathbb{R}^n, \gamma^{\otimes n})$.

Definition

 $\alpha = (\alpha_1, \dots, \alpha_n)$ with $\alpha_i \in \mathbb{N}$ is a multi-index. $\alpha! := \prod_{i=1}^n \alpha_i!$

▲御▶ ▲理▶ ▲理▶

For $x = (x_1, ..., x_n)$ define the unnormalized and normalized multivariate Hermite polynomials

$$egin{aligned} &h_lpha(x) = \prod_{i=1}^n h_{lpha_i}(x_i)\ &H_lpha(x) = \prod_{i=1}^n H_{lpha_i}(x_i) = \prod_{i=1}^n rac{h_{lpha_i}(x)}{\sqrt{lpha_i!}} = rac{h_lpha(x)}{\sqrt{lpha!}} \end{aligned}$$

Lemma

 $\{H_{\alpha}(\mathbf{x}) : \alpha \text{ multi-index}\}\$ is an orthonormal basis in $L^{2}(\mathbb{R}^{n}, \gamma^{\otimes n})$

A (2) > (

Proof Let $\beta = (\beta_1, \ldots, \beta_n) \beta_i \in \mathbb{N}$,

$$E_P(H_\alpha(G)H_\beta(G)) = E_P\left(\prod_{i=1}^n H_{\alpha_i}(G_i)\prod_{j=1}^n H_{\beta_j}(G_j)\right) = \prod_{i=1}^n E_P(H_{\alpha_i}(G_i)H_{\beta_i}(G_i)) = \prod_{i=1}^n \delta_{\alpha_i,\beta_i} = \delta_{\alpha,\beta}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

3

$$F(\omega) = f(G_1, \ldots, \Delta G_n) = \sum_{\alpha} E_P(H_{\alpha}(G)F)H_{\alpha}(G) = \sum_{\alpha} c_{\alpha}H_{\alpha}(G)$$

with
$$F \in L^2(\mathbb{R}^n \gamma^{\otimes n}) \Longleftrightarrow \sum_{\alpha} c_{\alpha}^2 < \infty$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

 $L^{2}(\mathbb{R}^{\mathbb{N}}, \gamma^{\otimes \mathbb{N}})$ is the space of sequences $x = (x_{i} : i \in \mathbb{N})$. On this space we use the product σ -algebra $\mathcal{B}(\mathbb{R}^{\mathbb{N}}) = \mathcal{B}(\mathbb{R})^{\otimes \mathbb{N}}$ which is the smallest σ -algebra such that the coordinate evaluations $x \mapsto x_{i}$ are measurable.

The Borel σ -algebra $\mathcal{B}(\mathbb{R})$ is the smallest σ algebra containing the open sets.

The product measure $\gamma^{\otimes \mathbb{N}}$ is such that $\forall n \in \mathbb{N}$, $B_1, \ldots, B_n \in \mathcal{B}(\mathbb{R})$

$$\gamma^{\otimes\mathbb{N}}(\{x:x_1\in B_1,\ldots,x_n\in B_n\})=\prod_{i=1}^n\gamma(B_i)$$

Definition

$$\alpha = (\alpha_i : i \in \mathbb{N})$$
 with $\alpha_i \in \mathbb{N}$ and

$$|\alpha| := \sum_{i=1}^{\infty} \alpha_i < \infty$$

is a multi-index

Definition

A polynomial in the variables $(x_i : i \in \mathbb{N})$ is given by

$$p(x) = c_0 + \sum_{i=1}^{\infty} c_i x_i^{\alpha_i}$$

 $c_i \in \mathbb{R}$, and α is a multiindex, $|\alpha| < \infty$, which depends on finitely many coordinates.

• • = •

$$L^2(\mathbb{R}^{\mathbb{N}},\gamma^{\otimes\mathbb{N}})=\bigoplus_{n\in\mathbb{N}}L^2(\mathbb{R}^n,\gamma^{\otimes n})$$

An orthonormal basis is given by

$$\left\{ H_{\alpha}(G) := \prod_{i=1}^{\infty} H_{\alpha_i}(G_i), \ \alpha \text{ multindex }, |\alpha| < \infty \right\}$$

where $(G_i : i \in \mathbb{N})$ is the canonical sequence of independent standard gaussian r.v.
Gaussian measures in Banach space

Lemma

If $(\xi_n : n \in \mathbb{N})$ are Gaussian random variables with $\xi_n \sim \mathcal{N}(\mu_n, \sigma_n^2)$, and $\xi_n \stackrel{d}{\rightarrow} \xi$ (in distribution), then ξ has Gaussian distribution $\mathcal{N}(\mu, \sigma^2)$ with $\mu = \lim_n \mu_n$ and $\sigma^2 = \lim_n \sigma_n^2$. When $\sigma^2 = 0$, we agree that the constant random variable μ is Gaussian.

Corollary

If $(\xi_n : n \in \mathbb{N})$ are Gaussian and $\xi_n \xrightarrow{P} \xi$ in probability, since Gaussian variables have all moments it follows $(\xi_n : n\mathbb{N})$ is bounded in $L^p \forall p < \infty$. and we have convergence also in $L^p(\Omega)$.

• • • • • • • • • • • •

Random variables with values on a separable Banach space

Let $(E, \|\cdot\|)$ be a *separable Banach space*, and E^* is the topological dual.

By separability we mean that there is $\{e_n : n \in \mathbb{N}\}$ which is dense in E.

The elements of E^* are linear continuous functionals φ with $|\varphi(x)| \leq C ||x||_E$. We denote also $\varphi(x) = \langle \varphi, x \rangle_{E^*, E}$.

Example

The space $C([0,1],\mathbb{R})$ of continuous functions with the norm

$$\|f\|_{\infty} = \sup_{t\in[0,1]} |f(t)|$$

is separable: by Bernstein's theorem which says that continuous functions can be approximated by polynomials uniformly on compacts. To obtain a dense countable set we take the polynomial functions with rational coefficients. Its dual is the space of signed measures with finite total variation on [0, 1]. The topological dual E^* is equipped with the strong operator norm

$$|\varphi|_{E^*} = \sup\{|\varphi(x)| : x \in E, ||x|| = 1\}$$
.

臣

< ∃ >

The topological dual E^* is equipped with the strong operator norm

$$|\varphi|_{E^*} = \sup\{|\varphi(x)| : x \in E, ||x|| = 1\}$$

By using the duality we define the weak topology on E, where $x_n \xrightarrow{w} x$ weakly if $\varphi(x_n) \to \varphi(x) \ \forall \varphi \in E^*$. We define also the weak-* topology on E^* , where $\varphi_n \xrightarrow{w-*} \varphi$ *-weakly if $\varphi_n(x) \to \varphi(x) \ \forall x \in E$.

Example

The weak topology is weaker than the $\|.\|$ norm topology in E and the weak-* topology is weaker than the $|.|_{E^*}$ norm topology in E^* .

・ 同 ト ・ ヨ ト ・ ヨ ト

We have a probability space (Ω, \mathcal{F}, P) and a random variable X which is measurable from (Ω, \mathcal{F}) into $(E, \mathcal{B}(E))$. where $\mathcal{B}(E)$ is the Borel σ -algebra generated by the open sets.

Definition

A simple E-valued random variable has the form

$$X(\omega) = \sum_{i=1}^N x_i \mathbf{1}(A_i), \quad \text{ with } x_i \in E, \ A_i \in \mathcal{F} \ .$$

Lemma

Let X be random variable defined on a probability (Ω, \mathcal{F}, P) space with values in $(E, \mathcal{B}(E))$. There exist a sequence of simple E-valued random variables $\{X_n : n \in \mathbb{N}\}$ such that

 $\parallel X \parallel \geq \parallel X - X_n \parallel \downarrow 0$ (monotonically), almost surely .

Proof: Choose $X_n(\omega)$ as the element of $\{e_1, \ldots, e_n\}$ which is closest to $X(\omega)$.

We will use this corollary of the Hahn-Banach Theorem:

Lemma

For every
$$x \in E \exists \varphi \in E^*$$
 with $\|\varphi\|_{E^*} = 1$ and $\|x\|_E = \varphi(x)$

Theorem

If E is a separable Banach space the Borel σ -algebra is generated by the sets

$$\{x \in E : \varphi(x) \le \alpha\}$$

with $\varphi \in E^*$ and $\alpha \in \mathbb{R}$.

Note that $\varphi(X(\omega))$ for $\varphi \in E^*$ and $||X(\omega)||$ are real valued random variables, i.e. measurable functions from (Ω, \mathcal{F}) into $(E, \mathcal{B}(E))$, since they are composition of a continuous and a measurable function.

For a simple *E*-valued r.v. $X(\omega) = \sum_{i=1}^{N} x_i \mathbf{1}(A_i)$, with $x_i \in E$, $A_i \in \mathcal{F}$ we define the integral

$$\int_{\Omega} X(\omega) P(d\omega) = \sum_{i=1}^{N} x_i P(A_i)$$

• • = • • = •

Assume that X is a E-valued r.v. and that

$$\int_{\Omega} \parallel X(\omega) \parallel P(d\omega) < \infty$$

Since *E* is separable, we can approximate *X* by a sequence of simple *E*-valued r.v. $\{X_n\}$ with $||X|| \ge ||X_n - X|| \downarrow 0$ (monotonically).

$$\left\| \int_{\Omega} X_n dP - \int_{B} X_m dP \right\| \le \int_{\Omega} \| X_n - X_m \| dP$$
$$\le \int_{\Omega} \| X - X_m \| dP + \int_{\Omega} \| X - X_m \| dP \to 0$$

By the monotone convergence theorem it follows that $\{\int_{\Omega} X_n dP\}$ is a Cauchy sequence in *E*, therefore since the space is complete it has a limit in *E*. By the same argument the limit does not depend on the choice of the approximating sequence, so that the Bochner integral of the r.v. *X* is well defined.

Note that if X is a E-valued r.v., to every $\varphi \in E^*$ corresponds a real valued r.v. $\varphi(\omega) := \varphi(X(\omega))$. We identify the r.v. and the element of E^* .

Lemma

If $\varphi \in E^*$ and $X(\omega)$ is Bochner integrable on E under P,

$$\varphi\left(\int_{\Omega} X(\omega) P(d\omega)\right) = \int_{\Omega} \varphi(X(\omega)) P(d\omega)$$

Proof Let X_n a sequence of simple *E*-valued r.v. with $||X|| \ge ||X - X_n|| \downarrow 0$. Since φ is linear the lemma holds for simple random variables, and by continuity

$$\begin{aligned} \left|\varphi\left(\int_{\Omega} XdP\right) - \int_{\Omega} \varphi(X)dP\right| &= \\ &\leq \left|\varphi\left(\int_{\Omega} XdP\right) - \varphi\left(\int_{\Omega} X_{n}\right)dP\right) + \int_{\Omega} \varphi(X_{n})dP - \int_{\Omega} \varphi(X)dP \\ &\|\varphi\|_{E^{*}} \left\|\int X_{n}dP - \int XdP\right\| + \left|\int \varphi(X_{n})dP - \int \varphi(X)dP\right| \to 0 \end{aligned}$$

Definition

If μ is a probability distribution on the Banach space E we define the characteristic function $% \mu =0$ as

$$\widehat{\mu}(\phi) := \int_{E} \exp(i \ \psi(x)) \mu(dx)$$

where $\varphi \in E^*$.

Definition

A cylynder set is of the form

$$\{x \in E : (\varphi_1(x), \ldots, \varphi_n(x)) \in B\}$$

where $B \in \mathcal{B}(\mathbb{R}^n)$, $n \in \mathbb{N}$, $\varphi_i \in E^*$.

Follows from theorem 12 that for separable Banach spaces the cylinder sets generate the Borel σ -algebra of E. In particular two measures on $(E, \mathcal{B}(E))$ coincide if they coincide on the approximate particular the particular the control of the particular the particular

Gaussian random variables on E

Definition

A measure γ on the Banach space E is (centered) gaussian iff for every $\varphi \in E^*$ the real valued r.v. $\varphi(x)$ is (centered) gaussian.

Lemma

If X is a E-valued r.v. with gaussian distribution, then for every n, $\varphi_1, \ldots, \varphi_n \in E^*$, then the random variables $(\varphi_1(X), \ldots, \varphi_n(X))$ are jointly gaussian.

Proof Use the finite dimensional gaussian characterization with the characteristic function together with the linearity

$$E_P\left(\exp\left(i\sum_{i=1}^n\theta_i\varphi_i(X)\right)\right)=E_P\left(\exp\left(i\varphi\left(\left\{\sum_{i=1}^n\theta_i\right\}X\right)\right)\right)$$

The family $\{\varphi(X) : \varphi \in E^*\}$ is a gaussian process indexed by E^* .

Since Gaussian r.v. have all moments,

Lemma

The embedding of E^* into $L^p(E, \mathcal{B}(E), \gamma)$, $0 is continuous w.r.t. the weak-* topology of <math>E^*$, (and therefore also in the $|\cdot|_{E^*}$ topology).

Proof Let $\varphi_n, \varphi \in E^*$ with $\varphi_n \xrightarrow{w^{-*}} \varphi$ in the weak-* topology, that is for every fixed $x \in E \ \varphi_n(x) \to \varphi(x)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

In particular $(\varphi_n - \varphi) \rightarrow 0$, $\gamma(dx)$ a.s. Since $(\varphi_n - \varphi)(x)$ are centered gaussiam random variables, it follows from ?? that $Var(\varphi_n - \varphi) \rightarrow 0$, and by using gaussianity that for $p < \infty$

$$E_{\gamma}((\varphi_n(X)-\varphi(X))^p) \leq c_p E_{\gamma}((\varphi_n(X)-\varphi(X))^2)^{p/2} \to 0$$

, that is $\varphi_n(X) \to \varphi(X)$ in $L^p(E, \mathcal{B}(E), \gamma)$. \Box .

Definition

We denote by \overline{E}^* the closure of E^* in $L^2(\gamma)$.

Note that if $\varphi \in \overline{E}^*$ there is a sequence $\varphi_n \to \varphi$ in $L^2(\gamma)$. In case $\varphi \in \overline{E}^* \setminus E^*$, $\varphi(x)$ is not defined pointwise but as a random variable for γ -almost every $x \in E$. Note that in the one dimensional situation, if X is centered gaussian with variance σ^2 , then clearly $E(\exp(\lambda X^2)) < \infty$ for $\lambda < (2\sigma^2)^{-1}$. For the infinite-dimensional case we prove that the r.v. $||X||^2$ has exponential moment for some $\lambda > 0$.

Theorem

(Fernique lemma) Let γ be a centered gaussian measure on (E, B). If $\lambda > 0$, r > 0 such that

$$\log \left(rac{1 - \gamma(ar{B}(0, r))}{\gamma(ar{B}(0, r))}
ight) + 32\lambda r^2 \leq -1$$
 ,

then

$$\int_{E} \exp(\lambda \parallel x \parallel^2) \gamma(dx) \leq \exp(16\lambda r^2) + \frac{e^2}{e^2 - 1}$$

Since the r.v. $||X||^2$ has exponential moment for some $\lambda > 0$, we have $E_{\gamma}(||X||^p) < \infty$, for all p > 0.

The Kernel

Let γ be a centered gaussian measure on a separable Banach space ${\it E}.$

Definition

b٧

The operator $K : E^* \longrightarrow E$,

$$K arphi := \int_E x arphi(x) \gamma(dx)$$
 as Bochner integral

is called Kernel . Note that $K\varphi$ is in E since

$$\| K\varphi \|_{E} \leq \int_{E} \| x\varphi(x) \| \gamma(dx) \leq \int_{E} \| x \| |\varphi(x)|\gamma(dx)$$
$$\leq \left(\int_{E} \| x \|^{2} \gamma(dx) \right)^{1/2} \left(\int_{E} |\varphi(x)|^{2} \gamma(dx) \right)^{1/2} < \infty$$

ABC of Malliavin calculus

Note that if $\varphi,\psi\in {\it E}^*$

$$\langle \psi, K\varphi \rangle = \int_{E} \psi(x)\varphi(x)\gamma(dx) = E_{\gamma}(\psi(X), \varphi(X)) = \langle \varphi, K\psi \rangle$$

This map extends to \overline{E}^* , the closure in $L^2(\gamma)$ of E^* .

We introduce the Cameron-Martin's space.

$$H = \left\{ h = K \varphi : \varphi \in E^*
ight\} \subseteq E$$

This is called Kernel or Cameron Martin space. It is an Hilbert space equipped with the scalar product

$$(h_1, h_2)_H = \langle \varphi_1, K \varphi_2 \rangle = E_{\gamma} (\varphi_1(X) \varphi_2(X))$$

The scalar product

$$(h, x)_H = \varphi(x)$$

makes sense also when $h = K\varphi$ with $\varphi \in \overline{E}^*$ as a random variable in $L^2(\gamma)$. We also have the **reproducing kernel property**:

$$\int_{E} \langle h, x \rangle_{H} \langle g, x \rangle_{H} \gamma(dx) = \langle h, g \rangle_{H}$$

the Cameron-Martin space of Brownian motion

 $\{B_t : t \in [0,1]\}$. Let $E = C_0([0,1], \mathbb{R}) = \{x \in C([0,1]) : x(0) = 0\}$, and E^* consists of signed measures μ on [0,1] with finite variation, with the duality

$$\langle \mu, x \rangle := \int_0^1 x(s) \mu(ds)$$

which is defined as an usual Riemann-Stiletjes integral, since $x(\cdot)$ is continuous and μ has finite variation. We have the continuity property

$$|\langle \mu, x
angle| \leq \|x\|_{\infty} \int_0^1 |\mu(ds)| \; .$$

The covariance is $E(B_sB_t) = E(B_s^2) + E(B_s(B_t - B_s)) = s$ for $s \le t$, so we can write $K(s, t) = (s \land t)$. By changing the order of integration and then using integration by parts

$$(\kappa\mu)(t) = \int_{E} x(t) \langle \mu, x \rangle \Gamma(dx) = \int_{E} x(t) \left(\int_{0}^{1} x(s) \mu(ds) \right) \Gamma(dx)$$
$$\int_{0}^{1} \kappa(t, s) \mu(ds) = \int_{0}^{1} (t \wedge s) \mu(ds) =$$
$$\mu([0, 1])t - \int_{0}^{t} \mu([0, s])ds = \int_{0}^{t} \mu((s, 1])ds$$

which is an absolutely continuous function, since the function $s \mapsto \mu((s, 1])$ is bounded.

We have that

$$E(\langle \mu, B \rangle \langle \nu, B \rangle) = \nu K \mu = \int_0^1 \left(\int_0^t \mu((s, 1]) ds \right) \nu(dt)$$
$$= \int_0^1 \nu((t, 1]) \mu((t, 1]) dt := (K \mu, K \nu)_H$$

By completing $K(E^*)$ w.r.t. the scalar product $(\cdot, \cdot)_H$ we obtain the Cameron-Martin space of Brownian motion

$$H = W^{1,2}([0,1], dt) = \begin{cases} h \in C_0([0,1]) : h(t) = \int_0^t \dot{h}(s) ds & \text{with} \\ (h,g)_H = \int_0^1 \dot{h}(s) \dot{g}(s) ds = (\dot{h}, \dot{g})_{L^2([0,1], dt)}, & \text{for } h, g \in H \end{cases}$$

Note that we can extend the scalar product $(h, x)_H$ to the case where $h \in H$ and $x \in E$. For $\mu \in E^*$ and the Brownian path $x(t) = B_t(\omega)$ we obtain

$$\langle \mu, B \rangle = (\kappa \mu, B)_H := \int_0^1 B(s) \mu(ds) = \int_0^1 \mu((s, 1]) dB_s$$

and this can be extended to any $h \in H$

$$(h,B)_H := \int_0^1 \dot{h}(s) dB_s ,$$

which is the Wiener integral .

The reproducing Kernel property of Brownian motion reads as

$$(h,g)_{H}=E_{P}\left(\int_{0}^{1}\dot{h}(s)dB_{s}\int_{0}^{1}\dot{g}(s)dB_{s}\right)=E_{P}\left(\int_{0}^{1}\dot{h}(s)\dot{g}(s)ds\right)$$

Let's fix t and take $g(s) = K(t, s) = t \land s = E(B_tB_s)$ with $\frac{\partial}{\partial s}K(t, s) = \mathbf{1}(s \le t)$. We obtain

$$(h, K(t, \cdot))_H = E_P\left(B_t\int_0^t \dot{h}(s)dB_s\right) = \int_0^t \dot{h}(s)ds = h(t)$$

• • = • • = •