ABC of Malliavin calculus

Dario Gasbarra

16. toukokuuta 2013

Gaussian vs Lebesgue measure

In probability theory, usually we work on an abstract measurable space (Ω, \mathcal{F}) equipped with a probability measure P.
In analysis instead we usually work concretely with the euclidean space \mathbb{R}^{d} equipped with Lebesgue measure. The Lebesgue measure on \mathbb{R}^{d} is σ-finite, meaning that \mathbb{R}^{d} is covered by a countable union of unit cubes $\left(z+[0,1]^{d}\right)$, $z \in \mathbb{Z}^{d}$.
On each finite dimensional unit cube the Lebesgue measure is a probability, i.e. integrates to 1 .

By Kolmogorov consistency theorem, we can define the product Lebesgue measure on the infinite dimensional unit cube $[0,1]^{\mathbb{N}}$, However the infinite product $\mathbb{R}^{\mathbb{N}}$ cannot be covered by a countable union of unit cubes, $\mathbb{Z}^{\mathbb{N}}$ is not countable.
The infinite product of the Lebesgue measure on $\mathbb{R}^{\mathbb{N}}$ is not σ-finite.
On $\mathbb{R}^{\mathbb{N}}$ we work instead with Gaussian probability measures. We start woking in finite dimension.

$$
\gamma(x) d x=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right) d x
$$

is the standard Gaussian measure on $\left(\mathbb{R}, \mathcal{B}(\mathbb{R})\right.$. On \mathbb{R}^{d}, $\gamma^{\otimes d}(x)=\gamma\left(x_{1}\right) \ldots \gamma\left(x_{d}\right)$ is the product density.

Gaussian integration by parts

Lemma

Let $G(\omega)$ a real valued gaussian random variable with $E(G)=0$ and variance $E\left(G^{2}\right)=\sigma^{2}$, If f, h are absolutely continuous functions,

$$
f(x)=f(0)+\int_{0}^{x} f^{\prime}(y) d y, \quad h(x)=h(0)+\int_{0}^{x} h^{\prime}(y) d y
$$

with $f^{\prime}, h^{\prime} \in L^{2}(\mathbb{R}, \gamma)$, (i.e. $f^{\prime}(G), h^{\prime}(G) \in L^{2}(\Omega)$) then $f(G), h(G) \in L^{2}(\Omega)$ and

$$
E\left(f^{\prime}(G) h(G)\right)=E\left(f(G)\left(\frac{h(G) G}{E\left(G^{2}\right)}-h^{\prime}(G)\right)\right)
$$

Proof

$P(G \in d x)=\gamma(x) d x$ with density

$$
\gamma(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right) .
$$

Note that

$$
\frac{d}{d x} \gamma(x)=-\frac{\gamma(x) x}{\sigma^{2}}
$$

Proof

$P(G \in d x)=\gamma(x) d x$ with density

$$
\gamma(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right) .
$$

Note that

$$
\frac{d}{d x} \gamma(x)=-\frac{\gamma(x) x}{\sigma^{2}}
$$

Integrating by parts

$$
\begin{aligned}
& \int_{-\infty}^{\infty} f^{\prime}(x) h(x) \gamma(x) d x=-\int_{-\infty}^{\infty} f(x) \frac{d}{d x}(h(x) \gamma(x)) d x \\
& =\int_{-\infty}^{\infty} f(x)\left(\frac{h(x) x}{\sigma^{2}}-h^{\prime}(x)\right) \gamma(x) d x
\end{aligned}
$$

More precisely, it hold when $f(x)$ is supported on a finite interval $[a, b]$,

$$
\begin{aligned}
& E_{P}\left(f^{\prime}(G) h(G)\right) \int_{-a}^{b} f^{\prime}(x) h(x) \gamma(x) d x= \\
& f(b) h(b)-f(a) h(a)-\int_{a}^{b} f(x) \frac{d}{d x}(h(x) \gamma(x)) d x
\end{aligned}
$$

Otherwise, take $f_{n}(x)=f(x) \eta_{n}(x)$ with $\eta_{n}(X)(1-x / n)^{+}$, which as support on $[-n, n]$ and $\eta_{n}(x) \rightarrow 1 \forall x$ as $n \rightarrow \infty$. Note that $\eta_{n}^{\prime}(x)=-\frac{1}{n} \operatorname{sign}(x)$. By Lebesgue dominated convergence $h(G) \eta_{n}(G) \rightarrow h(G)$ in $L^{2}(\gamma)$.
$E_{P}\left(f_{n}^{\prime}(G) h(G)\right)=E_{P}\left(f^{\prime}(G) \eta_{n}(G) h(G)\right)-\frac{1}{n} E_{P}(f(G) \operatorname{sign}(G) h(G))$
$\longrightarrow E_{P}\left(f^{\prime}(G) h(G)\right)$

Denote

$$
\partial f(x):=f^{\prime}(x) \text { and } \partial^{*} h(x):=\left(\frac{h(x) x}{\sigma^{2}}-h^{\prime}(x)\right)
$$

Denote

$$
\partial f(x):=f^{\prime}(x) \text { and } \partial^{*} h(x):=\left(\frac{h(x) x}{\sigma^{2}}-h^{\prime}(x)\right)
$$

Then

$$
(\partial f, h)_{L^{2}(\mathbb{R}, \gamma)}=\left(f, \partial^{*} h\right)_{L^{2}(\mathbb{R}, \gamma)}
$$

∂^{*} is the adjoint of the derivative operator in $L^{2}(\mathbb{R}, \gamma)$.

Denote

$$
\partial f(x):=f^{\prime}(x) \text { and } \partial^{*} h(x):=\left(\frac{h(x) x}{\sigma^{2}}-h^{\prime}(x)\right)
$$

Then

$$
(\partial f, h)_{L^{2}(\mathbb{R}, \gamma)}=\left(f, \partial^{*} h\right)_{L^{2}(\mathbb{R}, \gamma)}
$$

∂^{*} is the adjoint of the derivative operator in $L^{2}(\mathbb{R}, \gamma)$.

Definition

We say that $f \in L^{2}(\mathbb{R}, \gamma)$, has weak derivative $g \in L^{2}(\mathbb{R}, \gamma)$ in Sobolev sense if $\forall h$ with classical derivative h^{\prime} such that $\partial^{*} h \in L^{2}(\gamma)$,

$$
\int_{\mathbb{R}} g(x) h(x) \gamma(x) d x=\int_{\mathbb{R}} f(x) \partial^{*} h(x) \gamma(x) d x
$$

and we denote $\partial f=f^{\prime}:=g$.

This definition extends the classical derivative. We introduce the weighted Sobolev space

$$
W^{1,2}(\mathbb{R}, \gamma):=\left\{f \in L^{2}: f \text { Sobolev differentiable }\right\}
$$

as the L^{2}-closure of Domain (∂) with norm

$$
\|f\|_{W^{1,2}(\gamma)}^{2}=\|f\|_{L^{2}(\gamma)}^{2}+\|\partial f\|_{L^{2}(\gamma)}^{2}
$$

We extend also ∂^{*} to the $L^{2}(\mathbb{R}, \gamma)$ closure of Domain $\left(\partial^{*}\right)$

Lemma

Let $f_{n} \xrightarrow{L^{2}(\gamma)} 0$ a sequence of smooth functions with $\partial f_{n} \xrightarrow{L^{2}(\gamma)} g$. Then $g(x)=0$ almost everywhere.

Proof

For every $h \in L^{2}(\gamma)$ smooth with $\partial^{*} h \in L^{2}(\gamma)$,

$$
\begin{aligned}
& E_{P}\left(\partial f_{n}(G) h(G)\right) \rightarrow E_{P}(g(G) h(G)) \\
& =E_{P}\left(f_{n}(G) \partial^{*} h(G)\right) \rightarrow 0
\end{aligned}
$$

Therefore $E(g(G) h(G))=0$. For every $A \in \mathcal{B}(\mathbb{R})$ by smoothing $1_{A}(x)$ we find smooth and uniformly bounded $h_{\varepsilon}(x) \rightarrow 1_{A}(x)$. By bounded convergence theorem it follows that $E\left(g(G) 1_{A}(G)\right)=0$.

Proposition

The gaussian integration by parts formula

$$
E_{P}(\partial f(G) h(G))=E_{P}\left(f(G) \partial^{*} h(G)\right)
$$

extends to $f \in W^{1,2}(\mathbb{R}, \gamma) h \in \operatorname{Domain}\left(\partial^{*}\right)$.

Corollary

For $h(x) \equiv 1, f \in W^{1,2}(\mathbb{R}, \gamma)$

$$
E\left(f^{\prime}(G)\right)=\frac{E(f(G) G)}{E\left(G^{2}\right)}
$$

Linear regression

Let $X(\omega), Y(\omega) \in L^{2}(P)$. Then

$$
\begin{align*}
& \widehat{X}(\omega)=\widehat{b}+\widehat{a} Y(\omega) \quad \text { with } \tag{0.1}\\
& \widehat{a}=\frac{E(X(Y-E(Y)))}{E\left(Y^{2}\right)-E(Y)^{2}} \tag{0.2}\\
& \widehat{b}=E(X)-\widehat{a} E(Y) \tag{0.3}
\end{align*}
$$

Linear regression

Let $X(\omega), Y(\omega) \in L^{2}(P)$. Then

$$
\begin{align*}
& \hat{X}(\omega)=\widehat{b}+\widehat{a} Y(\omega) \quad \text { with } \tag{0.1}\\
& \widehat{a}=\frac{E(X(Y-E(Y)))}{E\left(Y^{2}\right)-E(Y)^{2}} \tag{0.2}\\
& \widehat{b}=E(X)-\widehat{a} E(Y) \tag{0.3}
\end{align*}
$$

is the L^{2}-projection of X on the linear subspace generated by Y, such that

$$
E\left((\widehat{X}-X)^{2}\right)=\min _{a, b \in \mathbb{R}} E\left((a+b Y-X)^{2}\right)
$$

In general $\widehat{X}(\omega) \neq E(X \mid \sigma(Y))(\omega)$, which is the projection of X on the subspace $L^{2}(\Omega, \sigma(Y), P)$.

In general $\widehat{X}(\omega) \neq E(X \mid \sigma(Y))(\omega)$, which is the projection of X on the subspace $L^{2}(\Omega, \sigma(Y), P)$.
When (X, Y) is jointly gaussian, $X=E(X \mid \sigma(Y))$.

In general $\widehat{X}(\omega) \neq E(X \mid \sigma(Y))(\omega)$, which is the projection of X on the subspace $L^{2}(\Omega, \sigma(Y), P)$.
When (X, Y) is jointly gaussian, $\widehat{X}=E(X \mid \sigma(Y))$.
Let $W \sim \mathcal{N}\left(0, \sigma^{2}\right)$ and consider $F=f(W)$ for some non-linear function $f \in W^{1,2}(\mathbb{R}, \gamma)$. By 0.1 the best linear estimator of $f(W)$ given W is

$$
\widehat{f(W)}=E(f(W))+\frac{E(f(W) W)}{E\left(W^{2}\right)} W
$$

In general $\widehat{X}(\omega) \neq E(X \mid \sigma(Y))(\omega)$, which is the projection of X on the subspace $L^{2}(\Omega, \sigma(Y), P)$.
When (X, Y) is jointly gaussian, $\widehat{X}=E(X \mid \sigma(Y))$.
Let $W \sim \mathcal{N}\left(0, \sigma^{2}\right)$ and consider $F=f(W)$ for some non-linear function $f \in W^{1,2}(\mathbb{R}, \gamma)$. By 0.1 the best linear estimator of $f(W)$ given W is

$$
\begin{gathered}
\widehat{f(W)}=E(f(W))+\frac{E(f(W) W)}{E\left(W^{2}\right)} W \\
=E(f(W))+E\left(f^{\prime}(W)\right) W \\
f(W)=E_{P}(f(W) \mid \sigma(W))=E(f(W))+E\left(f^{\prime}(W)\right) W+M^{f}
\end{gathered}
$$

Clearly $E\left(M^{f}\right)=0$, but also

$$
\begin{aligned}
& E\left(M^{f} W\right)=E\left(\left\{f(W)-E(f(W))-E\left(f^{\prime}(W)\right) W\right\} W\right) \\
& =E\left(\left\{f(W)-E(f(W))-\frac{E(f(W) W)}{E\left(W^{2}\right)} W\right\} W\right)=0
\end{aligned}
$$

Clearly $E\left(M^{f}\right)=0$, but also

$$
\begin{aligned}
& E\left(M^{f} W\right)=E\left(\left\{f(W)-E(f(W))-E\left(f^{\prime}(W)\right) W\right\} W\right) \\
& =E\left(\left\{f(W)-E(f(W))-\frac{E(f(W) W)}{E\left(W^{2}\right)} W\right\} W\right)=0
\end{aligned}
$$

The linearization error M^{f} is uncorrelated with W.

Lemma

When the derivatives $f^{\prime}, f^{\prime \prime}$ are bounded and continuous,

$$
\frac{E\left(\left(M^{f}\right)^{2}\right)}{\sigma^{2}} \rightarrow 0 \quad \text { as } \sigma \rightarrow 0
$$

Proof. Let G with $E_{P}(G)=0, E_{P}\left(G^{2}\right)=1$, not necessarily Gaussian. By Taylor expansion, as $\sigma \rightarrow 0$,

$$
\begin{aligned}
& f(\sigma G)=f(0)+f^{\prime}(0) \sigma G+\frac{1}{2} f^{\prime \prime}(0) \sigma^{2} G^{2}+o_{P}(1) \sigma^{2} \\
& E(f(\sigma G))=f(0)+\frac{1}{2} f^{\prime \prime}(0) \sigma^{2}+o(1) \sigma^{2} \\
& \operatorname{Var}(f(\sigma G))=f^{\prime}(0)^{2} \sigma^{2}+o(1) \sigma^{2}
\end{aligned}
$$

$o_{P}(1)$ denotes a sequence of uniformly bounded random variables converging a.s. to 0 as $\sigma \rightarrow 0$.

As $\sigma \rightarrow 0$,
$\frac{1}{\sigma^{2}}\{f(0)-E(f(\sigma G))\}^{2} \rightarrow 0, \quad \frac{1}{\sigma^{2}}\left\{f^{\prime}(0)-E\left(f^{\prime}(\sigma G)\right)\right\}^{2} \rightarrow 0$
By Cauchy Schwartz

$$
\begin{aligned}
& \frac{1}{\sigma} E_{P}\left(\left\{f(\sigma G)-E_{P}(f(\sigma G))-E_{P}\left(f^{\prime}(\sigma G)\right) \sigma G\right\}^{2}\right)^{1 / 2} \\
& \leq \frac{1}{\sigma} E_{P}\left(\left\{f(\sigma G)-f(0)-f^{\prime}(0) \sigma G\right\}^{2}\right)^{1 / 2} \\
& +\frac{\left|f(0)-E_{P}(f(\sigma) G)\right|}{\sigma}+\frac{\left|f^{\prime}(0)-E_{P}(f(\sigma) G)\right|}{\sigma} \sigma E_{P}\left(G^{2}\right)^{1 / 2} \longrightarrow 0
\end{aligned}
$$

When G is standard Gaussian, integrating by parts
$\frac{1}{\sigma^{2}} E_{P}\left(\left\{f(\sigma G)-E_{P}(f(\sigma G))-\frac{E_{P}(f(\sigma G) \sigma G)}{\sigma^{2}} \sigma G\right\}^{2}\right) \longrightarrow 0$ as $\sigma \rightarrow 0$, in colour you have the linear regression coefficents.

Multivariate case

Let $\Delta W_{1}, \ldots, \Delta W_{n}$ i.i.d. Gaussian with $E\left(\Delta W_{1}\right)=0$
$E\left(\Delta W_{1}^{2}\right)=\Delta T=T / n$.
These are consecutive increments of the random walk $W_{m}=\sum_{k=1}^{m} \Delta W_{k}$.
Let

$$
F(\omega)=f\left(\Delta W_{1}(\omega), \ldots, \Delta W_{n}(\omega)\right)
$$

with $f\left(x_{1}, \ldots, x_{n}\right) \in W^{1,2}\left(\mathbb{R}^{n}, \gamma^{\otimes n}\right)$.
Introduce the σ-algebrae $\mathcal{F}_{k}=\sigma\left(\Delta W_{1}, \ldots, \Delta W_{k}\right)$, $k=1, \ldots, n$.

Lemma

We have the martingale representation
$F=E_{P}(F)+\sum_{k=1}^{n} E\left(\partial_{k} f\left(\Delta W_{1}, \ldots, \Delta W_{n}\right) \mid \mathcal{F}_{k-1}\right) \Delta W_{k}+M_{n}$ where M is a $\left(\mathcal{F}_{k}\right)$-martingale with $M_{0}=0$ and $\langle M, W\rangle=0$.

By induction it is enough to show that

$$
\begin{aligned}
& E\left(F \mid \mathcal{F}_{k}\right)= \\
& E\left(F \mid \mathcal{F}_{k-1}\right)+E\left(\partial_{k} f\left(\Delta W_{1}, \ldots, \Delta W_{n}\right) \mid \mathcal{F}_{k-1}\right) \Delta W_{k}+\Delta M_{k}
\end{aligned}
$$

with

$$
\begin{equation*}
E\left(\Delta M_{k} \mid \mathcal{F}_{k-1}\right)=0, E\left(\Delta W_{k} \Delta M_{k} \mid \mathcal{F}_{k-1}\right)=0 \tag{0.4}
\end{equation*}
$$

Note that from independence,

$$
\begin{aligned}
& E_{P}\left(\partial_{k} f\left(\Delta W_{1}, \ldots, \Delta W_{n}\right) \mid \mathcal{F}_{k-1}\right)(\omega)= \\
& \int_{\mathbb{R}^{n-k+1}} \partial_{k} f\left(\Delta W_{1}(\omega), \ldots, \Delta W_{k-1}(\omega), x_{k}, \ldots, x_{n}\right) \gamma^{\otimes(n-k+1)}(x) d x
\end{aligned}
$$

Let's fix k and consider the enlarged σ-algebra

$$
\mathcal{G}_{k-1}=\sigma\left(\Delta W_{1}, \ldots, \Delta W_{k-1}, \Delta W_{k+1}, \ldots \Delta W_{n}\right) \supseteq \mathcal{F}_{k-1}
$$

By fixing ($\left.\Delta W_{i}, i \neq k\right)$, applying the 1-dimensional result to the k-the coordinate ΔW_{k}

$$
F=E\left(F \mid \mathcal{G}_{k-1}\right)+E\left(\partial_{k}\left(\Delta W_{1}, \ldots \Delta W_{k}\right) \mid \mathcal{G}_{k-1}\right) \Delta W_{k}+\Delta \widetilde{M}_{k}
$$

By the independence of the increments

$$
\begin{aligned}
& f\left(\Delta W_{1}, \ldots \Delta W_{n}\right) \\
& =\left.E\left(f\left(x_{1}, \ldots, x_{k-1}, \Delta W_{k}, x_{k+1}, \ldots x_{n}\right)\right)\right|_{x_{i}=\Delta W_{i}, i \neq k} \\
& +\left.E\left(\partial_{k} f\left(x_{1}, \ldots, x_{k-1}, \Delta W_{k}, x_{k+1}, \ldots x_{n}\right)\right)\right|_{x_{i}=\Delta W_{i}, i \neq k} \Delta W_{k} \\
& +\Delta \widetilde{M}_{k}
\end{aligned}
$$

By fixing ($\Delta W_{i}, i \neq k$), applying the 1-dimensional result to the k-the coordinate ΔW_{k}
$F=E\left(F \mid \mathcal{G}_{k-1}\right)+E\left(\partial_{k}\left(\Delta W_{1}, \ldots \Delta W_{k}\right) \mid \mathcal{G}_{k-1}\right) \Delta W_{k}+\Delta \widetilde{M}_{k}$
By the independence of the increments

$$
\begin{aligned}
& f\left(\Delta W_{1}, \ldots \Delta W_{n}\right) \\
& =\left.E\left(f\left(x_{1}, \ldots, x_{k-1}, \Delta W_{k}, x_{k+1}, \ldots x_{n}\right)\right)\right|_{x_{i}=\Delta W_{i}, i \neq k} \\
& +\left.E\left(\partial_{k} f\left(x_{1}, \ldots, x_{k-1}, \Delta W_{k}, x_{k+1}, \ldots x_{n}\right)\right)\right|_{x_{i}=\Delta W_{i}, i \neq k} \Delta W_{k} \\
& +\Delta \widetilde{M}_{k}
\end{aligned}
$$

with

$$
E\left(\Delta \widetilde{M}_{k} \mid \mathcal{G}_{k-1}\right)=0, \quad E\left(\Delta \widetilde{M}_{k} \Delta W_{k} \mid \mathcal{G}_{k-1}\right)=0
$$

which implies

$$
E\left(\Delta \widetilde{M}_{k} \mid \mathcal{F}_{k-1}\right)=0, \quad E\left(\Delta \widetilde{M}_{k} \Delta W_{k} \mid \mathcal{F}_{k-1}\right)=0
$$

By taking conditional expectation w.r.t. \mathcal{F}_{k} and using independence of increments

$$
\begin{aligned}
& E\left(F \mid \mathcal{F}_{k}\right)= \\
& \left.E\left(f\left(x_{1}, \ldots, x_{k-1}, \Delta W_{k}, \Delta W_{k+1}, \ldots \Delta W_{n}\right)\right)\right|_{x_{i}=\Delta W_{i}, i<k}+ \\
& \left.E\left(\partial_{k} f\left(x_{1}, \ldots, x_{k-1}, \Delta W_{k}, \Delta W_{k+1}, \ldots \Delta W_{n}\right)\right)\right|_{x_{i}=\Delta W_{i}, i<k} \Delta W_{k} \\
& +\Delta M_{k}
\end{aligned}
$$

where

$$
\Delta M_{k}:=E\left(\Delta \widetilde{M}_{k} \mid \mathcal{F}_{k}\right)
$$

with

$$
E\left(\Delta M_{k} \mid \mathcal{F}_{k-1}\right)=E\left(\Delta M_{k} \Delta W_{k} \mid \mathcal{F}_{k-1}\right)=0 \quad \square
$$

Assuming that the derivatives $\partial_{k} f, \partial_{k k}^{2} f$ are bounded and continuous, by Jensen's inequality for conditional expectation and lemma 3

$$
E_{P}\left(\left(\Delta M_{k}\right)^{2} \mid \mathcal{F}_{k-1}\right)(\omega) \leq E_{P}\left(\left(\Delta \widetilde{M}_{k}\right)^{2} \mid \mathcal{F}_{k-1}\right)(\omega)=o_{P}(1) \Delta t
$$

where $o_{P}(1) \rightarrow 0$ a.s with bounded convergence as $\Delta t \rightarrow 0$ uniformly over t.

By the martingale property, when $\Delta t=T / n$ for T fixed and $n \rightarrow \infty$

$$
E_{P}\left(\left\{\sum_{k=1}^{n} \Delta M_{t}\right\}^{2}\right)=\sum_{k=1}^{n} E_{P}\left(\left\{\Delta M_{t}\right\}^{2}\right) \leq o_{P}(1) T
$$

Definition

The (finite-dimensional) Malliavin derivative is the random gradient

$$
D F:=\nabla f\left(\Delta W_{1}, \ldots, \Delta W_{n}\right) \in \mathbb{R}^{n}
$$

Definition

Brownian motion, $\left(W_{t}: t \in[0, T]\right)$ is a gaussian process with $W_{0}=0$ and such that for every $n, 0=t_{0} \leq t_{1} \leq \cdots \leq t_{n}=T$ the increments $\left(W_{t_{i}}-W_{t_{i-1}}\right)$ are independent and gaussian with variances $\left(t_{i}-t_{i-1}\right)$.

Brownian motion can be constructed as a random continuous function $[0, t]: \rightarrow \mathbb{R}$.
Suppose that we have a random variable $F(\omega)$ which is measurable with respect to the Brownian σ-algebra $\mathcal{F}_{t}^{W}=\sigma\left(W_{s}: 0 \leq s \leq t\right)$. When $E_{P}\left(F^{2}\right)<\infty$, by Doob's martingale convergence theorem and that this can be approximated a.s. and in $L^{2}(\Omega)$ by random variables of the form

$$
F_{n}(\omega):=f_{n}\left(W_{t_{1}^{(n)}}-W_{t_{0}^{(n)}}, \ldots, W_{t_{n}^{(n)}}-W_{t_{n-1}^{(n)}}\right)
$$

where $f_{n}\left(x_{1}, \ldots, x_{n}\right)$ is Borel measurable and $t_{k}^{(n)}:=T k / n$.

When $F(\omega)$ is Malliavin differentiable, $f_{n}\left(x_{1}, \ldots, x_{n}\right)$ are smooth functions. As $n \rightarrow \infty$ the orthogonal linearization error in

$$
F_{n}=E\left(F_{n}\right)+\sum_{k=1}^{n} E\left(\nabla_{k} F_{n} \mid \mathcal{F}_{k-1}^{(n)}\right) \Delta W_{k}^{(n)}+M_{n}^{n}
$$

vanishes (in $L^{2}(P)$ sense) and the limit is the Ito-Clark-Ocone martingale representation

$$
F=E(F)+\int_{0}^{T} E\left(D_{s} F \mid \mathcal{F}_{s}^{W}\right) d W_{s}
$$

where the Ito integral appears.

Skorokhod integral

In $L^{2}\left(\mathbb{R}^{n}, \gamma^{\otimes n}(x) d x\right)$ the Malliavin derivative of
$F=f\left(\Delta W_{1}, \ldots, \Delta W_{n}\right)$ as the random gradient
$D F=\nabla f\left(\Delta W_{1}, \ldots, \Delta W_{n}\right)$, where ΔW_{k} are i.i.d. $\mathcal{N}(0, \Delta t)$
Let $u_{k}=u_{k}\left(\Delta W_{1}, \ldots, \Delta W_{n}\right)$ for $k=1, \ldots, n$.
Let's introduce the scalar product

$$
\langle u, v\rangle:=\Delta t \sum_{k=1}^{n} u_{k} v_{k}
$$

We give the n-dimensional generalization of the 1-dimensional integration by parts formula.
We need a random variable which we denote by $\delta(u)$ (the Skorokhod integral or divergence integral) such that

$$
E_{P}(\langle D F, u\rangle)=E_{P}(F \delta(u))
$$

for all smooth random variables F. This extends the one-dimensional Gaussian integration by parts formula

$$
\left.E_{P}(\partial f(G) h(G)\rangle\right)=E_{P}\left(f(G) \partial^{*}(G)\right)
$$

Rewrite the left hand side

$$
\Delta t \sum_{k=1}^{n} E\left(u_{k}\left(\Delta W_{1}, \ldots, \Delta W_{n}\right) \partial_{k} f\left(\Delta W_{1}, \ldots, \Delta W_{n}\right)\right)
$$

by independence and the 1-dimensional gaussian integration by parts

$$
\begin{aligned}
& =\Delta t \sum_{k=1}^{n} E\left(\partial_{k}^{*} u_{k}\left(\Delta W_{1}, \ldots, \Delta W_{n}\right) f\left(\Delta W_{1}, \ldots, \Delta W_{n}\right)\right) \\
& =E\left(F \Delta t\left(\sum_{k=1}^{n} \frac{u_{k} \Delta W_{k}}{\Delta t}-\sum_{k=1}^{n} \partial_{k} u_{k}\right)\right)
\end{aligned}
$$

Rewrite the left hand side

$$
\Delta t \sum_{k=1}^{n} E\left(u_{k}\left(\Delta W_{1}, \ldots, \Delta W_{n}\right) \partial_{k} f\left(\Delta W_{1}, \ldots, \Delta W_{n}\right)\right)
$$

by independence and the 1-dimensional gaussian integration by parts

$$
\begin{aligned}
& =\Delta t \sum_{k=1}^{n} E\left(\partial_{k}^{*} u_{k}\left(\Delta W_{1}, \ldots, \Delta W_{n}\right) f\left(\Delta W_{1}, \ldots, \Delta W_{n}\right)\right) \\
& =E\left(F \Delta t\left(\sum_{k=1}^{n} \frac{u_{k} \Delta W_{k}}{\Delta t}-\sum_{k=1}^{n} \partial_{k} u_{k}\right)\right)
\end{aligned}
$$

so that

$$
\delta(u)=\sum_{k=1}^{n} u_{k} \Delta W_{k}-\sum_{k=1}^{n} D_{k} u_{k} \Delta t
$$

The first term is a Riemann sum, while the second term is called Malliavin trace.

When $u_{k}=u_{k}\left(\Delta W_{1}, \ldots, \Delta W_{k-1}, \Delta W_{k+1}, \ldots, \Delta W_{n}\right)$ does not depend on ΔW_{k}, the Malliavin trace vanishes.

When $u_{k}=u_{k}\left(\Delta W_{1}, \ldots, \Delta W_{k-1}, \Delta W_{k+1}, \ldots, \Delta W_{n}\right)$ does not depend on ΔW_{k}, the Malliavin trace vanishes.
For $F \equiv 1, D F \equiv 0$ and when exists $\delta(u) \in L^{2}(\Omega)$, necessarily

$$
E(\delta(u))=E(\langle u, 0\rangle)=0
$$

When $u_{k}=u_{k}\left(\Delta W_{1}, \ldots, \Delta W_{k-1}, \Delta W_{k+1}, \ldots, \Delta W_{n}\right)$ does not depend on ΔW_{k}, the Malliavin trace vanishes.
For $F \equiv 1, D F \equiv 0$ and when exists $\delta(u) \in L^{2}(\Omega)$, necessarily

$$
E(\delta(u))=E(\langle u, 0\rangle)=0
$$

In the continuous time case the Skorokhod integral with respect to the Brownian motion is given by

$$
\delta(u):=\int_{0}^{T} u_{s} \delta W_{s}=\int_{0}^{T} u_{s} d W_{s}-\int_{0}^{T} D_{s} u_{s} d s
$$

where $\int_{0}^{T} u_{s} d W_{s}$ is a forward integral defined as the limit in probability or $L^{2}(P)$-sense of the Riemann sums, and the last term is the Malliavin trace.
When u is adapted, that is u is \mathcal{F}_{s}^{W}-measurable for all s the Malliavin trace vanishes and the Skorokhod integral coincides with the Ito integral.

Note that if φ is smooth, $D \varphi(F)=\varphi^{\prime}(F) D F$. We have also the product rule $D(F G)=G D F+F D G$.
Consider a process $u_{k}=u_{k}\left(\Delta W_{1}, \ldots, \Delta W_{n}\right)$

$$
\begin{aligned}
& E\left(\delta\left(\frac{u}{\langle u, D F\rangle}\right) \varphi(F)\right)=E\left(\left\langle\frac{u}{\langle u, D F\rangle}, D \varphi(F)\right\rangle\right) \\
& =E\left(\frac{\varphi^{\prime}(F)}{\langle u, D F\rangle}\langle u, D F\rangle\right)=E\left(\varphi^{\prime}(F)\right)
\end{aligned}
$$

This holds for all choices of $\left(u_{k}\right)$ and φ. By taking $u=D F$ we obtain

$$
E\left(\varphi^{\prime}(F)\right)=E\left(\varphi(F) \delta\left(\frac{D F}{\|D F\|^{2}}\right)\right)
$$

where

$$
\|D F\|^{2}=\langle D F, D F\rangle=\Delta t \sum_{k}^{n}\left(D_{k} F\right)^{2}
$$

Computation of densities

Let $F=f\left(\Delta W_{1}, \ldots, \Delta W_{n}\right)$ a random variable with Malliavin Sobolev derivative. For $a<b \in \mathbb{R}$ consider

$$
\psi(x)=\int_{a}^{b} 1(r \leq x) d r
$$

with Sobolev derivative $\psi^{\prime}(x)=\mathbf{1}_{[a, b]}(x)$.

$$
\begin{aligned}
& P(a<F \leq b)=\int_{a}^{b} p_{F}(r) d r(\text { when } F \text { has density }) \\
& =E_{P}(1(a<F \leq b))=E_{P}\left(\psi^{\prime}(F)\right)=E_{P}\left(\psi(F) \delta\left(\frac{D F}{\|D F\|^{2}}\right)\right) \\
& \left.=E_{P}\left(\delta\left(\frac{D F}{\|D F\|^{2}}\right) \int_{a}^{b} 1(r \leq F) d r\right)=\text { (Fubini }\right) \\
& =\int_{a}^{b} E_{P}\left(1(r \leq F) \delta\left(\frac{D F}{\|D F\|^{2}}\right)\right) d r
\end{aligned}
$$

This implies

$$
p_{F}(r)=E_{P}\left(\mathbf{1}(r \leq F) \delta\left(\frac{D F}{\|D F\|^{2}}\right)\right)=E_{P}(\mathbf{1}(r \leq F) Y)
$$

with Malliavin weight

$$
\begin{aligned}
& Y:=\delta\left(\frac{D F}{\|D F\|^{2}}\right)= \\
& \frac{1}{\|D F\|^{2}} \sum_{k=1}^{n} D_{k} F \Delta W_{k}-\sum_{k=1}^{n} D_{k}\left(\frac{D_{k} F}{\|D F\|^{2}}\right) \Delta t \\
& =\frac{1}{\|D F\|^{2}} \sum_{k=1}^{n} D_{k} F \Delta W_{k}-\frac{1}{\|D F\|^{2}} \sum_{k=1}^{n} D_{k k}^{2} F \Delta t \\
& +\frac{2}{\|D F\|^{4}} \sum_{k=1}^{n} \sum_{h=1}^{n} D_{k} F D_{h} F D_{k h}^{2} F \Delta t \Delta t
\end{aligned}
$$

For $F=f\left(\Delta W_{1}, \ldots, \Delta W_{n}\right)$ we need that f twice differentiable in Sobolev sense and integrability conditions. This extends to the infinite-dimensional case when F is a smooth functional of the Brownian path.

For $F=f\left(\Delta W_{1}, \ldots, \Delta W_{n}\right)$ we need that f twice differentiable in Sobolev sense and integrability conditions. This extends to the infinite-dimensional case when F is a smooth functional of the Brownian path.
For $i \in \mathbb{N}$ let $\left(\Delta W_{1}^{(i)}, \ldots, \Delta W_{n}^{(i)}\right)$, i.i.d copies of the gaussian vector, let

$$
\begin{aligned}
F^{(i)} & :=f\left(\Delta W_{1}^{(i)}, \ldots, \Delta W_{n}^{(i)}\right) \\
Y^{(i)} & :=Y\left(\Delta W_{1}^{(i)}, \ldots, \Delta W_{n}^{(i)}\right)
\end{aligned}
$$

We estimate $p_{F}(t)$ by Monte Carlo

$$
\widehat{p}_{F}^{(M)}(r)=\frac{1}{M} \sum_{i=1}^{M} Y^{(i)} \mathbf{1}\left(F^{(i)} \geq r\right)
$$

There are other choices for the Malliavin weight: for

$$
u_{k}=\frac{1}{n \Delta t D_{k} F}
$$

we obtain

$$
\begin{aligned}
& E(\langle u, D \varphi(F)\rangle)=\frac{1}{n \Delta t} E\left(\varphi^{\prime}(F)\left\langle D F,(D F)^{-1}\right\rangle\right)= \\
& =\frac{1}{n \Delta t} E\left(\varphi^{\prime}(F) \sum_{k=1}^{n}\left(D_{k} F\right)^{-1} D_{k} F \Delta t\right) \\
& =E\left(\varphi^{\prime}(F)\right)=E(\varphi(F) U)
\end{aligned}
$$

with Malliavin weight

$$
U=\frac{1}{n \Delta t} \delta\left((D F)^{-1}\right)=\frac{1}{n \Delta t} \sum_{k=1}^{n} \frac{1}{D_{k} F} \Delta W_{k}+\frac{1}{n} \sum_{k=1}^{n} \frac{D_{k k}^{2} F}{\left(D_{k} F\right)^{2}}
$$

Example: quadratic functional

Let

$$
\begin{aligned}
& W_{k}=\left(\Delta W_{1}+\cdots+\Delta W_{k}\right), \quad F=\sum_{k=1}^{n} W_{k}^{2} \Delta t \\
& D_{h} F=2 \sum_{k=h}^{n} W_{k} \Delta t, \quad D_{h, k}^{2} F=2(n-(h \vee k)+1) \Delta t
\end{aligned}
$$

We compute the Malliavin weight U

$$
\begin{aligned}
& \left.U=\frac{1}{n \Delta t}\left(\sum_{h=1}^{n} \frac{1}{D_{h} F} d W_{h}-\sum_{h=1}^{n} D_{h}\left(\left(D_{h} F\right)^{-1}\right)\right) \Delta t\right) \\
& =\frac{1}{2 n \Delta t} \sum_{h=1}^{n}\left(\sum_{k=h}^{n} W_{k} \Delta t\right)^{-1} \Delta W_{h} \\
& +\frac{1}{n \Delta t} \sum_{h=1}^{n}\left(2 \sum_{k=h}^{n} W_{k} \Delta t\right)^{-2} 2(n-h+1)(\Delta t)^{2}= \\
& \frac{1}{2 n\left(\Delta t t^{2}\right.}\left\{\sum_{h=1}^{n}\left(\sum_{k=h}^{n} W_{k}\right)^{-1} \Delta W_{h}+\right. \\
& \left.+\sum_{h=1}^{n}\left(\sum_{k=h}^{n} W_{k}\right)^{-2}(n-h+1) \Delta t\right\}
\end{aligned}
$$

Counterexample: Maximum of gaussian random walk

Let $W_{0}=0, W_{m}=\sum_{k=1}^{m} \Delta W_{k}$ for $m=1, \ldots, n$ the gaussian random walk, and let

$$
F=W_{n}^{*}:=\max _{m=0,1, \ldots, n}\left\{W_{m}\right\}=f\left(\Delta W_{1}, \ldots, \Delta W_{n}\right)
$$

Let

$$
\tau_{n}=\tau_{n}\left(W_{1}, \ldots, W_{n}\right)=\arg \max _{m=0,1, \ldots, n} W_{m}
$$

the random time where the maximum is achieved. Note that with positive probability $W_{n}^{*}=0$ and $\tau_{n}=0$ when the random walk stays on the negative side, so we know that there is point mass at $0, W_{n}^{*}$ does not have a density.

Clearly for $k=1, \ldots, n$

$$
\begin{aligned}
& D_{k} W_{n}^{*}=\partial_{k} f_{n}\left(\Delta W_{1}, \ldots, \Delta W_{n}\right)=\mathbf{1}\left(\tau_{n} \geq k\right) \\
& =\mathbf{1}\left(W_{k-1}^{*}<\max _{h=k, \ldots, n} W_{h}\right)
\end{aligned}
$$

The problem is that the indicator of a set is never Malliavin differentiable and the second order Malliavin derivative $D_{h k}^{2} X_{n}^{*}=D_{h} \mathbf{1}\left(\tau_{n} \geq k\right)$ doesn't exist as random variables in L^{2} and the Malliavin weights are not well defined.

Skorohod integral with correlated Gaussian noise

Consider correlated Gaussian increments, with density

$$
\begin{aligned}
& \gamma_{K}\left(\Delta Z_{1}, \ldots, \Delta Z_{n}\right)=|K|^{-1 / 2} \pi^{-n / 2} \exp \left(-\frac{1}{2} \Delta Z K^{-1} \Delta Z^{\top}\right) \\
& \text { with } E\left(\Delta Z_{\ell}\right)=0 \text { and } K_{h \ell}=E\left(\Delta Z_{h} \Delta Z_{\ell}\right) \text {. }
\end{aligned}
$$

Skorohod integral with correlated Gaussian noise

Consider correlated Gaussian increments, with density

$$
\gamma_{K}\left(\Delta Z_{1}, \ldots, \Delta Z_{n}\right)=|K|^{-1 / 2} \pi^{-n / 2} \exp \left(-\frac{1}{2} \Delta Z K^{-1} \Delta Z^{\top}\right)
$$

with $E\left(\Delta Z_{\ell}\right)=0$ and $K_{h \ell}=E\left(\Delta Z_{h} \Delta Z_{\ell}\right)$.
In the correlated case, Gaussian integration by parts reads as

$$
\begin{aligned}
& E_{P}\left(\partial_{\ell} f\left(\Delta Z_{1}, \ldots, \Delta Z_{n}\right) g\left(\Delta Z_{1}, \ldots, \Delta Z_{n}\right)\right)= \\
& E_{P}\left(f\left(\Delta Z_{1}, \ldots, \Delta Z_{n}\right) \times\right. \\
& \left.\left\{g\left(\Delta Z_{1}, \ldots, \Delta Z_{n}\right) \sum_{h} K_{h \ell}^{-1} \Delta Z_{h}-\partial_{\ell} g\left(\Delta Z_{1}, \ldots, \Delta Z_{n}\right)\right\}\right)
\end{aligned}
$$

If $u_{k}=u_{k}\left(\Delta Z_{1}, \ldots, \Delta Z_{n}\right)$, we define the Skorokhod integral w.r.t. Z_{n} as $\delta_{Z}(u)$ satisfying

$$
E_{P}\left(\langle D F, u\rangle_{K}\right)=E_{P}\left(F \delta_{Z}(u)\right)
$$

with the scalar product

$$
\langle x, y\rangle_{K}=x K y^{\top}
$$

for all random variables

$$
F(\omega)=f\left(\Delta Z_{1}, \ldots, \Delta Z_{n}\right) \in W^{1,2}\left(\mathbb{R}^{n}, \gamma_{K}\right), \text { This gives }
$$

$$
\delta_{Z}(u)=\sum_{h=1}^{n} u_{k} \Delta Z_{k}-\sum_{h=1}^{n} \sum_{\ell=1}^{n} K_{h \ell} D_{h} u_{\ell}
$$

In the continuous case this gives

$$
\delta_{Z}(u):=\int_{0}^{T} u_{s} \delta Z_{s}=\int_{0}^{T} u_{s} d Z_{s}-\int_{0}^{T} \int_{0}^{T} D_{t} u_{s} K(d t, d s)
$$

where the first integral exists as the limit of Riemann sums in $L^{2}(P)$,

Hermite polynomials

Let $\gamma(x)$ be the standard gaussian density in \mathbb{R}.

Lemma

The polynomials are dense in $L^{2}(\mathbb{R}, \gamma)$.
Proof Otherwise there is a random variable
$F=f(G) \in L^{2}(P)$ with $E\left(f(G) G^{n}\right)=0 \forall n \in \mathbb{N}$ where G is standard gaussian. Consider the (signed) measure on \mathbb{R}

$$
\mu(A):=E_{P}\left(f(G) \mathbf{1}_{A}(G)\right)
$$

We show that $\mu \equiv 0$ which implies $f(G)=0 P$ a.s.
The Fourier transform of μ is

$$
\widehat{\mu}(t):=E_{P}(f(G) \exp (i t G))
$$

For $t=(\sigma+\tau i) \in \mathbb{C}$ with $\sigma, \tau \in \mathbb{R}$,

$$
\widehat{\mu}(t):=E_{P}(f(G) \exp (i \sigma G) \exp (-\tau G))
$$

Since

$$
\begin{aligned}
& E_{P}\left(\left|\frac{\partial}{\partial \sigma}\{f(G) \exp (-\tau G) \exp (i \sigma G)\}\right|\right) \\
& =E_{P}(|f(G) \exp (-\tau G) i G \exp (i \sigma G)|) \\
& \leq E_{P}(|f(G) G \exp (-\tau G)|) \\
& \leq E_{P}(|f(G) G(\exp (-a G)+\exp (-b G))|)
\end{aligned}
$$

where $\exp (-\tau G) \leq \exp (-a G)+\exp (-b G) \forall \tau \in(a, b) \subseteq \mathbb{R}$.

By Cauchy-Schwartz inequality

$$
\begin{aligned}
& \leq E_{P}\left(f(G)^{2}\right)^{1 / 2} E\left(G^{2}\{\exp (-a G)+\exp (-b G))^{2}\right)^{1 / 2} \\
& =E_{P}\left(f(G)^{2}\right)^{1 / 2}\left\{E\left(G^{2} \exp (-2 a G)\right)+\right. \\
& \left.+E\left(G^{2} \exp (-2 b G)\right)+2 E\left(G^{2} \exp (-(a+b) G)\right)\right\}^{1 / 2}<\infty
\end{aligned}
$$

by Lebesgue's dominated convergence theorem we can change the order of derivation and integration (Theorem A 16.1 in Williams' book)

$$
\frac{\partial}{\partial \sigma} \widehat{\mu}(\tau+i \sigma)=i E_{P}(f(G) G \exp (i \sigma G) \exp (-\tau G))
$$

Similarly
$\frac{\partial}{\partial \tau} \widehat{\mu}(\tau+i \sigma)=-E_{P}(f(G) G \exp (i \sigma G) \exp (-\tau G))=i \frac{\partial}{\partial \sigma} \widehat{\mu}(\tau+i \sigma)$
$\widehat{\mu}: \mathbb{C} \rightarrow \mathbb{C}$ is analytic since satisfies the Cauchy-Riemann condition.

Therefore has the power series expansion

$$
\begin{aligned}
& \widehat{\mu}(t)=\sum_{t=0}^{\infty} \widehat{\mu}^{(n)}(0) \frac{t^{n}}{n!} \\
& \mu^{(n)}(t)=\frac{d^{n}}{d t^{n}} \widehat{\mu}(t)=i^{n} E_{P}\left(f(G) \exp (i t G) G^{n}\right) \\
& \widehat{\mu}^{(n)}(0)=i^{n} E_{P}\left(f(G) G^{n}\right)=0 \forall n \in \mathbb{N}
\end{aligned}
$$

where by adapting the previous argument we can take derivatives inside the expectation. Therefore $\widehat{\mu}(t)=0$ and by Lévy inversion theorem $\mu(d x)=0$, which implies $E_{P}\left(f(G)^{2}\right)=0 \square$.

Hermite polynomials in $L^{2}(\mathbb{R}, \gamma)$.

Let G be a standard gaussian random variable with density $\gamma(x)$.
Define the (unnormalized) Hermite polynomials

$$
h_{0}(x) \equiv 1, h_{n}(x)=\left(\partial^{*} h_{n-1}\right)(x)=\left(\partial^{* n} 1\right)(x)
$$

By using repeatedly the commutation relation

$$
\partial \partial^{*} f-\partial^{*} \partial f=f
$$

we get

$$
\partial \partial^{* n} f-\partial^{* n} \partial f=n \partial^{*(n-1)} f
$$

when $f(x)=1$

$$
\partial h_{n}(x)=n h_{n-1}(x)
$$

∂ and ∂^{*} are annihilation and creation operators.

$$
h_{n}(x)=\exp \left(x^{2} / 2\right) \frac{d^{n}}{d x^{n}} \exp \left(-x^{2} / 2\right)
$$

Ex: $h_{1}(x)=x, h_{2}(x)=\left(x^{2}-1\right), h_{3}(x)=\left(x^{3}-3 x\right)$, $h_{4}(x)=x^{4}-6 x^{2}+3, h_{5}(x)=\left(x^{5}-10 x^{3}+15 x\right)$

$$
\begin{aligned}
& E_{P}\left(h_{n}(G) h_{m}(G)\right)=E_{P}\left(\left(\partial^{* n} 1\right)(G)\left(\partial^{* m} 1\right)(G)\right)= \\
& E_{P}\left(\left(\partial^{n} \partial^{* m} 1\right)(G) \mathbf{1}\right)=\delta_{n, m} n!
\end{aligned}
$$

(assuming $n \geq m$)

Since the polynomials are dense in $L^{2}(\mathbb{R}, \gamma)$, the normalized Hermite polynomials

$$
H_{n}(x):=\frac{h_{n}(x)}{\sqrt{n!}} n \in \mathbb{N}
$$

form an orthonormal basis in $L^{2}(\mathbb{R}, \gamma)$: for $f(G) \in L^{2}(P)$,

$$
f(G)=\sum_{n=0}^{\infty} E_{P}\left(f(G) H_{n}(G)\right) H_{n}(G)=\sum_{n=0}^{\infty} E_{P}\left(f(G) h_{n}(G)\right) \frac{h_{n}(G)}{n!}
$$

and when $f(x)$ is infinitely differentiable in Sobolev sense

$$
=\sum_{n=0}^{\infty} E_{P}\left(f(G)\left(\partial^{* n} 1\right)(G)\right) \frac{h_{n}(G)}{n!}=\sum_{n=0}^{\infty} E_{P}\left(\partial^{n} f(G)\right) \frac{h_{n}(G)}{n!}
$$

(one-dimensional Stroock formula)
the convergence is in $L^{2}(P)$ sense

$$
E_{P}\left(\left\{f(G)-\sum_{n=1}^{N} E_{P}\left(f(G) H_{n}(G)\right) H_{n}(G)\right\}^{2}\right) \rightarrow 0 \text { as } N \uparrow \infty
$$

the convergence is in $L^{2}(P)$ sense
$E_{P}\left(\left\{f(G)-\sum_{n=1}^{N} E_{P}\left(f(G) H_{n}(G)\right) H_{n}(G)\right\}^{2}\right) \rightarrow 0$ as $N \uparrow \infty$
Define the generating function

$$
f(t, x):=\exp \left(t x-t^{2} / 2\right)=\frac{\gamma(x-t)}{\gamma(x)}=\frac{d \mathcal{N}(t, 1)}{d \mathcal{N}(0,1)}(x)
$$

which is the density ratio for the gaussian shift $G \rightarrow(t+G)$ Note that $E_{P}(f(t, G))=1$. Since $f(t, x) \in C^{\infty}$, by Stroock formula

$$
\begin{aligned}
& \exp \left(t x-t^{2} / 2\right)=\sum_{n=0}^{\infty} E_{P}\left(\frac{d^{n}}{d x^{n}} f(t, G)\right) \frac{h_{n}(x)}{n!} \\
& =\sum_{n=0}^{\infty} E_{P}\left(t^{n} f(t, G)\right) \frac{h_{n}(x)}{n!}=\sum_{n=0}^{\infty} h_{n}(x) \frac{t^{n}}{n!}
\end{aligned}
$$

Note that

$$
t^{n}=E_{P}\left(h_{n}(G) \exp \left(t G-t^{2} / 2\right)\right)=E_{P}\left(h_{n}(t+G)\right)
$$

where on the right side we have changed the measure.

Hermite polynomials in $L^{2}\left(\mathbb{R}^{n}, \gamma^{\otimes n}\right)$.

Let $G=\left(G_{1}, \ldots, G_{n}\right)$ a random vector with indepedent standard gaussian coordinates.
Since $L^{2}\left(\mathbb{R}^{n}, \gamma^{\otimes n}\right)=\operatorname{span} L^{2}(\mathbb{R}, \gamma)^{n}$, which is the L^{2}-closure of the linear space containing the products $f_{1}\left(x_{1}\right) f_{2}\left(x_{1}\right) \ldots f_{n}\left(x_{n}\right)$ with $f_{i} \in L^{2}(\mathbb{R}, \gamma)$, the polynomials in the variables x_{1}, \ldots, x_{n} are dense in $L^{2}\left(\mathbb{R}^{n}, \gamma^{\otimes n}\right)$.

Definition

$\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ with $\alpha_{i} \in \mathbb{N}$ is a multi-index.
$\alpha!:=\prod_{i=1}^{n} \alpha_{i}!$

For $x=\left(x_{1}, \ldots, x_{n}\right)$ define the unnormalized and normalized multivariate Hermite polynomials

$$
\begin{aligned}
& h_{\alpha}(x)=\prod_{i=1}^{n} h_{\alpha_{i}}\left(x_{i}\right) \\
& H_{\alpha}(x)=\prod_{i=1}^{n} H_{\alpha_{i}}\left(x_{i}\right)=\prod_{i=1}^{n} \frac{h_{\alpha_{i}}(x)}{\sqrt{\alpha_{i}!}}=\frac{h_{\alpha}(x)}{\sqrt{\alpha!}}
\end{aligned}
$$

Lemma

$\left\{H_{\alpha}(x)\right.$: α multi-index $\}$ is an orthonormal basis in $L^{2}\left(\mathbb{R}^{n}, \gamma^{\otimes n}\right)$

Proof Let $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \beta_{i} \in \mathbb{N}$,

$$
\begin{aligned}
& E_{P}\left(H_{\alpha}(G) H_{\beta}(G)\right)=E_{P}\left(\prod_{i=1}^{n} H_{\alpha_{i}}\left(G_{i}\right) \prod_{j=1}^{n} H_{\beta_{j}}\left(G_{j}\right)\right)= \\
& \prod_{i=1}^{n} E_{P}\left(H_{\alpha_{i}}\left(G_{i}\right) H_{\beta_{i}}\left(G_{i}\right)\right)=\prod_{i=1}^{n} \delta_{\alpha_{i}, \beta_{i}}=\delta_{\alpha, \beta}
\end{aligned}
$$

$$
F(\omega)=f\left(G_{1}, \ldots, \Delta G_{n}\right)=\sum_{\alpha} E_{P}\left(H_{\alpha}(G) F\right) H_{\alpha}(G)=\sum_{\alpha} c_{\alpha} H_{\alpha}(G)
$$

with $F \in L^{2}\left(\mathbb{R}^{n} \gamma^{\otimes n}\right) \Longleftrightarrow \sum_{\alpha} c_{\alpha}^{2}<\infty$

Infinite dimensional gaussian space

$L^{2}\left(\mathbb{R}^{\mathbb{N}}, \gamma^{\otimes \mathbb{N}}\right)$ is the space of sequences $x=\left(x_{i}: i \in \mathbb{N}\right)$.
On this space we use the product σ-algebra $\mathcal{B}\left(\mathbb{R}^{\mathbb{N}}\right)=\mathcal{B}(\mathbb{R})^{\otimes \mathbb{N}}$ which is the smallest σ-algebra such that the coordinate evaluations $x \mapsto x_{i}$ are measurable.
The Borel σ-algebra $\mathcal{B}(\mathbb{R})$ is the smallest σ algebra containing the open sets.
The product measure $\gamma^{\otimes \mathbb{N}}$ is such that $\forall n \in \mathbb{N}$, $B_{1}, \ldots, B_{n} \in \mathcal{B}(\mathbb{R})$

$$
\gamma^{\otimes \mathbb{N}}\left(\left\{x: x_{1} \in B_{1}, \ldots, x_{n} \in B_{n}\right\}\right)=\prod_{i=1}^{n} \gamma\left(B_{i}\right)
$$

Definition

$\alpha=\left(\alpha_{i}: i \in \mathbb{N}\right)$ with $\alpha_{i} \in \mathbb{N}$ and

$$
|\alpha|:=\sum_{i=1}^{\infty} \alpha_{i}<\infty
$$

is a multi-index

Definition

A polynomial in the variables $\left(x_{i}: i \in \mathbb{N}\right)$ is given by

$$
p(x)=c_{0}+\sum_{i=1}^{\infty} c_{i} x_{i}^{\alpha_{i}}
$$

$c_{i} \in \mathbb{R}$, and α is a multiindex, $|\alpha|<\infty$, which depends on finitely many coordinates.

$$
L^{2}\left(\mathbb{R}^{\mathbb{N}}, \gamma^{\otimes \mathbb{N}}\right)=\bigoplus_{n \in \mathbb{N}} L^{2}\left(\mathbb{R}^{n}, \gamma^{\otimes n}\right)
$$

An orthonormal basis is given by

$$
\left\{H_{\alpha}(G):=\prod_{i=1}^{\infty} H_{\alpha_{i}}\left(G_{i}\right), \alpha \text { multindex },|\alpha|<\infty\right\}
$$

where $\left(G_{i}: i \in \mathbb{N}\right)$ is the canonical sequence of independent standard gaussian r.v.

Gaussian measures in Banach space

Lemma

If $\left(\xi_{n}: n \in \mathbb{N}\right)$ are Gaussian random variables with
$\xi_{n} \sim \mathcal{N}\left(\mu_{n}, \sigma_{n}^{2}\right)$, and $\xi_{n} \xrightarrow{d} \xi$ (in distribution), then ξ has Gaussian distribution $\mathcal{N}\left(\mu, \sigma^{2}\right)$ with $\mu=\lim _{n} \mu_{n}$ and $\sigma^{2}=\lim _{n} \sigma_{n}^{2}$.
When $\sigma^{2}=0$, we agree that the constant random variable μ is Gaussian.

Corollary

If $\left(\xi_{n}: n \in \mathbb{N}\right)$ are Gaussian and $\xi_{n} \xrightarrow{P} \xi$ in probability, since Gaussian variables have all moments it follows $\left(\xi_{n}: n \mathbb{N}\right)$ is bounded in $L^{p} \forall p<\infty$. and we have convergence also in $L^{p}(\Omega)$.

Random variables with values on a separable

Banach space

Let $(E,\|\cdot\|)$ be a separable Banach space, and E^{*} is the topological dual.
By separability we mean that there is $\left\{e_{n}: n \in \mathbb{N}\right\}$ which is dense in E.
The elements of E^{*} are linear continuous functionals φ with $|\varphi(x)| \leq C\|x\|_{E}$.
We denote also $\varphi(x)=\langle\varphi, x\rangle_{E^{*}, E}$.

Example

The space $C([0,1], \mathbb{R})$ of continuous functions with the norm

$$
\|f\|_{\infty}=\sup _{t \in[0,1]}|f(t)|
$$

is separable: by Bernstein's theorem which says that continuous functions can be approximated by polynomials uniformly on compacts. To obtain a dense countable set we take the polynomial functions with rational coefficients. Its dual is the space of signed measures with finite total variation on $[0,1]$.

The topological dual E^{*} is equipped with the strong operator norm

$$
|\varphi|_{E^{*}}=\sup \{|\varphi(x)|: x \in E,\|x\|=1\} .
$$

The topological dual E^{*} is equipped with the strong operator norm

$$
|\varphi|_{E^{*}}=\sup \{|\varphi(x)|: x \in E,\|x\|=1\}
$$

By using the duality we define the weak topology on E, where $x_{n} \xrightarrow{w} x$ weakly if $\varphi\left(x_{n}\right) \rightarrow \varphi(x) \forall \varphi \in E^{*}$.
We define also the weak-* topology on E^{*}, where $\varphi_{n} \xrightarrow{w-*} \varphi$ $*$-weakly if $\varphi_{n}(x) \rightarrow \varphi(x) \forall x \in E$.

Example

The weak topology is weaker than the $\|$.$\| norm topology in E$ and the weak-* topology is weaker than the $|.|_{E^{*}}$ norm topology in E^{*}.

We have a probability space (Ω, \mathcal{F}, P) and a random variable X which is measurable from (Ω, \mathcal{F}) into $(E, \mathcal{B}(E))$. where $\mathcal{B}(E)$ is the Borel σ-algebra generated by the open sets.

Definition

A simple E-valued random variable has the form

$$
X(\omega)=\sum_{i=1}^{N} x_{i} 1\left(A_{i}\right), \quad \text { with } x_{i} \in E, A_{i} \in \mathcal{F}
$$

Lemma

Let X be random variable defined on a probability (Ω, \mathcal{F}, P) space with values in $(E, \mathcal{B}(E))$.
There exist a sequence of simple E-valued random variables $\left\{X_{n}: n \in \mathbb{N}\right\}$ such that
$\|X\| \geq\left\|X-X_{n}\right\| \downarrow 0 \quad$ (monotonically), almost surely .
Proof: Choose $X_{n}(\omega)$ as the element of $\left\{e_{1}, \ldots, e_{n}\right\}$ which is closest to $X(\omega)$.

We will use this corollary of the Hahn-Banach Theorem:

Lemma

For every $x \in E \exists \varphi \in E^{*}$ with $\|\varphi\|_{E^{*}}=1$ and $\|x\|_{E}=\varphi(x)$

Theorem
If E is a separable Banach space the Borel σ-algebra is generated by the sets

$$
\{x \in E: \varphi(x) \leq \alpha\}
$$

with $\varphi \in E^{*}$ and $\alpha \in \mathbb{R}$.

E^{*}
 *
 as a space of random variables

Note that $\varphi(X(\omega))$ for $\varphi \in E^{*}$ and $\|X(\omega)\|$ are real valued random variables, i.e. measurable functions from (Ω, \mathcal{F}) into ($E, \mathcal{B}(E)$), since they are composition of a continuous and a measurable function.
For a simple E-valued r.v. $X(\omega)=\sum_{i=1}^{N} x_{i} \mathbf{1}\left(A_{i}\right)$, with $x_{i} \in E$, $A_{i} \in \mathcal{F}$ we define the integral

$$
\int_{\Omega} X(\omega) P(d \omega)=\sum_{i=1}^{N} x_{i} P\left(A_{i}\right)
$$

Bochner integral

Assume that X is a E-valued r.v. and that

$$
\int_{\Omega}\|X(\omega)\| P(d \omega)<\infty
$$

Since E is separable, we can approximate X by a sequence of simple E-valued r.v. $\left\{X_{n}\right\}$ with $\|X\| \geq\left\|X_{n}-X\right\| \downarrow 0$ (monotonically).

$$
\begin{aligned}
& \left\|\int_{\Omega} X_{n} d P-\int_{B} X_{m} d P\right\| \leq \int_{\Omega}\left\|X_{n}-X_{m}\right\| d P \\
& \leq \int_{\Omega}\left\|X-X_{m}\right\| d P+\int_{\Omega}\left\|X-X_{m}\right\| d P \rightarrow 0
\end{aligned}
$$

By the monotone convergence theorem it follows that $\left\{\int_{\Omega} X_{n} d P\right\}$ is a Cauchy sequence in E, therefore since the space is complete it has a limit in E. By the same argument the limit does not depend on the choice of the approximating sequence, so that the Bochner integral of the r.v. X is well defined.
Note that if X is a E-valued r.v., to every $\varphi \in E^{*}$ corresponds a real valued r.v. $\varphi(\omega):=\varphi(X(\omega))$. We identify the r.v. and the element of E^{*}.

Lemma

If $\varphi \in E^{*}$ and $X(\omega)$ is Bochner integrable on E under P,

$$
\varphi\left(\int_{\Omega} X(\omega) P(d \omega)\right)=\int_{\Omega} \varphi(X(\omega)) P(d \omega)
$$

Proof Let X_{n} a sequence of simple E-valued r.v. with $\|X\| \geq\left\|X-X_{n}\right\| \downarrow 0$. Since φ is linear the lemma holds for simple random variables, and by continuity

$$
\begin{aligned}
& \left|\varphi\left(\int_{\Omega} X d P\right)-\int_{\Omega} \varphi(X) d P\right|= \\
& \left.\leq \mid \varphi\left(\int_{\Omega} X d P\right)-\varphi\left(\int_{\Omega} X_{n}\right) d P\right)+\int_{\Omega} \varphi\left(X_{n}\right) d P-\int_{\Omega} \varphi(X) d P \mid \\
& \|\varphi\|_{E^{*}}\left\|\int X_{n} d P-\int X d P\right\|+\left|\int \varphi\left(X_{n}\right) d P-\int \varphi(X) d P\right| \rightarrow 0
\end{aligned}
$$

Definition

If μ is a probability distribution on the Banach space E we define the characteristic function as

$$
\widehat{\mu}(\phi):=\int_{E} \exp (i \psi(x)) \mu(d x)
$$

where $\varphi \in E^{*}$.

Definition

A cylynder set is of the form

$$
\left\{x \in E:\left(\varphi_{1}(x), \ldots, \varphi_{n}(x)\right) \in B\right\}
$$

where $B \in \mathcal{B}\left(\mathbb{R}^{n}\right), n \in \mathbb{N}, \varphi_{i} \in E^{*}$.
Follows from theorem 12 that for separable Banach spaces the cylinder sets generate the Borel σ-algebra of E. In particular two measures on $(E, \mathcal{B}(E))$ coincide if they coincide on the \equiv

Gaussian random variables on E

Definition

A measure γ on the Banach space E is (centered) gaussian iff for every $\varphi \in E^{*}$ the real valued r.v. $\varphi(x)$ is (centered) gaussian.

Lemma

If X is a E-valued r.v. with gaussian distribution, then for every $n, \varphi_{1}, \ldots, \varphi_{n} \in E^{*}$, then the random variables $\left(\varphi_{1}(X), \ldots, \varphi_{n}(X)\right)$ are jointly gaussian.

Proof Use the finite dimensional gaussian characterization with the characteristic function together with the linearity

$$
E_{P}\left(\exp \left(i \sum_{i=1}^{n} \theta_{i} \varphi_{i}(X)\right)\right)=E_{P}\left(\exp \left(i \varphi\left(\left\{\sum_{i=1}^{n} \theta_{i}\right\} X\right)\right)\right)
$$

The family $\left\{\varphi(X): \varphi \in E^{*}\right\}$ is a gaussian process indexed by E^{*}.
Since Gaussian r.v. have all moments,
Lemma
The embedding of E^{*} into $L^{p}(E, \mathcal{B}(E), \gamma), 0<p<\infty$ is continuous w.r.t. the weak-* topology of E^{*}, (and therefore also in the $|\cdot|_{E^{*}}$ topology).

Proof Let $\varphi_{n}, \varphi \in E^{*}$ with $\varphi_{n} \xrightarrow{w-*} \varphi$ in the weak-* topology, that is for every fixed $x \in E \varphi_{n}(x) \rightarrow \varphi(x)$.

In particular $\left(\varphi_{n}-\varphi\right) \rightarrow 0, \gamma(d x)$ a.s. Since $\left(\varphi_{n}-\varphi\right)(x)$ are centered gaussiam random variables, it follows from ?? that $\operatorname{Var}\left(\varphi_{n}-\varphi\right) \rightarrow 0$, and by using gaussianity that for $p<\infty$

$$
E_{\gamma}\left(\left(\varphi_{n}(X)-\varphi(X)\right)^{p}\right) \leq c_{p} E_{\gamma}\left(\left(\varphi_{n}(X)-\varphi(X)\right)^{2}\right)^{p / 2} \rightarrow 0
$$

, that is $\varphi_{n}(X) \rightarrow \varphi(X)$ in $L^{p}(E, \mathcal{B}(E), \gamma) . \square$.

Definition

We denote by \bar{E}^{*} the closure of E^{*} in $L^{2}(\gamma)$.
Note that if $\varphi \in \bar{E}^{*}$ there is a sequence $\varphi_{n} \rightarrow \varphi$ in $L^{2}(\gamma)$. In case $\varphi \in \bar{E}^{*} \backslash E^{*}, \varphi(x)$ is not defined pointwise but as a random variable for γ-almost every $x \in E$.

Note that in the one dimensional situation, if X is centered gaussian with variance σ^{2}, then clearly $E\left(\exp \left(\lambda X^{2}\right)\right)<\infty$ for $\lambda<\left(2 \sigma^{2}\right)^{-1}$. For the infinite-dimensional case we prove that the r.v. $\|X\|^{2}$ has exponential moment for some $\lambda>0$.

Theorem

(Fernique lemma) Let γ be a centered gaussian measure on
(E, \mathcal{B}). If $\lambda>0, r>0$ such that

$$
\log \left(\frac{1-\gamma(\bar{B}(0, r))}{\gamma(\bar{B}(0, r))}\right)+32 \lambda r^{2} \leq-1
$$

then

$$
\int_{E} \exp \left(\lambda\|x\|^{2}\right) \gamma(d x) \leq \exp \left(16 \lambda r^{2}\right)+\frac{e^{2}}{e^{2}-1}
$$

Since the r.v. $\|X\|^{2}$ has exponential moment for some $\lambda>0$, we have $E_{\gamma}\left(\|X\|^{p}\right)<\infty$, for all $p>0$.

The Kernel

Let γ be a centered gaussian measure on a separable Banach space E.

Definition

The operator $K: E^{*} \longrightarrow E$,

$$
K \varphi:=\int_{E} x \varphi(x) \gamma(d x) \text { as Bochner integral }
$$

is called Kernel
Note that $K \varphi$ is in E since

$$
\begin{aligned}
& \|K \varphi\|_{E} \leq \int_{E}\|x \varphi(x)\| \gamma(d x) \leq \int_{E}\|x\||\varphi(x)| \gamma(d x) \\
& \leq\left(\int_{E}\|x\|^{2} \gamma(d x)\right)^{1 / 2}\left(\int_{E}|\varphi(x)|^{2} \gamma(d x)\right)^{1 / 2}<\infty
\end{aligned}
$$

by Fernique lemma and since E^{*} is imbedded in $L^{2}(\gamma)$.

Note that if $\varphi, \psi \in E^{*}$

$$
\langle\psi, K \varphi\rangle=\int_{E} \psi(x) \varphi(x) \gamma(d x)=E_{\gamma}(\psi(X), \varphi(X))=\langle\varphi, K \psi\langle
$$

This map extends to \bar{E}^{*}, the closure in $L^{2}(\gamma)$ of E^{*}.

We introduce the Cameron-Martin's space.

$$
H=\left\{h=K \varphi: \varphi \in E^{*}\right\} \subseteq E
$$

This is called Kernel or Cameron Martin space. It is an Hilbert space equipped with the scalar product

$$
\left(h_{1}, h_{2}\right)_{H}=\left\langle\varphi_{1}, K \varphi_{2}\right\rangle=E_{\gamma}\left(\varphi_{1}(X)_{\varphi_{2}}(X)\right)
$$

The scalar product

$$
(h, x)_{H}=\varphi(x)
$$

makes sense also when $h=K \varphi$ with $\varphi \in \bar{E}^{*}$ as a random variable in $L^{2}(\gamma)$.
We also have the reproducing kernel property:

$$
\int_{E}\langle h, x\rangle_{H}\langle g, x\rangle_{H} \gamma(d x)=\langle h, g\rangle_{H}
$$

the Cameron-Martin space of Brownian motion

$\left\{B_{t}: t \in[0,1]\right\}$.
Let $E=C_{0}([0,1], \mathbb{R})=\{x \in C([0,1]): x(0)=0\}$, and E^{*} consists of signed measures μ on $[0,1]$ with finite variation, with the duality

$$
\langle\mu, x\rangle:=\int_{0}^{1} x(s) \mu(d s)
$$

which is defined as an usual Riemann-Stiletjes integral, since $x(\cdot)$ is continuous and μ has finite variation. We have the continuity property

$$
|\langle\mu, x\rangle| \leq\|x\|_{\infty} \int_{0}^{1}|\mu(d s)|
$$

The covariance is $E\left(B_{s} B_{t}\right)=E\left(B_{s}^{2}\right)+E\left(B_{s}\left(B_{t}-B_{s}\right)\right)=s$ for $s \leq t$, so we can write $K(s, t)=(s \wedge t)$. By changing the order of integration and then using integration by parts

$$
\begin{aligned}
& (K \mu)(t)=\int_{E} x(t)\langle\mu, x\rangle \Gamma(d x)=\int_{E} x(t)\left(\int_{0}^{1} x(s) \mu(d s)\right) \Gamma(d x) \\
& \int_{0}^{1} K(t, s) \mu(d s)=\int_{0}^{1}(t \wedge s) \mu(d s)= \\
& \mu([0,1]) t-\int_{0}^{t} \mu([0, s]) d s=\int_{0}^{t} \mu((s, 1]) d s
\end{aligned}
$$

which is an absolutely continuous function, since the function $s \mapsto \mu((s, 1])$ is bounded.

We have that

$$
\begin{aligned}
& E(\langle\mu, B\rangle\langle\nu, B\rangle)=\nu K \mu=\int_{0}^{1}\left(\int_{0}^{t} \mu((s, 1]) d s\right) \nu(d t) \\
& =\int_{0}^{1} \nu((t, 1]) \mu((t, 1]) d t:=(K \mu, K \nu)_{H}
\end{aligned}
$$

By completing $K\left(E^{*}\right)$ w.r.t. the scalar product $(\cdot, \cdot)_{H}$ we obtain the Cameron-Martin space of Brownian motion

$$
\begin{aligned}
& H=W^{1,2}([0,1], d t)=\left\{h \in C_{0}([0,1]): h(t)=\int_{0}^{t} \dot{h}(s) d s\right. \text { with } \\
& (h, g)_{H}=\int_{0}^{1} \dot{h}(s) \dot{g}(s) d s=(\dot{h}, \dot{g})_{L^{2}([0,1], d t)}, \quad \text { for } h, g \in H
\end{aligned}
$$

Note that we can extend the scalar product $(h, x)_{H}$ to the case where $h \in H$ and $x \in E$.
For $\mu \in E^{*}$ and the Brownian path $x(t)=B_{t}(\omega)$ we obtain

$$
\langle\mu, B\rangle=(K \mu, B)_{H}:=\int_{0}^{1} B(s) \mu(d s)=\int_{0}^{1} \mu((s, 1]) d B_{s}
$$

and this can be extended to any $h \in H$

$$
(h, B)_{H}:=\int_{0}^{1} \dot{h}(s) d B_{s}
$$

which is the Wiener integral.

The reproducing Kernel property of Brownian motion reads as
$(h, g)_{H}=E_{P}\left(\int_{0}^{1} \dot{h}(s) d B_{s} \int_{0}^{1} \dot{g}(s) d B_{s}\right)=E_{P}\left(\int_{0}^{1} \dot{h}(s) \dot{g}(s) d s\right)$
Let's fix t and take $g(s)=K(t, s)=t \wedge s=E\left(B_{t} B_{s}\right)$ with $\frac{\partial}{\partial s} K(t, s)=\mathbf{1}(s \leq t)$. We obtain

$$
(h, K(t, \cdot))_{H}=E_{P}\left(B_{t} \int_{0}^{t} \dot{h}(s) d B_{s}\right)=\int_{0}^{t} \dot{h}(s) d s=h(t)
$$

