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Malliavin calculus, Fall 2007, Dario Gasbarra

0.1 Lecture 1: Some notions on gaussian mea-
sures on separable Banach and Hilbert spaces

Before starting with Malliavin calculus, we have selected some material from
the Da Prato and Zabczyk’s book Stochastic Equations in Infinite Dimensions
and from Lifshits book Gaussian Random Functions.

0.1.1 Prelimiaries on gaussian random variables

Definition 0.1.1. A random vector X = (X1, . . . , Xn) with values in Rn is
jointly gaussian iff there is a µ ∈ Rn and a non-negative definite matrix K such
that the joint characteristic function is given by

φX(θ) := E(exp(iθ ·X)) = exp(iθµ− 1

2
θKθT )

where y · x is the usual scalar product.

Theorem 0.1.1. (Wick product formula) Let (X1, . . . , Xn) ajointly gaussian
vector with E(Xi) = 0.

Then

E(X1X2 . . . Xn) =

{
0 when n is odd∑

pairings

∏
pairs{i,j}E(XiXj) when n is even

when n is even we sum over the
(
n
2

)
pairings of {1, . . . , n} and take product over

the pairs.

When the limit of a gaussian random variable exists, it is necessarly gaussian:

Lemma 0.1.1. Let {ξn} be a sequence of gaussian r.v. with respective distribu-
tions N (µn, σ

2
n), defined on the same probability space (Ω,F , P ), together with

a r.v. ξ. If ξn
d→ ξ (convergence in distribution) then ξ is gaussian N (µ, σ2)

where the limits µ = limn µn and σ2 = limn σ
2
n exist.

When σ2 = 0, we agree that the constant random variable µ is gaussian with
zero variance.

Proof Since convergence in distribution is equivalent to the convergence of
characteristic functions, it follows that

φξn(θ) = exp

(
iµnθ −

1

2
θ2σ2

n

)
→ φξ(θ) ∀θ

where ∀θ

|φξn(θ)| = exp

(
−1

2
θ2σ2

n

)
→ |φξ(θ)| = exp

(
−1

2
θ2σ2

)
Arg(φξn(θ)) = µnθ → Arg(φξ(θ)) = µθ
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therefore

φξ(θ) = exp

(
iµθ − 1

2
θ2σ2

)
2

In particular if {[U+FFFD]ξn} are gaussian random variables with ξn
P→ ξ in

probability, then ξ is gaussian and ξn → xi in Lp(Ω) ∀p <∞.
Remark We can replace convergence in distribution the lemma 0.1.1 with

stronger convergence in probability or in Lp convergence,

Corollary 0.1.1. If Xn → 0 in probability and Xn ∼ N (µn, σ
2
n), then µn, σ2

n →
0 and Xn → 0 in Lp(Ω) for all p <∞.

Definition 0.1.2. A family of real valued random variables {ξt : t ∈ T} is
a gaussian process if ∀ n, t1, . . . , tn ∈ T the law of (ξt1 , . . . , ξtn) is jointly
gaussian.

0.1.2 Random variables with values on a separable Ba-
nach space

We assume that (E, ‖ · ‖) is a separable Banach space, and E∗ is the topological
dual.

This means that it countains a countable dense set {en : n ∈ N}.

Example 0.1.1. The space C([0, 1],R) of continous functions on a compact T
with the norm |f |∞ = supt∈[0,1] |f(t)| is separable. This follows for example from
Bernstein theorem which says that continuous functions can be approximated by
polynomials uniformly on compacts. To obtain a dense countable set we take
the polynomial functions with rational coefficients.

A related counterexample is given the space of right-continuous functions
with left limits on a compact interval which is non-separable for the uniform
norm (jumps are bad for the uniform convergence topology).

The topological dual is equipped with the strong operator norm

|ϕ|E∗ = sup{|〈ϕ, x〉| : x ∈ E, ‖x‖ = 1} .

By using the duality we define the weak topology on E, where xn
w→ x weakly

if 〈ϕ, xn〉 → 〈ϕ, x〉 ∀ϕ ∈ E∗.
We define also the weak-∗ topology on E∗, where ϕn

w−∗→ ϕ ∗-weakly if
〈ϕn, x〉 → 〈ϕ, x〉 ∀x ∈ E.

Exercise 0.1.1. The weak topology is weaker than the ‖.‖ norm topology in E
and the weak-∗ topology is weaker than the |.|E∗ norm topology in E∗.

We have a probability space (Ω,F , P ) and a random variable X which is
measurable from (Ω,F) into (E,B(E)).

Definition 0.1.3. A simple E-valued random variable has the form

X(ω) =

N∑
i=1

xi1(Ai), with xi ∈ E, Ai ∈ F .
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Lemma 0.1.2. Let X be random variable defined on a probability (Ω,F , P )
space with values in (E,B(E)), where B(E) is the Borel σ-algebra.

There exist a sequence of simple E-valued random variables {Xn : n ∈ N}
such that

‖ X ‖≥‖ X −Xn ‖↓ 0 (monotonically), almost surely .

Proof: Exercise.

We will use without proof the next result from functional analysis ( a corol-
lary of the Hahn-Banach Theorem):

Lemma 0.1.3. For every x ∈ E ∃ ϕ ∈ E∗ with ‖ ϕ ‖E∗= 1 and ‖ x ‖= 〈ϕ, x〉 .

Theorem 0.1.1. If E is a separable Banach space the Borel σ-algebra is gen-
erated by the sets

{x ∈ E : 〈ϕ, x〉 ≤ α}

with ϕ ∈ E∗ and α ∈ R.

Proof By taking first a dense countable set {en : n ∈ N} ⊆ E and applying
lemma 0.1.3 we find a sequence {ϕn} ⊂ E∗ with ‖ ϕn ‖X∗= 1 such that ∀x ∈ E
‖ x ‖E= supn ϕn(x).

In fact,

0 ≤ ‖x‖ − |〈ϕn, x〉| ≤
∣∣‖x‖ − ϕn(en)

∣∣+
∣∣ϕn(en)− 〈ϕn, x〉

∣∣ =
∣∣‖x‖− ‖ en ‖ ∣∣+

∣∣ϕn(en − x)
∣∣

≤
∣∣‖x‖− ‖ en ‖ ∣∣+ ‖ϕn‖E∗‖en − x‖ ≤

∣∣‖x‖− ‖ en ‖ ∣∣+ ‖en − x‖

which can be made arbitrary small by choosing a yn close to x, ( the norm ‖ · ‖
is continuous).

For any a ∈ E, r ≥ 0 we represent the open ball as

B(a, r) =
⋃
m

B̄(a, r(1− 1

m
)) =

⋃
m

⋂
n

{x : ϕn(a− x) < r(1− 1

m
)) . 2

Note that ϕ(X(ω)) for ϕ ∈ E∗ and ‖X(ω)‖ are real valued random variables,
i.e. measurable functions from (Ω,F) into (E,B(E)), since they are composi-
tion of a continous and a measurable function.

Let X(ω) =
∑N
i=1 xi1(Ai) , with xi ∈ E, Ai ∈ F be a simple random

variable, for B ∈ F we define the integral∫
B

X(ω)P (dω) :=

N∑
i=1

xiP (Ai ∩B) ∈ E

Definition 0.1.4. (Bochner integral) Assume that X is a E-valued r.v. and
that ∫

Ω

‖ X(ω) ‖ P (dω) <∞



4

Since E is separable, we can approximate X by a sequence of simple E-valued
r.v. {Xn} with
‖X‖ ≥‖ Xn −X ‖↓ 0 (monotonically). Then for B ∈ F∥∥∥∥∫
B

XndP −
∫
B

XmdP

∥∥∥∥ ≤ ∫
B

‖ Xn −Xm ‖ dP ≤
∫
B

‖ X −Xm ‖ dP +

∫
B

‖ X −Xm ‖ dP → 0

By the monotone convergence theorem it follows that {
∫
B
XndP} is a Cauchy

sequence in E, therefore since the space is complete it has a limit in E. By the
same argument the limit does not depend on the choice of the approximating
sequence, so that the Bochner integral of the r.v. X is well defined.

Note that if X is a E-valued r.v., to every y∗ ∈ E∗ corresponds a real valued
r.v. Y ∗(ω) := y∗(X(ω)). We will identify the r.v. and the element of E∗ and
use the same notation.

Lemma 0.1.4. If ϕ ∈ E∗ and X(ω) is Bochner integrable on E under P ,

ϕ

(∫
Ω

X(ω)P (dω)

)
=

∫
Ω

ϕ(X(ω))P (dω)

Proof LetXn a sequence of simple E-valued r.v. with ‖ X ‖≥‖ X−Xn ‖↓ 0.
Since ϕ is linear the lemma holds for simple random variables, and by continuity∣∣∣∣ϕ(∫

Ω

X(ω)P (dω)

)
−
∫

Ω

ϕ(X(ω))P (dω)

∣∣∣∣ =

≤
∣∣∣∣ϕ(∫ X(ω)P (dω)

)
− ϕ

(∫
Xn(ω)P (dω)

)
+

∫
ϕ(Xn(ω))P (dω)−

∫
ϕ(X(ω))P (dω)

∣∣∣∣ ≤
‖ϕ‖E∗

∥∥∥∥ ∫ XndP −
∫
XdP

∥∥∥∥+

∣∣∣∣ ∫ ϕ(Xn)dP −
∫
ϕ(X)dP

∣∣∣∣→ 0 as n→∞

Definition 0.1.5. If µ is a probability distribution on the Banach space E we
define the characteristic function as

φµ(y∗) :=

∫
E

exp(i y∗(x))µ(dx)

where y∗ ∈ E∗.

Definition 0.1.6. A cylynder set is of the form

{x ∈ E : (y∗1(x), . . . , y∗n(x)) ∈ A}

where A ∈ Rn, n ∈ N, y∗i ∈ E∗.

Follows from theorem 0.1.1 that for separable Banach spaces the cylinder
sets generate the Borel σ-algebra of E. In particular two measures on (E,B(E))
coincide if they coincide on the cylinder sets. Since the characteristic function
characterizes the measure in the euclidean (finite dimensional) space, it follows
that the φµ(·) charcterizes the measure µ on E.
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0.1.3 Gaussian random variables on E

Definition 0.1.7. A measure γ on the Banach space E is (centered) gaussian
iff for every y∗ ∈ E∗ the real valued r.v. y∗ is (centered) gaussian.

Lemma 0.1.5. If X is a E-valued r.v. with gaussian distribution, then for
every n, y∗1 , . . . , y∗n ∈ E∗, then the random variables (y∗1(X), . . . , y∗n(X)) are
jointly gaussian.

Proof Use the finite dimensional gaussian characterization with the charac-
teristic function.

This means that the family {y∗(X) : y∗ ∈ E∗} is a gaussian process indexed
by E∗.

For any ϕ ∈ E∗, 〈ϕ, x〉 is a real valued gaussian random variable on the
probability space (E,B(E), γ). Since it is gaussian, it has all moments. Using
gaussianity we obtain the following result:

Lemma 0.1.6. The embedding of E∗ into Lp(E,B(E), γ), 0 < p <∞ is contin-
uous w.r.t. the weak-∗ topology of E∗, (and therefore also in the | · |E∗ topology).

Proof Let ϕn, ϕ ∈ E∗ with ϕn
w−∗→ ϕ in the weak-∗ topology, that is for

every fixed x ∈ E ϕn(x)→ 〈ϕ, x〉.
In particular (ϕn − ϕ) → 0, γ(dx) a.s. Since (ϕn − ϕ)(x) are centered

gaussiam random variables, it follows from 0.1.1 that Var(ϕn − ϕ)→ 0, and by
using gaussianity that for p <∞

Eγ((ϕn(X)− ϕ(X))p) ≤ cpEγ((ϕn(X)− ϕ(X))2)p/2 → 0

, that is ϕn(X)→ ϕ(X) in Lp(E,B(E), γ). 2.

Definition 0.1.8. We denote by Ē∗ the closure of E∗ in L2(γ).

Note that if ϕ ∈ Ē∗ there is a sequence ϕn → ϕ in L2(γ).
In case ϕ ∈ Ē∗ \E∗ , ϕ(x) is not defined pointwise by the duality 〈ϕ, x〉 but

as a random variable for γ-almost every x ∈ E.
Note that in the one dimensional situation, if X is centered gaussian with

variance σ2, then clearly E(exp(λX2)) < ∞ for λ <
(
2σ2
)−1. For the infinite-

dimensional case we prove that the r.v. ‖ X ‖2 has exponential moment for
some λ > 0.

Theorem 0.1.2. (Fernique lemma) Let γ be a centered gaussian measure on
(E,B) . If λ > 0, r > 0 such that

log

(
1− γ(B̄(0, r))

γ(B̄(0, r))

)
+ 32λr2 ≤ −1 ,

then ∫
E

exp(λ ‖ x ‖2)γ(dx) ≤ exp(16λr2) +
e2

e2 − 1
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Proof Maybe we don’t prove this, see Da Prato and Zabczyk, Theorem 2.6
,p 37.

The important consequence is that since the r.v. ‖ X ‖2 has exponential
moment for some λ > 0, we have

E
(
exp(λ ‖ X ‖)

)
<∞, ∀λ and Eγ(‖ X ‖p) <∞ ∀p > 0.

0.1.4 The Kernel

Let γ be a centered gaussian measure on a separable Banach space E.
A linear subspace H ⊂ E is said to be a reproducing kernel Hilbert space

(RKHS) for γ if H equipped with an Hilbert norm | · |H is complete, it is
continuously embedded in E and such that for arbitrary ϕ ∈ E∗

|ϕ|H∗ := sup

{
|〈ϕ, h〉| : h ∈ H, |h|H ≤ 1

}
≤ |ϕ|E∗ and

|ϕ|H∗ = Eγ
(
ϕ(X)2

)1/2
=

(∫
E

〈ϕ, x〉2γ(dx)

)1/2

Theorem 0.1.3. A centered gaussian measure γ on a separable Banach space
E admits an unique reproducing kernel Hilbert space.

Proof For ϕ ∈ E∗, consider the Bochner integral

Kϕ =

∫
E

x〈ϕ, x〉γ(dx) ∈ E

This is well defined since∫
E

‖ x〈ϕ, x〉 ‖ γ(dx) ≤
∫
E

‖ x ‖ |〈ϕ, x〉|γ(dx) ≤
(∫

E

‖ x ‖2 γ(dx)

)1/2(∫
E

|〈ϕ, x〉|2γ(dx)

)1/2

<∞

by Fernique lemma and since E∗ is imbedded in L2(γ).
This shows also that Kϕ is continuous in the L2(γ) norm. By continuity we

extend the definition of K to all Ē∗.
The linear map K is also injective, since if Kϕ = 0 then

0 = ϕ(Kϕ) =

∫
E

〈ϕ, x〉2γ(dx)

which implies 〈ϕ, x〉2 = 0 for γ almost all x, which means ϕ = 0 as a random
variable in L2(γ).
Note also that K is symmetric in the following sense

ψ(Kϕ) =

∫
E

〈ϕ, x〉〈ψ, x〉γ(dx) = Eγ(ϕ(X)ψ(X)) = ϕ(Kψ)

We call K the covariance operator. In the finite dimensional case this is the
familiar covariance matrix ( Exercise: check this !).
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Denote H = K(Ē∗) ⊆ E. This is space becomes an Hilbert space with the
scalar product

〈u, v〉H =

∫
E

〈ϕ, x〉〈ψ, x〉γ(dx) = Eγ(ϕ(X)ψ(X)) = ϕ(v) = ψ(u)

when u = Kϕ, v = Kψ, ϕ,ψ ∈ Ē∗.

Completeness follows from the construction: {un = Kϕn} is a Cauchy se-
quence w.r.t. ‖ · ‖H norm if and only if {ϕn} is a Cauchy sequence in Ē∗ with
the ‖ · ‖L2(γ). But Ē∗ is complete by definition.

We denote also |u|2H = 〈u, u〉H .
Note that when ϕ,ψ are in (Ē∗ \ E∗) this scalar product still makes sense

since in the extended definition ϕ(X) and ψ(X) are random variables in L2(γ)

We show that (H, 〈·, ·〉) is a RKHS for γ: For ϕ ∈ E∗,

|ϕ|H∗ := sup
{
|ϕ(u)| : u ∈ H, |u|H ≤ 1

}
= sup

{
|ϕ(Kψ)| : ψ ∈ E∗, ‖ ψ ‖L2(γ)≤ 1

}
=

sup
{∫

E

〈ϕ, x〉〈ψ, x〉γ(dx) : ψ ∈ E∗, ‖ ψ ‖L2(γ)≤ 1
}

=(∫
E

〈ϕ, x〉2γ(dx)

)1/2

= Eγ(ϕ(X)2)1/2 =‖ ϕ(X) ‖L2(γ)

Note that H is reflexive since it is an Hilbert space, so Ē∗ = H∗ ' H by the
map h∗ 7→ h = Kh∗, and we identify h and h∗ and write simply |h∗|H∗ =
|Kh∗|H = |h|H .

Resume :
The situation is the following,

E∗ ⊆ Ē∗ = H∗ = H ⊆ E,

and H∗ is the closure of E∗ w.r.t the norm | · |H∗ =‖ · ‖L2(γ).
This L2(γ)-closure Ē∗, becomes an Hilbert space , where for ϕ,ψ ∈ Ē∗ = H

with u = Kϕ, v = Kψ, u, v ∈ H, the scalar product is defined as

〈u, v〉H := (ϕ,ψ)L2(γ) = Eγ(ϕ(X)ψ(X)) =∫
E

〈ϕ, x〉〈ψ, x〉γ(dx) =

〈
ϕ,

∫
E

x〈ψ, x〉γ(dx)

〉
= 〈ϕ,Kψ〉E∗,E = 〈φ,Kϕ〉E∗,E

This is the isometry between (Ē∗, ‖ · ‖L2(γ)) and the RKHS H.

We show that the RKHS of the gaussian measure γ is unique.
Let H̃ ⊂ E another RKHS for γ with scalar product 〈·, ·〉H̃ .
For any ϕ ∈ E∗, the map h̃ 7→ ϕ(h̃) is by definition a bounded linear

functional H̃ → R. By Riesz representation theorem there is an element K̃ϕ ∈
H̃ such that for h̃ ∈ H̃

〈ϕ, h̃〉 = 〈h̃, K̃ϕ〉H̃
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We must have also by definition that

〈ϕ,Kϕ〉1/2 =‖ ϕ ‖L2(γ)= sup{〈ϕ, h̃〉 : h̃ ∈ H̃ , |h̃|H̃ = 1} =

sup{〈h̃, K̃ϕ〉H̃ : h̃ ∈ H̃ , |h̃|H̃ = 1} = 〈K̃ϕ, K̃ϕ〉1/2
H̃

= 〈ϕ, K̃ϕ〉1/2

By the polarization identity we also obtain for ψ,ϕ ∈ E∗

〈ϕ, K̃ψ〉 = 〈ϕ,Kψ〉 =

∫
E

〈ϕ, x〉〈ψ, x〉γ(dx)

This means that K = K̃ and this implies uniqueness. 2

Remark Note that for h = Kϕ ∈ H, ϕ ∈ Ē∗ the scalar product

〈h, x〉H := ϕ(x) = lim〈ϕn, x〉

can be extended to all x ∈ E. If h is an arbitrary element ofH, where {ϕn} ⊆ E∗
is any sequence convering to ϕ in L2(γ), equivalently hn = Kϕn → h inH-norm.

However although the map x 7→ 〈ϕ, x〉 is linear on E, in general it is not
bounded and it makes sense only as a random variable φ(x) in L2(γ).

Exercise 0.1.2. The Ito integral map is linear but not continuous w.r.t the
‖ · ‖∞ norm on the Banach space C0([0, T ],R) = {x ∈ C([0, T ],R) : x(0) = 0}.

We also have the following reproducing kernel property:∫
E

〈h, x〉H〈g, x〉Hγ(dx) = 〈h, g〉H

The RKHS H of the gaussian measure γ(dx) is also called in the literature the
Kernel, or the Cameron-Martin space.

To construct some interesting examples, we need some more tools.

0.1.5 White noise
Given out probabability space (Ω,F , P ), let (S,A) a measurable space equipped
with a measure µ such that µ({s}) = 0 for all s ∈ S. We denote A0 = {A ∈ A :
µ(A) <∞}.

A L2(Ω,F , P )-valued random measure W (A), A ∈ A is a white noise when
(i) W (A) is N (0, µ(A)) distributed ∀ A ∈ A0,
(ii) W (A1) ⊥⊥W (A2) when A1 ∩A2 = ∅, A1, A2 ∈ A0.
We call µ the driving measure of W .

Note that in general for a fixed ω the measure W (·)(ω) is not a σ-additive
measure on S: If An ∈ A, An ↓ ∅ , W (An) → 0 almost surely, but the null
set depends on the particular sequence {An}, and the possible sequences are
uncountable.

Exercise 0.1.3. Prove that a white noise is a gaussian process index set A0, that
is show that for every n, A1, . . . , An ∈ A0 , the gaussian r.v. W (A1), . . . ,W (An)
are also jointly gaussian.
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Exercise 0.1.4. Prove that E(W (A)W (B)) = µ(A ∩B), A,B ∈ A0.

This is just a definition: it is necessary to show that white noise exists.
However you have seen already one example in the stochastic analysis course:

Example Brownian motion W (s) is originated from the white noise on
([0, 1],B([0, 1]), dx), with W (s) = W ([0, s]).

0.1.6 Wiener integrals
BecauseW (·)(ω) is not a σ-additive measure it is not clear how to define ω-wise
the integral ∫

S

f(u)W (du, ω)

It has to be defined as a random variable in L2(Ω,F , P ). A simple function has
the form

f(u) =

m∑
i=1

fi1Ai
(u), Ai ∈ A0, fi ∈ R, Ai ∈ A0, Ai ∩Aj = ∅, i 6= j

Note that f ∈ L2(S,A, µ) and it is natural to define the Wiener integral as

W (f) :=

∫
S

f(u)W (du) =

m∑
i=1

aiW (Ai)

W (f) is a centered gaussian random variable with

E(W (f)2) =

m∑
i=1

a2
iµ(Ai) = ‖f‖2L2(S,µ)

Simple functions are dense in L2(S,A, µ) and by taking approximating se-
quences of simple functions and using the completeness of L2(Ω, P ), we extend
the Wiener integral to an isometry from L2(S, µ)→ L2(Ω, P ).

0.1.7 Models of Gaussian processes (white Noise repre-
sentation)

Let T an arbitrary index set, K : T ×T → R a function and (S,S) a measurable
space equipped with a measure ν.

We say that a family {mt : t ∈ T} ⊆ L2(S,S, µ) is a model of the function
K if

K(t, s) = (mt,ms)L2(S) =

∫
S

mt(u)ms(u)µ(du), t ∈ T

Proposition 0.1.1. Let {mt : t ∈ T} be a model of the function K on L2(S,S, ν),
and let W be a white noise on S driven by ν. Then the function K is positive
definite and it is the covariance function of the gaussian process

Xt = W (mt) =

∫
S

mt(u)W (du)
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Proof By the isometry,

E(Xt′Xt′′) = (mt′ ,mt′′)L2(S,µ) =

∫
S

mt′(u)mt′′(u)µ(du) = K(t′, t′′)

is positive definite.

0.1.8 Models and Kernels of gaussian processes
Let Γ the law of a gaussian random variable X with values on E = C(T,R) the
space of continuous functions on a compact set T . In other words, (Xt : t ∈ T )
is a gaussian process with continuous paths.

We know from functional analysis that E∗ is the space of signed measures
on E.

If ϕ ∈ E∗ and x ∈ E we have the duality

〈ϕ, x〉 = ϕ(x) =

∫
T

x(t)ϕ(dt)

By the definition of the covariance operator K, if ϕ,ψ ∈ E∗

Eγ
(
ϕ(X)ψ(X)

)
=

∫
E

(∫
T

x(s)ϕ(ds)

)(∫
T

x(t)ψ(ds)

)
γ(dx) = ϕ(Kψ) =∫

T

x(s)

{∫
E

(∫
T

x(t)ψ(dt)

)
Γ(dx)

}
ϕ(ds) =

∫
T

∫
T

(∫
E

x(s)x(t)γ(dx)

)
ψ(dt)ϕ(ds)

=

∫
T

∫
T

K(t, s)ψ(dt)ϕ(ds) = ϕ

(∫
T

K(t, ·)ψ(dt)

)
We see that the operator K : E∗ → E is an integral operator with kernel

K(·, ·):

(Kψ)(t) =

∫
T

K(t, s)ψ(ds)

For ψ(dx) = δs(dx), s ∈ T , we obtain the reproducing kernel property as
follows: take x = Kµ, µ ∈ E∗, and consider the function K(s, ·) = (Kδs)(·) ∈
K(E∗) . We get

(K(s, ·), x)H = (Kδs, x)H = (Kδs,Kµ)H = δs(Kµ) = (Kµ)(s) = x(s)

which extends to a general x ∈ E.
Assume now that the family of {mt : t ∈ T} ⊆ L2(S,S, µ) is a model of the

random process (Xt : t ∈ T ).
Define an operator J∗ : E∗ → L2(S,S, µ) as

J∗ϕ =

∫
T

mtϕ(dt), ϕ ∈ E∗

Define also J : L2(S,S, µ)→ E as

(Jf)(t) = (mt, f)L2(S) =

∫
S

mt(u)f(u)µ(du)
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J and J∗ are adjoint :

〈ϕ, Jf〉 = ϕ(Jf) =

∫
T

(Jf)(t)ϕ(dt) =

∫
T

∫
S

mt(u)f(u)µ(du)ϕ(dt) =∫
S

∫
T

mt(u)ϕ(dt)f(u)µ(du) = (f, J∗ϕ)L2(S)

The operators J and J∗ give a factorization of the covariance operator K of
the gaussian measure Γ:

(JJ∗ϕ)(t) = (J∗ϕ,mt)L2(S) =

(∫
T

msϕ(ds),mt

)
L2(S)

=

∫
T

(
ms,mt

)
L2(S)

ϕ(ds) =

∫
T

K(t, s)ϕ(ds)

which means that (JJ∗) = K.

A key example: the Cameron-Martin space of Brownian motion
{Bt : t ∈ [0, 1]}.

Let E = C0([0, 1]) = {x ∈ C([0, 1]) : x(0) = 0} equipped with the supremum
norm ‖ x ‖∞, and E∗ consists of signed σ-additive measures µ on [0, 1] with
finite variation, with the duality

〈µ, x〉 :=

∫ 1

0

x(s)µ(ds)

which is defined as an usual Riemann-Stiletjes integral, since x(·) is continuous
and µ has finite variation. We have the continuity property

|〈µ, x〉| ≤ ‖x‖∞
∫ 1

0

|µ(ds)| .

By definition the covariance is given by

K(s, t) = E(BsBt) = E(B2
s ) + E(Bs(Bt −Bs)) = s, s ≤ t

so we can write K(s, t) = (s∧ t). By changing the order of integration and then
using integration by parts

(Kµ)(t) =

∫
E

x(t)〈µ, x〉Γ(dx) =

∫
E

x(t)

(∫ 1

0

x(s)µ(ds)

)
Γ(dx) =

∫ 1

0

(∫
E

x(s)x(t)Γ(dx)

)
µ(ds) =∫ 1

0

K(t, s)µ(ds) =

∫ 1

0

(t ∧ s)µ(ds) = µ([0, 1])t−
∫ t

0

µ([0, s])ds =

∫ t

0

µ((s, 1])ds

which is an absolutely continuous function, since the function s 7→ µ((s, 1]) is
bounded. We have that

E(〈µ,B〉〈ν,B〉) = νKµ =

∫ 1

0

(∫ t

0

µ((s, 1])ds

)
ν(dt)

=

∫ 1

0

ν((t, 1])µ((t, 1])dt := (Kµ,Kν)H
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where the functions t 7→ ν((t, 1]),t 7→ µ((t, 1]) have finite variation, i.e. are
differences of finite non-decreasing functions. By completing K(E∗) w.r.t. the
scalar product (·, ·)H we obtain the Cameron-Martin space of Brownian motion

H =

{
h ∈ C0([0, 1]) : h(t) =

∫ t

0

ḣ(s)ds satisfying h(0) = 0, and
∫ 1

0

ḣ(s)2ds <∞
}

(h, g)H =

∫ 1

0

ḣ(s)ġ(s)ds = (ḣ, ġ)L2([0,1],dt), for h, g ∈ H

Note that we can extend the scalar product (h, x)H to the case where h ∈ H
and x ∈ E.

For µ ∈ E∗ and the Brownian path x(t) = Bt(ω) we obtain

〈µ,B〉 =

∫ 1

0

Bsµ(ds) = (Kµ,B)H :=

∫ 1

0

µ((s, 1])Ḃ(s)ds =

∫ 1

0

µ((s, 1])dB(s)

and this is extended to any h ∈ H

(h,B)H :=

∫ 1

0

ḣ(s)Ḃ(s)ds =

∫ 1

0

ḣ(s)dB(s) ,

On the right hand side of the formulae the integrals w.r.t. B are Wiener inte-
grals.

Exercise 0.1.5. Check the reproducing kernel property in the Cameron-Martin
space of Brownian motion, that is for h ∈ H

h(t) =
〈
h,K(t, ·)〉H

where

K(t, s) = Eγ(BtBs) = t ∧ s =

∫ s

0

1(r ≤ t)dr

Solution〈
h,K(t, ·)

〉
H

=

∫ 1

0

ḣ(t)1(s ≤ t)ds =

∫ t

0

ḣ(s)ds = h(t)

The RKHS of the Brownian bridge We can define the Brownian bridge
(Xt : t ∈ [0, 1]) as the Gaussian process which has the same distribution of the
Brownian motion (Bt : t ∈ [0, 1]) conditioned on the event {B1 = 0}. By taking
L2 projections, it follows for s, t ∈ [0, 1],

E(Xt) = E(Bt|B1 = 0) = E(Bt) + (0− E(B1))E(B2
1)−1E(B1Bt) = 0,

K(s, t) = E(XsXt) = E(BsBt|B1 = 0) = E(BsBt)− E(BsB1)E(B1)−1E(B1Bt)

= s ∧ t− st

Therefore we obtain

(Kµ)(t) =

∫ t

0

µ((s, 1])ds− t
∫ 1

0

µ((s, 1])ds =

∫ 1

0

(
1(s ≤ t)− t

)
µ((s, 1])ds

νKµ =

∫ 1

0

µ((s, 1])ν((s, 1])ds−
(∫ 1

0

µ((s, 1])ds

)(∫ 1

0

µ((s, 1])ds

)
,
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where at t = 1 Kµ(1) = 0.
By taking the closure with respect to this scalar product we obtain the RKHS

H =

{
h(t) =

∫ t

0

ḣ(s)ds, with h(0) = h(1) = 0 and ḣ ∈ L2([0, 1], dt)

}
⊆ C0([0, 1])

which are absolutely continuous functions with a (weak) derivative in L2([0, 1], dt)
which are tied to 0 at times t = 0 and t = 1, with scalar product

〈h, g〉H = (ḣ, ġ)L2([0,1]) =

∫ 1

0

ḣ(s)ḣ(g)ds

Exercise 0.1.6. Check the reproducing kernel property in the Cameron-Martin
space of the Brownian bridge.

Solution: For t ∈ [0, 1],

K(t, s) = t ∧ s− ts =

∫ s

0

(
1(r ≤ t)− t

)
dr,

〈
h,K(t, ·)

〉
H

=

∫ 1

0

ḣ(t)
(
1(s ≤ t)− t

)
ds−

∫ 1

0

ḣ(s)ds

∫ 1

0

(
1(s ≤ t)− t

)
ds =

h(t)− h(1)t− h(1)
(
t− t

)
= h(t)

since h(1) = 0.

The RKHS of the Stationary Ornstein Uhlenbeck process .
The stationary Ornstein Uhlenbeck process {X(t) : t ∈ R} which is a cen-

tered gaussian process ( E(Xt) = 0 ) with covariance

K(t, s) := EP (X(s)X(t)) = exp(−|t− s|) t, s ∈ R

Note that at all t ∈ R, X(t) is a standard gaussian random variable. We compute
its Cameron-Martin space

The solution is related to the white noise representation of the process. This
is discussed in the book by Hida and Hitsuda Gaussian processes.

The idea is to find Z(t, s) such that

K(t, s) =

∫
R
Z(t, r)Z(s, r)dr

in operator notation K = ZZ∗ where Z∗ is the adjoint operator (it corresponds
to the transpose of a matrix). Z is a square root operator of the covariance
operator, it is not unique, and it is a nontrivial task to find such Z for a given
covariance K.

Such Z will give a white noise representation

X(t) =

∫
R
Z(t, r)W (dr)

where W (A) is gaussian white noise driven by the Lebesgue measure on R.
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In fact

E

(∫
R
Z(t, r)W (dr)

∫
R
Z(s, u)W (du)

)
=

∫
R

∫
R
Z(t, r)Z(s, u)E

(
W (dr)W (du)

)
=∫

R

∫
R
Z(t, r)Z(s, u)δu(dr)du =

∫
R
Z(t, u)Z(s, u)du = K(t, s)

since W (A) ⊥⊥W (B) when A ∩B = ∅ and E(W (dt)2) = dt

Now let Z(t, s) =
√

2e−|t−s|. For s ≤ t,∫
R
Z(t, u)Z(s, u)du = e−(t+s)2

∫ min(t,s)

−∞
e2udu

= exp(−(t+ s)) exp(−2 min(t, s)) = exp(−|t− s|) = K(t, s)

therefore Z(t, s) is a square root of the covariance for the OU process.

Now let E = { continuous functions t 7→ x(t) on R } with
E∗ = {finite signed measures µ on R } ( a Radon measure is finite on com-

pact intervals), and the duality

µ(x) = 〈µ, x〉E∗,E =

∫
R
x(t)µ(dt)

Now the covariance operator acts from E∗ to E

(Kµ)(t) =

∫
R
K(t, s)µ(ds) =

∫
R

(∫
R
Z(t, u)Z(s, u)du

)
µ(ds) =

=

∫
R
Z(t, u)

(∫
R
Z(s, u)µ(ds)

)
du = 2e−t

∫ t

−∞
e2u

(∫ ∞
u

e−sµ(ds)

)
du

and

〈ν,Kµ〉E∗,E = 〈µ,Kν〉E∗,E =

∫
R

∫
R

(∫
R
Z(t, u)Z(s, u)du

)
µ(ds)ν(dt) =∫

R

(∫
R
Z(t, u)µ(dt)

)(∫
R
Z(s, u)ν(ds)

)
du =

=

∫
R

(√
2 eu

∫ ∞
u

e−tµ(dt)

)(√
2 eu

∫ ∞
u

e−sν(ds)

)
du

=

∫
R

(Zν)(u)(Zµ)(u)du = 〈Zν,Zµ〉L2(R,dt)

where Z : E∗ → E

h̃(u) :=
√

2 (Zµ)(u) =
√

2 eu
∫ ∞
u

e−tµ(dt)

When µ, ν ∈ E∗, the continuous functions h(t) = (Kµ)(t), g = Kµ(t), are
elements of the Cameron Martin space H with scalar product

〈h, g〉H = 〈ν,Kµ〉E∗,E = 〈µ,Kν〉E∗,E = 〈Zν,Zµ〉L2(R,dt)
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The Cameron Martin space H is isometrically isomorphic to L2(R, dt), by
the isometry which sends the function h(t) = (Kµ)(t) to the function (Zν)(t).
To obtain a closed space we must include the limits of therefore Cauchy se-
quences under ‖ · ‖H . By the isometry hn = Kµn is a Cauchy sequence in H,
if and only if h̃n = Zµn is a Cauchy sequence in the space L2(R, dt).

It simpler to work with the L2(R, dt) space and then use the isometry.

Since

h(t) = (Kµ)(t) = 2e−t
∫ t

−∞
e2u

(∫ ∞
u

e−sµ(ds)

)
du =

√
2 e−t

∫ t

−∞
eu h̃(u)du

where h̃ = Zµ in L2(R, dt), by taking limits we get the Cameron Martin space
H includes all functions of the form

h(t) =
√

2e−t
∫ t

−∞
eu`(u)du

with `(u) ∈ L2(R, dt), and norm

‖ h ‖H=‖ ` ‖L2(R,dt)

Note that

`(u) =
e−t√

2

d

dt

(
eth(t)

)
=
h(t) + ḣ(t)√

2
=

1√
2

(
ḣ(t) +

∫ t

−∞
ḣ(s)ds

)
Exercise 0.1.7. Check the reproducing kernel property in the Cameron-Martin
space of the OU-process.

Example: Let X = (X1, . . . , Xd) ∈ Rd a centered gaussian vector with
covariance matrix E(XsXt) = Rst, s, t = 1, . . . , d.

For v ∈ Rd, consider the map v 7→ Rv ∈ Rd with (Rv)(s) = E((v ·X)Xs),
s = 1, . . . , d.

Denote also by et the vector with ett = 1 and ets = 0 for s 6= t, and x · y =
d∑
s=1

xsys.

The reproducing kernel Hilbert space corresponding to the centered gaussian
vector X is given by R = R(Rd) where the scalar product is given as follows:

for f = Rv ∈ R, g = Rw ∈ R, v, w ∈ Rd,

〈f, g〉R = 〈Rv,Rw〉R = E((v ·X)(w ·X)) =

d∑
s=1

d∑
t=1

vswtRst =

v>Rw = (R−1f)>RR−1g = f>R−1g

If the matrix R is not invertible, we denote by R−1 a generalized inverse.
Note that since R(t, s) = (Ret)(s),

〈R(t, ·), f〉R = f>R−1(Ret) = f>et = f(t)

which is the reproducing kernel property.
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Exercise 0.1.8. Let A such that AA> = R , that is a square root of the
covariance matrix R (such A is not unique). Show that the column vectors of
A, ht := Aet t = 1, . . . , d form an orthonormal basis of the RKHS (R, 〈·, ·〉R)

The next example it is to show that the RKHS may also be a quite exotic.
You can skip it, maybe we will come back to this.

Example : Fractional Brownian motion has the following integral represen-
tation with respect to Wiener process on the real line:

Zt = cH

t∫
−∞

(
(t− s)H−1/2

+ − (−s)H−1/2
+

)
dWs, E(Z2

1 ) = 1

For

f(s) =

n∑
i=1

fi1(0,ti](s) we can write

∞∫
0

f(s)dZs =

n∑
i=1

aiZti = cH

∫
R

( n∑
i=1

fi
(
(ti − s)H−1/2

+ − (−s)H−1/2
+

))
dWs =

∫
R

(Kf)(s)dWs, where

((t− s)H−1/2
+ − (−s)H−1/2

+

)
= (K1(0,t])(s) and the operator K is given by

(Kf)(s) = cH
(
I
H− 1

2
− f

)
(s)

(Iα±f)(s) =
1

Γ(α)

∫
R

f(u)

(s− u)1−α
±

du, α > 0,

(Dα
±f)(s) =

α

1− α
lim
ε↓0

∫ ∞
ε

f(s)− f(t∓ u)

u1+α
du, α ∈ (0, 1)

Iα±f(s) = D−α± f(s), α ∈ (−1, 0)

Iα±f and Dα
±f are respectively a fractional integral and fractional derivative of

order α.
The gaussian linear space H1 which is the first chaos with respect to the

fractional Brownian motion Z is given by

H1 = span{F : F =

n∑
i=1

aiZti , ai ∈ R, ti ≥ 0}

where the closure is taken in L2(Ω).
By the representation formula, it is clear that the class of deterministic

integrands f(s) which are integrable with respect to the fbm Z is given by

K = {f : Kf ∈ L2(R)}

and we can equip this space with the inner product

〈f, g〉K = (Kf,Kg)L2(R) =

∫
R

Kf(u)Kg(u)du = E

(∫ ∞
0

f(u)dZu

∫ ∞
0

g(v)dZv

)
=

∫ ∞
0

∫ ∞
0

f(u)g(v)R(du, dv)
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where R(u, v) = E(ZuZv). The problem is that (K, 〈·, ·〉K) is not complete when
H > 1/2.

In Pipiras and Taqqu, Probability Theory and Related Fields 118, 151-291,
Bernoulli 7(6),2001,873-897, (see also Tommi Sottinen Ph.D. Thesis) it is given
an example with a function h ∈ L2(R) such that the equation Kf = h does not
have solutions. The idea is that for H > 1/2, f 7→ Kf is an integral operator,
so that Kf has to be smooth (in the sense that it should have a fractional
derivative). On the other hand L2(R) contains non-smooth functions.

When we complete the space K with respect to the inner product 〈·, ·〉K we
obtain also elements which are not functions but distributions.

By isometry, this means that for H > 1/2, H1 contains elements which
are not representable in the form

∫
R
f(s)dZs for any deterministic function f .

For H ≤ 1/2 (K, 〈·, ·〉K) is complete and every element in H1 has an integral
representation w.r.t. Z.

The reproducing kernel Hilbert space is given by

R = span{R(t, ·), t ≥ 0}

with respect to the scalar product

〈R(t, ·), R(s, ·)〉R = R(t, s), t, s ≥ 0

with the reproducing kernel propery

〈R(t, ·), f(·)〉R = f(t)

Note that

R(t, s) = Cov(Zt, Zs) =

∫
R

(K1(0,t])(u)(K1(0,s])(u)du

We look first at simple functions: If f, g ∈ R with

f(u) =

n∑
i=1

aiR(ti, u) , and we denote f̄(u) =

n∑
i=1

ai1(0,ti](u), f̃ = Kf̄

g(u) =

m∑
j=1

bjR(sj , u) , and we denote ḡ(u) =

m∑
j=1

bj1(0,sj ](u) , g̃ = Kḡ

if follows that

〈f, g〉R =
n∑
i=1

m∑
j=1

aibjR(ti, sj) =

E

(∫
f̄(u)dZu

∫
ḡ(u)dZu

)
= (Kf̄,Kḡ)L2(R) = 〈f̄ , ḡ〉K = (f̃ , g̃)L2(R)

By this isometry, It follows that R is complete under 〈·, ·〉R if and only if K is
complete under 〈·, ·〉K.

By definition, a generic element of the RKHS R has the form

Rs(ϕ) := E

(
Zs

∫ ∞
0

ϕ(u)dZu

)
=

∞∫
0

∞∫
0

1(0,s](v)ϕ(u)R(dv, du) =

∞∫
0

ϕ(u)R(s, du)
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where ϕ ∈ K. The operator R : K → R defined by (Rϕ)(s) = Rs(ϕ) gives the
isometry, w.r.t. the RKHS-inner product

〈R·(ϕ), R·(ψ)〉R = E

(∫ ∞
0

ϕ(u)dZu

∫ ∞
0

ψ(v)dZv

)
=∫ ∞

0

∫ ∞
0

ϕ(u)ψ(v)R(du, dv) =

∫ ∞
0

ϕ(u)dRu(ψ) =

∫ ∞
0

ψ(u)dRu(ϕ) =

〈ϕ,ψ〉K = (Kϕ,Kψ)L2(R)

We have the reproducing kernel property

〈R(t, ·), R·(ϕ)〉R = 〈R·(1(0,t]), R·(ϕ)〉R = 〈1(0,t], ϕ〉K = E

(
Zt

∞∫
0

ϕ(u)dZu

)
=

Rt(ϕ) =

∫
R

(K1(0,t])(u)(Kϕ)(u)du =

∫
R

(K1(0,t])(u)ϕ̃(u)du =

∫
R

K(t, u)ϕ̃(u)du

with ϕ̃(s) = (Kϕ)(s) ∈ L2(R), and every element in R has such representation.

Definition 0.1.9. If P,Q are two probability measures on (Ω,F) we say that Q
is absolutely continuous w.r.t. P and denote Q� P , iff P (A) = 0 =⇒ Q(A) =
0 for A ∈ F .

Lemma 0.1.7. Q � P if and only if for all ε > 0 , ∃δ > 0 such that P (A) <
δ =⇒ Q(A) < ε .

Proof: If this was not true, we could find ε > 0 and sequence {An} ⊂ F
with

P (An) < 2−n and Q(An) ≥ ε > 0

Let B = lim supnAn =
⋂
n∈N

⋃
k≥n

Ak. Then P (B) = 0 by the Borel Cantelli

lemma, since
∑
n
P (An) <∞, while by Fatou lemma

Q(B) = Q(lim supAn) ≥ lim supQ(An) ≥ ε > 0 .2

Definition 0.1.10. h ∈ E is an admissible shift for the (centered) gaussian
measure Γ on (E,B(E)) if the shifted measure Γh defined by Γh(A) := Γ(A−h)
for A ∈ B(E) is absolutely continuous w.r.t. Γ.

Note Γh is gaussian but not necessarly centered,

EΓh
(ϕ(X)) = EΓ(ϕ(X)) + ϕ(h).

Theorem 0.1.4. (Cameron-Martin) Let Γ be a gaussian measure on E. The
space of admissible shifts coincides with the RKHS of Γ and

dΓh
dΓ

(x) = exp
(
z(x)− 1

2
〈z,Kz∠

)
where z ∈ Ē∗ such that Kz = h.
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Proof Let h be an admissible shift. For f ∈ E∗ , LΓ(f(X)) = N (0, fKf)
and LΓh

(f(X)) = N (f(h), fKf). Since Γh � Γ, by lemma 0.1.7 given ε > 0
there is δ > 0 such that Γ(A) ≤ δ =⇒ Γh(A) ≤ ε.

In particular this means that for any f ∈ E∗ ξ = f(X)/
√
fKf is a real

valued standard normal gaussian r.v. and for any B ∈ B(R) we have

P (ξ ∈ B) < δ =⇒ P

(
ξ +

f(h)√
fKf

∈ B
)
< ε

But this is possible if and only if

sup
f∈E∗

|f(h)|√
fKf

<∞ which means h ∈ H

Otherwise we could take fn ∈ E∗ with fKf = 1 and with (1−Φ(fn(h))) < 1/n,
where Φ denotes the cumulative distribution function of the standard normal
distribution. Then for Bn = {u : u > fn(h)} we would have Γ(f(X) ∈ Bn) = 1

n
while Γh(f(X) ∈ Bn) = Γ(f(X) + fn(h) ≥ fn(h)) = 1/2.

We have shown that the map f 7→ f(h) is bounded w.r.t. the RKHS norm
|f |H = f(Kf), by Riesz representation theorem this means that there is a
h′ ∈ H such that f(h) = (Kf, h′)H = f(h′) for all f ∈ E∗, which means that
h = h′ ∈ H. Therefore there is an element z ∈ Ē∗ such that

f(h) = (Kz,Kf)H = f(Kz) for all f ∈ E∗ ,

which means that h = Kz ∈ H.

Assume now that h = Kz ∈ H, with z ∈ Ē∗. To prove that Γh � Γ, we
show that

Γh(dx) = Q(dx) := exp

(
z(x)− 1

2
〈z,Kz〉

)
Γ(dx) .

The characteristic function of Γh is

ϕΓh
(f) = exp

(
if(h)− 1

2
fKf

)
, f ∈ E∗.

We compute the characteristic function of Q:

ϕQ(f) =

∫
E

exp(if(x))Q(dx) =

∫
E

exp
(
if(x) + z(x)− 1

2
zKz

)
Γ(dx) =

exp
(
−1

2
zKz

) ∫
E

exp(if(x) + z(x))Γ(dx)

where Γ(dx) it is centered (has zero mean). The joint law of (f(x), z(x)) under
Γ is bivariate normal with 0 mean and covariance

C =

(
fKf fKz
fKz zKz

)
where h = Kz. Therefore

ϕQ(f) = exp
(
−1

2
zKz

)
EΓ

(
exp
{
i(1,−i) · (f(X), z(X))

})
= exp

(
−1

2
zKz

)
exp

(
−1

2
(1,−i) C (1,−i)>

)
= exp

(
ifKz − 1

2
fKf

)
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This shows that ϕΓh
(f) = ϕQ(f) and since the characteristic function charac-

terizes the measure, we conclude that Γh = Q 2

Example For the Brownian motion (Bt : t ∈ [0, 1]) the Cameron-Martin
theorem says that for h ∈ H

W̃t := Wt − h(t) = Wt −
∫

0

ḣ(s)ds

is a Brownian motion under the shifted measure Ph defined as

dPh(ω) = exp

(∫ 1

0

ḣ(s)dBs −
1

2

∫ 1

0

ḣ(s)2ds

)
dP (ω)

where the stochastic integral w.r.t. B is the Wiener integral, and these are the
only (deterministic) admissible shifts.

Remark Here we have considered deterministic shifts. The Cameron-Martin
formula has been extended also to random shifts. For example in the context
of martingale theory, in Girsanov formula the shifts are allowed to be adapted
processes.

It is good to be aware the following facts, which we do not prove.

Definition 0.1.11. The topological support of a measure µ on E is the set
supp(µ) consisting of x ∈ E such that ∀ε > 0 , the measure of the ε-ball is
µ(B(x, ε)) > 0.

Proposition 0.1.2. For a gaussian measure Γ on E, supp(Γ) = H̄ where H is
the RKHS and the closure is taken in the | · |E topology.

Proposition 0.1.3. When the gaussian measure Γ has infinite dimensional
topological support, Γ(H) = 0.

Remark Note that in the case of Brownian motion, the Brownian paths are
nowhere differentiable with probability 1,which is consistent with PW (H) = 0,
since the Cameron-Martin space consists of smooth paths. Although the with
probability 1 a Brownian path does not belong to the Cameron-Martin space,
one can find paths in the Cameron-Martin space which are arbitrarily close to
the Brownian path in ‖ · ‖ norm.

Proposition 0.1.4. (Hajek and Feldman alternative): Two gaussian measures
on a locally convex vector space are either equivalent or singular.
It follows that if h ∈ H not only Γh � Γ but also Γh ∼ Γ. When h 6∈ H then Γh
and Γ are singular, which means that there is a set A ⊂ E such that Γ(A) = 1
and Γh(A) = 0.

0.2 Isonormal Gaussian process
Here we explain some ideas from Paul Malliavin book Stochastic analysis, chap-
ter 1. Let (H, (·, ·)H) be a separable Hilbert space, with an orthonormal basis
{en : n ∈ N} ⊂ H. This means that (en, em)H = δn,m, and

H = LinearSpan
(
en : n ∈ N

)
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where we take closure in ‖ · ‖H -norm. This means that if h ∈ H is such that
(h, en)H = 0 ∀n ∈ N, necessarily h = 0.

Proposition 0.2.1. If H is infinite dimensional, a Gaussian measure γ(dω) on
the space (H,B(H)) such that the variables ξn(ω) := (en, ω) are i.i.d. standard
normal under γ does not exist.

Proof Otherwise

ω =
∑
n

(en, ω)en

‖ω‖2H =
∑
n

(en, ω)2‖en‖2H =
∑
n

ξn(ω)2 =∞ , γ(dω) almost surely

by applying Borel Cantelli lemma.
In other words, if {ξn} is a sequence of i.i.d. standard normal random

variables on a probability space (Ω,F , P ), then P -almost surely ,
( ∞∑
n=1

ξnen

)
6∈

H.

Proposition 0.2.2. Let K : H → H be a self-adjoint operator of Hilbert-
Schmidt class, which means that there is an orthonormal basis of eigenvalues
{en} ⊂ H with respective real eigenvectors {λn} with Ken = λnen such that∑

n

λ2
n <∞

Equip H with the scalar product (h, g)B = (K(h),K(g))H , which means

(en, em)B = λ2
nδmn.

Let B := H̄ the completement of H under this norm, and let (ξn : n) a
sequence of i.i.d. R-valued standard Gaussian variables.

Then
(∑
n
ξnen

)
converges P -almost surely in | · |B norm to a random ele-

ment of B.

Proof since (ei, ej)B = δijλ
2
i ,

Yn :=

∣∣∣∣ n∑
k=1

ξkek

∣∣∣∣2
B

=

n∑
k=1

ξ2
kλ

2
k

Now Yn a submartingale with decomposition

Yn =
∑
k≤n

λ2
k +

∑
k≤n

(ξ2
k − 1)λ2

k = An +Mn

Now Mn is a martingale bounded in L2 since

E

({∑
k≤n

(ξ2
k − 1)λ2

k

}2)
= 2

∑
k≤n

λ4
k < 2

∞∑
k=1

λ4
k <∞
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which implies uniform integrability. As n → ∞, the limits M∞ and Y∞ exist
P -almost surely and in L2(P ).

P -almost surely
(∑n

k=1 ξkek
)
is a Cauchy sequence in B and by completeness

it has a limit.
By construction H is dense in B with respect to the |.|B norm. For h ∈ H

and ω ∈ B , P -almost surely exist the limit

W (h, ω) =
∑
n

(en, h)Hξn =
∑
n

(en, ω)H(en, h)H := (h,W (·, ω))H

because

EP

(∑
n

(en, h)Hξn

)2

=
∑
n

(en, h)2
H =

∥∥∥∥∑
n

(en, h)en

∥∥∥∥2

H

= ‖h‖2H

This can be interpreted as an extension of the scalar product (h, ω)H which is
well defined for h ∈ H and P almost all ω ∈ B.

Definition 0.2.1. We say that {W (h) : h ∈ H} ⊂ L2(Ω, P ) is the isonormal
gaussian process indexed by H.

The map h 7→W (h) is an isometry from (H, (·, ·))H to L2(Ω, P ) withW (h) ∼
N (0, ‖ h ‖2H) and EP (W (h)W (g)) = (h, g)H , h, g ∈ H.

We extend this construction following the ideas of Paul Malliavin, to show
the following:

Take H = L2([0, 1], dt) which is identified with the Cameron-Martin space
H1 of the Brownian motion (Bt : t ∈ [0, 1]). Let {ėn} be an orthogonal basis in
L2([0, 1], dt), and (ξn) a sequence of i.i.d. standard normal random variables,
then

Wn(t) :=

n∑
k=1

ξk

∫ t

0

ėk(s)ds

P -almost surely converges in supremum norm |·|∞ to a random elementW (t, ω)
of C0([0, 1]).

Definition 0.2.2. A Radonifying norm | · | on H is a norm such that there
is a countable family of dense (in the original H-norm) mutually orthogonal
finite dimensional subspaces δn ⊂ H with respective dimensions dn, such that if
(en1 , . . . , e

n
dn

) is an orthonormal basis of the subspace δn w.r.t. (·, ·)H , for

Γn =
(
en1 ξ

n
1 + · · ·+ endnξ

n
dn

)
we have∑

n

P
(
|Γn| > n−2

)
<∞

where (ξnj ) is a sequence of i.i.d. standard normal random variables.

Proposition 0.2.3. Let | · | a Radonifying norm for H , and let {δn} and {Γn}
as in the definition. Denote by B the completion of H under | · |.

Then P -almost surely
( ∞∑
n=1

Γn

)
converges in (B, | · |), where B is the com-

pletement of H under the | · | norm.
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Proof By Borel Cantelli lemma, almost surely |Γn| ≤ n−2 for all n large
enough, which implies

∑
n |Γn| <∞. Therefore

∑
k≤n Γk is a Cauchy sequence

w.r.t. the | · | norm and it has a limit in B. 2

We have seen that the original Hilbert norm | · |H is never a Radonifying
norm (Proposition 0.2.1) when H is infinite dimensional.

Consider the Cameron-Martin space of Brownian motion,

H1 =

{
functions h defined on [0, 1] with h(t) =

∫ t

0

ḣ(s)ds where ḣ ∈ L2([0, 1], dt)

}
with (h, g)H1 := (ḣ, ġ)L2([0,1],dt).

Let {ėn(t)} be an orhonormal basis of L2([0, 1], dt), (for example in the Lévy
construction of Brownian motion we use the Haar basis), then

{
en(t) =

∫ t

0

ėn(s)ds : n ∈ N
}

is an orthonormal basis in H1 by taking limit in L2(Ω,F , P ) we construct the
gaussian process

Wt(ω) =

∞∑
n=1

ξn(ω)en(t) =

∞∑
n=1

ξn(ω)

∫ t

0

ėn(s)ds

where ξn ∼ N (0, 1) are i.i.d. real gaussian r.v.
(Wt(ω) : t ∈ [0, T ]) are jointly gaussian r.v.
We show that (Wt) is a Brownian motion by computing the covariance: by

using independence and Parseval identity

EP (WtWs) =

∞∑
n=1

∞∑
k=1

E(ξnξk)

(∫ t

0

ėn(u)du

)(∫ s

0

ėk(v)dv

)
=

∞∑
n=1

E(ξ2
n)(ėn,1[0,t])L2([0,1])(ėn,1[0,s])L2([0,1]) = (1[0,t],1[0,s])L2([0,1]) = t ∧ s

Theorem 0.2.1. The supremum norm | · |∞ is a Radonifying norm for H1.

Proof Denote by H1
n the subspace of functions which are piecewise linear

on the dyadic intervals (k2−n, (k + 1)2−n).
These are finite dimensional subspaces, H1

n has dimension 2n and H1
n ⊃

H1
n−1. Let δn be the orthogonal complement of H1

n−1 in H1
n:

δn = {η ∈ H1
n : η(k2−(n−1)) = 0 ∀k}

δn has dimension 2n−1. We can take as orthonormal basis in δn the Haar
functions {ηnk (t)} with

ηnk (t) =

∫ t

0

η̇nk (s)ds where

η̇nk (s) = 2(n−1)/2
(
1(2k2−n,(2k+1)2−n](s)− 1(2k+12−n,(2k+2)2−n](s)

)
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Let

Γn(t) =

2n−1−1∑
k=0

ξnk η
n
k (t)

where {ξnk } are i.i.d. standard normal. Note that for a fixed dyadic level n, the
functions ηnk (t), k = 0, . . . , 2n−1 − 1, have disjoint support.

|Γn|∞ = sup
t∈[0,1]

|Γn(t)| = sup
k
|ξnk |

∫ (2k+1)2−n

2k2−n

η̇nk (s)ds = 2−(n+1)/2 sup
k
|ξnk |

P (|Γn|∞ > n−2) = P

(2n−1⋃
k=1

{
|ξnk | > n−22(n+1)/2

})
≤ 2n−1P (|ξ| > n−22(n+1)/2) = 2nP (ξ > n−22(n+1)/2) ≤ 2nP (ξ > 2n/4)

when n is large enough, since 2n/4 = o(n−22(n+1)/2).
By the integral criteria of convergence of series,∑

n

2nP (ξ > 2n/4) <∞⇐⇒
∫ ∞

0

2xP (ξ > 2x/4)dx <∞

by changing variables, y = 2x/4, x = 4 log y/ log 2

⇐⇒
∫ ∞

1

y4P (ξ > y)

(
dx

dy

)
dy <∞

⇐⇒
∫ ∞

1

y3P (ξ > y)dy <∞

= ( integrating by parts ) =
1

4

∫ ∞
1

y4P (ξ ∈ dy) ≤ 1

8
E(ξ4) =

3

8
<∞

The result follows by proposition 0.2.3. 2

For α ∈ (0, 1] introduce the Hölder norm

|g|α := |g(0)|+ sup
t,s∈[0,1]

|g(t)− g(s)|
|t− s|α

The space Cα of α-Hölder continuous functions g form a Banach space Cα
with norm | · |α.

The following result says that we can realize the Brownian motion as a
gaussian measure on Cα for every α ∈ (0, 1/2). All these realizations have the
same Cameron-Martin space H1.

Theorem 0.2.2. For α < 1/2 the norm | · |α is Radonifying. Consequently,
P -almost surely the series

∑
n
ξn(ω)en converges in | · |α norm. This means that

almost surely the paths of the Brownian motion are Hölder continuous of order
α, for all α < 1

2 .
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Proof We construct Γn(t) as in the proof of Theorem 1.1. and show that
| · |α is a Radonifying norm. We must bound the quantity

|Γn|α = sup
s,t

|Γn(t)− Γn(s)|
|t− s|α

=

max
k=0,...,2n−1−1

{(
|ξnk |2−(n+1)/22αn

)
∨ max
h=0,...,k−1

(
|ξnk − ξnh |2−(n+1)/22(n−1)α(k − h)−α

)}
since at every dyadic level n, the functions ηnk (t), k = 0, . . . , 2n−1 − 1, have
disjoint support. Now

P (|Γn|α > n−2) =

P

( ⋃
k=0,...,2n−1−1

{
|ξnk |2−n( 1

2−α)2−1/2 > n−2
}
∪

⋃
h=0,...,k−1

{
|ξnk − ξnh |2−n( 1

2−α)2−( 1
2 +α)(k − h)−α > n2

})

= P

(2n−1−1⋃
k=0

{
A

(n)
k ∪

k−1⋃
k=0

B
(n)
h,k

})
≤

2n−1−1∑
k=0

{
P (A

(n)
k ) +

k−1∑
k=0

P (B
(n)
h,k)

}

To show that the Hölder norm is Radonifying, is enough to check that

∞∑
n=0

2n−1−1∑
k=0

P (A
(n)
k ) +

∞∑
n=0

2n−1−1∑
k=0

k−1∑
h=0

P (B
(n)
h,k) <∞

For the first sum we proceed as in Theorem 1.1, using the assumption that
(1/2− α) > ε > 0, it is enough to check that for a standard Gaussian r.v. ξ

∑
n

2nP (|ξ| > 2nε) <∞⇐⇒
∫ ∞

0

xP (|ξ|1/ε > x)dx =
1

2
E(|ξ|2/ε) <∞

which holds since the standard Gaussian random variable ξ has all moments.
Recall that by Fubini,∫ ∞

0

xP (|Y | > x)dx =

∫ ∞
0

∫ ∞
0

1(y > x)P (|Y | ∈ dy)xdx =

∫ ∞
0

(∫ y

0

xdx

)
P (|Y | ∈ dy) =

1

2

∫ ∞
0

y2P (|Y | ∈ dy) =
1

2
EP
(
Y 2
)
.

and we have used this for Y = |ξ|1/ε. For the second term, note first that for
k 6= h, (ξh − ξk)

L
= ξ
√

2. We get

∞∑
n=0

2n−1−1∑
k=0

k−1∑
h=0

P
(
|ξ|2−n( 1

2−α)2−α(k − h)−α > n2
)
≤ C +

∞∑
n=0

2n−1−1∑
k=0

k−1∑
h=0

P
(
|ξ|(k − h)−α > 2nε

)
fore some finite constant C, since for 0 < ε < (1/2− α), and n large enough

2nε < n−22n( 1
2−α)2α.
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Using the integral criterium for the convergence of the series∫ ∞
0

∫ 2x

0

∫ y

0

P
(
|ξ|(y − z)−α > 2xε

)
dzdydx =

∫ ∞
0

∫ 2x

0

∫ y

0

P
(
|ξ|z−α > 2xε

)
dzdydx =

1

log 2

∫ ∞
1

dw
1

w

∫ w

0

dy

∫ y

0

P
(
|ξ|z−α > wε

)
dz =

1

log 2

∫ ∞
1

dw

∫ w

0

w − z
w

P
(
|ξ|z−α > wε

)
dz ≤

1

log 2

∫ ∞
0

dw

∫ w

0

w − z
w

P
(
|ξ|z−α > wε

)
dz =

1

log 2

∫ ∞
0

dw

∫ 1

0

uP
(
|ξ|(wu)−α > wε

)
wdu =

1

log 2

∫ 1

0

u

∫ ∞
0

wP
(
|ξ|u−α > wε+α

)
dwdu =

1

log 2

∫ 1

0

u

∫ ∞
0

wP
(
|ξ|1/(ε+α)u−α/(ε+α) > w

)
dwdu =

1

2 log 2
E(|ξ|2/(ε+α))

∫ 1

0

u(ε−α)/(ε+α)du =
(ε+ α)

4ε log 2
E(|ξ|2/(ε+α)) <∞,

since (ε− α)/(ε+ α) > −1 2
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