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CHAPTER 1 GENERAL STRUCTURE OF LIE ALGEBRAS

1.1. Lie algebras and homomorphisms

Let F be the field of real or complex numbers. A Lie algebra is a vector space g

over F with a Lie product (or commutator ) [-,-] : g X g — g such that

(1) = — [z,y] is linear for any y € g,

(2) [2z,9] = [y, 7],

() [z, [y, 2]l + [y, [z, 2]] + [z, [=,9]] = 0.
The last condition is called the Jacobi identity . From (1) and (2) it follows that
also y — [z,y] is linear for any x € g. In this chapter we shall consider only finite-
dimensional Lie algebras. In any vector space g one can always define a trivial
Lie product [z,y] = 0. A Lie algebra with this commutator is Abelian. The space
gl(n,R) of all real n x n matrices is naturally a Lie algebra with respect to the
matrix commutator [X,Y] = XY — Y X, and correspondingly the complex algebra
gl(n,C).

Some other nontrivial examples follow:

Example 1.1.1. Let o(n) denote the space of all real antisymmetric n x n

matrices. The commutator of a pair of matrices is defined by

[z,y] = xy — yz

(ordinary matrix multiplication in zy). Since (zy)! = y'a!, where z' denotes the
transpose of the matrix x, the commutator of two antisymmetric matrices is again
antisymmetric. The commutator clearly satisfies (1) and (2); (3) is checked by a
simple computation. The dimension of the real vector space o(n) is tn(n — 1).

The matrix Lie algebras, like o(n) above, are closely related to groups of matrices.
Let O(n) denote the group of all orthogonal nxn matrices A, A A = 1. Then the Lie
algebra o(n) consists precisely of those matrices  for which A(s) = exp sz € O(n)
for all s € R. Namely, taking the derivative of A(s)!A(s) at s = 0 one gets
' +x. So A(s) € O(n) implies z € o(n). On the other hand if z € o(n) then
(exp sx)t = exp sa? = exp(—sz) = (expsx) ™!, so A(s) € O(n).

Example 1.1.2. The real vector space wu(n) consisting of anti-

t

Hermitian n X n matrices z,x* = —x, where * = ' and the bar means com-
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plex conjugation, is a Lie algebra with respect to the matrix commutator. Its
dimension is n2. Denoting by U(n) the group of unitary matrices A, A*A = 1,
one can prove as in the case of orthogonal matrices that exp sz € U(n)Vs € R iff
x € u(n).

Example 1.1.3. The traceless anti-Hermitian n x n matrices form a Lie algebra
to be denoted by su(n) and it corresponds to the group SU(n) = {A € U(n) |
det A = 1}. The dimension of su(n) is n? — 1.

Example 1.1.4. Let J be the antisymmetric 2n x 2n matrix

0 0 0 -1 0 0
0 0 0 0 -1 0
0 0 0 O 0 -1
1 0 0 O 0 0
0 1 0 0 0 0
0O 0 ... 1 O o ... 0

Since det J = (—1)"*! #£ 0 the form (z,y) = x!Jy is nondegenerate (the vectors
x,y are written as column matrices). Define sp(2n,R) to consist of all real 2n x 2n
matrices x such that 2'J + Jx = 0. This is a Lie algebra and one can associate to
sp(2n,R) the group Sp(2n,R) consisting of real matrices A such that A'JA = J,
or equivalently such that A preserves the form (u,v) = u*Jv, (Au, Av) = (u,v) for
all u,v € R?". Sp(2n,R) is the symplectic group defined by J.

Exercise 1.1.5. Find a basis for sp(2n,R) and show that dim sp(2n,R) =
2n? +n.

One can analogously define the complex orthogonal Lie algebra
o(n,C) and the complex symplectic Lie algebra sp(2n, C).

We have also the Lie algebra sl(n,C) of complex traceless n x n matrices and
correspondingly the real Lie algebra sl(n, R).

Let {X1, Xs,..., X,,} be a vector space basis of a Lie algebra g. We define the
structure constants cfj by

(X, X;] = cijk

(sum over the repeated index k; we shall use the same summation convention also
later). From the defining properties (1) and (2) follows that the commutator [ X, Y]

for arbitrary X,Y € gis determined by the structure constants. The Jacobi identity
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can be written as

l

m I m I m _
Cijclk + Cjkcli + Ckiclj =0

Vi, j, k, m. By the antisymmetry of the Lie product we have cfj = —c;?i.
Example 1.1.6. Let g be a two dimensional Lie algebra with a basis { X1, Xo}.

If g is not commutative we can define a nonzero element
e1 = [X1, Xo] = aXjy + 5 Xs.
Choose a pair of numbers ~, § such that ad — vy = 1 and set
ea = vX1 + 0Xo.

Then [e1, e2] = e1. Thus we have found the general structure of a noncommutative
two dimensional Lie algebra.

Let g and g’ be Lie algebras. A linear map ¢ : g — g’ is a homomorphism if

¢([z,9]) = [o(2), o(y)]

Vr,y € g. An invertible homomorphism is an isomorphism . The inverse of an
isomorphism is also an isomorphism. An isomorphism of g into itself is an auto-
morphism of the Lie algebra g.

A linear subspace k C g is a subalgebra of g if [x,y] € kVz,y € k. A subalgebra
is a Lie algebra in its own right.

Exercise 1.1.7. Let ¢ : g — g’ be a homomorphism. Show that the kernel
kerp = {z € g | ¢(z) = 0} C g and the image im¢p = {¢(z) | x € g} C g are
subalgebras.

A subspace k C g is an ideal if [x,y] € kVx € g and y € k. In particular,
an ideal is always a subalgebra. If k C g is an ideal then the quotient space g/k
is naturally a Lie algebra: The commutator of the cosets x + k and y + k is by
definition the coset [z,y] + k. If 2’ +k=x+kandy +k=y+k (ie, 2’ —x €k
and y' —y € k) then [2/,y'] =[x+ (' — ),y + (¥ —y)] = [z, y] mod k by the ideal
property of k; thus [2/,y'] represents the same element in g/k as [z,y] and so the

commutator is well-defined in g/k.

Proposition 1.1.8. Let ¢ : g — g’ be a homomorphism which is onto (i.e., g’ =

im¢). Then the Lie algebras g’ and g/ker¢ are isomorphic.
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Proof. Define 9 : g/ker¢p — g’ by (z+kerg) = ¢(x). Obviously ¢ is one-to-one
and it is a homomorphism by v ([z+ker¢, y+kere|) = ¥ ([z, y|+kerp) = ¢([z,y]) =
[ (z+kerg), ¢ (y+kere)].

A linear map ¢ : A — A in an algebra is a derivation if
d(axb)=0d(a)*xb+ax*db)

for all a,b € A.

Let Der(.A) be the set of all derivations of \A. Then Der(A) is a Lie subalgebra
of the Lie algebra of all endomorphisms of A.

In the special case when A = g is a Lie algebra we can define a derivation adx

of g for any X € g by
adx : g — g, adx(Y) = [X,Y].

This defines a homomorphism ad: g — Der(g); this is called the adjoint represen-
tation of g. The derivations adx are called inner derivations, the rest are outer
derivations.

Exercise 1.1.9 Let g be the three dimensional Lie algebra which as a vector
space is R3, equipped with the commutator [X,Y] = X A'Y, the vector product
in R3. Show that g is a Lie algebra and that it is isomorphic with the Lie algebra

o(3).

. (0 1 (0 0 (1 0 .
Exercise 1.1.10Letx—(0 0),y—(1 0),h—(0 _1) be a basis of

the Lie algebra sl(2,C). Determine explicitely the adjoint representation, i.e., the
matrices ad,, ad,, ady,.

Exercise 1.1.11 Show that the Lie algebras o(3),su(2), and sp(2) (the anti-
hermitean part of sp(2,C)) are isomorphic. Show that o(6) and su(4) are isomo-
morphic.

Exercise 1.1.12 Find a two dimensional Lie algebra of 2 x 2 matrices which is
isomorphic to the noncommutative two dimensional Lie algebra discussed earlier in

this section.

1.2. Ideals in Lie algebras
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A left (right) ideal in an algebra A is a linear subspace I C A such that xxy € I
(yxx el)forallz € Aand y € I. An (two sided) ideal is both left and right ideal.

If A is a Lie algebra, there is no difference between left and right ideals since
rxy =[x,y = [y, 2.

The center of a Lie algebra g is the subspace Z(g) = {z € gl|[z,y] = OVy € g}.
Clearly the center is an ideal. Another ideal is the subspace [g, g] consisting of all

linear combinations of commutators in the Lie algebra.

Lemma 1.2.1. The vector space sum of two ideals in g is again an ideal in g. The

commutator [1,J] of a pair of ideals is also an ideal.

Proof. The first claim follows directly from the definition. The second is a simple

consequence of the Jacobi identity.

A Lie algebra g is simple if its only ideals are the trivial ideals 0 and g itself
and if g is not the commutative one dimensional Lie algebra. If g is simple then

g =[g gl and Z(g) = 0.

The basic example. Let g = sl(2,C). We choose a basis as in the exercise
1.1.10. Then
[h, 2] = 2x, [h,y] = -2y, [z,y] = h.

Let I C g be a nonzero ideal. We choose 0 # z = ax + by + ch € I. Then
[z, z] = bh — 2cx and [x,bh — 2cx] = —2bx.

Thus bz € I and [y, [y, 2]] = —2ay € I.

1)Ifa#0theny e landso [z,y] =heland —5[z,h] =z candsol=g.
Likewise the case b # 0.

2)Ifa=b=0thenc# 0and 2 =ch € l,soh€l,y=1[yh] €I and
x = —1[z,h] € I. Tt follows that I = g.

Thus sl(2,C) is simple. Actually, the above proof holds for sl(2,F) when F is an

arbitrary field of characteristic not equal to 2.

Theorem 1.2.2.

(1) Let ¢ : g — g’ be a Lie algebra homomorphism and I C g an ideal such
that I C kerg. Then there exists a unique homorphism 1 : g/I — g’ such

that ¢ = o, where 7 : g — g/I is the canonical homomorphism.
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(2) If I,J C g is a pair of ideals with I C J then J/I is an ideal in g/I and

(&/1)/(J/1) ~g/J.
(3) If I,J C g is any pair of ideals then (I + J)/J ~1/(INJ).

Proof.

(1) Define the map ¢ : g/I — g’ by ¢(z+ I) = ¢(x). It is easy to see that this
is a homomorphism which satisfies the requirement. If 1)’ is another such a
homomorphism, then (¢’ — ) om =0 and so ¥’ — 1) = 0 since 7 is onto.

(2) The first statement follows directly from definitions. For the second, define
amap f:(g/I)/(J/I) —g/J by f((x+1)+J/I) =2+ J. This map is the
required isomorphism.

(3) Define f:I/(INJ)— (I+J)/J by f(x+1NJ)=x+J and check that

this is an isomorphism.

A representation of a Lie algebra g in a vector space V is a Lie algebra homo-
morphism ¢ : g — End(V'). As an example, any Lie algebra has the natural adjoint
representation in the vector space V = g, ad,(y) = [z, y].

A representation is irreducible if the representation space V does not have any
invariant subspaces except of course 0 and V; a subspace W C V is invariant if
¢(x)v € W for all x € g and v € W.

If g is a simple Lie algebra then the adjoint representation is necessarily ir-
reducible. Conversely, if g is noncommutative and the adjoint representation is
irreducible then g is simple.

If g is simple then Z(g) = 0 and it follows that the kernel of the adjoint repre-
sentation ad: g — End(g) is zero. Thus g is isomorphic to a subalgebra of End(g).
Choosing a basis in g we see that any simple Lie algebra is isomorphic to a Lie
algebra of matrices.

Let 0 € Der(g), g any finite-dimensional Lie algebra. Since 4 is a linear operator
in a finite-dimensional vector space we may form the exponential
1

3
3!(5 +...

1
66:1+5+§(52+

to define a linear operator exp(d) : g — g.

Proposition 1.2.3. The map exp(d) is an automorphism of g.
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Proof. First, exp(d) is a linear isomorphism since it has the inverse exp(—d). But

exp(8)[z,y] = ) | %5”[@“,?/]
1 ~—/n
- 5" (2), 6" (1)
Lo (i) ’
= 3 S0 @), 5 )] = [ (), ()]
k=0 =0

and so exp(d) is a Lie algebra homomorphism. Here <Z> = #’_k), are the

binomial coefficients.

The automorphisms of the type exp(d) when = ad, are called inner automor-
phisms. They generate a group (upon multiplication), to be denoted by Int(g); this
is a subgroup of the group Aut(g) of all automorphims of g.

Proposition 1.2.4. The group Int(g) is a normal subgroup of Aut(g).

Proof. Let ¢ € Aut(g) and =,y € g. Then

poady 0™ (y) = d([z, ¢ (1)) = [¢(x), y] = ady(z)(y)

and thus poad, o~ ! = adg(,) which proves the statement.

Exercise 1.2.5 Let g be a given subalgebra of End(V'), where V is a finite-
dimensional vector space. Show that eI+ (y) = e"ye™* for any z,y € g.
Exercise 1.2.6 Let g = sl(2,C) and choose a basis {z, h,y} as in the exercise

ads eadn and e?dv in this basis.

1.1.10. Determine the matrices e
Exercise 1.2.7 Let g = o(n). Let g be any orthogonal matrix. Show that the

map z — gxg ! defines an automorphism of g. Is this automorphism inner?
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1.3 Solvable and nilpotent Lie algebras

Let g be a Lie algebra and define g = g and for any k = 0,1,2,... gFt! =
(g, g*]. Then gF*! is an ideal in g*. The Lie algebra g is solvable if g&¥ = 0 for
some integer k.

Of course any commutative Lie algebra is solvable. A basic nontrivial example
is:

Example 1.3.2 Let g = t(n,F) be the space of upper triangular n x n matrices
A over the field F, A;; = 0 for i > j. In this case g! is contained in the set of
upper triangular matrices with A;; = 0 and in general g” is contained in the space

of matrices A with A;; = 0 for i > j — 2871, It follows that t(n,F) is solvable.

Theorem 1.3.3.

(1) Any subalgebra of a solvable Lie algebra is solvable. The image of a solvable
Lie algebra in a homomorphism is solvable.
(2) Ifk is an ideal in g and if both k and g/k are solvable then g is solvable.

(3) A sum of two solvable ideals in a Lie algebra is also solvable.

Proof. i) Clearly k¥ C g* when k C g is a subalgebra. This implies implies the
solvability of k. If ¢ : g — g’ is a homomorphism then [¢(g), #(g)] = ¢([g, g]) and
in general ¢(g*) = ¢(g)* from which the sovability of ¢(g) follows.

ii) For some m,n we have k™ = 0 and (g/k)"” = 0. If 7 : g — g/k is the canonical
homomorphism then 7(g") = (7(g))"” = (g/k)™ = 0. This implies g"” C k and so
gmn kM = (.

iii) Let k,k’ be a pair of ideals in g. According to 1.2.2 we have (k + k’)/k ~
k'/(k Nk’). The canonical projection 7 : k — k/(k Nk’) is a homomorphism and

thus the image is solvable. By ii) we see that k + k' is solvable.

Let g be a finite-dimensional Lie algebra. Then by 1.3.3. iii) the sum of all
its solvable ideals is solvable. It follows that it has a unique mazximal solvable
ideal. This ideal is called the radical of g and denoted by radg. A Lie algebra g is
semisimple if g # 0 and radg = 0. Any simple Lie algebra is semisimple since the
only ideals in a simple Lie algebra g are 0 and g and g is not solvable.

Assume that 0 # g # radg. Then g/rad g is semisimple: In the opposite case

there would be a nonzero solvable ideal k = t/rad g in g/rad g, where t C g is some
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ideal. But by 1.3.3 ii) t is solvable, which implies that there is a larger solvable
ideal in g than rad g, a contradiction.

For any Lie algebra g we set go = g and gx11 = [g, gk for £k =0,1,2,.... We
get a descending set of ideals in g. The Lie algebra g is nilpotent if g,, = 0 for some
n. Since g C g, any nilpotent Lie algebra is solvable. The basic example:

Example 1.3.4 Let g = n(n,F) be the Lie algebra of upper triangular matrices
A such that A;; = 0 for all ¢ > j. Then gy, consists of matrices A for which A;; =0

for + > j — k and thus g is nilpotent.

Theorem 1.3.5.

(1) Any subalgebra of a nilpotent Lie algebra is nilpotent. The image of a nilpo-
tent Lie algebra is nilpotent.

(2) Let Z(g) be the center of a Lie algebra g. If g/Z(g) is nilpotent then g is
nilpotent.

(3) The center of a nonzero nilpotent Lie algebra is nonzero,

Proof. i) As in the proof of 1.3.3. i)
ii) Let (g/Z(g))n = 0. Then g,, C Z(g) and therefore g, 11 = 0.
iii) Let g,+1 = 0 but g, # 0. Then g,, C Z(g) and thus Z(g) # 0.

An element z € g is called ad-nilpotent if (ad, )™ = 0 for some n. Since for any
y € g we have 0 = (ad,)"(y) € gn+1 we observe that in a nilpotent Lie algebra any

element is ad-nilpotent.
Theorem 1.3.6. (Engel) If all elements in g are ad-nilpotent then g is nilpotent.
To prove the theorem we need some preparations.

Lemma 1.3.7. Let z € gl(n,F) be nilpotent, * = 0 for some k. Then x is ad-

nilpotent.

Proof. We write ad, = p, — Az, where p,(y) = vy and \,(y) = —yx. From z¥ = 0
follows p* = AF = 0. But

m __ . m i m—1
@) =3 Qe

(2

which is equal to zero for m > 2k.
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Theorem 1.3.8. Let g be a Lie subalgebra of gl(n,F) for somen =1,2,3,.... If
all elements of g are nilpotent as matrices then there exists 0 # v € F™ such that

xv =0 forallx €g.

Proof. The statement is clearly true when dim g = 1. We perform an induction on
dim g. Thus we assume that the statement holds for dimg < n and prove it for
the case dimg = n. Let 0 # k # g be a subalgebra of g. Now g/k is a vector
space of dimension m < n and we have a homomorphism ¢ : k — gl(m,F) (after
selecting a basis in g/k) by ¢(z)(y + k) = [z,y] + k. By Lemma 1.3.7 each ¢(z) is
nilpotent, as a linear transformation of g/k. By the induction assumption there is
a nonzero vector y + k in g/k such that ¢(z)(y + k) = 0 for all € k. This means
that [x,y]| € k for all € k. We define the normalizer of a subalgebra by

N(g,k) ={y € gl[z,y] € kVz € k}.

We see that the vector y above belongs to N (g, k). In particular, N (g, k) is strictly
larger than k.

Let now k C g be a maximal subalgebra; this means that if k’ is a subalgebra
of g containing k then either k/ = k or k’ = g. It is easy to see that maximal
subalgebras exist. In this case k # N(g,k) and so N(g,k) = g. From this follows
that k is an ideal in g.

Now dim g/k = 1; otherwise, there would be a one dimensional subalgebra s C
g/k which implies that there is a subalgebra k’ such that k' # k and k’ # g. This
is in contradiction with the maximality of k.

Thus indeed dim g = dimk 4 1. Choose z # 0 in the complement of k in g. By

the induction assumption,
W ={veVkv=0}#0.

Since k is an ideal of g, [z, 2] € k for z € k and thus z(zw) = 0 for w € W,z € k
and so W is a z-invariant subspace. Since z is a nilpotent transformation in W

there is an element 0 # v € W such that zw = 0 which implies gv = 0.

Proof of theorem 1.3.6. Let g # 0 with each x € g ad-nilpotent. We apply 1.3.8 to
the algebra adg C gl(g). There exists a vector 0 # = € g such that [y,z] = 0 for
all y € g. Thus Z(g) # 0.
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We use induction in dimg = n. For n = 1 the claim is clearly true. Assume
then that the claim is true for dimg < n. By the induction assumption g/Z(g) is
nilpotent. By 1.3.5. ii), the Lie algebra g is nilpotent.

Theorem 1.3.9. Let g C gl(V) a subalgebra consisting of nilpotent endomor-
phisms, V #£ 0, dimV < oco. There exists a flag of subspaces, 0 = Vo C V3 C Vo C
... Voo =V, such that xV; C V;_1 for each x € g. In other words, we can choose a
basis of V' such that in this basis the transformations x are upper triangular with

zeros on the diagonal.

Proof. Choose v; € V such that gv; = 0. Set Vi = Fvy. Set Wy = V/V;. Then we
have a homomorphism ¢ : g — gl(W1) by ¢(z)(v + V1) = zv 4+ V;. All endomor-
phisms ¢(x) are nilpotent and therefore we may choose 0 # vy + V7 € W7 such that
d(g)(va+V7) =0, s0 gva C Vi. Next we set Vo = Vi +Fuy, Wy = V/V7, and continue

as in the first step. The process stops at some point since V' is finite-dimensional.

Corollary 1.3.10. Let g be a nilpotent Lie algebra and k C g a nonzero ideal.
Then kN Z(g) # 0.

Proof. Set ¢(z)(y) = ady(y) for x € g and y € k. By 1.3.8 there is a vector
0 # y € k such that ¢(g)y =0, i.e., [x,y] =0 for all z € g. Thus y € Z(g).

Exercise 1.3.11 Let char F = 2. Show that sl(2,F) is nilpotent.

Exercise 1.3.12 Let k, k’ be a pair of nilpotent ideals in a Lie algebra g. Show
that k+k’ is nilpotent. From this follows that the Lie algebra has a unique maximal
nilpotent ideal, the so called nilradical. Determine the nilradical of a Lie algebra
defined by the relations [z, y] = z, [z, 2] =y, [y, 2] = 0.

Exercise 1.3.13 Let g be a nonzero nilpotent Lie algebra. Show that it has an
ideal of codimension = 1.

Exercise 1.3.14 Show that a Lie algebra g is solvable if and only if there is a
sequence of ideals gy C g—1) such that gy = g and g(,,) = 0 for some n, and
such that g,—1)/g) is commutative for each k.

Exercise 1.3.15 Let k # g be a subalgebra of a nilpotent Lie algebra g. Show
that k C N(g,k) is a proper subalgebra.
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CHAPTER 2 SEMISIMPLE LIE ALGEBRAS

2.1 Lie’s and Cartan’s theorems

In this section F is an algebraically closed field of char= 0 (typically, F = C.)

Theorem 2.1.1. Let g be a solvable subalgebra of gl(V'), where V is a finite-
dimensional vector space over F, V' # 0. Then there exists 0 £ v € V and a linear

map A : g — F such that xv = \(x)v for all z € g.

Proof. The case dimg = 1 is clear because any matrix over F has an eigenvector.
We use induction dimg. So let dimg = n > 1 and assume that the claim is true
for dimension less than n.

First we observe that there exists an ideal k C g of codimension one. Since g
is solvable, [g,g] # g and we may choose a subspace k C g of codimension one,
containing [g, g]. This subspace is an ideal since [g, k] C [g,g] C k.

From the induction hypothesis follows that there is a vector 0 # v € V and a
linear map A : k — F such that xv = A(z)v for all x € k. Let

W ={w € V]zw = AN(z)wVz € k}.

We know already that W # 0.
Next we prove that gWW C W. Let x € g, w € W and y € k. Then

yrw = zyw — [z, ylw = A(y)zw — A([z, y))w.

We want to prove that A\([x,y]) = 0 for all z € g,y € k. Let n be the smallest integer

2w, ...,z™w are linearly dependent. Let W; be the subspace

for which w, zw,z
spanned by the vectors w,zw,...,2* ‘w. Then dimW; = i for i« = 0,1,...,n.
Furthermore, W,, is invariant under the transformation x.

Subinduction. We prove by induction on i that yriw = A(y)z‘w mod W;, for

y € k. The case i = 0 is clear, so assume that the claim is true for integers less or

equal to i. Now

yr' T w = yra'w = zyziw — [z, ylr'w = z(A(y)z'w + w') — Az, y])ziw — w”,
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for some w', w"” € W;. Since zW; C W11 and W; € W;,1 we get

yz'Mw = Ay)z"™ M w mod Wi .

End of subinduction.

=Ly as

Thus the linear map y : W,, — W, is represented in the basis w, zw, ...,z
a matrix with diagonal entries equal to A(y). Thus trw, (v) = nA(y). In particular,
0 = trw, ([z,y]) = nA([z,y]) and thus A([z,y]) = 0 for y € k from which follows
gW Cc W.

We can write g = k + Fz for some 0 # 2z € g. Since zW C W there is an

eigenvector 0 # vg of z in W, zvy = A(z)vg. Thus we may extend the map A : k — F

to a linear map A : g — F such that zvy = A(x)vg for all x € g.

Corollary 2.1.2. (Lie’s theorem) Let g be a solvable subalgebra of gl(V'). Then
we may choose a basis in V' such that all elements of g are presented as upper

triangular matrices.

Proof. The claim is clearly true when the dimension n of V is n = 1. We use
induction on n. So we assume that the claim is true when the dimension is less
than n. By the previous theorem there is a nonzero vector 0 # v; € V such that
xv1 = A(x)vy for some linear functional A on g. Then we pass to the quotient space
V1 = V/Fv; and use the induction hypothesis to see that there is a basis {v; +Fuv; },
with ¢ = 2,3,...7n such that the g action is upper triangular in this basis. Then

{vi}_, is a basis of V' with the required property.

Let g be a Lie algebra and ¢ : g — gl(V') a representation of g in a vector space.
We set

i ={v e V|(¢(x) — A(x))"v = 0 for x € g and some n = n,},

where ) is a linear functional on g.

The linear subspaces V) C V are called the weight subspaces of ¢, corresponding
to the weights X. The vectors 0 # v € V), are called weight vectors.

Example 2.1.3 Let g be the Lie algebra with basis {a,b,h} and commutation
relations

[a,b] = —a, [h,a] = [h,b] = 0.
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Let ¢ be the 2-dimensional representation of g defined by

o= (5 §)00=(3 )= (4 1),

Then the representation has two weights, A(h) = 1, A(a) = A(b) = 0, and u(h) =
1, u(a) =0, p(b) = 1. The weight vectors are the unit vectors vy = ez, v, = ;.
According to the Jordan decomposition theorem in matrix algebra, in any finite-

dimensional vector space V and for any 7' € End(V') there is a decomposition
V=V ® @V, with V), ={ve V|(T — Ax)"v for some n}.

This result generalizes to nilpotent Lie algebras.

Theorem 2.1.4. Let ¢ : g — gl(V') be a representation of a nilpotent Lie algebra

i a finite-dimensional vector space. Then
V:V)\l @...@VAP’

where \; : g — [ are the weights of the representation ¢ and Vy, are the corre-

sponding weight spacces. Furthermore, ¢(g)Vx, C Vi, for all i.

Proof. Induction on n = dimg. The case n = 1 is clear by the matrix algebra
theorem mentioned above. So we asume that the induction hypothesis is true for
dimension less than n. When dim g = n, we observe:

1) Since g is nilpotent, g1 = [g,g| # g. Let k C g be a subspace of codimension

one, containing g;. Then k is a nilpotent subalgebra and we may write

for some weights of k in V.

2) Let 0 # x be a vector in the complement of k in g. Then g = k @ Fx. We
shall show that ¢(z)Vs, C V3, for all 4. Since g is nilpotent there exists an integer
no such that (ad,)"x = 0 for all n > ng and y € g. Let v € Vj,. Choose mg such
that (¢(y) — Bi(y))™ v =0 for all y € k. By Lemma 2.1.5 below,

no+mo
('no + mo

W) =B = > (™

=0

)¢KW%VxX¢@%4%@Dmﬁmwﬂv:0

for all y € k. It follows that ¢(x)v € Vg, for v € V,.
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3) By (2) we can write

Vs,

=Vi1® - D Vin,

where

Vij ={v € Vg

(¢(z) — o, j)"v = 0 for some n}.

Repeating the argument in (2) with Lemma 2.1.5, we get ¢(y)V;; C V;; for all
y € k. Since g = k + Fx we have ¢(g)V; ; C Vi ;. Setting

Aij(y +ax) = Bi(y) + aa;

for y € k we observe that each V; ; is a weight subspace of the representation ¢,

corresponding to the weight \; ;.

Lemma 2.1.5. Let ¢ be a representation of a Lie algebra g in a vector space V.

Let x,y e g,veV, and o, 3 € F. Then

n

(6~ a = B o(ro =3 () ollad,  5)5)(0(0) - )"0

1=0

for any n € N.

Proof. The case n = 0 is clear. We use induction on n, so we assume that the

formula holds for exponents less or equl to n and we prove it for n + 1. Denote

z; = (ad, — B)'z.

(@(0) @ = B o= o)~ a - ) 3 (] ) el 6) — o

Now

(P(y) — o= B)o(x:) = ¢(xi)d(y) + [6(y), d(x:)] — (a + B)d(x:)
= ¢(z:)(d(y) — o) + ¢((ady, — B)z:) = (i) (P(y) — @) + ¢(it1)
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because of (n)—i—(n ): (n+1)
7 72— 1 7

The Killing form on a finite-dimensional Lie algebra g is the symmetric bilinear
form defined as

(x,y) = tr(ad, - ady).

In the next section we shall prove that a Lie algebra is semisimple if and only if its
Killing form is nondegenerate.

Exercise 2.1.6 Let {z,y,h} be the standard basis of sl(2,F). Compute the
determinant of the Killing form in the standard basis. Compute the dual basis to
this basis. (Two basis e;, f; are dual to each other if (e;, f;) = 6;5.)

Exercise 2.1.7 Let g = sl(n,F),charF = 0. Using Lie’s theorem show that
radg = Z(g) and that g is semisimple.

Exercise 2.1.8 We assume here that the field F has characteristics p # 0.
Consider the the two dimensional Lie subalgebra in gl(p, F) spanned by the matrices

x,y with y = diag(0,1,2,...,p— 1) and

0 1 0...0

0 0 1...0
r=1...

0 0 0...1

1 0 0...0

Show that Lie’s theorem fails, the matrices z,,y do not have any common nonzero

eigenvector.
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2.2 Cartan subalgebras

A nilpotent subalgebra h C g is called a Cartan subalgebra if the normalizer
N(g,h) of h in g is equal to h.

Example 2.2.1 Let g = sl(n,F) and h the subalgebra of diagonal matrices in
g. Then h is a Cartan subalgebra of g. Of course, since here h is commutative, it
is nilpotent. The only thing to check is that if [z, y] is diagonal for every diagonal
matrix y then also x is diagonal; this is an easy exercise in matrix algebra.

Let h C gl(V) be any subalgebra. We define
Vo(h) ={v € V|z"v =0 for all € h, for some n € N}.

For a single element =z we put Vy(x) = Vy(Fz). By repeated use of the Jacobi
identity,

(@21 = 3 (1) s a2

From this follows that go(ad,) C g is a subalgebra.
The minumum of the dimension of gy(ad,) (when x goes through all elements in
g) is called the rank of the Lie algebra g. If x € g such that dimgp(ad,) = rank g

then x is a regqular element in g.

Lemma 2.2.2. Let k C g be a subalgebra and z € k such that dimgy(ad,) =
mingex dimgo(ady). If k C go(ad,) then go(ad,) C go(ad,) for all z € k.

Proof. Let = € k. Since k C gg(ad,), we have a linear map
ad, 4o : golad,) — go(ad,)

for all ¢ € F. We have then also the induced linear map

ad.ycx : 8/80(ad;) — g/go(ad.).

It is a standard result in linear algebra that the characteristic polynomial fg of
the linear map ad,;., in g factorizes (think about determinants of block upper
triangular matrices!) as fg = fg, - fg/g, to the characteristic polynomials in gy =

go(ad,) and in g/go. We can write

feo(a) = a” +pi(c)a™ " + .. .pr(c)
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and

fe/eo(@) = a" " +aqi(e)a™ " + L gnr(c),

where n = dimg,r = dim gg, and each p; is a polynomial at most of degree r in
the parameter ¢ and each ¢; is a polynomial of at most degree n — r.

If go(ad,) = g there is nothing to prove, so let us assume that go(ad,) is a proper
subalgebra. All eigenvectors of ad, = ad,i¢., corresponding to the eigenvalue
=0 belong to the subspace gp(ad,) so that A = 0 is not an eigenvalue of ad, in
g/go. It follows that g,_,(0) # 0. It follows that we may choose parameter values
€1,€2,...,Cr41 such that ¢,—_,(c;) # 0 and ¢; # ¢; for i # j. Then ad,.,, does not

have eigenvalue 0 in the quotient g/go which implies that

go(ad.y¢,z) C go(ad.).

By the assumption, go(ad,tc,») = go(ad). Thus the linear map ad,,, : go(ad,) —

go(ad,) has zero as its only eigenvalue so that
feo,(a) = a" for each parameter value ¢ = c¢y,...¢p41.

It follows that p;(c;) = 0 for each 7. Since p; is at most of degree r we must have

p; = 0. Thus

go (adz) C go (adz—i—cw)

for all c. In particular, setting ¢ = 1 and replacing x by x — 2z we have completed

the proof.

Lemma 2.2.3. Let k be a subalgebra in g and assume that go(ad,) =k for some

x € k. Then N(g,k) =k.

Proof. If z € N(g,k) then [z, 2] € k since x € k. But then ad[z,z| = 0 for some n
and so ad?*1(2) =0 and z € go(ad,) = k. O

Remark If we choose k = gg(ad,) for some = then we have N(g,go(ad;)) =
gg(adw).

Theorem 2.2.4. Let h be a subalgebra in a Lie algebra g. Then h is a Cartan

subalgebra if and only if there is a reqular element x € g such that h = go(ad,).
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Proof. 1) Let x € g be regular and set h = gg(ad,). By Lemma 2.2.3, h = N(g,h).
Since = € h, by Lemma 2.2.2 we have h = go(ad,) C go(ad,) for all y € h. Thus

(ady,)™z = 0 for some n,Vz € h.

This means that each y € h is ad-nilpotent. Theorem 1.3.6 implies that h is
nilpotent, so h is a Cartan subalgebra in g.

2) Let h be a Cartan subalgebra of g. Since h is nilpotent, we have h C gy(ad,)
for any « € h. Choose z € h such that the dimension of gy(ad,) is the minimum
of the dimensions of gg(ad,) for € h. From Lemma 2.2.2 follows that gy(ad,) C
go(ad,) for all z € h. We claim that h = go(ad,). If this is not the case, we have a

representation

¢:h — gl(go(ad,)/h), ¢(x)(y+h)=[z,y]+h

in a nonzero vector space. From gg(ad,) C go(ad,) (for all x € h) follows that each
¢(x) is nilpotent as a linear transformation. From 1.3.8 follows that there exists a

nonzero vector y + h such that
[z,y] € h for all = € h.

This implies y € N(g,h) and so N(g,h) is strictly larger than h, a contradiction.
Let h be a Cartan subalgebra of g. The weights of the representation ad of h in

g are called the roots of the pair (g, h). By 2.1.4 we can write

g = 80 D0 8,

where g is the root subspace corresponding to the root . By 2.2.4 the subspace

go corresponding to the zero root is equal to h.

Lemma 2.2.5. Let h C g be a Cartan subalgebra and ~v,~' a pair of roots. Then
8+,8+] C 8y4~/. In particular, if v+~ is not a root then (g, 8] = 0.

Proof. Let x € g,y € g,h € h. Then

(ad = (142 0)" ] = 35 (1) K = (0, e = /(1)) =0

when n is large enough, Lemma 2.1.5. Thus [z,y] € gy4. O
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Lemma 2.2.6. Let h C g be a Cartan subalgebra and ¢ : g — gl(V) a representa-
tion of g in V. Let vy be a root of (g,h) and o a weight of the restriction of ¢ to the
subalgebra h. Then ¢(x)v € Viyir for allv € V,,x € g. In particular, ¢(z)v =0 if
a + 7y 18 not a weight.

Proof. Use Lemma 2.1.5.

Lemma 2.2.7. Let g be a Lie algebra such that [g,g] = g. Let h C g be a Car-
tan subalgebra and ¢ a representation of g in a finite-dimensional vector space V.

Assume that tr((¢(x))?) = 0 for all x € h. Then each ¢(z) is nilpotent, x € h.

Proof. We have g =h @©,+0 g,. Now
g=[g.8 =) [g8,8/]C> 8y
¥ e

so that h = go = }__[g,,8—+]. Let a be any root and 1 a weight of the represen-
tation ¢|n. Set

V' = ®rezVitha-

Since go V4 C V44, we observe that the subspace V' is invariant under the linear

transformations ¢(e+,), where 0 # ey, € g1n. We set h = [eq,e_4] € h and

() = ¢(x)|v. Then
tr (¢(h)) = tr (Y([ea, e-al) = tr[i(ea), ¥(e—a)] = 0.
When p is large enough,
(¢(h) = n(h) = ka(h))* Vi1 = 0

and so the restriction of ¢(h) — n(h) — ka(h) to the subspace V1o is nilpotent.
The trace of a nilpotent matrix is zero, so that the trace of the restriction of ¢(h)

to Vi1ka is equal to (n(h) + ka(h)) - dim V, 4 k. It follows that

0=t (9{A) = 1 (@) = DD tr (@A), .1) = S(0(A) + ()i Vo
k
so that
n(h) = —a(h) - et Vit

. Z dim V?]—‘,—ka
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when h € [g,,g_a]- Note that by the assumption g = [g, g|, any h € h is a linear

combination of elements of this type for different a’s. We have now

n(h) = r(n, @)a(h) for h € [ga; 8ol

where r is a rational number. By z? — y? = (z + y)(z — y), also the operators
(#(h))%—(n(h))? are nilpotent in the subspace V,. It follows that the trace vanishes

in this subspace, so

0 = try, (6(h)? — trv, (n(h))>

Thus
0=tr(p(h)®) => tr(o(h)*)ly, =Y _(n(h))*dimV;,

n
and so n(h) = 0 for all h € h. As a consequence V = Vj and (¢(h) — n(h))P =
(¢(h))P = 0 for p large enough.

Corollary 2.2.8. Let h C g be a Cartan subalgebra and ¢ a representation of g
in a finite-dimensional vector space V. If [g,g8] =g and h € [g4,8_a] then

n(h) =r(n,a)-a(h)

for some rational number r and for any weight n. Furthermore,

Y kdim Vi ra
Z dim Vn+ka .

r(n, o) =

Theorem 2.2.9. (Cartan’s criterium) A finite-dimensional nonzero Lie algebra is

semisimple if and only if its Killing form is nondegenerate.

Proof. 1) Assume that the Killing form of g is degenerate, Let
s={z €gl(z,y) =0Vy € g} #0.
Let x € s and y,z € g. Then
([x,y],2) = tr(ad[g ) - ad;) = tr ([ad,, ady], ad.) = tr (ad, - [ady,ad.]) = (=, [y, 2]).

Therefore [z,y| € s so that s is an ideal. We claim that s is solvable. If this is

not the case, there is an integer k such that s**! = [s* s¥] # 0. Let k = s and h
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a Cartan subalgebra of k. The linear map = +— ad, is a representation of k in g.

Since

tr ((ad,)?) = (z,z) =0 forz € h C s,

it follows from Lemma 2.2.7 that ad, is nilpotent for all x € h, so that h = k
(Theorem 2.2.4). In particular k is nilpotent, a contradiction. Thus g has a solvable
ideal and it is not semisimple.

2) Assume now that g is not semisimple. Then it has a solvable nonzero ideal s.
Let n be the smallest integer for which s"*! = 0. If x € s™ then ad,(g) C s" and

ad,(s™) = 0. Thus (ad, - ad,)? = 0 for all y € g and so it has zero trace,
0 =tr(ad, - ady) = (z,y)

and the Killing form is degenerate.
We repeat the simple but important observation in the proof above:

Corollary 2.2.10. (ad,(y),z) = —(y, ad.(z), so that the matrices ad, are anti-

symmetric with respect to the Killing form.

Exercise 2.2.11 Let h be the set of diagonal matrices in g = sl(n, C). Determine
the roots of (g, h).

Exercise 2.2.12 Let g be nilpotent. Show that the Killing form of g vanishes
identically.

Exercise 2.2.13 Compute the Killing form for the two dimensional Lie algebra
in Example 1.1.6.

Exercise 2.2.14 Let g be a Lie algebra over a field F of characteristics p # 0.

Show that g is semisimple if its Killing form is nondegenerate.

2.3 The system of roots

In this section g is a semisimple Lie algebra over an algebraically closed field F
of characteristic zero and h C g is a Cartan subalgebra.
We denote by ® the set of (nonzero) roots of (g, h). For o € & we denote by g,

the corresponding root subspace.
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Lemma 2.3.1. If o, is a pair of roots such that o+ 3 # 0 then (z,y) = 0 for
T € gy and y € gga.

Proof. By Lemma 2.2.6 (ad, - ady)"gy C &y4n(at+s) for n € N. Since dimg < oo
and a + 5 # 0 we must have (ad, - ad,)"g, = 0 for large n. The Lie algebra g is
a sum of root subspaces, so (ad, - ad,)™ = 0 for large n. The trace of a nilpotent

matrix vanishes, which implies (x,y) = 0.

Corollary 2.3.2. If a € ® then also —a € ® and we can choose e+, € g+ Such

that (eq,€—q) = 1.

Proof. Choose any 0 # e, € gn. Since the Killing form is nondegenerate, there
exists x € g such that (eq,x) # 0. Now all the root subspaces gz with § # —« are
orthogonal to e, and g is the sum of root subspaces. Thus we can choose x to be an

element of g_. After a normalization, we obtain the required element e_, € g_.

Corollary 2.3.3. The restriction of the Killing form to the Cartan subalgebra h

1s nondegenerate.

Proof. Let 0 # h € h. Choose any = € g such that (h,z) # 0. Let zy be the
projection of z to gg = h. Then 0 # (h,x) = (h,xo) and so (-, -)|n is nondegenerate.

Lemma 2.3.4. Let ¢ be a representation of the nilpotent Lie algebra h in a finite-
dimensional vector space V. Let V,, C V be a weight subspace. Then for any x,z’ € h
the restriction of the linear map ¢(x)d(x’) — a(x)a(z’) to the subspace Vo, C V is

nilpotent.

Proof. Since the weight subspaces are h-invariant, we may assume for simplicity
that V = V,. Set ¢)(x) = ¢(x) — a(z). Now 1) is a representation of h in V : By
Theorem 2.1.1 there is a nonzero vector v € V such that ¢(z)v = a(z)v for all

z € h. Then
P([z,y)v = [¢(x), d(y)]v =0

and so a([x,y]) = 0 for all z,y € h. This implies

[W(2), ()] = [¢(z), o(y)] = o([x, y]) = ¥([x, y])

and so 1 is indeed a representation of h. By the definition of weight subspaces, the

matrix ¥ (z) is nilpotent for each z € h. From Theorem 1.3.9 follows that in some
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basis all the matrices ¢ (z) are upper triangular, ¢(x);; = 0 for ¢ > j. Then also

the matrix

() (a) + a(z)(a) + a(@) () = p(z)d(2') — a(z)a(a’)

is upper triangular and thus nilpotent.
Theorem 2.3.5. Ifz € h and a(x) =0 for all « € ® then x = 0.

Proof. If x,2’ € h then by the previous Lemma the restriction of ad, - ad, —

a(x)a(z") to the subspace g, C g is nilpotent for av € ®. So its trace vanishes and
trg, (ady - ady) = a(z)a(z)dim g,.
Thus we obtain
(z,2') = tr (ad, - ad,/) = Z a(r)a(z')dim g,.

aced

If now a(z) = 0 for all a then (z,2') =0 for all 2’ € h and by 2.3.3 we get x = 0.
Theorem 2.3.6. A Cartan subalgebra of a semisimple Lie algebra is commutative.

Proof. From the proof of 2.3.4 we observe that «([z,y]) = 0 for any o € ® and
x,y € h. From 2.3.5 follows then that [z,y] = 0. O

We denote by h* the dual vector space of h, i.e., the space of linear functionals
A:h — F. Let {z;}{_, be a basis of h. We denote \; = A\(x;). Consider the following
system of linear equations:

(Z Q; Ty, LL‘j) = Z CLZ'(IZ‘, LL‘]‘) = /\j
i i
for j = 1,2...,4. Here \;’s are given numbers and the a;’s the variables to be
determined. Since the Killing form is nondegenerate in the subspace h C g the
determinant of the matrix (z;, ;) is nonzero. It follows that the linear system has
a unique solution a = (ay,...,ar). Thus for any A = (A\1,...,A¢) € h* there is a

unique hy = ) . a;x; € h such that
Ay) = (hy,y) for all y € h.

This map gives a linear isomorphism h* — h, A — h,.
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Theorem 2.3.7. Let o be a nonzero root of (g, h). Then dimg, =1 and gro, =0
fork=2,3,....

Proof. By Theorem 2.1.1 and Corollary 2.3.2 there is a common nonzero eigenvector
€_o € g_, for all linear maps adj, for h € h, with [h,z] = —a(h)z for z € g_,.
Also by Corollary 2.3.2 we can choose e, € g, such that (e,,e_o) = 1. Define the

subspace V C g by
V=Fe_o®h®r=12, . 8ka-

Set h = [eq, €—q]. Then for the restrictions to the subspace V' we have
try (adp) = try[ade,,ad.__ ] = 0.

Since adj, — ka(h) is nilpotent in the subspace gka, try,, (ady) = ka(h)dim g,
Thus

try (adp) = —a(h) + Za(h)dim 8ra = a(h)(—1+ Zdim Sra)-
k k

If the theorem does not hold the expression in the brackets on the right would be
positive so that a(h) = 0. From Corollary 2.2.8 follows that 3(h) = 0 for all roots
( so that h = 0. But then

0= (2, [eas e—a] = ([e—a, 7], €a) = a(z)(e—a,€a) = a(z)

for all x € h and so a = 0, a contradiction.
Corollary 2.3.8. Ifh € h and a € ® then [h,x] = a(h)x for all x € g,.

Proof. We know that dimg, = 1 and ad, — «(h) is nilpotent in this subspace, so

adp — a(h) is zero in g,.

Corollary 2.3.9. Let a be a nonzero root and €L, € g+ Such that (eq,e_q) = 1.
Let h = [eq,€_q|. Then h = hy, that is, (h,x) = a(x) for all x € h. Furthermore,
h_o = —hg and hotg = ho + hga.
Proof.

a(r)(ea; e—a) = ([7,€al;-a) = (2, [€a, e—a]) = (2, )
so that (h,z) = a(x) for all € h. From this equation follows at once that h_, =

—he, and hoH_g =hy + hﬁ.
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Corollary 2.3.10. The vectors h,, for a € ® span the vector space h.

Proof. Let V C h be the subspace spanned by all the h,’s. If V # h then there
exists h € h such that (h,z) = 0 for all x € V. This means that (h,,h) = 0 for all
a € ® so that a(h) = 0 for all a and therefore h = 0. O

We have earlier constructed an vector space isomorphism h* ~ h, A — hy. From

2.3.10 follows that the roots of (g,h) span the space h*.

Theorem 2.3.11. Let o, 3 € ® be a pair of nonzero roots and 0 # e, € gq,0 #
eg € g3. If a+ [ is a root then 0 # [eq, eg] € 8at3-

Proof. By Lemma 2.2.6, [eq, €3] € 8a+p. For each root v choose e € g such that
(ey,e—~) = 1. Then hy = [ey,e_,] (Corollary 2.3.8). Set P = {k € Z|ao + k3 € ®}.
Let k4 be the largest number in P and k_ the smallest.

We claim that P is the interval [k_, k4] of integers. In the opposite case there

would be a smallest integer k' ¢ P with k_ < k' < k. We set

V= & gargC8g
k_<k<k’

Then ad., .V C V and

Ei@

try adp, = try [adey,ade_,] = 0.

egr

On the other hand, by 2.3.7 and 2.3.8,
0=tryady, = »  (alhp) +kB(hp))
ko <k<k'
which implies a(hg)/B(hg) = =% (k' +k_ — 1).
Note that ($(hg) does not vanish by Lemma 2.3.13 below. Since k¥’ ¢ P and
k' < k4 there exists a nonempty interval [k, k] C P with k¥’ < k. We choose k"

as small as possible. In the same way as above,

a(hg)
B(hg)

a contradiction. Thus P = [k_, ky]|. We claim that [eg, 8a+rp] # 0 and [e_g, 8a+ks] #

1 1
= (K" hy) # S0 ko = 1),

0 for all k= < k < k4. In the opposite case there would be an ad invariant sub-

ei@

space V' = @  8a+kp Where either ky = k_ ko < ki or ky > k_,ky = k4.
k1<k<ks

Again, as above we could reduce that —a(hg)/B(hg) = & (k1 + k2), a contradiction
since ky + ko # k_ +ky. O
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Corollary 2.3.12. Let o, 8 be a pair of roots. Then the set of those integers k for
which a+kB € © is an interval [k_, ki ]. Furthermore, —a(hg)/B(hg) = 1 (k_+k4).

Lemma 2.3.13. ((hg) # 0 for each nonzero root 3.

Proof. Let ex € g4 such that (eg,e_g) = 1. If now F(hg) = 0 then
[65, 6_5] = hﬁ and [hﬁ, eig] = :l:ﬁ(hﬁ)ei@ =0.

Then the subalgebra s spanned by e, hg would be solvable and so also ad(s) C
gl(g) is solvable. By the Corollary 2.1.2 we can choose a basis in g such that each
ad, for x € s is represented by an upper triangular matrix. On the other hand,
adp, is diagonalizable (Cor. 2.3.8) so that adj, = 0 and hg € Z(g). This implies
that hg = 0, a contradiction.

Corollary 2.3.14. If o, (3 is a pair of nonzero roots then also a— < o, 3 > 3 is a
root, where < a, f >=2(a, 8)/(5, B).

Proof. Let k4 be as in Cor. 2.3.12. Since a+0-0 € ®, we must have k_ <0 < k.

Then — < o, >=k_ + k4 € [k_, k4] and we are done.

Exercise 2.3.15 Prove Schur’s Lemma: If ¢ is an irreducible representation of
a Lie algebra g in a finite-dimensional vector space V' then the only matrices in V'
which commute with all ¢(z) (x € g) are scalar multiples of the unit matrix. (F is
algebraically closed.)

Exercise 2.3.16 Using Schurs lemma show that in any simple Lie algebra g any
nondegenerate symmetric bilinear form s which satisfies k([z,y], 2) = —k(y, [z, 2])
for all x,y, x is proportional to the Killing form.

Exercise 2.3.17 We prove later that sl(n,F) is simple. Show that the Killing

form in this case can be written as

(z,y) = 2ntr(zy)

with the ordinary trace in the algebra of n x n matrices in sl(n,F).

Exercise 2.3.18 Let g = D4y be the Lie algebra of complex antisymmetric 2¢x2/¢
matrices. Let h be the subalgebra spanned by the matrices h; = e2;—1,2; — €2 2i—1
for i =1,2,...¢. Compute the roots and root subspaces for (g, h) and reduce from

the results that h is a Cartan subalgebra of g.
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Since A — h) is an isomorphism h* — h we can define a nondegenerate bilinear

form

(A, ) = (hx, hy) with A, p € h*

in the dual vector space h*.

According to what we have defined before,

(A ) = Ahy) = p(ha).
As we have seen, the roots span the vector space h*. Thus we may select a set of
roots ajq,...ap such that they give a basis in h*. Then any root 8 can be written
uniquely as

¢
8= Zciai with ¢; € F.
i=1

We claim that the coefficients ¢; are rational numbers. Now

(Bra5) = cilen, )
and so < B, >= ) < a;,a; > ¢;. This gives £ linear equations to determine ¢
values ¢;. By Corollary 2.3.12 the coefficients in the linear system are integers and
it follows that the solution is rational.

Set Eg to be the linear span of the roots «; with rational coefficients. Next

(@, @) = (has ha) = tr (adp,-adp,) = Y (B(ha))* =D r(B,0)*(a(ha))? = r-(a,)?,

Be® B
where 7 is positive rational as a sum of squares of rational numbers; we have used

the Corollary 2.2.8. It follows that (o, a) = r~! is a positive rational number. This
implies then that (o, 8) = 3 < @, 3 > (B,03) is rational for all roots 3. In case
of an arbitrary rational linear combination A\ of the roots «; we can again write
(M) = Zﬁ(ﬂ(h,\))2 and since hy = ). c;ha, we see that also (A, A) is a sum of
squares of rational numbers. Thus the bilinear form is an inner product in Eg.
Finally we define the extension F = Eg ®qg R, a vector space over real numbers.

We gather some of the most important results above to a theorem:

Theorem 2.3.19. Let h be a Cartan subalgebra of a semisimple Lie algebra g, ®

the set of nonzero roots and E the real subspace of h* spanned by the roots. Then

(1) If a € ® then —a €  but ka ¢ @ for k # £1
(2) If a, B € ® then f— < B,a> o €  where < o, >=2(8,a)/(av, @)
(3) If a, B € ® then < a, 3 >€ Z.
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Theorem 2.3.20. A Lie algebra g is semisimple if and only if it has simple ideals
g; such thatg =g, ® - D gn.

Proof. 1) Let g be semisimple. If g is simple, there is nothing to prove. Let us

then assume that g has a nonzero ideal g’ # g. Let

g’ ={reglz,y) =0Vyecg}

Since the Killing form (-, -) is nondegenarate, the dimension of g” is equal to dim g—

dimg’. For z € g”’",y € g,z € g’ we have

([y,:c],z) - —(:12, [y,z]) =0

which implies that g is an ideal. The intersection g'Ng” is by the proof of Theorem
2.2.9 solvable. But since g is semisimple, it has no nontrivial solvable ideals and so
g'Ng”’ =0.It follows that g =g’ ® g”.

We claim that g’,g” are semisimple. Otherwise, there would be a solvable
nonzero ideal, say s C g’. But [g,s] = [g' ® g",s] = [g/,s] C s and so s would
be a solvable nonzero ideal in g, a contradiction.

We can continue this process and split both g’,g” to semisimple ideals; the
process stops at some point since the algebra is finite-dimensional.

2) Assume that g = g1 @ --- @ g, is a sum of simple ideals. If z = > z; and

y = Y. y; are arbitrary elements in the sum, z;,y; € g;, then

(x7y)g = Ztr (adfﬂz ) ad%) = Z(x’w y'i)gi'

If now (x,y)g = 0 for all y then each 2; = 0 and so x = 0 since the Killing forms in
g:’s are nondegenerate (a simple Lie algebra is always semisimple). Thus (-,-)g is

nondegenerate and g is semisimple.
Corollary 2.3.21. If g is semisimple then [g,g] = g.

Proof. Now g =g1 & --- & g, where g;’s are simple ideals. Then

g.gl=[81,81] P ®lgn.8n] =81D - Dg =8.

Exercise 2.3.22 Fix a Cartan subalgebra h in Cy and let ® be the root system
of the Lie algebra (. Determine the vectors h, € h for a € .
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Exercise 2.3.23 Let g be a 3-dimensional complex semisimple Lie algebra.
Show that g is isomorphic to s1(2, C).

Exercise 2.3.24 Show that there is no semisimple Lie algebra of dimension four.

Exercise 2.3.25 Let h be the standard Cartan subalgebra of A, = sl(£ + 1,C)
consisting of diagonal matrices in A, and ® the set of roots. Determine the numbers

<a,f>fora,ped.
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CHAPTER 3 ROOT SYSTEMS

3.1 Reflections

In this Chapter FE is a real finite-dimensional vector space with a positive definite
inner product (-, -).

A reflection of E is a linear map o : E — FE such that o(x) = —x for some
nonzero vector z and o(y) = y when y belongs to the orthogonal complement
P, C E of x. The subspace P, is called the plane of reflection of 0. We set 0, = o
in this construction.

Explicitely, we van write 0,(3) = 3 — QEg z

a # 0.

a=p0—-<fB,a>afora,fekFE,

~—|

Theorem 3.1.1. Let ® C FE be a finite subset which spans E and o a linear
automorphism of E. We assume
(1) o(®) C @ and o3(®) C @ for all 5 € P,
(2) there exists a linear subspace P C E of codimension one (a hyperplane)
such that o(x) = x for all x € P,

(3) there is a vector a € ® such that o(a) = —av.

Then P =P, and 0 = o,,.

Proof. Set T = 00,. Then 7(a) = .. Let P, be the fixed point set of o, and P the
fixed point set of 0. Then o(f+aa) = f—aa for all § € P and so the induced linear
map 7 : F/Ra — E/Ra is the identity. But also 7(a) = « so that 7 : Ra — Ra
is the identity. It follows that the characteristic polynomial of 7 is (A — 1) with
¢ =dim E.

Let B € ®. Since o permutes the elements in the finite set ®, we must have
7™ (B) = B for some m = mg > 1. Let n be the product of the mg’s. Then 7"(3) =
g for all § € ® and 7" = 1 since ® spans E. Therefore the minimal polynomial (the
minimal polynomial of a matrix A is the polynomial p of smallest degree such that
p(A) = 0) of 7 divides A™ — 1. On the other hand, the minimal polynomial divides
the characteristic polynomial (A — 1)¢ so that the minimal polynomial is A — 1 and

7 = 1. This implies 0 = 0, and P = P,.
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3.2 Axioms and basic properties of root systems

We say that a finite subset ® of a real Euclidean vector space F is a system of
roots if
(1) ® spans E, 0 ¢ ®,
(2) if & € ® then ka € @ if and only if k = +1,
(3)
(4)

for any a € ® also 0,(P) C P,

for any «, 0 € ® the real number < 3, > is an integer.

We denote by W the group generated by the reflections o,, a € ®. Since ® is

finite, as a subgroup of permutations of a finite set the Weyl group W is a finite
group.

Theorem 3.2.1. If o is a linear automorphism of E such that o(®) C ® then

oo,0 1 = Og(a) Jor all a € @ and

< B,a>=<o(f),o(a) > forall a,p € .

Proof. Let 7 = 00,0~ 1. Then 7(®) C ® and 7(0(a)) = 0o4(a) = —o (). When
B € o(P,) then 7(3) = co,0"1(B) = 0o~ 1(B8) = 3. We have used

oo (07 H(B)) = 071 (B), since 07 (B) € P,.

From the previous theorem follows that 7 = 0, (4). For an arbitrary pair a, 8 € ®

we get

00,0 (0(B)) = 004(8) = 0(B— < f,a > a) = 0(B)~ < B,a > 0(a) = 0,(a)(0(B)).

On the other hand,

0000 (0(B)) = 0o(a)(0(8)) = 0(B)— < a(B), () > o(av).
Comparing the right-hand-sides of these two equations we obtain < 3, a >=
<o(f),o(a) > .

We say that two root systems (E,®) and (E’, ®") are isomorphic if there is a
linear isomorphim v : E — E’ such that ¢(®) = ®" and < ¥(8),¥(a) >=< 5, a >
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for all a, 3 € ®. If W, W’ are the corresponding Weyl groups it is easy to see that
the map o +— Y oooyp™1 = f(o) gives an isomorphism of the Weyl groups: Namely,

for any reflection o, € W we have

f(0a)(B) =¥ ooaoy™(8) =@ (B)— <v ™ (B),a>a)
=0 <y7H(B),a > p(a) = f— < B,9(a) > P(a).

It follows that f(0a) = 0y(a)-

In the case £ = dim E = 1 there is only one root system, called A;. This consists
of a pair a, —« of vectors in the real line. (The length of the vector a turns out to
be irrelevant.)

When ¢ = 2 there are several alternatives. These are denoted by A; x A1, Az, Bo,
and G, and they are described on the enclosed sheet, Appendix A:

[scale=0.80]lieqA.pdf

Let a, 8 € ® be a pair of roots. The angle 6 between «, 3 is defined by

(o, B)
lledl - 1181

Since < f,a >=2(8,a)/(a, ) = 2cos 0 - || ]|/ ||c|| we get

cos 0 =

< B,a><a,f >=4cos® 0.

According to the root system axioms 4cos? § is a nonnegative integer. Since
cos? § < 1the only options are 4 cos? 6 = 0,1,2,3,4. Thatis, § = 0,7/6,7/4,7/3,7/2,
when 0 < 0 < n/2, and 0 = 57/6,37 /4,27 /3,7 when 7/2 < 6 < m. Since we are
only interested in cos 6, we may restrict 0 < 6 < 7.

Assuming that ||3|| > ||a|| and 8 # +a the various possibilities are listed in the

table on the enclosed sheet.

Theorem 3.2.2. Let o, € ® and o # £6. If (o, 3) > 0 then a — § € ®. If
(o, 8) < 0 then a+ (3 € .

Proof. Let first (a, 3) > 0. Then < a,, 8 >> 0 and < 3, > > 0. According to the
table on the enclosed sheet either < o, 3 >=1 or < 3, >= 1. In the former case
og(a) = a— 3 € ® (root axioms). In the latter case 0,(8) = B — a € ® so that
a— 0 =—(8—a)€ ®. The case («,3) < 0 is treated similarly by replacing 3 by
—8.
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Theorem 3.2.3. Let o, 3 € ® and let S be the set of roots of the type 6+ ka for
some k € Z. Then S is of the form S = {8+ kalqg < k < r} for some g <r € Z.

Proof. Antithesis: There are integers ¢ < p < s < r such that g + pa, 5 + sa € ¢
but S+ (s—1)a, B+ (p+1)a ¢ ®. According to the previous theorem (8+pa, a) > 0
and (8 + sa,a) < 0. Thus (p — s)(a, ) > 0, a contradiction since (o, ) > 0 and

p—s5<O0.
Compare this result with Corollary 2.3.12!

Theorem 3.2.4. The reflection o, reverts the chain of roots a+ k3 (with k € 7).

The root chain has at most four elements.

Proof. Since 0,(0+ ka) =+ ka— < f+ ka,a > a = 3+ k' «, the reflection oy,
maps the chain onto itself. Here k' = k— < f,a > -k < a,a >=

kE(l- < a,a >)— < f,a >= —k— < ,a > . When k increases, k' decreases and
because g, is a bijection we must have o, (5 + ra) = 8 + qa, using the notation in

the previous theorem. Then
g=-r—<p,a>soq+r=—<p,a>.

Since < [+ ka,a >=< (,a > 42k, the second statement follows from the fact

that | < v,a > | < 3 for any root ~.

Exercise 3.2.5 Let ® be a root system. Set a¥ = 2a/(«, ). Show that the set
of all a¥’s form a root system ®V. Draw ®" when ® = Ay, Ay, Bo, Gs.

Exercise 3.2.6 Determine the root chains 3 + ka when ® = Gs.

Exercise 3.2.7 Show the the Weyl group of A, is isomorphic with the group of
permutations S3 of three objects.

Exercise 3.2.8 The automorphism group Aut ® of a root system (E, ®) consists
of all linear isomorphisms ¢ : E — E with ¢(®) = ® and < ¢(a), ¢(8) >=< «, 3 > .
Show that the Weyl group is a normal subgroup of Aut ®.

3.3 Simple roots

A subset A in a system of roots ® C F is a system of simple roots if

(1) A is a basis in the vector space E,
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(2) and all roots in ® can be expressed as > ko, where all coefficients k, are

either nonnegative integers or all of them are nonpositive integers.

If ¢ = dim E then A has exactly ¢ elements. The height h(a) of a root ~y is
defined as the sum of the coefficients k, in the expansion. We split ® = &+ U d~
as the union of positive and negative roots according to whether the coefficients are
nonnegative or nonpositive.

We also define a partial order in ® by declaring that o > g if o — 3 is a positive

root.
Lemma 3.3.1. For any pair of different simple roots (a,3) <0 and oo — 3 ¢ P.

Proof. The second condition follows immediately from the definition of a set of

simple roots A. If («, ) > 0 then by 3.2.2 a — 3 is a root, a contradiction.

For any v € ® we denote ®*(v) = {a € ®|(v,a) > 0}.

We say that a vector v € E is regular if it does not belong to any of the ¢ — 1
dimensional hyperplanes P, for a € ®; otherwise ~ is singular.

For a regular vector 7 we have clearly ® = ®*(v) U ® (), where &~ () =
—®T(v). We say that a root o € ®T(v) is decomposable if & = a1 + ay for some

a1,z € D1 (v), otherwise it is indecomposable.

Theorem 3.3.2. Letvy € E be regular and A(7y) the set of indecomposable elements
in ®t(y). Then A(y) is a set of simple roots. Any set of simple roots is of this

form.

Proof. (1) We claim that each o € ®T () is a linear combination of elements
in A(y) with nonnegative coefficients. Antithesis: There exits a € ®*(y) which
cannot be expressed as such a linear combination. We choose o among those
elements such that («,7) is minimal. Since a@ ¢ A(7y) we have o = ay + ag for
some ay,as € ®T(y). Then (v,a) = (v,a1) + (7,a2) and so (y,a1) < (v,a) and
(7, a2) < (7, @) and by the minimality property of « it follows that both a1, as are
linear combinations of elements in A(y) with nonnegative coefficients. Thus also «
is a linear combination in A(vy) with nonnegative coefficients.

(2) We prove that for any «, 8 € A(y) either « = § or (a, 3) < 0. Otherwise, we
would have o — 3 € ® (Theorem 3.2.2). If now a— 3 € T () then a = S+ (a— )
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is decomposable, a contradiction. But in the case a — § € &~ () we have § =
a+ (8 — «), a contradiction since 3 was assumed to be indecomposable.
(3) We claim that the set A(y) is linearly independent. Let }°, () @Gac =0

for some a, € R. We can write

0=Zaaa:2baa+20aa:0++e, =0
A YA

where b, > 0 and ¢, < 0 and A; are disjoint subsets of A(y). Then by (2) we have
(04,0,) = Zb cs(a, B) < 0.

It follows that 6, = 0. Now 0 = (v, «9+) = YA, ba(7,a) so that b, = 0 for all
a € Ay. In the same way 0 = (7,01) = — > A, ca(7,@) 50 cq = 0 for all @ € Ay
because (v, a) > 0 for all @ € A(v). Thus all coefficients a,, vanish.

(4) A(y) is a system of simple roots: The second axiom follows from (1) above.
Since ® spans F the first axiom follows from (3) and (1).

(5) Let A C ® be a system of simple roots. We prove that A = A(«y) for some
regular . Set A = {a1,...,ay}. Consider the system of linear equations

Z(ai7o¢j)xi =a; withj=1,...,0a;,z; €R.

The a;’s are given real numbers and z;’s are to be determined. The corresponding
homogeneous system (a; = 0) has only the trivial solution x; = 0 since the system
A is a basis of E. Thus the inhomogeneous system has a unique solution x for any
vector a. For example, we may choose a; = 1 for all © we have a unique solution x
and we denote v = Y. x;a;. Then (v, ) > 0 for all & € A. By the second axiom of
simple roots we must have (v, ) # 0 for all & € ® and = is regular. Furthermore,
(7,a) > 0 for all @ € @ and (y,a) < 0 for all @ € ®~ and therefore d+ C dT ()
and @~ C &~ (v). Consequently, ®* = ®+(~).

Let 31,02 € ®*. Then the height h(f; + 82) = h(B1) + h(B2) > 2. For § € A
the height = 1 by definition. On the other hand h(3) = 1 for all § € A and f is
indecomposable (with respect to 7). Thus A C A(vy). Since both form a basis of F
we have finally A = A(y).

The connected components of the open set E'\ U@Pa are called Weyl chambers.
ae
There are finitely many Weyl chambers since the set of roots is finite. For any

regular v € E we denote T'(y) the Weyl chamber containing the vector ~.
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If v € T(v) then both 7,~" are on the same side of each hyperplane P, and
therefore ®*(v) = ®*(¢') and A(y) = A(y'). It follows from theorem 3.3.2 that
there is a 1-1 correspondence between the set of Weyl chambers and the systems of
simple roots, T'(y) — A(y). Given a system of simple roots A = A(y) we call T'(v)
the fundamental Weyl chamber, denoted by T'(A). Then T(A) = {vy € E|(y,«) >
0Va € A}.

Theorem 3.3.3. Let v € E be reqular and o € W. Then o(T(v)) =T (o(7)).

Proof. When «' € T(~) then + is on the same side of each hyperplane P, as +.
Now (v,a) and (7', «) have the same signs is equivalent to the statement that
(o(7y),0(a)) and (0(7), o()) have same signs, by theorem 3.2.1. Since o permutes
the roots, the last staement is equivalent to saying that (o(7),«) and (o(v'), @)
have same signs for all & € ®. This means that o(7),c(7’) are on the same side of
each hyperplane P, and so belong to the same Weyl chamber. This implies o(v’) €
T(o(y) for all ' € T(v) and thus o(T(vy)) C T(c(v)). Likewise, =1 (T (c(7))) C
T(v) and so T(o(vy)) C o(T(y)). Combining these two inclusions we obtain the

claim.

Remark We have used the fact that each element of the Weyl group is a linear
isometry in E. This follows from the fact that elements of W are products of

reflections and from 3.3.1.

Lemma 3.3.4. Let A C ® be a system of simple roots and « a positive root not

included in A. Then there is a simple root 3 such that o — 3 is a positive root.

Proof. If (o, ) <0 for all € A then by the proof of (3) in Theorem 3.3.2 the set
{A, a} would be linearly independent, which is absurd since A C F is a basis.
Thus (o, 3) > 0 at least for one simple root 5. Then o — 3 € ®, by Theorem
3.2.2. But since any positive root is a linear combination of simple roots with
nonnegative coefficients it follows that the coefficient of § in the linear combination
a=> ~en kyy must be at least one. Then a — § is also a linear combination with

nonnegative coefficients, thus a positive root.

Corollary 3.3.5. Any positive root 3 can be written as a sum 3 = a1 +as+. .. ap,

where each a; is a simple root and each partial sum oq + - -+ + «; is a root.
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3.4 The Weyl group

Lemma 3.4.1. Let a be a simple root. Then o, permutes the roots in ®T \ {a}.

Proof. Let B # a be a positive root. We can write 5 =) k~~ with nonnegative

YEA

integers k.. Now k, > 0 for some v # a. But then

a(B) = 3 ky(3— < 7,0 > a)

0l

and so 04 (8) = >_ kv with k! > 0 for some v # o and £/, > 0 for all v € A. This

implies 0, (8) € ®*. Furthermore, o,(—a) = a and so 0,(8) # «a.
Corollary 3.4.2. Let§ = %Zﬂ€¢+ B. Then 0,(0) = 6 — « for each simple root c.

Lemma 3.4.3. Let a1,z ...,a be some set of simple roots. Denote 0; = 0,.
If 0109 ...0k—1(ak) is negative then o1 ...05k = 01...05_10541...0k—_1 for some

1<s<k.

Proof. Denote 3; = 0j41...05—1(ag) for 0 < j < k —2 and set fy_1 = ag. Then
Bo < 0 and Br_1 > 0. Let s be the smallest number for which G, > 0. Then
0s(8s) = 0a.(Bs) <0, so that by Lemma 3.4.1 as = 5. By Theorem 3.2.1 we have

oo, 0t = Og(a) SO that

Os = Oq, = (03+1 .. -O'k—l)o'k(o's—f—l .. .O'k_l)_l

. _ . o 71
from which follows o1 ...0p, =01...05-10541...0k—_1, using o, = o .

Corollary 3.4.4. Let 0 = 01...0y (with 0; = 04, a; € A) be a shortest decom-

position of o to a product of simple reflections. Then o(ay) < 0.

Proof. If o(ay) > 0 then o1 ...0,_1(a) < 0. This is in contradiction with the

minimality of the decomposition, Lemma 3.4.3.

Theorem 3.4.5. Let A be a system of simple roots.

1) For any regular vector v there is 0 € W such that o(y) € T(A)

2) If A is another system of simple roots then o(A’') = A for some o0 € W

4
5) If o € W is such that o(A) = A then o = 1.

(1)

(2)

(3) For any root o there is 0 € W such that o(a) € A

(4) The simple reflections o, € A, generate the group W
(5)
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Proof. Denote by W' the subgroup of W generated by the simple reflections. We
prove first that (1)-(3) hold for the subgroup W”’.

(1) Denote again by § half the sum of positive roots. Choose first o € W’ such
that (o(7),d) obtains its maximum value. When a € A then 0,0 € W’ so that

(0-(7)7 6) > (0-040-(/7)7 5) = (0-(’)/)7 Ua((S)) = (0(’7)7 0 — a) = (0-(7)7 5) - (0-(7)7 a)

and thus (o(v),a) > 0 for all @ € A. On the other hand, (o(7), ) = (7,07 (a) #0
by the regularity of v. Thus (o(7),a) > 0 for all @ € A and o(7y) € T(A).

(2) Let A’ = A(v). By (1) above, there exists o € W’ such that o(v) € T(A).
But then o(A’) = A(o(7)) = A.

(3) By (2) it is sufficient to show that any root belongs to some system of simple
roots. So let a be a root. Since Pz # P, for all roots 8 # +a we may choose
v € P, such that v ¢ Pg for roots § # a. Set 7' = v+ ea where

T . (4, )|
2 T (aB)] + (a,a)

Then |(7, 8)] > (7', @) = €(a, @) > 0 for all roots 3 # +a. Now 7/ is regular and
a € Pt (). Because of (7, 8) > (7', a) for B € ®* (') the root « is indecomposable
in ®*(4') and thus a € A(y’) by Theorem 3.3.2.

(4) It is enough to show that each reflection o, with oo € ® is a product of simple

reflections. Choose o € W’ such that § = o(a) € A. Then
08 = Og(a) = 00,0 1 50 04 = J_laga cw'.

(5) Let 0(A) = A for o € W. If now o # 1 then we can write 0 = 07 ...0y, with
0; = 04, and a; € A and k£ > 1. We choose k minimal. From Cor. 3.4.4 follows

that o(ax) < 0 which is absurd since o(ay) € A.

Exercise 3.4.6 Let ® be a system of roots in £ = R?. Show that it is isomorphic
to one of the systems A; x Ay, Ay, By or Gs.

Exercise 3.4.7 Determine a system of simple roots for each of the cases in
Exercise 3.4.6.

Exrcise 3.4.8 Let A C ® be a system of simple roots. Let o # 3 be a pair of
simple roots and let ®’ be the subsystem consisting of roots in ® which are integral

linear combinations of o and 3. Show that @’ is a 2-dimensional root system.
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Exercise 3.4.9 Let A C ® be a system of simple roots. Show that there is
a unique o € W such that o(®*) = ®~. Hint: The set —A is another system of
simple roots. Use Theorem 3.4.5.

Exercise 3.4.10 Show by direct inspection of the root system that Cor. 3.3.5
holds for the root system Gbs.

3.5 Classification of root systems

A root system (E,®) is irreducible if it is not possible to write & = &1 U P,
as a union of two (nonempty) root systems with ®; L ®&,. It is clear that any
root system is a direct sum of irreducible systems, so it is sufficient to classify the
irreducible systems.

We shall skip most of the proofs in this section; they can be found in Section 11.4
in J. Humphrey’s book Introduction to Lie Algebras and Representation Theory.

The first fact which we list without proof is that in any irreducible root system
there are at most two different root lengths; the roots are either long or short roots.
If all roots have the same length we call them long roots.

Let A = {aq,...,a¢} be a system of simple roots. Denote

(ai,aj)

M, =< oy, 0; >=2 -
1) 9 J (a],aj)

The numbers M;; form a ¢ x £ integral matrix, called the Cartan matriz of the root

system. In the 2-dimensional cases we have the matrices

2 0 2 —1 2 -2 2 —1
A1><A1(0 2);A2<_1 2);32(_1 2);G2(_3 2)-

When A’ is another basis then o(A) = A’ for some o € W. The brackets < «, 5 >
are invariant under the Weyl group. It follows that the Cartan matrix does not

depend on the choice of A, modulo reordering of the basis.

Theorem 3.5.1. Let (E,®) and (E', ®") be a pair of root systems with A C ® and
A" C @ systems of simple roots. If the Cartan matrices M and M’ are equal (with

some choice of ordering of basis) then the root systems are isomorphic.

Proof. Set A ={ay,...,ap} and A" = {a],...,a;}. We can define a linear isomor-

phism ¢ : E — E’ by ¢(«a;) = a) since the simple roots form a basis. Then for any
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o, €A,

To(a)(B(B)) = d(B)— < d(B), p(a) > d(a)
=¢(B)— < B, > ¢(a) = ¢(B— < B, > a) = p(04()).

The second equality follows from the asssumption that the Cartan matrices are
equal. Since A is a basis, we obtain og(4) 0 ¢ = ¢ o0y, that is, poo, 0 ol = Té(a)
for all a € A. Since the simple reflections generate the Weyl group, we reduce that
the map 0 — ¢pooo ¢! from W to W' is an isomorphims of Weyl groups.

Let next # € ® and choose o € W such that o(8) € A, Theorem 3.4.5 (3). Then

¢(B) = (poo " 0p)e(0(B)) € @'

and so ¢(®) C ®’. In the same way one shows that ¢~1(®') C ® and thus ¢(®) = &',
If v is another element of ® then, by the linearity of < -,- > in the first argument

and by the equality of Cartan matrices,

<v,8>=<0(v),0(8) >=<¢oa(y),poo(B) >
=< (gpoo o )(poo(7)),(poa todp " )(Poa(B)) >=<d(7),d(83) > .

We have used the fact that the Weyl groups W, W’ preserve the brackets. We have

shown that ¢ is an isomorphism of the root systems.

We have seen that if o # (3 is a pair of positive roots then < a, 3 >< (3, > is
one of the integers 0, 1,2, 3. We determine the Cozeter graph of the root system &
from its Cartan matrix. The graph consists of £ nodes corresponding to the number
of simple roots and lines connecting the nodes. The number of lines connecting the
nodes «;, a; (for i # j) is equal to < a;, a5 >< o5, 05 > .

In the case when all simple roots have equal lengths the Dynkin diagram is equal
to the Coxeter graph. In the case when a pair oy, o; of simple roots have unequal
lengths we set an arrow to point towards the shorter root. On the enclosed sheet
B we list all the Dynkin diagrams of simple Lie algebras.

[scale=0.80]lieqB.pdf

The Dynkin diagram determines completely the Cartan matrix and therefore
also the root system of a semisimple Lie algebra. In the case when the simple

root lengths are equal, we have < oy, a; >= —(< aj,a; >< aj,a; >)Y/2 for
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i # j. This gives all the matrix elements of the Cartan matrix. Suppose then that
(e, ) # (o, ;) but we know that «; is shorter, for example. Then from the
table of of root lengths and angles we see that < a;,a; >< aj,a; > is either 2
or 3. In the former case < ay,a; >= —1 and < aj,a; >= —2. In the latter case
< aj,a; >= —1and < aj,a; >= —3.
For example, from the Dynkin diagram of F; we can read its Cartan matrix
2 -1 0 O
-1 2 -2 0

o -1 2 -1
o 0 -1 2

F42

A root system @ is irreducible when its Dynkin diagram is connected. Let A =
Ay UAy---UA; be a decomposition of the simple roots corresponding to the
connected components of the Dynkin diagram. Then A; L A; for i # j and let E;
be the subspace of E spanned by the roots A;, E = E1 @ --- ® E;. Denote ®; the
subset of roots which are linear combinations of the roots A;.

Now the Weyl group W maps ®; onto itself: To see this it is sufficient to show
that o, (®;) C ®; for any simple root a. If « ¢ A; then 0, () = f— < B, a>a =7
for any 5 € ®;. But if @ € A; then 0,(8) = f— < 3, > a € ®; by the definition
of ®;.

If § € ® is an arbitrary root we may choose o € W such that o(3) € A. But

then o () belongs to some A; and by the observation above 3 € ®;. Thus we have
®:®1U®2“‘U®t.

We have proven:

Theorem 3.5.2. Any root system ® C E is a union of irreducible root systems

®, C E;, with E=FE1®---® Ey, as an orthogonal direct sum.

Now we list all irreducible root systems in Theorems 3.5.3 - 3.5.11. We denote

the standard basis vectors in R by e, ..., €.

Theorem 3.5.3. Let E be the subspace of the euclidean space R with £ > 1
consisting of vectors a such that (c, Y €;) = 0. Let L be the integral lattice in E
and set ® = {a € L|(a, ) = 2}. Then (E, ®) is an irreducible root system and its
Dynkin diagram is the Dynkin diagram of the Lie algebra Ay.
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Proof. Clearly

b = {Gi —Ej|i #]}

Let A consist of the vectors a; = €; — €;41 with i = 1,2,..., . These vectors form
a basis of E. Furthermore, each element in ® is an integral linear combination of
vectors in A with only nonnegative or only nonpositive coefficients, so it satisfies
the requirements of a system of simple roots; we also observe that clearly the first
two axioms of a root system are satisfied. Next < 3,a >=2(8,a)/(a, ) = (B, ) €
{0,41, 2} so that also the fourth axiom holds.
By a direct computation (Exercise!) we observe that

oa(B) = f— < B,a > a belongs to ® for any o, € ® and so indeed P is a root
system. Since < oy, a1 >= (aj, a41) = —1 but < a;,a; >= 0 for j #i+ 1 we
see that the Dynkin diagram is really the diagram Ay listed in the appendix B; one
can then check by direct computation that the root system corresponding to the
Cartan subalgebra of diagonal matrices in sl(¢ + 1,F), with the choice of simple

roots corresponding to the root vectors e; ;11 € sl(¢ + 1,F), leads to the system

(E,®,A).

Theorem 3.5.4. Let E = R with £ > 2 and ® the set of vectors o in its integral
lattice L such that (a,a) = 1 or (a,a) = 2. Then (E,®) is an irreducible system

of roots with a Dynkin diagram corresponding to the Lie algebra By.

Proof. Now ® = {%¢;|1 < i < ¢} U {%(e; £¢€;)]i # j}. The subset A of vectors
a; =€ —€41,8 < L —1, and ay = €/ is linearly independent and the number of

vectors is equal to the dimension of F, thus it is a basis of E. Furthermore,

+e; =t + ... ap)
+(e;i —€j) =F(ai + -+ ;) fori < j

t(e;i +€5) = (i + -+ aj_1 + 205 + 20541 + ... 20) for i < j.

So A has the properties of a system of simple roots. When 4,j < ¢ — 1 the length
of the roots oy, a; is equal to V2 and < aj,a; >= 0 for i # j £ 1,72 # j. For
j = 1+ 1 we have < «;,a;41 >< jy1,0; >= 1. The length of a, is 1 and
< apoq,0p >< ag,ap_1 >= 2. It follows that the Dynkin diagram is the diagram

By in the appendix. This Dynkin diagram can be reduced from the results of
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last week’s exercises; see the computations for the Lie algebra of antisymmetric

(20 + 1) x (2¢ + 1) antisymmetric matrices.

Theorem 3.5.5. Let E = R with £ > 3 and ® = {2¢;|1 < i < LJU{E(e;%¢;)|i #
j}. Then (E,®) is an irreducible root system corresponding to the Dynkin diagram

Cy.
Remark We could have defined also Cy but then Cy = Bs.

Theorem 3.5.6. Let E =R for ¢ > 4 and define ® as the set of vectors o in the
integral lattice with (o, ) = 2. Then ®{=x(e;£¢;)|i # j} and it is an irreducible oot
system with Dynkin diagram Dy corresponding to the Lie algebra of antisymmetric

20 x 20 matrices.

Proof. This is actually a subalgebra of By, by leaving out the short roots +e¢;. The

simple roots are a; = ¢; —€;41 fori =1,2,...,f/ —1 and ay = €/—1 + €.

Then we have the root systems of exceptional simple Lie algebras. 1t is left as

an exercise to the reader to check that the axioms of root systems are satisfied.

Theorem 3.5.7. (G2) The following is an irreducible two dimensional root system:
Let {e1,¢e2,€3} be the standard basis of R® and let E be the plane orthogonal to
€1 + €2 + €3. A basis of E is given by {€1 — €2, —2€1 + €2 + €3} = A. This is a
system of simple roots for Go. The positive Toots are @ = {1 — €2, —€1 + €3, —€2 +

€3, —261 + €9 + €3,€1 — 262 —+ €3, —€1 — €2 —+ 263}.

Theorem 3.5.8. (F}) Let E =R* and A = {e2—e€3, €3 —€4, €4, %(61 —€x—€3—¢€4)}.
The root system of Fy consists of all integral linear combinations a of elements in
A such that ||a]|?> = 1 or ||| = 2. Then ® = {+e}, U{E(e;te;) | i #
Jjru {:l:%(el + €3 + €3 £ ¢4) | all signs}. Thus the number of elements in ® is 48.

Exercise What is the system of positive roots for Fy?

Theorem 3.5.9. (Es) Let E = R® and A = {3(e1 +€s) — 2(e2 + ...+ €7),e1 +
€2,€2 — €1,€3 — €2,€4 — €3,€5 — €4, €5 — €5,€7 — €6}. The root system ®(FEg) consists

of all integral linear combinations o of elements in A such that ||a|* = 2. Then

8
B = {(e; +e;) | i £} U {% Yo (1) e [ eli) = 0,15 3 eli) € 22},

There are 240 elements in P.
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Theorem 3.5.10. (E;) A and ® are defined here in a similar way as in the case

of Eg except that the last vector ez — €g in A is left out. There are 126 roots.

Theorem 3.5.11. (FEjs) Same as above, but now the two last vectors eg — €5 and

€7 — €¢ in A are dropped. The number of roots is 72.

Exercise 3.5.12 Let g = sl(2,C) and h, h’ a pair of Cartan subalgebras of g.
Construct an automorphism ¢ : g — g such that ¢(h) = h'. Hint: Any Cartan
subalgebra of g is one dimensional. Show from the definition of a Cartan subalgebra
that if w = ax + by + ch is a basis of h (here z,y, h are the vectors in the standard
basis) then ab # —c?.

Exercise 3.5.13 A Borel subalgebra of a semisimple Lie algebra g is a maximal
solvable subalgebra in g. Let h C g be a Cartan subalgebra and ® the system of
roots. Show that

b=h & g,
acdt

is a Borel subalgebra.
Exercise 3.5.14 Show that the map o — —a is an isomorphism of the root

system ® of a semisimple Lie algebra.
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3.6 Existence and uniqueness theorems

In the previous section we have listed all irreducible root systems. On the other
hand, by inspection of the root systems of the simple Lie algebras Ay, By, Cy, Dy, Go,
Fy, Eg, E7, Eg one obeserves that these Lie algebras correspond exactly to the given
root systems.

There are still several unanswered questions: Do these Lie algebras exhaust the
list of all simple Lie algebras? What about general semisimple Lie algebras? What
happens to the root system when we choose a different Cartan subalgebra? Is
the correspondence between (isomorphism classes of) semisimple Lie algebras and
(isomorphism classes of)) root systems 1-17

In this section we shall state the theorems answering these questions, but mostly

without proofs. For proofs the reader should consult the book by J. Humphreys.

Theorem 3.6.1. Let o : g — g be an automorphism of the semisimple Lie algebra
g with h’ = o(h), where h, W' is a pair of Cartan subalgebras. Then the root systems

O, d’ determined by the Cartan subalgebras h,h’ are isomorphic.
Proof. Define ¢ : ® — @ by ¢(a)(h) = a(c~t(h)) for « € ® and h € h’. Choose

0 # ey € g4 Then

[h,0(ea)] = o([07 (h), ea]) = o™ (h))ea)

for all h € h' so that ¢(a) € ®'. We can extend by linearity ¢ : E — E’ where
E, E’ are the real vector spaces where the root systems are sitting. We show that
pooa o0t = 0Og(a) for a € @, 0, € W

$0a¢” (0(0)) = ¢0a(B) = 6(B— < B, > a)

= o(B)— < B,a>¢(a) = ¢(p) for 5 L a.
This implies ¢po,d~1(y) = 7 for all v € ¢(P,). Furthermore, ¢po,éd~1(p(a)) =
0o (a) = —p(a) so that ¢po,dp~! = 04(a)- For an arbitrary pair a, 3 € @,
To(0) (9(B)) = 8(B)— < d(B), d(@) > d(a) = poad™ (6(3))
= ¢oa(B) = ¢(B)— < B,a > ¢(a)

so that < ¢(f), ¢(a) >=< B, > and so ¢ is an isomorphism of the root systems.
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Theorem 3.6.2. Let h,h’ be a pair of Cartan subalgebras in a semisimple Lie

algebra g. Then there exists an automorphism ¢ of g such that h' = ¢(h).
Proof. See J. Humphreys, Sections 16.1 - 16.5

Corollary 3.6.3. The root system of a semisimple Lie algebra does not depend in

an essential way (i.e. modulo isomorphism) on the choice of a Cartan subalgebra.
Theorem 3.6.4. The root system ® of a simple Lie algebra g is irreducible.

Proof. Assume the contrary: ® = ®; U &3 where ®; are nonempty orthogonal
subsystems. Let k be the subalgebra of g generated by the root subspaces g, for
a € &1, If now € @1 and [ € $5 then (o + [,a) # 0 and (a + 3,0) # 0 and
therefore o+ 3 ¢ ®; and o+ 3 ¢ P2 so that o+ 3 is not a root. By Lemma 2.2.5,
[8a,83] = 0. Since g is a direct sum of the root subspaces g, and of

h = &,[g,, 8], we reduce that k is an ideal in g. But this is a contradiction, since

there are no nontrivial ideals.

Lemma 3.6.5. Letg =g, & - - B g be a semisimple Lie algebra, where the g;’s
are its simple ideals and let h be a Cartan subalgebra of g. Then h; =hNg; is a

Cartan subalgebra of g; for each i.

Proof. First each h; is commutative since h is commutative. We have to show that
N(gi, h;) = h;. If this is not the case, then for some iy the ideal hj = N(g;,,h;,)
would be strictly larger than h;,. But since [g;, g,] = 0 for i # j,

h;hl—f—h;O‘thCN(g,h)

and so N(g,h) # h, which is a contradiction, since h is a Cartan subalgebra of g.

Theorem 3.6.6. Letg =g +---+g be a semisimple Lie algebra composed of the
simple ideals g;. Then the root system ® of g decomposes to a union ® = &, U... D,

of mutually orthogonal irreducible subsystems, where ®; is a root system of g;.

Proof. By the results above, it suffices to show that 1) each root of g belongs to
some ®;, and 2) the subsystems are mutually orthogonal.

Now let a € ®. Since [g;,g;] = 0 for i # j the ad}, eigenvectors must lie in the
subspaces g;. So we have g, C g; for some i. But then g, is a root subspace of

(gi, h;) since h; = g; Nh. Thus a € ;.
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Let next o € ®; and 8 € ®; with ¢ # j. Then hg € g; and e, € g;, so
0= [hg, ea] = a(hp)eq and a(hg) =0

which implies (o, 8) = a(hg) = 0.

Lemma 3.6.7. Let ® be an irreducible root system and A C ® a system of simple
roots. Then there is a unique mazimal root B € ® with respect to the partial order
defined by the set of positive Toots ®*. If o is any root then the height h(a) < h(f3)
and (B,y) > 0 for any simple root . All the coefficients in the decomposition

B = ZaeA koo are strictly positive.

Proof. Let (3 be any maximal root (it exists since @ is a finite set). Clearly 3 € ®*.
Define A; C A as the set of simple roots « such that k, = 0 in the expansion
B=> koo and Ag = A\ Ay. If Ay # () then (3,a) <0 for all @« € A; by Lemma
3.3.1.

Since @ is irreducible there are roots a; € A; and as € Ag such that (g, 2) #0
and thus also (£, 1) < 0. By Theorem 3.2.2 a; + 3 is a root. But since a; > 0 we
have a; + 3 > 3, contradiction. It follows that A; = 0 and k, > 0 for all o € A.

In the same way we see that (§,«) > 0 for all @« € A (otherwise a + 3 € ®
and o + 3 > (). Let then 3’ a another maximal root with 8’ = >kl a as sum
over simple roots. Again (3’,a) > 0 for all « € A and since 3’ # 0 we must have

(B, ) > 0 at least for one simple root «. Then

(8'.8) =Y ka(#;0) >0

and so 8 — 3" € ® or B = 3. The former is absurd since then 3 > ' or 3’ > 3 by
Theorem 3.2.2. So we must have 5’ = .

Exercise 3.6.8 Let g be semisimple, h C g a Cartan subalgebra, and A C ® a
set of simple roots for (g, h). Choose 0 # z, € g, and 0 # y, € g_,, for all @ € A.
Show that the vectors z,, y, generate the Lie algebra g, that is, any element in g is
obtained by taking linear combinations of multiple commutators of these elements.

Hint: Use repeatedly Theorem 2.3.11.

Theorem 3.6.9. If the root systems ®, ®' of a pair of semisimple Lie algebras g, g’

are isomorphic then g is isomorphic with g’.
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Proof. By assumption, there is a linear map ¢ : E — E’ such that ¢(®) = &’ and
¢ preserves the brackets < -,- > . Let A C ® be a system of simple roots. Then
A’ = ¢(A) is a system of simple roots in ®'. We fix z, € g, and y, € g_,, for all
a € A such that hy = [za,ya), Cor. 2.3.9. We fix likewise the elements z/, and
y., in g’; we have denoted o = ¢(av).

We assume first that g, g’ are simple Lie algebras. We denote by k the subalgebra
of g ® g’ generated by the vectors &, = x4 ® 2., and Yo = Yo B Y.,/

(1) We claim that k # g @ g’. Since g, g’ were assumed to be simple, the root
systems are irreducible. Let 3, 3" the maximal roots in ®, ®'. The map ¢ preserves

the partial ordering since if v € ® is a positive root then v = > koo with

a€A
nonnegative coefficients and so ¢(7y) is a linear combination of the simple roots
¢(a) € A’ with nonnegative coefficients and ¢(7) is positive. It follows that 5 =
P(8).

Let 0 #x € gs,0 # 2’ € g. Set & =x®a’. Let V C g® g’ be the subspace
generated from the vector by repeated adjoint action by the elements in k. Now
[2y,2] = 0 = [27,,2'] for any positive roots 7,7 by the maximality of the roots
B3, 3". Tt follows that it suffices to take commutators of Z with the elements 7, in

order to generate the whole space V. This means that any vector in V' is a linear

combination of vectors

ad

Gaq * ad@an (j)

By the inspection of the weights of these vectors we conclude that the intersection
VN (gp @ gp) consists only of the vector £. On the other hand, dim (gs © gj,) = 2
sothat V #gd g’

We wanted to prove that k # g @ g’. If this is not true then V' is a nonzero ideal
in g @ g’ and thus either V =g or V = g’ which is absurd since Z € V but & is not
an element of g or of g’.

(2) Let 7 : k — g and n’ : k — g’ be the projections. Clearly both 7, 7" are
homomorphisms of Lie algebras. By the exercise 3.6.8 these maps are surjective.
We claim that they are also injective. If for example 7’ is not injective then there
is an element 2 = 2z ® 0 € k with 2 # 0. Let I C g be the ideal generated by
z, that is, the space of linear combinations of vectors obtained by taking multiple

commutators of z with the vectors x,,y,. But g is simple, so this ideal must be
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equal to g. By the definition of k we have then g C k. This implies that the vector
0@ 2’ is in k. Again, the ideal in g’ generated by 2/ must be all of g’ and so g’ C k.
Now g @ g’ C k, which is in contradiction what we have shown in (1). It follows
that the maps 7 : k — g and 7’ : k — g’ are both isomorphisms and therefore the
algebras g, g’ are isomorphic.

Note that in this isomorphism x,, is mapped to z,,, via the element &, € k, for
each simple root o € A. Likewise for the elements y, and therefore also for h,’s.

(3) Consider finally the general case when g, g’ are not necessarily simple. If & =
®; U... P, is a decomposition of ¢ to mutually orthogonal irreducible subsystems
then ®' = @] ... ®} is a similar decomposition for &' with ®, = ¢(®;), since ¢ is
an isomorphism of root systems. Now ®/ is isomorphic to ®;. Denoting by g; the
subalgebra of g corresponding to the subsystem ®; and by g, C g’ the subalgebra
corresponding to @/, we have by the previous results that g; is isomorphic with g.

The subalgebras g; are simple ideals and

It follows that g is isomorphic with g’.

Exercise 3.6.10 Determine the maximal roots in each of the cases Ay, By, Cy
and Dy.

Exercise 3.6.11 In a similar way as in the Exercise 3.5.13 we define a Borel
subalgebra b’ as

b=h & g,
aced—

Show that the Borel subalgebras b and b’ are isomorphic. Hint: Use Exercise
3.5.14.
Exercise 3.6.12 Let {aq,...,a,} be a system of simple roots for a semisimple

Lie algebra g. Let x; € g,, and y; € g_,,. Show that
(ady,) "= (1) = 0 = (ady,) "< (y)

when ¢ # j. Hint: Use the Theorem on lengths of root chains.
Exercise 3.6.13 We know that the map o — —a is an automorphism of a root
system ® of a semisimple Lie algebra g. Describe explicitly, in terms of basis in

root subspaces, the corresponding automorphism of the Lie algebra g.
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CHAPTER 4: REPRESENTATION THEORY

4.1 The universal enveloping algebra

In this section we define an associative algebra U(g) for any Lie algebra g which
will be an important tool for constructing representations of g.

First, for any set S we define a free associative algebra F(S) over a field F,
generated by S. As a vector space, F(S) is the space of formal linear combinations
of words ayas . ..a, where the a;’s are any (not necessarily different) elements in
the set S. This means simply that F(S) is an infinite-dimensional vector space over
F with a basis labelled by the words a; ... a,.

Next we define a product ab of words a = a; ...a, and b = by ...b,, by writing

the words after each other,
ab=ay...a,b1...b,,.

We extend this product by linearity to a pair of arbitrary vectors in F(S).

It is clear that the product is associative, by definition the standard distributive
laws hold, so that indeed IF(S) becomes an associative algebra over the field F.

An empty word (no letters) is denoted by 1. This becomes the neutral element
for multiplication, la = al for all a € F(S).

Remark When the set S consists of a single element x then the algebra is simply
the commutative polynomial algebra in one variable x : the words are 2" = xz ...z
(n times) and a general element in the algebra is > , ;2 with a; € F. In general
however F(S) is noncommutative, zy and yx are different words.

We can also define the commutative free associative algebra generated by the
set S by declaring that the order of the letters does not matter. For a finite set

S ={z1,...x,} this is the polynomial algebra in n variables x;. The general element

ky
n -

in this algebra is a linear combination of the basic monomials a:’fl L.
Let next V be a vector space over F. We define a new associative algebra F[V].

This algebra is defined as F(V') but now we identify a formal linear combination

a-a+ [ -b of one letter words a,b € V as the one letter word ¢, where ¢ =

a-a+ (B -0bis the linear combination in the vector space V. Likewise, the prod-
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ucts w = aj...a;—1(a-a+ B -b)aj41...a, will be identified as vectors w =
Q-1 ...0;—100;41...Qp +PB-a1...0;-1b0;41 ... ay.

If 21 ...2, is a basis of V' then a general element in F[V] is a linear combination
of the words in the alphabet x4, ..., z,. This means that actually the algebra F[V]
is isomorphic to the free associative algebra F(S) where S = {z1,...,2,}.

When V = g is a Lie algebra we can perform a further reduction of the algebra
F[g]. We want that the structure of the universal enveloping algebra U(g) reflects
the commutator structure of g. Let I C F[g] be the smallest two sided ideal con-
taining all the elements xy — yz — [z,y| for x,y € g. Note that these are linear

combinations of words of length 1 and 2. If eq,..., e, are basis vectors in g,

[essej] = ) chiex,
k

then we can write

vy —ya — [1,y] = Y wysleie; —eje) — > wiyiclier

as elements in F[g]. Note that in the free algebra [F[g] the elements e;e; — eje; are
completely independent of the Lie algebra commutators [e;, e;] = cfjek.

By definition, the ideal I consists of all linear combinations of elements u(zy —
yx — [z, y])v, where u, v are arbitrary elements in the algebra F[g].

If A is any associative algebra and I C A is a two sided ideal then one can con-
struct a new associative algebra A/I, which, as a vector space, is just the quotient
of two vector spaces. The product in A/ is defined through representatives of
equivalence classes,

(u+D(v+1)=uv+1.

Exercise 4.1.1 Show that the product is well-defined (it does not depend on
the choice of representatives of the classes) and defines an associative algebra.

In the case of I C F[g] above, we define U(g) = F[g]/I. This is the universal
enveloping algebra of g.

The universality properties refers to the following property:

Theorem 4.1.2. If ¢ : g — A is a homomorphism to an associative algebra A,

that is, ¢ is linear map with the property ¥([x,y]) = Y (x)Y(y) — Y (y)Y(x), then

there exists a unique homomorphims ¢ : U(g) — A of associative algebras such that
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Y = ¢oj where j: g — U(g) is the canonical map which sends x € g to the one
letter word x in U(g). The universal enveloping algebra is uniquely defined (up to

isomorphism) by this property.

Proof. First the uniqueness. Let U’ be another algebra with the above property,
with j’ : g — U’. Then there is a homomorphism ¢ : U(g) — U’ such that j' = ¢oj.
On the other hand, we have a homomorphism ¢’ : U’ — U(g) by the universality
of U’, such that j = ¢’ o j/. Combining, we get a homomorphism 8 = ¢ o ¢’ :
U(g) — U(g) such that j° = 0 o j’. But also the identity map U(g) — U(g) has
this property. By the uniqueness of § we must have 6 = id and thus ¢ : U(g) — U’
is an isomorphism.

Let then ¢ : g — A be a homomorphism. We can define ¢ : U(g) — A by
setting ¢(x) = ¢ (x) for any one letter word = and (1) = 1. The one letter words
generate the whole algebra U(g) and therefore ¢ extends by linearity to the whole
algebra U(g). It clearly has the required property, including uniqueness.

Corollary 4.1.3. Let i : g — EndV be a representation of the Lie algebra g in a

vector space V. Then there exists a unique representation ¢ : U(g) — EndV such

that ¢ = ¢ o J.

Conversely, a representation of U(g) gives by restriction to the one letter words
a representation of the Lie algebra g. Thus there is a one-to-one correspondence

between representations of g and its universal enveloping algebra U(g).

Theorem 4.1.4. (Poincare-Birkhoff-Witt) Let x1,xs,...,z, be a basis of the Lie
algebra g. Then the ordered words x;,x;, ...x;, form a basis of U(g), where i; <

i1 <idg--- <i,. (We refer for a proof to J.Humphreys, Section 17.3.)

Exercise 4.1.5 Prove the PBW theorem when g is a commutative Lie algebra.

Exercise 4.1.6 Let 1 be the representation of a finite-dimensional Lie algebra
g in the vector space U(g) defined by ¥ (z)u = zu — uz. Although U(g) itself is
infinite-dimensional, show that any element v € U(g) lies in some finite-dimensional
subspace V' C U(g) which is invariant under the representation .

Exercise 4.1.7 Let g = sl(2,C), A € C and let I, be the smallest left ideal
in U(g) containing the elements x and h — A - 1. Here x,y,h are the standard
basis vectors of g. Show that a basis of the vector space U(g)/I, is given by the
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monomials y™ withn =0,1,2,....

55
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4.2 Representations of sl(2,F)

We denote again the vectors in the standard basis of g = sl(2,FF) as z = e13,y =
€21, h = e11 — ega. The field F is of characteristic zero and algebraically closed. The
standard Cartan subalgebra h is spanned by the vector h. We have the commutation
relations

[h,x] =2z [hy]=-2y [z,y]=h

First some new terminology. We have defined a representation of a Lie algebra
g as a homomorphism p : g — EndV, where V is a vector space. Thus the
action of an element x € g to a vector v € V is written as p(x)v. We often drop
the symbol p and write simply p(x)v = xv. That is, we have a multiplication
g XV — V,(x,v) — xv. The multiplication satisfies, besides being linear in both
arguments, [z, ylv = z(yv) — y(zv). In general, a vector space V together with this
kind of multiplication g x V' — V is called a g module. Thus a representation of g
defines a g module and vice versa.

By the Corollary 4.1.3 any g module defines in a natural way a U(g) module
and any U(g) module gives a g module by restriction to g C U(g).

A g module V is irreducible if there are no nontrivial g invariant subspaces
W cV.

Assume next that V is an irreducible finite-dimensional nonzero g module. If
0# v €V then U(g)v C V is clearly a g invariant subspace and therefore U(g)v =
V.

Since V is finite-dimensional, the element h has at least one eigenvector in V.
For the same reason there must be an eigenvector vy with maximal real part of the

eigenvalue \. Since
h(zvg) = x(hvo) + [h, z]vg = (A + 2)vg

we must have zvy = 0 by the maximality of the eigenvalue A. By the Poincare-
Birkhoff-Witt theorem a basis in U(g) is given by the elements y?h%x" with p, q,r =

0,1,2,.... But since xvyg = 0 and hvg = Avy we observe that

U(g)vo = {Z apy”vola, € F}.
p
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But V was assumed to be irreducible so we conclude that V is spanned by the
vectors yPvg.

We denote v; = Ly vp.
Lemma 4.2.1.

(1) hv; = (A — 2i)v;

(2) yv; = (i 4+ 1)vip

(3) zv;=A—i+4+ 1Dv;_1.

Proof. (1) The case i = 0 is clear. Induction on 7 :

hvip1 = (i + 1) hiyw) = (i + 1) (yho + [h, y]v:)

= (i4+ 1) (N = 20)yv; — 2yvs) = (A —2(i + 1))vig1.

(2) This follows directly from the definition of v;.

(3) The case i = 0 is clear. Induction on i :

v = (i 4+ D) Ty, = (04 D)7 y(N — i 4+ Dvg_q + hoy)

=i+ 1) N — i+ Doy + (A= 20)v) = (A= (i 4+ 1) + 1.

Since by 4.2.1 (1) the vectors v; for different values of ¢ are linearly independent
provided that they are not equal to zero, we must have v; = 0 (by the finite-
dimensionality of V') for i > m for some m; choose this integer m to be the smallest
possible. Then v; # 0 for i = 0,1,...,m. It follws that the set {vg,v1,..., v} is a

basis in V. Now we have, by Lemma 4.2.1,
0=2Vmt1 = (A —m)uy,

Since vy, # 0 it follows that A — m = 0. Thus the the maximal eigenvalue X of h is
a nonnegative integer.

Since the Cartan subalgebra is here one-dimensional, the weight subspaces V,, of
V' are simply the eigenspaces of h. We have seen that the eigenvalues of u of h are

giveas p=A—2t with¢=20,1,2,...,m so that y = —m,—m+2,...,m.
Theorem 4.2.2. Let V' be an irreducible nonzero sl(2,F) module. Then

(1) There is a unique (up to a multiplicative constant) mazximal vector vy with

the highest eigenvalue A =0,1,2... of h
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(2) V is a direct sum of one-dimensional weight subspaces V,, with p = —X\, —A\+
2,...,A
(3) There is a basis with v; € Vx_o; such that the action of the elements x,y, h

1 given as in Lemma 4.2.1.

Proof. First we observe that the maximal weight © = A\ determines the sl(2,F)
module V' up to an isomorphism. Given two different irreducible g modules V, V"’
with highest weight \ we can construct the isomorphism as the linear map ¢ : V" —
V' with the property ¢(v;) = v}, where the basis {v,} C V' is chosen in a similar
way as {v;} C V.

The existence of the modules follows from a direct construction: Define V = FA+!
an denote the basis vectors in the standard basis by vg, v1,...vy. Define the action
of x,y, h using Lemma 4.2.1 and check by direct computation that the commutation

relations of g hold.

4.3 The theorem of Weyl

Let g be any semisimple Lie algebra and choose a basis z1,...,x, in g. Let

B :g x g — F be any symmetric nondegenerate bilinear form such that

B([z,y], 2) = =By, [z, 2]) for all z,y, 2 € g.

We know that at least the Killing form satisfies this condition, and that if g is
simple then any such a bilinear form is proportional to the Killing form.
Since [ is nondegenerate, the determinant of the matrix §8;; = B(x;,z;) is

nonzero and the system of linear equations
B(y;, ;) = d;; with i =1,2,...,n

has a unique solution y; for each index j. That is, the basis z1, ..., z, has a unique
dual basis y1,...,Yn.

Exercise 4.3.1 Let ¢ : g — End V be a faithful representation of the semisimple
Lie algebra g in a vector space V (that is, ¢ is injective). Then the symmetric

bilinear form

B(z,y) = tr(o(z)o(y))
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is nondegenerate. Prove this!

In the situation of Exercise 4.3.1 we define an element ¢4 € End V' by

Cp = Z o(z:)P(yi)

This endomorphism is not zero:
treg = Ztr (P(xi)p(yi)) = Z(%‘,yi) = dim g > 0.
i i
Theorem 4.3.2. ¢, commutes with every ¢(x) and thus cy is equal to X -1 in an

irreducible representation (Schur’s lemma), where A = dim g/ dim V.

Proof. Let z € g. We can write

[.T,IZ'] = ZGUIJ and LE yz Zbljy]

J

We have
ain = B[z, @), yr) = —B(xs, [x, 1)) xz,Zbkjyj ki
Using this and the identity [A4, BC] = [A, B]C + B[A, C|] for matrices we get
[$(2)s ol = 2[00, dz)d(pi)] = 3 _[6(2), dllg(ai) + 3 d(wolgla), 6]

= Zgb([x’xz yz +Z¢ IL‘z CU yz
= Zalﬂb(mz yj + waqé :L‘i yj) =0.
tj ij

The endomorphism ¢y is called the Casimir element of the representation.

We can also define the (universal) Casimir element as a vector in the universal
enveloping algebra U(g) by setting ¢ = >, x;y; where the dual basis {y;} is defined
with respect to the Killing form, (y;,z;). One can then repeat the computation
above and show that ¢ commutes with very z € g and therefore ¢ commutes with
every element in the enveloping algebra U(g).

Any g module V defines the dual g module V* module: As a vector space V* is

the space of linear functions f : V — C. The action of z € g in V* is given by
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This is really a g action:
([z,9] - ))(v) = = f([z,y]v) = —f(@(yv) — y(2v))
= (= f)yv) = (y- @) = (—y(f))(vv) + (z(yf))(v)
so that [z,y]f = z(yf) — y(zf).

For a submodule W C V the quotient module V/W is defined as usual: The

action of = € g on a vector [v] = v + W is defined as z[v] = [zv].

Lemma 4.3.3. Let ¢ : g — EndV be a representation of a semisimple Lie algebra

g. Then each endomorphism ¢(x) is traceless.

Proof. Since g = [g,g], any x € g is a linear combination of elmenents of the type

ly, z]. But ¢([y, 2]) = &(y)P(2) — ¢(2)é(y) and has therefore vanishing trace.

A representation (or a g module) is completely reducible if it is a direct sum of

irreducible representations (modules).

Theorem 4.3.4. Any finite-dimensional representation of a semisimple Lie alge-

bra is completely reducible.

Proof. Let g be semisimple and ¢ : g — End V' a finite-dimensional representation.

(1) We assume first that there is a submodule W C V of codimension = 1. We
prove by induction on the dimension p = dim W that there is a complementary
one-dimensional invariant subspace X C V. The case p = 0 is clear. Induction
p—p+1:

(1a) If W is reducible then choose an invariant submodule W/ C W with W' #
0,W. Then W/W’' C V/W’ is a submodule with dim(W/W’) = dim(V/W’) —
1. We may apply the induction hypothesis to W/W’ to reduce that there is a
complementary invariant submodule W /W' C V/W’ of dimension one, V/W' =
W" /W' & W/W’. In the same way there is an invariant submodule X c W”
of dimension one such that W”’ = X & W/. Now W N W"” C W’ and therefore
WNX =0. Since dim X +dim W =dim V we get V =W ¢ X.

(1b) Let W be irreducible. Let ¢4 be the Casimir element of the representation ¢.
Since W C V is an invariant subspace we may view ¢y as a linear map V/W — V/W.
Since dim(V/W) = 1 is a linear map in this space equal to its trace and by Lemma

4.3.3 ¢(x) = 0 in the quotient space V/W. But

try (cp) = trw (cp) + tryw(cy) = trw(ce)
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and so try(cy) # 0, by 4.3.2. Since W is irreducible we must have cy|lw = A x 1
for some A € F. Since the trace is nonzero, we have A # 0 and thus W Nkercy = 0.
Since ¢4 vanishes in V/W we have c4(V) C W and so kercy # 0 in V. By a

dimension argument we obtain
V =kercy ® W.

ker ¢4 is a submodule of V' since the Casimir element commutes with the represen-
tation. This completes the induction in the case codim W = 1.

(2) The general case. Let W C V be any nontrivial submodule. Let T' =
Hom(V, W) be the vector space of linear maps V' — W. This is a g module by
setting (zf)(v) = z(f(v)) — f(av) for x € g,v € V. Let 7" C T be the subspace
consisting of linear maps f which are constant in the subspace W C V. It is clear
that 7" C T is a submodule. Let T” C T be the submodule consisting of functions
f which vanish in W. Let f : V' — W be any linear function such that f(w) = w
for all w € W. Then T = T” & F - f. On the other hand, xf is also such a linear
function for any x € g. But since the complement of 7" in T” is one-dimensional,
we may us step (1) and reduce that we may fix f such that it spans an invariant
submodule S.

Since dim S = 1 we have x - f = 0 for all z € g, that is,

0= (2f)(v) = f(zv).

This means that f : V' — W is a homomorphism of g modules. The kernel ker f C V
is a submodule and its intersection with W' is zero (f(w) = w for all w € W). From
this follows that

V=W @ker f.

This concludes the proof.

Exercise 4.3. 5 The elements of the Weyl group W determine automorphisms
of the root system ®. These are called the inner automorphisms. Show that in the
case of A the group of automorphisms is strictly larger than the group Int(®) of
inner automorphisms. Hint: Study the automorphism o — —a.

Exercise 4.3.6 Construct all automorphims of the root system As (and thus of

the Lie algebra As).
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4.4 Some group theory and tensor analysis of representations

This section is a digression to group theory. We shall explain some constructions
of representations of classical Lie groups without proofs. Because of the relation
between Lie algebras and Lie groups explained in the beginning of Chapter I, any
representation of a Lie group defines a representation of the corrresponding Lie
algebra; the connection is given by the exponential map of matrices.

Tensor analysis provides some very simple constructions of representations. It is
somewhat harder to see that we get all irreducible representations this way. The
reader is recommended to look at the classical text H. Weyl: Classical Groups and
their Invariants and Representations.

A useful tool in the tensor analysis comes from physics: The use of the algebra
of bosonic or fermionic creation and annihilation operators. We shall briefly discuss
this method, through examples, in the end of the section. The linear groups SU(n)
and SO(n) appear in physics often as symmetries of many particle systems. This
could be for example a nucleus exhibiting various kinds of particle interchange and
combined rotational symmetries. If the symmetry is exact, that is, the group com-
mutes with the hamiltonian, then one can classify eigenvectors of the hamiltonian
belonging to the same eigenvalue using the representation theory of the symmetry
group G. Even in the case when the symmetry is only approximate it might still
be of advantage to classify the physical states according to representations of G
(’supermultiplets’).

To see how the symmetry operates on many particle systems let us assume
first that G is represented in a vector space V (’single particle space’) with basis
vectors vy ...v,. A 2-particle system is then described using the tensor product
space V ® V carrying the tensor product representation of G. Tensors can be split
two antisymmetric and symmetric tensors. Writing a general element of V ® V as
t =) tijv; ® v; we can split

t=ats,  aj= %(tij —tji), si5 = %(tij +tij),
where s is symmetric and a is antisymmetric in the indices.
Writing a group element g € G as a matrix g;; acting on the coordinates in

the v; basis we observe that in the tensor product representation the G action is
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t;j = GiaYjbtap (sum over repeated indices) and therefore by linearity

Ai5 = GiadjbQab, Sij = GiagjbSab,

i.e. the antisymmetric and symmetric parts transform separately. We have therefore
two subrepresentations, one in the space of antisymmetric tensors and one in the
space of symmetric tensors.

In general, the antisymmetric and symmetric parts can be further reduced to
irreducible components. There are some exceptions, most notably the case when
G = SU(n) or G = GL(n) acting in V through the defining representation. In
these cases one can prove that the representations A and S are already irreducible.

One can go on and consider 3-, 4-,...n-particle systems. For example, in quantum
mechanics a system of indistinguishable half-integer spin particles (fermions, e.g.
electrons) obeys the Pauli exclusion principle: no two particles should be in the
same state. Mathematically, this means that the system is described by elements
in the completely antisymmetric tensor product space A¥V. Here k is the number of
particles. The number of particles cannot exceed the number of one-particle levels
n for combinatorial reasons; there are no completely antisymmetric tensors of rank
k > n. For k < n the number of independent antisymmetric tensors is

n!

This is the number of ways how one can select k different numbers from the sequence

1,2, ...,n. Each such selection defines a basis vector in A*V by

(il,...,ik) I—>Z€(O’)’Ui1 ®®’U2k

o

where the sum is over all permutations of k letters and €(oc) = +1 depending
whether the permutation is a product of even or odd number of transpositions. It is
clear that any antisymmetric tensor can be written uniquely as a linear combination
of these elementary tensors.

In the case of integral spin particles (bosons) there is no Pauli exclusion princi-
ple; instead, the multiparticle wave function should be completely symmetric with
respect to the interchange of arguments (Bose statistics). That is, the k particle

states should be elements in the completely symmetrized tensor product S¥V. A
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complete basis in S¥V is obtained by symmetrizing the vectors v;, ® - -- ® v;, with

i1 <1< - <1t Now i1 <io+1<i3+2--- <ip+ k— 1 are different positive

integers in the set 1,2,...,n + k — 1 and therefore the dimension
. +k—1)!
dim(SkV) = (n—
im(STV) = T =

In situations where not all of the particles are indistinguishable one has to deal
with tensors of mized symmetry type. For example, we could consider third rank
tensors obtained from arbitrary tensors by an application of the mixed symmetry
operator

R=(1-(13)(1+(12)),
where (ij) means the transposition of the i:th and of the j:th index; thus
(Rt)iyizis = tivigis + tiniris — biginia — binizi -

Note that the order of permutations is important. We denote tensors Rt symboli-

cally by the Young diagram

11 | 12
i3
The completely symmetric tensors are denoted by |1 | 22 |. . .| ¢x | and the completely
antisymmetric ones by
1
i2
i

As another example of tensors of mixed symmetry type consider the Young diagram

11 | 12

13 | 4

The corresponding Young symmetrizer is R = QP where
P=(1+4(12))(14(34)) and Q@ = (1 — (13))(1 — (24)).

The general principle is the following: To each row in the Young diagram one
associates a symmmetrizer in the corresponding tensor indices. Then one forms the

product of all row symmetrizers; here the order is unimportant because the different
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rows do not mix. To each column one associates an antisymmerizer in the indices
included in the column. Finally one multiplies by the product of antisymmetrizers

from the left. So in the case of the above diagram one has

(Rt)irizigia = Livinizia — biginivia — tivigigin T 93igiria
+ ti2i1i3i4 - ti2i3i1i4 - ti4i1i3i2 + ti4i3i1i2
+ ti1i2i4is - ti3i2i4i1 - ti1i4i213 + ti3i412i1

+ Cigirisiz — Cinigiain — ligivinis T+ Ligizinia

All the permutation operators R commute with the linear group transformations
g € G. For this reason a tensor of the type Rt is transformed into a similar tensor
Rt'. Thus the space RV* of tensors of type R carries a representation of the group
G. In fact, one can show that in the case of G = SU(n) or GL(n) in the defining
representation this is irreducible. Not so in the case of SO(n). The reason is simple:
For the orthogonal group there are geometric invariants formed by the partial traces
tjjiris... of the tensors. For example, all the tensors for which this partial trace
vanishes form an invariant subspace (the orthogonal transformations preserve the
real euclidean inner product).

The operators R are idempotents modulo a normalization factor. This means
that R? = ng - R for some integer ng. Exercise: Prove this in the case of the 3-
box Young diagram above. The idempotent property means that (the normalized)
symmetrization operators R act as projectors in the space of all tensors, projecting

to the various irreducible representations of SU(n) (or GL(n)).

Example G = SU(3), defining representation in V = C3. The Young diagram

le 12
— gives the adjoint representation. To see this consider the tensor u = R(e1 ®
13
e1 ® es), where e; is the standard basis in C3. The eigenvalues of diagonal matrices

for a tensor product Lie algebra representation add up, so u is an eigenvector of h;

1

5 = 1 and the eigenvalue for hy is

(here h; = e;; — % - 1) with eigenvalue % + % —

—% — % + % = 0 giving the heighest weight (1,0) of the adjoint representation of

Asy. Furthermore, u is annihilated by ej2 and es3. For example,
ezl ®e; Qey) =e1 ®er Ve

which is mapped to zero by R because of the antisymmetrization (). Thus ejou = 0.
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Similarly,

easz(er ®e; ®ez) =0

(since egze; = 0 = eazeq) and therefore also egzu = 0. It follows that u is a highest

weight vector. Finally, one checks that R(e; ® e; ® ea) # 0.

Creation and annihilation operator formalism

In the case of completely symmetric wave functions (bosons) there is a sim-
ple formalism to describe the many particle states. To each bases vector v; for
one-particle states one associates a creation operator a; with the commutation
relations

la;,a] = 0.
A vacuum (zero particle state) is denoted by |0 > . Multiparticle states are then

obtained as polynomials

ki, ko, .ok >= (a3 .. (a2

n

0>

acting on the vacuum; here the k;’s are arbitrary nonnegative integers. The bosonic
structure of the indistinguishable particles is encoded in the commutation relations:
the order of factors is unimportant and therefore the states |k; ...k, > can be
put to correspond vectors in the completely symmetric tensor product S*V, where

k=ki+-+kny,
k1. k> S ®@...01 Q0®...020Q0 - QU @+ Q y)

where S is the complete symmetrization opeator (sum over all permutations of k
factors), the number of v1’s is kq, ...., the number of v,’s is k,,.

To describe the inner product in the Hilbert space of multiparticle states (called
the bosonic Fock space F) it is convenient to introduce also the annihilation op-

erators a; with the commutation relations
[ai, aj] = O, but [CLL', a;‘] = 513

The inner product is now fixed uniquely by the requirement that 1) the annihilation

operator a; is the adjoint of af, 2) the vacuum is annihilated by all annihilation
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operators, a;|0 >= 0, and 3) the normalization < 0|0 >= 1. For example,

< 1,1]1,1 > =< 0|(aja3)*(aja3)|0 >=< 0|azaiaja3|0 >

=< 0Olazla, aij]as|0 >=< 0|agas|0 >=< 0|[az, a3]|0 >=< 0|0 >=1

We define the operators

— A%,
€i; = a;aj.

It is easy to check the commutation relations
[eij, ert] = djneir — durer;.

We have thus constructed the Lie algebra of the general linear group GL(n,C)
acting in the bosonic Fock space. This representation is reducible. Define the

particle number operator
N = Z a;a;.
i

This commutes with all the operators e;; and it follows that the different eigenspaces
of N are invariant under the Lie algebra gl(n). This corresponds to the fact that
the Fock space consists of completely symmetric tensors of arbitrary rank; the
symmetric tensors of fixed rank form an irreducible representation space. Let
|m >= (a})™|0 > . This vector is of rank m and is annihilated by all e;; with
i < j. It is also an eigenvector of all elements e;; in the Cartan subalgebra. (For
slight technical convenience we have added also the central element €11 + - - - 4+ epn
and consider the Lie algebra gl(n) instead of the (semi)simple Lie algebra A,,_1.)
Thus |m > is a highest weight vector corresponding to the weight A(e;;) = m - d1;.

As already noted before, the group GL(n) acts irreducibly in the space of com-
pletely symmetric tensors; therefore a complete set of vectors in the subspace
Fm = {Y € FIN¢Y = ma} is obtained by acting with the operators e;; on the

highest weight vector ¢, € F,,. We can write
F=FodF1DFs...

and each F,, carries an irreducible representation of GL(n).
In order to construct more general representations using the Fock space methods

one has to increase the number of independent bosonic oscillator modes. We can
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prove that all finite-dimensional highest weight representations of GL(n) or SU(n)
can be constructed using a set a;;,a;; of creation and annihilation operators with

1 < 14,5 < n, commutation relations
[aij, ax] = 0ixdj1,

all other commutators being zero. The Lie algebra is constructed as

J— * .
eij = E aikajk.
k

For each sequence m = (my,ma,...,my) of nonnegative integers we construct the

vector

p(m) = [[(det(a;)i <e)™ [0 > .

k

Using the antisymmetry of a determinant as a function of the row vectors we first
observe that e;;1(m) = 0 for all i < j. The vector ¢(m) is also an eigenvector of each
eii; €4 acts like a number operator for the oscillator modes with first index equal to
1. The determinants are homogenenous functions of order 1 in each of the rows and
columns and it follows that the action of e;; on ¥ (m) is just a multiplication by the
total degree m,, +my_1 +---+ m;. Thus we get for the components A\; = A(e;;) of

the highest weight, \; = m; + m;+1 - - - + m,,. In particular
A >X>.00, >0

and all the components are integers. Conversely, for each such a sequence X\ there
is a unique set of nonnegative integers m with the above relation to A.

Working carefully out the normalization factors in the space of roots of Ay one
(M)

(o)

observes that the conditions < \,a >= 2 = 0,1,2,... for each simple root
a = o ;+1 of Ay are essentially the conditions on the compents \; derived above;
the only difference is that we have added the number operator N to the Cartan
subalgebra, thus discarding the trace zero condition on elements of A,. We shall
prove later in the next section that all the finite-dimensional irreducible represen-
tations of semisimple Lie algberas are classified by the highest weight . This is
the weight of a vector v is the representation space which satisfies z,v = 0 for all

root vectors x, corresponding to positive roots a. The highest weights A have the

characteristic property that < A, o > is a nonnegative integer for all simple roots a.
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Therefore, all the finite- dimensional representations of A,,_; are generated by the
different highest weight vectors )(m) in the bosonic Fock space for n? independent
oscillators. In the Young diagram notation, the representation A corresponds to the
diagram with row lengths Ay > Ay -+ > )\, read from top to bottom.

The completely antisymmetric representations (only one column in the Young di-
agram) are best constructed using the fermionic oscillators b/,b;,7i=1,2,... n.
The defining relations are described by anticommutators [A, B]y = AB + BA in-

stead of commutators,

[bF,b5]+ = dij

and all other anticommutators are zero. The Lie algebra of GL(n) is now con-
structed as

— * .
€ij = bZ bj.

The commutation relations can be checked using the identity
[AB,CD] = A[B,C]+D — [A,C|+BD + CA[B, D], — C[A, D]+ B.

The fermionic Fock space consists of all creation operator polynomials acting on
the vacuum |0 > . As in the bosonic case the vacuum is defined by the relations
b;|0 >= 0. The vacuum is again normalized, < 0|0 >= 1 and b} is supposed to be
the adjoint of b;. These requirements fix the inner product uniquely.

The bosonic Fock space was infinite-dimenional. In the fermionic case the di-
mension is finite. The reason is that, because of the anticommutation relations, all
the powers (b})* vanish identically for k£ > 1. The only nonzero vectors in the Fock
space are of the type

bi b;, ... b5 |0 >,

11 712

where all the indices i, are distinct. By the anticommutation relations we can
assume that i; > ip--- > i (a change in the ordering corresponds just a multi-
plicative factor £1.) Thus the number of independent vectors of length k is (Z) ,
which is equal to the number of independent components of a fully antisymmet-
ric tensor of rank k in dimension n. We can again introduce a number operator
N =", bibg. The eigenvalue of N is now the rank of the antisymmetric tensor, or

in other words, the number of boxes in the one-column Young diagram.
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Exercise 4.4.1 Define the operators
ek = a;ak

where a;a; — aja; = 0 = ajaj — aja; and [a;,a}] = 6;; for 4,5 = 1,2,3. Show

*
J
that these span the Lie algebra As extended by the operator ¢ = ey1 + egs + e33,
which commutes with the rest of the operators e;;. Study the representations of A
in the Fock representation of the canonical commutation relations. In particular,
find the representations of the subalgebra A; C As which are included in a given
representation of As.
Show that

S31 = ez1(e11 — e22) + e32e21, and Sso = e32

are shift operators for the A; subalgebra, that is, they take any vector v satisfying
the conditions e121) = 0, (€11 —e22)1) = A1) to a vector satisfying the same conditions
but with a different eiegenvalue of h = ey; — eg2. Are there other simple shift
operators (at most of degree 2 in the generators)? How can one use the shift
operators to construct a basis in a representation space?

Exercise 4.4.2 Prove in the case of third rank tensors that any tensor is a sum of
components corresponding to the different symmetry types defined by the complete

symmetrization and antisymmetrization operators and the Young diagrams

il ig and il ig

13 19

Next let the dimension of the underlying vector space V' be equal to 3. The rota-
tion group SO(3) acts naturally on tensors in a 3 dimensional space. Determine the
values A of the angular momentum (the highest eigenvalue of h) and their multiplic-
ities occuring in each of the representations corresponding the different symmetry
types of the third rank tensors.

Exercise 4.4.3 Analyse the adjoint representation of Ay in terms of bosonic
creation and annihilaton operators a;,a; (i = 1,2,3). It is not possible to con-
struct the adjoint representation with a single set of bosonic operators, but it is
possible if you add a new set b;, b; which commutes with the operators a;, a;. Find
the polynomials in the creation operators which span the 8-dimensional adjoint
representation and check that the weights indeed come out correctly, as expected

in the adjoint representation.
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4.5 Standard cyclic modules

Recall that a cyclic vector in a g module V' is a vector v with the property
U(g)v = V. The module V is cyclic if it has at least one cyclic vector. Note that a
cyclic module does not need to be irreducible.

Let g be a semisimple Lie algebra and h C g a Cartan subalgebra. We fix a
set A of simple roots so that the set of roots splits to positive and negative roots,
¢ =PTUP™ with P~ = —®* and any positive root is a unique linear combination
of simple roots with nonnegative integral coefficients.

Since the roots span the dual h* we can write any vector A uniquely as

A= ka-a,

aEA

where k, € F. In particular, if all the coefficients are nonnegative integers we set
A > 0. This defines a partial ordering in the dual, A > pif A — pu > 0.

We say that a vector v € V is a maximal vector if g, -v = 0 for all @ € &,
Since the simple root subspaces g, generate all the root subspaces corresponding
to positive roots (Theorem 2.3.11 and Corollary 3.3.5), this condition is equivalent
to saying that g, - v = 0 for all simple roots.

Racall that a vector v has weight A € h* if hv = A(h)v for all h € h. We call V'
a a standard cyclic module of highest weight X if there is a cyclic maximal vector

vt € V of weight \. Thus
V=U(g)v", hv=ANh)vVheh guw=0Vacd",

Note that any irreducible finite-dimensional g module is standard cyclic: The
subspace VT = {v € V|g,v = OVa € ®T} is finite-dimensional and in cannot be
equal to zero; otherwise V' would be infinite-dimensional. In adddition hV+ Cc VT

since for x € g, and v € VT
xhv = haxv + [z, hlv = [z, hlv = —a(h)zv =0

for postive roots .. Since h is commutative and V' is finite-dimensional there must

be a common eigenvector v for all A € h. Finally, v is cyclic since V is irreducible.
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Theorem 4.5.1. LetV be a (nonzero) standard cyclic g module with highest weight
A Let @~ = {p4,...,0n} and a mazimal vector vt € V. Choose 0 # y; € gg,. Then

(1) V is spanned by the vectors y’fl yknuT with k; = 0,1,2, ... In particular,
V' is a direct sum of the weight subspaces V,, = {v € V|hv = p(h)vVh € h}

(2) All weights of V' are of the form p = X — > ka - @ with nonnegative
coefficients k., that is, all weights satisfy p < A

(3) dim V,, < oo for all weights p and dimVy =1

(4) V is indecomposable and it has a unique mazimal submodule W with the
property v ¢ W

(5) If ¢ : V. — V' is a surjective g module homomorphism then also V' is a

standard cyclic module of weight .

Proof. (1-3) Choose a basis z1, ..., x, in the root subspaces corresponding to pos-
itive roots and a basis hy,...,hy in the Cartan subalgebra. By the PBW the-
orem all elements in U(g) are linear combinations of ordered monomials P =
yir ke pdt ...hzeac’f ...z But the vectors PvT span the space V by the defi-
nition of a standard cyclic module. Now z;v" = 0 for all 7 and v™ is an eigenvector
of any h;. It follows that we may restrict to polynomials which do not contain any

;, h; factors. This proves the first statement in (1). All vectors y ... yFno*

are
eigenvectors of h;, with eigenvalue (A+k101+. ..k, B,)(h;). Since the coefficients k;
are nonnegative and the roots (3; are negative we have proven the second statement
in (1) and the claim (2). We obtain also (3) since there are only a finite number of
sequences of nonnegative integers k; such that p = A+ > k; - §;. Clearly A\ = p if
and only if all k; = 0.

(4) To prove this we first observe that any submodule W is a sum of its weight
spaces: Let w € W and write (by (1)) w = w1 + w2+ ... w, where w; € V,,, are the

components in different weight spaces. Choose n in a minimal way such that not

all w; belong to W, so in this case no w; belongs to W. Take any h € h such that
p1(h) # p2(h). Then

(h = p(h)w = (p2(h) = pa(h))wz + .. (pn(h) = pa (h))wn # 0.

But since (h —a)w € W for any a € F and hw € W we reduce that we € W, by the

minimality of n; but this is a contradiction.
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Now let us assume in the contrary that V' = V; & V5, where V; C V are nonzero
submodules. Write v+ = v; + v9 where v; € V;. Since z;v+t = 0 for all i we must
have x;v;1 = x;v9 = 0 since V; N Vo = 0. In addition, both v; and vy must be
eigenvectors of all h € h. By (3) the vectors v; must be linearly dependent, which
is absurd by V =V; & V5.

Let then W C V such that W # V. Then vt ¢ W since V = U(g)v™". Further-
more, by the observation above, no vector in W has a nonzero projection on V)
(since otherwise the projection would be in the submodule and then W = V| con-
tradiction). It follows that the sum of all submodules not containing the vector v*
is again a submodule not containing v* and thus a proper (maximal) submodule.

(5) Let ¢ : V' — V' be a surjective homomorphism. Now U(g)¢(v™) = ¢(U(g)v™)
»(V) = V’. In addition,

zip(v") = g(zivT) =0 hd(v) = g(hvt) = p(A(R)v™) = A(h)p(vT)
and so ¢(vt) € V' is a maximal cyclic vector of weight .

Theorem 4.5.2. Any two irreducible standard cyclic modules with the same highest

weight are isomorphic.

Proof. Let V,W be standard cyclic modules of highest weight \. Consider the g
module X = V @ W. Let v* € V and w"™ € W be maximal vectors and denote
T = vt @wt € X. Then z is a maximal vector with weight \. Denote ¥ =
U(g)x™ C X. Then Y is a standard cyclic module of weight A. Let p: Y — V and
p' 1Y — W be the projections. Now V = U(g)vt = p(U(g)(v" ®w™)) = p(Y) so
p:Y — V is surjective. In the same way p’ : Y — W is surjective. The kernel of
p’ is the submodule V NY. Since V was assumed to be irreducible this submodule
must be either 0 or V. The latter is impossible since then v € Y would be another
maximal vector in Y of weight A. But according to Theorem 4.5.1 (3) the vectors
v @0 and z7 = vT ® w™ would be linearly dependent, that is, wt = 0. Thus
VNY =0 and p' is is injective. We have shown that p’ : Y — W is an isomorphism.
In the same way one proves that p : ¥ — V is an isomorphism and therefore we

have the isomorphism p’ o p~! : V — W.

By Theorem 4.5.1 all the other weights in a standard cyclic module of highest
weight A\ are strictly smaller than A. This motivates our terminology of highest

weights.
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The following theorem, together with 4.5.1, tells us that we may identify the set

of equivalence classes of irreducible standard cyclic modules as the dual space h*.

Theorem 4.5.3. For each A € h* there is an irreducible nonzero standard cyclic

module V' of highest weight .

Proof. Choose the basis {y;, h;, z;} in g as in the proof of 4.5.1. Let I, C U(g) be
the left-ideal generated by the vectors z; and the vectors h; — A(h;) - 1. Define the
g module

Z(A) = U(g)/Ix.
This module does not need to be irreducible. Let vt = 1+ I, € Z(\). Clearly
x;vt =0 for all ¢ and hvt = A(h;)v™. In addition, Z(\) = U(g)v™. Thus Z(\) is
a standard cyclic module of highest weight .

The module Z(A) # 0 by the PBW theorem (compare with 4.5.1 (1)). Let
W C Z(A) be the unique maximal submodule of Z(\) given by 4.5.1 (4). Set
V = Z(\)/W. This is again a standard cyclic g module of highest weight A. The
highest weight vector is v + W # 0. This module is irreducible. Otherwise, there
would be a nonzero proper submodule X = W'/W where W' C Z(\) is a strictly

larger submodule than W. But this is in contradiction with the maximality of W.

Exercise 4.5.4 Let g be semisimple and V' an irreducible g module. a) Assume
that there is at least one nonzero weight space V C V. Prove that V is a direct sum
of weight spaces. b) Show that V' has a nonzero weight space if and only if U(h)v
is finite-dimensional for every vector v € V. Here h C g is a Cartan subalgebra.

Exercise 4.5.5 Let g = sl(2,C) and z,y, h the standard basis of g. a) Show
that the element 1 —x € U(g) is not invertible; hence it lies in a maximal proper left
ideal I C U(g). b) Now V = U(g)/I is a nonzero irreducible g module. Show that
all the vectors 1,h, h,... represent linearly independent elements in V. Conclude
that there are no nonzero weight spaces in V. (Exercise 4.5.4!) Hint: Use the fact
that (zx —1)"h* =0 mod [ if r > sand (zr — 1)"h* = (—-2)"r!- 1 mod [ if r = s.

Exercise 4.5.6 Calculate weights and find the maximal vectors for the defining
representation of the simple Lie algebras Ay — Dy.

Exercise 4.5.7 Let Z()\) be the standard cyclic module constructed in Theorem
4.5.3. Assume that there is a maximal vector w* € Z()\) of weight p. Construct

an injective module homomorphism ¢ : Z(u) — Z(A).
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4.6 Finite-dimensional modules

Let A = {ay,...,as} C ® be a set of simple roots. We set h; = 2h,, /(v ;).
With this normalization a;(h;) = 2 for each i. For any A € h* we denote \; = A(h;).

Theorem 4.6.1. Let V be a finite-dimensional g module with highest weight \.
Then \; € Zy fori=1,2,... ¢.

Proof. Let 0 # z; € g,, and 0 # y; € g_,,. Then for each index i the vectors
Zi, hi,y; span a Lie algebra isomorphic to s1(2,F). Let v be a highest weight vector.
Now U (sl(2,F))v is a cyclic s1(2,F) module, and by Weyl’s theorem, it must be ir-
reducible. But then by Theorem 4.2.2 the eigenvalue \; of h; must be a nonnegative

integer.

We denote by A the set of integral weights, that is, the set of all A € h* with
A\i € Z. The subset AT of dominant integral weights consists of A € A with \; > 0

for all 1.

Lemma 4.6.2. Let x;,h;,y; € g as above, with the normalization [x;,y;] = h;.

Then the following relations hold in U(g) :
(1) [, 071 =0 fori # j
(2) [hyy; ™) = —(k + Dei(hy)y ™
(3) sy ™ = (k+1)yf - (hi — k- 1)
fork=0,1,2... andi,j=1,... L.
Proof. (1) This follows directly from [z;,y;] = 0 since o;; — o is not a root.

(2) The case k = 0 is clear by [h,y;] = —a;(h)y; for any h € h. Induction in & :

(hyy yF ) = hyyFtt — yi T hy = (hyyF — ylhy)yi + y¥ (hyys — yihy)

= —kai(hy)y; - yi + yf (=) (hy)yi = —(k + Daa(hy)y; ™.
(3) The case k = 0 follows from the choice of normalization. Induction in & :

i,y T = [, vilyl + vilwa, ] = hayf + yikyl (ki — (k= 1))
= yFhi + koy (ha)yy + yf (kb — k(k — 1))

= (k + 1)y; (hi — k).
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Lemma 4.6.3. Let aq,...,ap be any basis in in a real inner product space such
that (i, o) <0 for all i # j. Then (o, ) > 0 for all i, j. Here the star refers to
the dual basis, (o, o) = 6;5.

Proof. The general case reduces to a two-dimensional problem by taking a projec-
tion to a subspace spanned by «;,c; for any fixed index pair. In two dimensions,
denoting the angle between «; and a; by 6 with 7/2 < 6§ < 7, the angle between
ag,a is 0 — w/2, the angle between asg,af is m/2, the angle between af,ad is

m — 0 < /2. Draw a picture to convince yourself!
Lemma 4.6.4. Let A\ € AT. Then the set Sy = {u € AT |u < \} is finite.

Proof. Again, denoting by starred vectors the elements in the dual basis, we have

A= ZTZ' Q= Z (alé&Z))\za:

with \; € Z4 and

Oé (0 %]
]7 ] * *
T E az,a])ZO.

If now p € Sy then pu = > s;a; with s; > 0 and r; — s; € Z,.. For fixed set {r;}

there is only a finite number of solutions of these inequalities.

Theorem 4.6.5. Let A\ € At. Then the irreducible standard module V(X) with

highest weight X\ is finite-dimensional.

Proof. (1) Let 0 # v € V(\) be a maximal vector with weight A. Using the same

notation as in Lemma 4.6.2 we set
w =y ot with X; = A(hy).
If j # i then z;w = 0 by 4.6.2 (1). In addition,
ziyd ot = i et 4 (O 4+ Dy (h — Mi)vT =0,

If w # 0 then w is a maximal vector with weight © = A — (A; + 1)a; # A. In an
irreducible module the maximal weight is unique, so w = 0.

(2) By (1) the subspace spanned by the vectors y*v™ with k = 0,1,...,); is a
submodule for the subalgebra g; = s1(2,F) spanned by x;, h;, y;.
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(3) Let V! C V(A) be the sum of all finite-dimensional g; submodules. By (2)
we have V' # 0. Let W C V' be any finite-dimensional g; submodule. It is easy
to see that the subspace spanned by all the vectors g,W, with a € ®, is a finite-
dimensional g; submodule. It follows that g maps V' onto itself. But V()) is
irreducible and therefore V' = V().

(4) The action of both z; and y; is clearly nilpotent in each finite-dimensional
g; submodule. As we saw in (3), any vector v € V(\) belongs to some finite-
dimensional g; submodule and thus z'v = yv = 0 when n > n;(v). It follows that
the element s; = exp(x;) - exp(—y;) - exp(z;) defined by power series expansion is
well-defined in V().

(5) Let p be a weight of V(). Since V() is a sum of finite-dimensional g; sub-
modules and all the weight subspaces V,, C V()) are finite-dimensional (Theorem
4.5.1), we have V,, C W where W is a finite-dimensional g; submodule. Thus s; is

well-defined in V,,. Now

sihisi_l =e"ie YigTihe  TieYieT M

= e emadvigadai ) — ;.

The last equation follows by a direct computation from the power series expan-
sion and the basic commutation relations between x;, h;, y;.

(6) From (5) (and from a similar calculation for s;h;s; ') follows that s;V, =
Vo, where o; = 04, is the basic reflection o;u = p— < p, a; > .

(7) Let T'(\) be the set of all weights in V(). The Weyl group W is generated
by the basic reflections o; and so by (6) the group W permutes the weights T'(\).
It follows that dim V,, = dim V;(,,) for all o € W. By the Lemma 4.6.4 the set S) is
finite. On the other hand, by the Theorem 4.6.7 below, T'(\) C WS, and it follows
that T'(\) is finite. But V()) is a sum of finite-dimensional weight subspaces and

we are done.
Corollary 4.6.6. dim V), = dim V) for all weights p and for all o € W.

Theorem 4.6.7. Let A € A. Then there exists a unique u € A* such that o(u) = X

for some o € W.

Proof. Let T(A) be the Weyl chamber corresponding to the basis A. Then

AT =ANT(A).
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By Theorem 3.4.5 there exists ¢ € W such that o(u) € T(A). The action of o

preserves the integrality property and thus o(u) € A™.

Remark One can also prove that for any A € AT and ¢ € W we have () < .
If in addition A; > 0 for all ¢ then o(\) = A only when o = 1.

Exercise 4.6.8 The fundamental dominant weights A1, ..., \p are defined by the
property < A;, o; >= 9;;, where aq,...,a, are simple roots. Find all the weights
in an irreducible A module with highest weight A\ = 3\;.

Exercise 4.6.9 Denote by 3 the defining three-dimensional representation of
As and by 3* the representation in the dual space. By analysing the weights of the
tensor product representation show that 3 ® 3* is equivalent to the direct sum of
the trivial one-dimensional representation 1 and the adjoint representation 8.

Exercise 4.6.10 Let g = A, and let h be the standard Cartan subalgebra
consisting of diagonal matrices. Define coordinates u; : h — C by setting u;(h) =
the 4 : th diagonal element in h. Then pq + - - -+ pe41 = 0. The simple roots can be
written as a; = p; — pi+1 with ¢ = 1,2,...,£. Show that the Weyl group acts on
h* by permuting the coordinates p;. Show that the fundamental dominant weights
are \; = g + ... 5, with e =1,2,... /.

Exercise 4.6.11 Let )\, be the fundamental weight of A, discussed in 4.6.10.
Show that the irreducible finite-dimensional module corresponding to this weight
can be realized in the space of totally antisymmetric tensors of rank k constructed

from V = C/+1,
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CHAPTER 5 AFFINE KAC-MOODY ALGEBRAS

5.1. Affine Kac-Moody algebras from generalized Cartan matrices

In the earlier chapters we explained how simple finite-dimensional Lie algebras
can be completely characterized in terms of their Cartan matrices or Dynkin dia-
grams. The same holds for an arbitrary semisimple finite-dimensional Lie algebra.
A semisimple Lie algebra is a direct sum of simple ideals which are pairwise or-
thogonal with respect to the Killing form. It follows that the Cartan matrix of a
semisimple Lie algebra decomposes to a block diagonal form, each block represent-
ing a simple ideal. Similarly, the Dynkin diagram is a disconnected union of Dynkin
diagrams of simple Lie algebras. Next we shall study certain infinite-dimensional
Lie algebras which have many similarities with the simple finite-dimensional Lie
algebras. In particular, they can be described in terms of generalized Cartan ma-
trices. These algebras were independently introduced in V. Kac and R. Moody in

1968.

A generalized Cartan matriz is a real n x n matrix A = (a;;) such that

(C1) aj; =2fori=1,2,...,n
(C2) a;; is a nonpositive integer for ¢ # j

(C?)) CLij =0 iff aji =0.

To each generalized Cartan matrix one can associate a Lie algebra using the
method of generators and relations as explained in V. Kac: Infinite Dimensional
Lie Algebras, Cambridge University Press (1985). However, we shall not take that
road since we shall describe in the next section a simple method for constructing
those algebras which we shall deal with in this book; however, see the exercise
5.2.7. The set of indecomposable matrices A, i.e., those which cannot be written in
a block diagonal form by reordering the indices {1,2, ... ;n}, can be divided into

three disjoint subsets:

(1) There is a vector v € N7 such that also Av € N!. In this case the Lie
algebra g(A) corresponding to A is a simple finite-dimensional Lie algebra.

(2) Thereis v € N7} such that Av = 0. The algebra g(A) is an affine Lie algebra
and dimg(A) = co.



80 JOUKO MICKELSSON

(3) There is v € N7 such that (Av); < 0Vi.

In this chapter we shall concentrate to the theory of affine Kac-Moody alge-
bras, which is much better understood than the Kac-Moody algebras of class (3).
However, the class (3) contains the subclass of the so-called hyperbolic Lie algebras
which seem to have interesting mathematical structures; see the discussion in Fein-
gold and Frenkel, Math. Ann. 263, p. 87 (1983), where the hyperbolic algebra

corresponding to the Cartan matrix

2 =2 0
A=|-2 2 -1
0O -1 2

has been studied in detail. We shall now give a list of the Dynkin diagrams of the
affine Lie algebras. For the proofs see Kac [1985]. The diagrams with the upper
index 1 correspond to the untwisted affine Lie algebras and the rest describe the
twisted affine Lie algebras . The reason for this division will become apparent in
the next section. Note that each of the Dynkin diagrams is obtained by adjoining

the node labeled by 0 to a Dynkin diagram of a simple finite-dimensional algebra.
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5.2. Affine Lie algebras as central extensions of loop algebras: the

untwisted case

Let g be an arbitrary finite-dimensional complex Lie algebra and denote by
Lg the space of smooth maps (loops) f : S' — g, where S! is the unit circle.
Consider Lg as a vector space by pointwise addition of the loops and the natural
multiplication of functions by complex numbers. Furthermore, Lg is naturally an

infinite-dimensional Lie algebra through the commutator [-, -,

[f,9)0) = [f(2),9(2)], z € S".

A smooth function on S! is always square-integrable and a basis for square-
integrable  functions is given by the Fourier = modes. Let

{T1,Ts,...,T,} be a basis of g and denote
Tr = 0T,

where 0 < ¢ < 27 parametrizes the circle and n € Z. Define the structure constants
of g by
Taa Tb] Z )‘abT
Then
[T, T o) = D AopTe ™.

Let (-,-) : g x g — C be any invariant bilinear symmetric form, that means

([z,yl,2) = (y, [z, 2]) Vo, 9,2 € &.

Let g denote the vector space Lg ® C. We define in g the following commutator:

= %(f(cb),g’(qb))dcb) |

27

(A) (,0), (9. 8)] = ([f, gl

Here 0 # k € C is an arbitrary constant. For brevity, we shall denote the pair (f,0)
by f. For the Fourier modes the equation (A) gives

(B) T3 T =Y AT + kmbp, —m (Ta, T).

Next let g be a simple Lie algebra. We shall show that the commutation relations

(B) define an untwisted affine Lie algebra. Choose a Cartan subalgebra h C g. We



82 JOUKO MICKELSSON

shall identify g with a subalgebra of g by = — (the constant function z : S* — g
taking the value x). We can write
g=Cao) g,
nez

where g(") is spanned by the vectors 7', 1 < a < r, and C stands for the center of
g spanned by the vector k = (0, k). In particular, g® = g Let ® be the system
of roots for (g,h) and A C ®* a system of simple roots. Choose 0 # z, € ga,0 #
Yo € 8o Va € . From (B) we get

[h, 2] = a(h)zh

(o2}

[h,yal = —a(h)ya,

[k7xg] = [k:,yZ] =0,

where we have also used Lemma 2.3.1 (1). We notice that if we define h & Ck to
be the Cartan subalgebra of g, then each of the roots a has an infinite multiplicity.
For this reason we extend the algebra g by an element d (and to add confusion

we shall denote the new algebra also by g) which has the following commutation

relations:
(C) d, T3'] = nTy' d, k] = 0.
A concrete realization for the new element is d = —i-% . We then define the Cartan

%.
subalgebra of g as

h=hoCkoCd.

~

Correspondingly, we write a root of (g, h) in the component form

(ar, 0,n); this root corresponds to the root vector x7*. Thus the set of nonzero roots

~

for (g, h) is
® = {(+a,0,n) |a € ®",neZ}U{(0,0,n) |0#£ncZ}.

The root subspace of the root (0,0,n), (n # 0) is spanned by the vectors A},
where {hi,...,h} is an orthonormal basis of h. Each of the roots (£a,0,n) has
multiplicity =1 and each of the nonzero roots (0,0,n) has multiplicity =I. We

define a system of simple roots

A ={(a,0,0) | @ € A} U{(=9,0,1)},
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where 1 is the highest root of (g, h), that is, ¢ is the highest weight of the adjoint

representation ad,(y) = [z,y| of g. The set of positive roots is then
ot ={(a,0,n) |a € ® n>0}U{(a,0,0)| € dt}

and ®~ = —®+ as in the case of finite-dimensional semisimple Lie algebras.

Example 5.2.1. Let g = A;. We use the standard Cartan subalgebra of
diagonal matrices and denote the root corresponding to the Lie algebra element
e;j by a;;. . The highest weight vector in the adjoint representation is eq ;41 since
[Ta,;se1,041) = [€ij,e1141] = 0 for i < j. The highest root is thus a1 = a2 +
Q3 4 -+ Qi1 = o Faz+Fag.

Exercise 5.2.2. Let /,, = —z’ei”‘ﬁ% with n € Z. Compute all the commutators
[0, L] and [€,,, T%] and show that they define a Lie algebra. Define then the new

commutators

[én, gm]c - [gna gm] - C(nS - n)én,—ma

where ¢ is a new operator which (by definition) commutes with everything. Show
that also the new commutation relations define a Lie algebra; this is called the
Virasoro algebra.

Exercise 5.2.3 Consider the algebra of fermionic creation and annihilation op-
erators generated by the elements a},a; (see Section 4.4) and with the defining
relations a;a; + aja; = 0 = afa; + aja; and aja; + ajaf = 0;5. We let 4,5 be
arbitrary integers. Define the operators €;; =: aja; : where the dots mean normal
ordering, : aja; := —aja; if ¢ = j < 0 and otherwise the order is unaffected by
the normal ordering. Compute the commutators [€;;, éxi]. Let £ =), ; Tijij where

x = (z;;) is an infinite matrix with a finite number of nonzero matrix elements.Show

that
o — 1
[«’Il,y] = [xvy] + §trx[e,y],
where € is the diagonal matrix with ¢;; = 1 for ¢« > 0 and ¢;; = —1 for ¢ < 0.

There is an nvariant symmetric bilinear form on g given by

(B1) 19)= o [ U000
(B2) (k. f)=(d,1)=0 [elg
(B3) (b k) = (d.d) = 0

(B4) (k,d) = 1
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where the form under the integral sign is the Killing form of g.

Proposition 5.2.3. Up to a multiplicative constant any invariant symmetric bilin-
ear form on g is obtained from the form above by replacing (d,d) =0 by (d,d) = s,

where s € C is an arbitrary constant.

Proof. If (-,-) is invariant we have

([d7T:]7Tbm) = n(T(??Tbm)

= (Tg7 [Tbm7d]) = _m<T¢;17Tl;n)

and so (T},Ty") = 0 if n # —m. For a fixed n, write nq = (T,',7, ™). Using
the invariance of the Killing form of g we get AS, = —A%_ in the orthonormal basis

{T.}; (Ty, Ty) = —dap- Comparing with

([TC? Tn , Z )\ Z Acaneb

= (T, [T, ", Tc]) = —Z/\ib(T
= - Z AcbTae

we conclude that the matrix n commutes with each of the matrices A\, = (Agpe),
Aabe = —Aa,ch = AooGebs and gap = (T, Tp). [The antisymmetry of A, follows from
the invariance of the form (-,-) on g.] The adjoint representation is irreducible
for any simple Lie algebra and thus by Schur’s lemma the matrix n has to be

proportional to the identity,

(T35 T,") = £(n)dap-

a?

From

([Tc}7Tbn]7Tc_n_l) = (Tbn’ [Tc_n_l7Tc}])

we conclude that £(n) = £(n + 1) Vn. On the other hand,

o / d¢ - 5ab6n —m

so after a renormalization the inner product takes the form (B1l). We leave as an

exercise for the reader to complete the proof by showing that with this normalization

(B2),(B4) and (k, k) = 0 holds.
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Exercise 5.2.4 Complete the proof of Prop. 5.2.3
Let {h1,ha,...,h;} be an orthonormal basis of h. Then

{h1,...,h, k,d}

is a basis of h and the restriction of the invariant form (B) to h is described by the

matrix
1 0 0 0
0 1 0 0
0 0 0 1
0 O 1 0

It is nondegenerate but Lorentzian in signature: In the basis

{hl,...,hl,%(k-i—d),%(k—d)}

it takes the form diag(+1,...,+1,—1). If u,u’ € h* are arbitrary linear forms,
then the dual of the inner product (B) on h* x h* is

l
(1) = (i)t (hs) + p(d) ' (k) + p(k) ' ().

i=1
We can now compute the scalar products between the simple roots A. We shall
work only through the case g = A;; the other cases are handled in the same way.
(All we need to know is the highest root ¢ as a linear combination of the simple
roots and the Dynkin diagram or the Cartan matrix of g.)
Example 5.2.5. g = A;. Now ¥ = a1 + as + --- + oy, where the «;’s are the
simple roots. If 2 <7 <[ —1, then

(’QZJ,CYi) = (Oéi_l + (6% + Oti_|_1,ai) = -1 + 2 + (-1) = 0

The only nonzero products involving ¢ are (¢, a1) = (a1 +az,a1) = 1 and (¢, o) =
(y—1 + ay, ) = 1. Denoting the simple root (—1,0,1) of g by ap we obtain
the Dynkin diagram of g from that of g by adjoining the node labeled by 0 and
connecting the new node to the nodes 1 and .

Exercise 5.2.6. Show that the Dynkin diagram of g is equal to the diagram
Ggl) in the list Affl when g = G,.

Exercise 5.2.7 Let e; with ¢ = 1,2,...,¢ be the root vectors in a simple Lie

algebra g corresponding to simple roots aq,...,a, and let f; be the root vectors
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2

corresponding to the negative roots —c;, normalized such that (e;, f;) = @l

Let {h;} be a basis in the Cartan subalgebra with [e;, f;] = h;. Now consider the
central extension g (with central element k) of the loop algebra Lg. Set eq = ¢?yg,
where (3 is the highest root and ys is the corresponding root vector belonging to
—( such that (zg,yg) = ﬁ Set fo = e x5 and hg = [yp, 73] — k(yg, 23). Show
that the Serre relations hold in the algebra g :

Sl [Gi,fj] = hz5w

(S1)

(S2) [hi, €] = ajie;

(S3) [ha, f] = —ajif;
(S4) (ade,)' "™ er = 0 for k # j
(S5)

S5 (adfj)l_“’”’f;C =0.for k#j

Here (a;;), with ¢, = 0,1,...,¢, is the Cartan matrix of the Lie algebra g and
(ai;) with 7,57 =1,..., ¢ the Cartan matrix of g.

Exercise 5.2.8 Using the notation of Exercise 5.2.3, define the operators L,, =
>_;Jrany;a; . Compute the commutators [Ly, Ly, and compare with the algebra

in 5.2.2.

5.3. Affine Lie algebras as central extensions of loop algebras: the

twisted case

Let again g be a simple complex finite-dimensional Lie algebra andlet 0 : g — g
be an automorphism such that ¢ = 1 for some integer N > 0; let N be the
smallest positive integer for which this holds. Set € = €2™/N. Let L,g consist of

the loops f : S' — g such that

Clearly L,g C Lg is a linear subspace and
[f,9)(e—12) = [f(e712),9(e " 2)] = [0 f(2), 09(2)]
= 0[f(2),9(2)] = alf, g](2),
so L,g is closed under commutation. We define

g(o)=SlgoCka Cd
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as a vector space and we define the commutator by (A) and (C) as before. When
o =1 we have g(o) = g.
Example 5.3.1. Let g = A,. Define 0 : g — g by

‘7(612) = €23, 0(623) = €12, 0(631) = —e31.

From the commutation relations follows then that o(ei;3) = —eis3, o(es2)
= e21, 0(e21) = €32, o(e11 — e22) = €22 — €33, and o(ea2 — €33) = €11 — €z2. Now
02 =1 and e = —1. A basis for the polynomial loops in Slg is defined by

(e11 — e33)2”", (€12 + €23)2°", (€21 + €32)2”", e132°"

2n+1 ( 2n+1
’ ’

e3122" T (€12 — e23)2 g1 — e32)2" T (e11 + e33 — 2e22)2

2n

where n € Z. The coefficients of z°™ span the eigenspace g(1) C g corresponding

2n+1 correspond to the eigenvalue

to the eigenvalue +1 of ¢ and the coefficients of z
—1. A Cartan subalgebra of g(o) is spanned by the vectors k,d, and h = e11 — e33.

In the ordered basis {h, k,d} the nonzero roots are
{(0,0,n) |0 #n € Z}U{(£1,0,n) | n € Z} U{£2,0,2n+ 1) | n € Z}.
A system of simple roots is then
A(e) ={(1,0,0),(=2,0,1)} = {ag, o}

and the positive roots are {(1,0,n — 1),(-2,0,2n — 1),(0,0,n) | n > 0}. Now
(g, 1) = —1 and (a1,a9) = —4 so that the Dynkin diagram is Af) in the list
Aff2.

In general, given an automorphism o : g — g with 0¥ = 1 (N minimal) one can

write g as direct sum of eigenspaces

N-1

g= @ g().
7=0

Since [g(e), g(e')] C g(e"™7), only the subspace g(1) is a subalgebra. In the above
example, g(1) = A;. One has a grading for L,g,

N—-1

Lg =3 (&) @ Vi(2),
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where V;(z) consists of linear combinations of the monomials 2"V~7 n € Z. The
Cartan subalgebra of g(o) consists of the Cartan subalgebra of g(1) and the ele-
ments k and d. One can show that with respect to this Cartan subalgebra a system
of simple roots of g(o) consists of the roots («,0,0), where a goes through the
simple roots of g(1), and the root (—1,0,1), where ¢ is a certain root of g(1).
We are not going to study the twisted algebras in detail; see [Kac, 1985] for more
information.

Exercise 5.3.2. The Dynkin diagram of Dy is
O

o
(0] (@]

where the three external dots are connected to the central dot by simple lines (not
visible in this TeX version!). Rotations by the angles k - 27/3 are symmetries of
the diagram. Corresponding to the rotation 27/3 construct an automorphism of
D, which permutes the root subspaces g4,,8q,, and g,,. Construct the affine Lie
algebra Df’) using this automorphism (of order 3). Show that the Dynkin diagram
is Df’) in the list Aff2.

5.4. The highest weight representations of affine Lie algebras

Let a be an affine Lie algebra, h C a a Cartan subalgebra, A C h* a system of

simple roots, and ®+ O A the set of positive roots. There is a splitting
a=n_odhodny,

where the subalgebra n (respectively,n_) is spanned by the root subspaces a,
corresponding to positive (respectively, negative) roots. Let A € h* be arbitrary

and define the Verma module as in the finite-dimensional case,
V,\ =U (a) / I s

where the left ideal is generated by ny and the elements h — A(h), h € h. As in
Section 4.5, the space V) is a direct sum of its weight subspaces V) (u); this and
the other assertions of Theorem 4.5.1 are proved exactly in the same way as for a

finite-dimensional semisimple Lie algebra:
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Theorem 5.4.1. The Verma module Vy\ contains a unique maximal proper sub-
module My (i.e., a proper invariant subspace M C Vy such that if M' C V) is an
invariant subspace containing M, then M' = M or M’ = Vy) and Ly = V\/M)
carries an irreducible highest weight representation of a with the highest weight =

A.

Before studying the irreducible modules Ly in more detail, we need some more
information about the structure of affine Lie algebras. Let A be a linear operator
in a vector space V. We say that A is locally nilpotent if for any = € V there is
an integer n = n(z) € N such that A”x = 0. Let 0 # ¢; € a,, and 0 # f; € a_,,
fori =0,1,...,1, where {ag, a1,...,q;} is a set of simple roots; we shall normalize
the vectors such that [e;, fi] = ha,, (ei, fi) = 1. In the case of a finite-dimensional
semisimple Lie algebra it is obvious that the operators ad., and ady, are locally
nilpotent. By inspecting the root systems of the untwisted affine Lie algebras one
can see that if 3 is a root then 8 + na; is a root only for finitely many values of
n € Z. We state without proof that the same remains true for the twisted algebras.

In conclusion:

Theorem 5.4.2. The operators ad., and ady, are locally nilpotent in any affine
Lie algebra.

In general, we call an a-module V' integrable, if e; and f; are locally nilpotent
for 0 < ¢ <[ and if V is a direct sum of weight subspaces. In particular by 5.4.2
the space a considered as an a-module through the adjoint action is an integrable

a-module.

Theorem 5.4.3. Let V be an integrable a-module. If X is a weight of V and if
A+ «; (respectively, A — «;) is not a weight of V, then (\,a;) > 0 [respectively,
(A, ;) <0]. If A is any weight of V', then N = X\ — (\, a;)«; is also a weight and
dimV () = dimV (X).

Proof. In the finite-dimensional case we proved that if « is any root, then the
vectors T, Yo, and h, span a subalgebra isomorphic to A;. From our construction
of the root systems in the untwisted case it is not difficult to see that the same holds
for the simple roots of an affine Lie algebra. [It is not true for the nonsimple roots

(0,0,m).] One can show that this result is valid also for the twisted affine algebras.
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For any fixed ¢, let A; be the Lie algebra spanned by e;, f;, and h,,. Let 0 # v be
a vector of weight A\ in V. Because V is integrable, U(A;)v is a finite-dimensional
Aj-module. If A\ + «; is not a weight, then e;u = 0 and so (), ;) is a non-negative
integer by our earlier analysis of A;-modules in Section 4.2. If A\ — a; is not a
weight, then f;v = 0 and so v is the lowest weight vector for a finite-dimensional
Aj-module. The lowest weight of an A;-module is minus the highest weight; thus
in this case (A, ;) <0 and (A, ;) <0. If 0 # v € V(A), then

ha;v = A(ha,)v = (A, a;)v
and similarly he,v" = (N, a;)v" if there is 0 £ v € V/(\'). But
()\I,Oéi) = ()\,Oéi) — <)\,Oéi>(Oéi,Oéi) = —()\,Oéi).

Since in a finite-dimensional A;-module the weights appear symmetrically (i.e., p

is a weight iff —p is a weight) we can conclude that also X' is a weight.

As in the case of semisimple Lie algebras, for each 0 < i <[ we define the linear
map

[ h* — h*, Uz()\) =A— <)\,Oéi>Odi.

Let W = W(a,h) be the group generated by the fundamental reflections o;; W
is called the Weyl group of (a,h). Note that < A\ a; >= 2(\, «;)/(ay, ;) is
well-defined for the simple roots because of (a;, ;) # 0. In the case of a finite-
dimensional semisimple algebra the Weyl group can equivalently be defined as the
group generated by all reflections o, corresponding to an arbitrary nonzero root,
because in that case the inner product is positive definite. From the Theorem 5.4.3
follows immediately that the Weyl group maps in an integrable representation the
weight system onto itself. In particular, the set of roots ® is mapped onto itself by
W as a consequence of the fact that the adjoint representation is integrable. As in

the finite-dimensional case, we define for the affine algebras
A={leh" | <\ a; > ZVi}
AT ={ e A<\ a; >>0Vil.

Let A € A*. Using the fact that (ag, o) = 1% we observe that \(k) = %Qx, where

x is a positive integer called the level of A. Note that ag(d) = 1 and
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with

2 A(E)ao(d) — (A )] = .

2
<\ o >= —()\,(1/0) = E

w2

a nonnegative integer.

Theorem 5.4.4. The irreducible highest weight module Ly is integrable if and only
if A€ AT,

Proof. 1) Let Ly be integrable and let v # 0 be the vector of highest weight. Then

there exists a smallest non-negative integer n; such that (f;)"*1v = 0. Conse-

quently
0=¢;(fi)"" v = (n; + D[A(h;) —niai(h)lf]v,
where h; = [e;, fi] = ﬁhar Thus
1 1
0= )‘(hoz,) - §ni041'(hai) = ()\,Oéi) — 57’[,1'(041',057;),

so that < A\, a; >= n; is a non-negative integer.

2) Let A € AT. By the same formula as above,
(fi)Mi>Tly =0, 0<i <.

Let U be the maximal subspace of Ly where the action of a is locally nilpotent;
U # 0 because of v € U. We shall show that U is invariant under the action of a.
Let u € U and = € a. Now for any y € a,

" /n

ylau=) ( ) (ad, ) aly™ .

— \J

]7
which is proven by induction on n. For large enough j, (ad,)’z = 0 for y = e;
or y = f;. On the other hand, y"Ju = 0 for large enough n — j when y = e;, f;.
Thus it follows that y"zu = 0 for some n, when y = e; or y = f;. Because of the

irreducibility of Ly we must have U = Lj.
Let A\,p € h* and N = A\— < \ja > o, i/ = p— < p,a > «a, where « is any
simple root. Then
N,y =(A—<XNa>a,pu—<pa>a)=\p) —\a)<p,a>
—<Na> (ap)+ < Aa>< p,a>(a,a)=(A\p)
by using < A\, a > («, @) = 2(A, ). Thus the inner product in h* is invariant under

the action of the Weyl group. As a consequence, also the brackets < A\, a > are

invariant under W.
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Lemma 5.4.5. Let A\ € Ay and let p be a weight of Lx. Then (A, A — ) >0 and

the equality holds if and only if X = p.

Proof. Let A # u. Let m be the subalgebra of n_ generated by those elements f;
for which < A — p, a; ># 0 (denote this set of indices i by S). Now

Ly(p) CU(n_)mov

where v # 0 is the highest weight vector. We can write A — u = > nja;, where
the n;’s are non-negative integers. By 5.4.3, (A, ;) # 0 and n; > 0 at least for one
index ¢ € S (otherwise mv = 0 and thus Ly(p) = 0). Now (A, A—p) =Y (A, a)n;.

Each term is non-negative and in the case u # \ at least one is positive.

Lemma 5.4.6. Let A € AT and let u be a weight of Ly. Then there is w € W
such that w-pu € AT,

Proof. Writing u = > k;o; we set htp = > k;. Choose w € W such that ht(A—w-pu)

is minimal. Now < w - u, a; >> 0; otherwise ht(A — o, w - p) < ht(A —w - p).
We define p € h* by p(ha,) = 2 (as,;), 0 < i <l and p(d) = 0.
Proposition 5.4.7. Let A € AT and let u,v be weights of Ly. Then

(1) (A, A) = (i, v) > 05 the equality holds if and only if p=v and p € W - \.
(2) [N+ p? = |+ p? > 0; the equality holds only if p = .

Proof. (1) Using the invariance of the inner product under the Weyl group action
and Lemma 5.4.6 we can assume that © € AT. We can write (\,\) — (p,v) =
(M A — ) + (g, A — v), both terms being non-negative (see the proof of Lemma
5.4.5). If the equality holds then (A, A — ) =0 = (i, A — v) and from 5.4.5 follows
that A = p and thus also y = v.

(2) Write

A+p,A+p) = (w+pp+p)=[AA) = (1, W] +2(p, A= p).

The first term is non-negative by (1) and the second by the definition of p and the
fact that A — p is a nonnegative linear combination of the «;’s. Since (p, ;) =
1

5 (i, ;) > 0Vi, in the case of equality sign we must have (A — p, a;) = 0Vi.

There is one more property of the Weyl group which we shall need in the next

section but which we state without proof:
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Lemma 5.4.8. Let w € W and A € At such that (A, «) > 0 for all a € A. Then

wA = X implies w = 1.

We shall define an antilinear antiautomorphism 6 of a by
0(ei) = fi, 0(fi) = €, 0(ha,) = ha,, 0(d) = d, 0(k) = k

for all 0 < i < [. These relations determine # uniquely, since all the vectors corre-
sponding to positive (respectively, negative) roots are obtained by taking commu-
tators of the elements e; (respectively, f;), and the vectors h,, form a basis of h.
Antilinearity means that 6(az + by) = af(x) + bd(y) for 2,y € a and a,b € C and
the antiautomorphism property is 6([x, y]) = —[0(z),0(y)]. The antiautomorphism
0 can be extended to an antilinear antiautomorphism of the enveloping algebra of a
by setting 0(z1x2 ... x,) = 0(xy) ... 0(x2)0(x1), x; € a. It satisfies O(uv) = 0(v)0(u)
for u,v € U(a).

Exercise 5.4.9. Show that 0 is really an antiautomorphism.

Example 5.4.10. Let a = Al(l). A basis for a is given by the following elements:
eijz",n€Zandl <i# j <I+1; hiz",n € Zand1 <1i <[withh; = e;;—€ij+1,i+1;

the elements d, k. Now

n 1 -
9(62']'2’ ) = meﬂz y 1<)
9(eﬂz”) = 2(l + 1)eijz_”, 1< 7

O(hiz") = h;z"", 0(d) = d, 0(k) = k.

Note that the restriction of 6 to root subspaces gives a linear isomorphism 6 :
8o — &—a. On the other hand, from the defining formula (B1) we observe that the
restriction g, X g_, — C of the invariant bilinear form is nondegenerate; it is also

positive definite in the sense that
(,0(x)) > 0V € ga.

It follows that we can define a basis {ng)} in g, for each a € ®~ such that
(:cﬁf), G(ng ))) = 0;;. The multiplicity label i is really necessary only for the roots
(0,0,n); see Section 5.2. We set 2 = 0(30(_12)(), a € ®T. Fix also a basis {h'} of h
dual to the basis {h'}, (hi, h?) = §;;.
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In the case of a finite-dimensional semisimple Lie algebra one defines a Casimir

operator Q' by

== Z hzhz + Z (Iaxfa + 1‘,0(%04).

acdt
No multiplicity label is needed here because the root subspaces are one-dimensional;

compare with ¢ in Section 4.3! In the infinite-dimensional case we cannot use this
formula because the sum will in general diverge. However, we can apply a “normal
ordering” prescription to make the sum finite. We set

Q=Y "hhi+2 3 > a2 4 2n,.

acdt 1

) is a well-defined linear operator in any highest weight representation of a. Namely,
any vector in the representation space can be written as a polynomial in the gen-
erators of n_ acting on the highest weight vector. It follows that the action of the

second term in {2 reduces to a finite polynomial.

Proposition 5.4.11. The element 2 € U(a) commutes with a, and thus the action
i a highest weight representation reduces to a multiplication with a scalar. The

value of the scalar is |\ + p|?> — |p|?, where X is the highest weight.

Proof. Denote by )y the part of €2 involving the x’s. Let «, 8 be roots and z € ag.
Then ad, maps a,, into a,43 and a_g_, into a_,. By the invariance of the bilinear
form, ([z,z],y) = —(«,[z,y]), the former map is (-1) times the transpose of the
latter. Let now 3 be a simple root. We obtain

] =2 Y (l2.2%)2® + 2 2,2

acdt g

=20,z glag+2 Y (52 + 2 [z ],
BFacdt i

where we have done a simple renaming of the summation index in the last term.
We have dropped the multiplicity index in the first term, since the simple roots
have multiplicity =1. By the remark above, the second and the third term cancel
on the right-hand side. Thus we get

[z, Q] = 2[z,x_pglzg = 2(2,x_g)hgzrs = 2hgz.

On the other hand,

2, hih'] = =" B(hi)zh' — Zm h)z

= =2 Blhhiz+ Y B(hi)B(h')z = —2hpz + (B, ).
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Finally [z,2h,] = —28(h,)z = —=2(8,p)z = —(8, §)z and combining this with the
results above we get [z, )] = 0. In the same way one can show that [z,] = 0 when
(B is minus a simple root. Taking commutators of vectors belonging to simple roots
or to minus simple roots one can generate the whole algebra a. Thus [z,Q] = 0 for
all z € a. Next we evaluate €2 by applying it to the highest weight vector v in a
highest weight representation. We get

Qo = (3" hih +2h,)0 = AR)AK) + 20 (hy)]o = [(A,A) + 20\, p)]o.

The coefficient in front of v is easily seen to be equal to |\ + p|? — |p|?.

A Hermitian form H on a a-module V is contravariant if
H(zu,v) = H(u,0(z)v), Yu,v €V, x € a.

We use the convention that a Hermitian form is linear in the first and antilinear in
the second argument. If V is a highest weight module, we define a contravariant
Hermitian form in V' as follows. Let v be a highest weight vector (unique up to a
multiplicative constant) and set H(v,v) = 1. If v;,vy € V are arbitrary, we can

write v; = u; - v, where u; € U(n_). Define
H(v1,v2) = H(ujv,ugv) = H (v, 0(u1)usgv).

Next we can write 8(u1)usv = uv for some u € U(n_). Now we have

H(vy,v9) = H(v,uv) = H(uv,v) = H(v,0(u)v) = H(0(u)v,v).

Since (u) € U(ny), we obtain #(u)v = a - v for some a € C. Thus the value
H(v1,v2) = a has been uniquely determined by the contravariantness of the Her-

mitian form and by the normalization H (v,v) = 1.

Theorem 5.4.12. The Hermitian form H 1is positive definite in all integrable ir-

reducible highest weight modules.

Proof. From the definitions follows at once that the different weight subspaces
Ly (p) in Ly are pairwise orthogonal. Thus it is sufficient to show that the restriction

of H to any of these subspaces is positive definite. We prove it by induction on
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n = ht(A — ). The case n = 0 is clear by H(v,v) = 1. Using Theorem 5.4.11 we

get
(1A + p|*=|p|*) H (w, w)
= H(Qw, w)
= (|pf* + 2u(h,)) H (w, w) + Z H(zWDw, 20 w),
acdt i
where we have also used 9(9091) — 2. If we subtract the first term on the

right from the left-hand side we get (]A + p|*> — |u + p|*)H(w,w). The factor
multiplying H(w,w) is positive by (5.4.7) when p # A. On the other hand, the
height of the weight of xg)w is smaller than n and so by induction assumption
each term in the sum on the right-hand side is also non-negative. To complete
the proof we still have to show that the form H is nondegenerate. Because the

representation is irreducible, we can choose wu,, € U(ny) such that u,, -w = v. Now

H(w,0(uy)v) = H(uy - w,v) = H(v,v) # 0 and thus H is non-degenerate.

Exercise 5.4.13 Let H be the space of square-integrable functions ¢ : S* — CV.
We write H = H, @ H_, where H_ is spanned by the Fourier modes e"%v, with
n=20,1,2,... and v € CV. The space H_ is the orthogonal complement of H,

spanned by the negative Fourier modes. The inner product in H is defined by

2r N _
(0, 0) = /0 > T@6)do.

Let X be a smooth N x N traceless matrix valued function on S!. Define the
linear operator T'(X) : H — H by (T(X)¥)(¢) = X(¢)1(¢). Next introduce the

CAR algebra generated by the standard generators a,; and a;, ; where n € Z and

?

i=1,2,...N. (Compare with exercise 5.2.3.) Define the operators
X = Z Xij(n) s an, i iOmj :
m,n,i,j
where X;;(n) denotes the n : th Fourier component of the matrix valued function
X = (Xj;) and the normal ordering is defined with respect to the Fourier index.
Following exercise 5.2.3, show that

o P 1 27 d
XV =K+ 5 [ wX@) 5y @)
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In the Fock space where the CAR algebra is operating the vacuum vector vg is
characterized by a,, ;v9 = 0 = a;jmvo for n > 0 and m < 0. Show that this vector is

a lowest weight vector for the affine Kac-Moody algebra generated by the operators

A

X.

Exercise 5.4.14 We use the notation of exercise 5.2.2. The element ¢y in the
Virasoro algebra plays the role of a Cartan subalgebra. Consider a highest weight
representation of the Virasoro algebra in a vector space V with a highest weight
vector vy which has the property ¢,v9 = 0 for n < 0 and ¢yvy = hvg where h is
a constant; the element ¢ which commutes with everything is assumed to take a
constant value in the whole representation. Show by PBW theorem that all the
weight spaces Vy = {v € V|{yv = Av} are finite-dimensional and that A — h is a
nonnegative integer when V) # 0. Assume that we have an inner product in V' such
that ¢} = ¢_,,. Show that h > 0 and ¢ > 0. Hint: Study the norm of the vector

£,v9 for n > 0.

5.5. The character formula

If V carries a finite-dimensional representation 7' of a semisimple Lie group G

one can define the character of the representation by

ch(g) = trT(g).

Thus the character is a complex valued function on G. Let H be a Cartan subgroup,
h the corresponding Cartan subalgebra and denote by V(1) the weight subspace
belonging to the weight i € h*. Then for x € h and h =€” € H,

(5.5.1) ch(h) =Y e . dimV ()
HEA
where the sum is over the set A of weights and V(\) C V are the weight subspaces.
In an infinite-dimensional case one has to proceed in a more formal way since the

sum (5.5.1) does not converge in general. We can still define the formal character

by

(5.5.2) chV = Z e(p) - dimV (p),
HEA
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where the symbols e(u) are now formal exponentials; they are the generators of a
commutative algebra subject to the defining relations e(u) - e(v) = e(u + v). The
element e(0) is the neutral element with respect to multiplication and we write
e(0) = 1. In this section we shall compute the formal characters of the highest
weight representations of affine Lie algebras.

The formal characters of the Verma modules V) are easely computed. Let z_g, .
be a basis of the root subspace g_g,, where 1 < p; < m(i) = multf; (the multiplicity
of the root ;) and {f1, B32,...,0¢} = ®T is the set of positive roots. Then the
vectors

(w_py,1)" D (2_g, o)D) .

n(1,m(1) n(€m(0),,

(B, m)) (T —gem(e)

form a basis of the subspace V)(u), where [n(1,1) + ...n(1,m(1))]81 +
n(2,1)+...n(2,m(2)]Bs+---+[nl,1)+---+n(l,m(£))]Be = X — p and n(i, j)’s

are non-negative integers. Thus

chVa=e() J] 1+ e(=5) +e(=28) +...]™"7
pEDT

(5.5.3) =e(N\) J[ (1 —e(=p)) 5.
pedt+
If V and V' are a pair of modules for a given Lie algebra and W is a submodule

of V then
chV/W =chV —chW, ch(VaV')=chV +chV'.

A highest weight module can always be thought as a quotient of a Verma module
by a submodule; for this reason it is natural that the character of a highest weight

module can be expanded as
(5.5.4) chV =Y "e(A)ch Vi
A

where the ¢(\)’s are integers. The proof is not completely trivial but we shall skip
it here because it is not very illuminating [Kac, 1985]. Taking account that the
value of the Casimir operator in a highest weight module with highest weight A is

equal to |\ + p|?> — |p|? one can show that the only possible nonzero terms in the
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sum above are those which satisfy |\ + p|? = |A + p|? and A < A where A is the
highest weight of V.

Next we let the Weyl group W act on the formal exponentials by w[e(\)] =
e(w(N)). From Theorem 5.4.3 follows that

(5.5.5) ch Ly = w(ch Ly) Yw € W.

For any w € W we can write w = 0103 ...0s where o; is the fundamental reflection
in the plane orthogonal to the simple root «;, 1 < i < /. Clearly the determinant of
the linear transformation o; : h* — h* is equal to -1 and therefore the determinant

of w is e(w) = (—1)%. Define the formal character

R= [J [t —e(—a))me.

acdt

We shall need the following fact: The action of a fundamental reflection o; in
¢t \ {a;} permutes the elements among themselves. This is a consequence of the

fact that any positive root is a sum of simple roots and that («;,a;) <0 for i # j..
Lemma 5.5.6. wle(p)R| = e(w)e(p)R for all w € W.

Proof. 1t is sufficient to prove the lemma in the case w = o; for any 7. Now multa =

mult w(a) for any o € &1 and &1 \ {e;} is invariant under w. Therefore,

wle(p)R] = e(p — ai)[1 —e(a)loy [ [1—e(—a)™*
aedt\{a;}

=e(pe(—a)[l —e(e)] ] [ —e(-a)mit

a€d+\{a:}
= —e(p)R = e(w)e(p)R.

Theorem 5.5.7. Let A\ € AT and Ly the irreducible module for an affine Lie
algebra with highest weight A. Then

2wew €W)ewA +p) — pl

chl, =
AT g [1— e(—a)]multa

Proof. From (5.5.3) and (5.5.4) we obtain

e(p) Reh Ly = > c(ple(n+ p)
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where B is the set of weights consisting of those u € A for which ¢ < X\ and
lw+ p|* = |A+ p|?. From (5.5.5) and (5.5.6) follows that

c(p) = e(w)e(v) ifw(p +p) =v+p

for some w € W. It follows that c¢(u) # 0 if and only if c¢(w(p + p) — p) # 0
and so w(p + p) < A+ pif e(u) # 0. Assuming c(u) # 0 choose a weight v €
{w(p+ p) — p | w € W} such that ht(\ — v) is minimal. Then v + p € A4 and
lv+p|? = |u+ p]? = |\ + p|?. Applying 5.4.7 we conclude that v = \ and therefore
w(p+p) = A+ p. Thus c(u) = e(w™) = e(w).

Since (A + p, ) > 0 for all @ € A we get from 5.4.8 that w(A + p) = A+ p only
if w = 1. Clearly ¢(\) = 1 and therefore we have

e(p)Rch Ly = Z e(w)e(w(\+ p)),
weW

which gives the asserted formula for ch L.

If A = 0 then L, is the trivial one-dimensional representation and so ch Ly =

e(0) = 1. From the character formula we obtain the identity
(5.5.8) T 11— e(-a)™ e = 57 e(w)e(w(p) - p).
acdt weWw

We can now write 5.5.7 alternatively as

Y wew EW)e[w(A +p) — pl
> wew €wle(w(p) —p)

In the case of a finite-dimensional semisimple Lie algebra this is the classical Weyl

(5.5.9) chLy =

character formula.
In the finite-dimensional case the multiplicities of the weights can be also ob-

tained from the Kostant multiplicity formula

(5.5.10) dim Ly (p) = Y e(w)K[(p+ p) — w(A + p)]
weW
where K is the Kostant partition function obtained from the expansion

(5.5.11) I] 1 -e(-a)) ™ =>" K(8

acdt+ ﬂeh*
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Expanding [1—e(—a)]~! as a power series we can write the left-hand side of (5.5.11)

also as

H [1 + 6(—0{) + 6(—2@) + .. ‘]multa

and therefore K () is equal to the number of partitions of 3 into a sum of negative
roots, where each root is counted as many times as is its multiplicity. Clearly
K(0) =1 and in general, K(3) = dim V\(\ + ) according to (5.5.3).

Exercise 5.5.12. Prove the formula (5.5.10) in the case of an affine Lie algebra
starting from 5.5.7 and the definition (5.5.11).

We define a homomorphism F' from the polynomial algebra generated by the

formal exponentials e(—a), o € A, to the polynomial algebra in one variable ¢ by
F(e(—a)) =q, Ya € A.

Since all weights of L) are of the form A minus a sum of simple roots we can define
the formal power series dim,Ly = F'(e(—\)ch Ly). The coefficient of the monomial
q" is equal to the sum of the dimensions dim Ly (x) where ht(A — p) = n, where ht
is defined as in the proof of 5.4.6.

Let a;; = 2% be the Cartan matrix of an affine Lie algebra. The trans-
posed matrix b;; = a;; defines also an affine Lie algebra. The simple roots of the
transposed algebra g are 3; = 2a;/(u, ;). Let p* € h* be the weight such that
(aj, p*) = 1 for all simple roots. Then p*, considered as a weight for g?, corresponds

to the weight p of g. Let ®* be the set of roots for the transposed Lie algebra.

Theorem 5.5.13.

multa
. 1 — q(>‘+P7a)
dimgLy = H <—1 —

acd*t

Proof. For any positive dominant weight u define

weW

Now ht(u — w(p)) = (1 — w(p), p*) and so

(5.5.14) Fle(w(p) - u) = g0,
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Applying the homomorphism F' to both sides of (5.5.8) we get
H (1-— q(am*))multa — Z e(w)q(p—w(p)m*)
acdt weWw

and combining this with (5.5.14) we get

FOV() = 3 elw)gn =)
weWw

= Z e(w)q(“ﬂp*_w(p*))

weW
—F' ( > e(w)e(w(p™) — p*)) ,

weW
where the homomorphism F” is defined by the relations F'(e(—a)) = ¢*") for
a € A with o* = 2a/(a, ). Applying the identity (5.5.8) to the transposed Lie
algebra we get

F(N(w)=F"| J] 0 -e(=a)me
ae@i
where ®* is the root system of the transposed algebra. Thus
PGy = T (1 - ey,

acdl

Combining this with (5.5.9) we obtain

_(Mpa) mult o
Fle(=Neh L)) = [] (L)

— gpa)
acdl 1 q
which implies the theorem.

Exercise 5.5.15 The analytic character of the group SU(2) is obtained from
the formal character ch V(A) = e(—=A) + e(—\ + 2) + ...e(\) by replacing the
formal exponential e(u) by the exponential function e?#®. Prove directly from this
analytic formula the decomposition formula for tensor products, V(\) @ V(\') =
VIA=XN])@ -—-aVA+N=-2)aV(A+N).

Exercise 5.5.16 Apply the Kostant multiplicity formula to the case of the
finite-dimensional simple Lie algebra As. In particular, compute the the weight
multiplicities in the case of the finite-dimensional irreducible module of highest
weight A\ = 21 4+ Ao, where A1, Ao are the fundamental weights of As.

Exercise 5.5.17 Apply the Theorem 5.5.13 to the case g = Agl) and work out

a more explicite expression for the g-character formula.
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CHAPTER 6 QUANTUM GROUPS

6.1 Algebras, coalgebras, and Hopf algebras

Recall the definition of an associative algebra A : It is a vector space (over a
field k) with a bilinear product map m : A x A — A such that m(a,m(b,c)) =
m(m(a,b),c) for all a,b,c € A. Most of the time we write m(a,b) = a-b = ab.

Since m is linear in each argument we may as well think of m as a map
m:ARQA— A.

If the algebra A has a unit 1 then m(1,a) = m(a,1) = a for all a € A.

Next we define a coalgebra. A coalgebra is a vector space A with a linear map
A:A—- AR A,

called the coproduct, such that the coassociativity condition

(A®id)o A= (id® A)o A
is satisfied. Some words about notation. We can write

2@ =Y a0 g0
i

but often this is abreviated as

Aa) = Za(l) ® a?
(a)

or
Aa) = Z a ®ad.
(a)
A coalgebra A has a counit € if ¢ : A — k is a linear map with the property
(id ® €) o A = the natural isomorphism A ~ A ® k. Likewise, (e ® id) o A is the

similar natural isomorphism A ~ k ® A. Using the Sweedler’s sigma notation,

Z de(d’)=a= Z e(a’)a”

(a) (a)
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for A(a) => d' ®ad".

Using Sweedler’s sigma notation the coassociativity can be written as

Y| X@rew) | ed =Y de | @) e @)

(a) \(a’) (a) (a’)
which we shall simply write as
Z a ® a ® a"
(a)

We can apply the coproduct once more to identify the following three expressions,

ZA(a/) ® a// ® CL’”, Za/ ® A(a”) ® a///, Za/ ® a// ® A(a”’)
(a) (a) (a)

which we agree to write as

Za/ ® a// ® a/// ® a////
(a)

or as

Y 0V @ a® g a® @ o).
(a)

Example 6.1.1 Let A = M, (k) be the algebra of n x n matrices over k and let
A* be the dual vector space of A. Define the basis x;; : A — k, z;;(a) = a;;. The
map A : A* — A* ® A* defined by

A(zij) = Y e © w1
k

satifies the coassociavity relation; this follows from the associativity of the matrix
product rule (ab);; = >, aixbi;. Furthermore, there is a counit e defined by €(z;;) =
dij-

Exercise 6.1.2 Show that the dual vector space A* of any finite-dimensional

associative algebra A is a coalgebra with a coproduct defined by
(A(f))(a®b) = f(ab) where a,b € A.

Hint: Use the isomorphism A* ® A* ~ (A ® A)*. Show that A* has a counit if A

has a unit.
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The dual A* of a coalgebra is always an algebra. The multiplication m : A* ®

A* — A* is defined by

m(a®b)(z) =) ala)b(z")
(2)

for x € A. If A has a counit € then the unit in A* is the map f : A — k given by
f(a) = e(a).

A coalgebra A is cocommutative if

Aa) = Za’@a" = Za"@a'.

(a) (a)

A linear map ¢ : A — B of coalgebras is a homomorphism if Ago¢p = (¢ R¢) oAy
and if e4 = €p 0 ¢.

For any coalgebra A there is the opposite coalgebra A°P defined by the opposite
coproduct A% (a) =37, a" ®@d'.

Next we define a bialgebra. A bialgebra is an algebra A with unit which in

addition has a coalgebra structure, with a counit €, such that

(1) the multiplication and the unit (viewed as a map k — A) are homomor-
phisms of coalgebras
(2) the coproduct A is a homomorphism from the algebra A to the algebra

A ® A and the counit is an algebra homomorphism A — k.

In particular, €(1) = 1 € k by the algebra homomorphism property of the map
e:A—k.

Exercise 6.1.3 Show that the above two conditions are in fact equivalent.

Example 6.1.4 Let M, (k) be the polynomial algebra over k in the independent
variables z;; with 7,5 = 1,2,...,n. Define the coproduct by

A(.I'”) = Z:L‘Zk X Thj-
k

The counit is defined by €(z;;) = d;;. Then M,, (k) is a bialgebra.
Example 6.1.5 Let G be a finite group and let A be the algebra of k-valued
functions on G. The product of functions is defined as usual. In addition, we define

a coproduct A by
(A(f))(a,b) = f(ab),
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where a,b € G. We have identified the tensor product A ® A as the the space of
functions of two variables a,b. It is easy to see that the map from A ® A to the

space of functions in a, b defined by
Zfz@)gz'_)fa with f(a,b) = Zfz a)g; (b

is an isomorphism. The counit is €(f) = f(e), where e € G is the neutral element.
Now A is a bialgebra.

Exercise 6.1.6 Check the bialgebra axioms in the above example.

Example 6.1.7 Let V be a vector space over k and let T (V') be the tensor
algebra over V. As a vector space T'(V) is a direct sum of vector spaces V" =
VeV --®V (ntimes) withn =0,1,2,.... The product is defined by the tensor
product, (21 ® - ®@xp)  (Tny1 @ @Tpim) = T1 @+ - & Tpym. The algebra T'(V)
is by construction generated by the elements in V and the unit element in k = V°.

The coproduct is then uniquely defined by
Av)=v@ 1+1xQ vforveV

and by the requirement that the coproduct is an algebra homomorphism. For

example,
Alvew) =AW)-Aw) = (v@w)@'1+v@w+wR v+18" (vew) € T(V)®,T(V).

We have used ®' sign for the tensor product T'(V)®'T (V') and the unprimed tensor
product for the product inside T'(V'). The counit is the map € : T(V) — k defined
by €(u) =0 for u € V™ with n > 0 and €(1) = 1.

Let now (A,m,1,A ¢) be a bialgebra. We say that a linear map S : A — A is

an antipode if

Z a'S(a") =¢€(a)-1= Z S(a")a"
(a)

(a)
for any a € A where A(a) =3, a' ® a”.

If a bialgebra has an antipode S then it is uniquely defined: Let S’ be another
antipode. Then

= S(Z CLIG(CLH)) = Z S(CLI) ” .1 = ZS //S/ ///)

(a) (a) (a)
_ Ze(a/) ZS/ //] _ S/( )
(a) (a)
A bialgebra equipped with an antipode is a Hopf algebra.
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Theorem 6.1.8. Let H be a finite-dimensional Hopf algebra. Then the dual bial-
gebra H* is a Hopf algebra with an antipode S* : H* — H* defined as the dual
linear map to S, (S*(f))(a) = f(S(a)).

Proof. Let f € H* and a € H. Then

DS (@)= Y @) ST

(f) (f)(a)

_ Z f/(a/)f//(s(a//)) _ f(Za’S(a”))
(a)

(f)(a)

where in the last equation we have used the definition of the coproduct in the dual

bialgebra. By the defining relations of an antipode, the last expression is equal to

The second of the axioms for S* is proven in a similar way.
Theorem 6.1.9. In a Hopf algebra H, S(ab) = S(b)S(a) for all a,b € H.

Proof. First we note by A(xy) = A(z) - A(y) that
D (ay) @ (wy) = ) 2y @y
(zy) (2),(y)

Since the antipode is uniquely defined, it is sufficient to prove that the function

f(z,y) = S(y)S(x) satisfies the defining relations
> (xy)'S =Y S((zy) = e(zy) - 1
(zy) (zy)
when we replace S(zy) by f(z,y). But
> ySS") =) @ (e(y)1)S(z") = e(y) Y 2'S(x") = e(y)e(x)-1 = e(xy)-1.
(=),(y) (z) (z)

A similar calculation can be carried through for the second relation.

Example 6.1.10 The bialgebra in the example 6.1.5 is a Hopf algebra with the
antipode (S(f))(g9) = f(g~ ') where g € G. Indeed,

SFSU) | (9) =D F@SU"N9) =D F@f" (97" = flgg™") = fle) = e(f)1
(£
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and likewise for Y S(f")f".

An element a # 0 in a coalgebra is said to be group like if
A(a) =a® a.

If a,b is a pair of group like elements then A(ab) = A(a)-A(b) = (a®a)- (bRb) =
ab® ab. Thus also ab is group like. Since A(1) = 1®1, the unit is also group like. In
the special case when S : H — H is invertible, the set G(H) of group like elements

is a group: The inverse of a is then S(a) because of

Z a’S(a") = aS(a) = e(a) - 1.
(a)
On the other hand, a ® 1 = (id ® €)A(a) = (id®€)(a ® a) = a @ €(a) and so
€(a) = 1. This completes the proof of aS(a) = 1. The relation S(a)a = 1 is proven
in a similar way.
Example 6.1.11 The tensor bialgebra T'(V') in example 6.1.7 becomes a Hopf
algebra with the antipode S : T(V) — T(V') defined by S(1) = 1 and S(v) = —v

for v € V. For a generic element vyvs ...v, € V™ we have then
S(v1vg ... v,) = (=1)"0y ... v20;.

Exercise 6.1.12 Let H be the algebra k[t,x]/I, where k[t, x] is the free (non-
commutative) algebra with unit and with two generators ¢ and x, and I is the ideal
generated by the polynomials t? — 1, 2%, zt + tz. Show that H is finite-dimensional
as a vector space and that A(t) =t®t,A(r) = 1®z+ 2 @t extend to a coproduct
on H. Show also that €(t) = 1,e(x) = 0 and S(t) = t,S(x) = tx define a Hopf

algebra structure on H.

6.2 The Hopf algebra SL,(2)

We have already met the bialgebra of n x n matrix coordinates z;; in 6.1.4. This
is not a Hopf algebra; this is related to the fact that a general n x n matrix does
not have an inverse. But we can define the bialgebra SL(n) as the quotient of the

algebra M,, (k) by the ideal generated by the single element det = det(x;;) —1. That
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is, every time we see the polynomial det(z;;) we replace it with the unit element 1.

This is now a Hopf algebra. The antipode is defined as
S(zij) = (1) X

where X;; is the determinant of the submatrix obtained by deleting the i:th row
and the j:th column from the matrix (z;;). We can immediately check that for
z = 331']'

D ZS(E) =) waS(ary) = Y mi(—1)7 TP X = det(w;)d; = €(2) - 1.

(z) k k
The antipode S is then extended to an arbitrary product of the generators x;; using
the condition S(z122...2p) = S(2p)...5(22)5(21) and by linearity to all elements
in SL(n).

In the following we shall concentrate to the case n = 2 and we shall use the

g:(g g).

The antipode applied to the generators is then

s = (% )

The only relation in this commutative algebra is the determinant relation

notation

ad — bec = 1.

The coproduct can be written in the matrix notation as

2= (0 a)o (% a)

That is, for example A(b) = a ® b+ b ® d. The counit satisfies €(a) = ¢(d) = 1 and
€(b) = €(c) = 0. In this case S is invertible.

The Hopf algebra SL(2) is commutative but not cocommutative. Next we shall
construct a 1-parameter family SL,(2) of Hopf algebras which are both noncommu-
tative and noncocommutative, except in the limiting case ¢ = 1 when the algebra
becomes the classical Hopf algebra SL(2). In general, ¢ is a complex number and

we consider here all algebras over k = C.
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We start with the defining algebra relations:

ba = qab db = qbd
ca = qac de = qged

bc = cb ad —da = (¢~ — q)be.

Thus in the case ¢ = 1 this algebra is commutative. We denote the algebra by
M,(2). The element
det, = ad — ¢~ 'bc

commutes with every element in M,(2) (prove this!). As in the commutative case
we define the algebra SL,(2) = M,(2)/I, where I is the two-sided ideal generated
by det, — 1.

Next we define the coproduct A in SL,(2) exactly the same way as in the com-
mutative case ¢ = 1. Also the counit € is defined by the same formulas as before.

However, the definition of the antipode must be modified:

S(a) S(b)\ _ d —qb
Sc) Sd)) \—-qt¢c a )
Exercise 6.2.1 Check that the antipode satisfies the relations »_ z'S(z”) =

e(x)-1=>5(")x".

Exercise 6.2.3 Show that the antipode of SL,(2) satisfies

(8 285 DE D )

for any integer n. Thus if n is a n:th root of identity then S2" is the identity
transformation.

Exercise 6.2.4 (The quantum plane) Let A = C,[x, y] be the complex algebra
with unit and the generators x, y subject to the relations yx — gxy = 0. Here ¢ € C

is a constant. Show that the algebra SL,(2) acts in Cy[z,y| in the following sense:

()= 0 0)

Then also y'z’ — ga’y’ = 0. Define further Ay : A — SL,(2) ® A as an algebra

Set

homomorphism such that As(z) =a®@z+b®y and As(y) = c®Rz+d®y. Show
that A4 satisfies the comodule relations (A ® id) o Ay = (id @ Ag) o Ag4.
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Next we define a *—algebra structure in the Hopf algebra SL,(2) over complex
numbers. The *— operation should be thought of as taking the adjoint of linear
operators. We require that it is antilinear, (ax + By)* = az* + By* for all z,y €
SL4(2) and «, § € C. Furthermore, (zy)* = y*z*, and (z*)* = z. For Hopf algebras
we require in addition

(1) A(z*) = A(z)",

(2) [S(S(@)")]" =«

(3) 1* =1 and €(z*) = e(z)
for all x.

Note that by the second equation in a star Hopf algebra the antipode S has
always an inverse. Sometimes one writes * = Sv, where v = S~! x . Then 7 is
antilinear and it is an automorphism of real algebras and coalgebras. It is also an

involution, v? = 1, by
2 (z) = S7H S = ST (S(2))) = 5715 (a) = a

In the case of H = SL4(2) (¢ € R) we set
a b\ _ [a c
MNe a) = \b d

a* =d, d* =a, b* = —qc, ¢ = —q b

so that

The action of * on an arbitrary element in SL,(2) is then uniquely defined by the
property that * is an antilinear antiautomorphism.

The motivation for introducing * is the following. In the classical case ¢ = 1
of a commutative algebra SL(2) the functions on the subgroup SU(2) C SL(2,C)
can be taken as (z1,22) with a = 21,b = —Z3,¢ = z2,d = Z7. Then the coordinate
functions satisfy the star relations above (with ¢ = 1). So we can define the quantum
group SU4(2) as the star algebra above in the case of general ¢ € R. (We need to
take ¢ real in order that the axioms for the star operation are satisfied.)

Let us also mention that there is a generalization of the algebra SL,(2) to the

N x N matrix case SLy(N). The algebra commutation relations are given as

mmk __ kmm mmom mm
TI'TF = qTFT,  TPT =TT

mmk _ mkpm kpm mmk —1 m ik
T; Tj _TjTiaTiTj _Tj 17 = (¢ — 91T, Tj7
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where ¢ < j and k < m. The coproduct is defined by
AT) =) TF T
k
and €(T/) = §;;. The quantum determinant is

dety = Z (—q)e(U)T{T(l) . .TX](N),

oc€SN

where {(0) is the length of the minimal decomposition of ¢ into a product of trans-

positions. In the algebra SL,(NN) one sets det, = 1.

6.3 The quantum enveloping algebra U,(sl(2))

We define the quantum enveloping algebra U, = U,(sl(2)) as the associative
algebra with unit and generators E, F, K, K ! subject to the defining relations

KK '=K'K=1

KEK'=¢E, KFK ' =¢%F
K- K1

EF —FE = —.
q—q

Here £1 # q € C.

Lemma 6.3.1. Let m > 0 and n be integers. Then

E"K" =q *"K"E™, F"K" = ¢*""K"F"™
—m41lp qm—lK—l
q—q*
qm—lK . q—m+1K—1
q—q*
q—m+1K o qm—lK—l
q—q*
m—1p q—m+1K—1
q—q! ’

(B, F™] = [m]

Fm—l

= [m]

[E™, F] = [m)] Em1

= [m]E™ 4

n n

Here [n] = L=+ = ¢" 1 + ¢" 3 + ... + ¢! when n > 0. Note that [—n] =
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Proof. The first row of relations follows immediately from the defining relations.
The second (and the rest) relation is proven by induction on m. The case m = 1

follows from the defining relations and the induction step follows from

[E,F™] = [E,F" Y F + F™ '[E, F)

—m+2K - m—2K—1 K — K—l
— [m . 1]Fm_2q ({1 F + Fm—l —
q—dq q—4q
—m—+2 —2K _om—2 2K—1 K K—1
— [m . 1]Fm_1 q q ql q + Fm—l—l
q—q q—q

Both terms on the right contain F™~! as the first factor. Combining the polyno-
mials in K, K~! one easily sees that they give the required factor in the case of

B, F™).

We have defined the quantum algebra U, for ¢ # £1. However, in certain sense
the enveloping algebra U(sl(2)) is the limit of U, as ¢ — 1. Let us think of K as
the element ¢ = e"'°89, where h is the standard element in the Cartan subalgebra

of s1(2). Then
y g —q "
im ——
¢—1 q—q!

So in this limit we get [E, F'] = h and the relation K EK ~! = ¢?F leads to [h, E] =

= h.

2E. Thus we recover the standard commutation relations of sl(2).
We have a more rigorous relation between U, and U(sl(2)) using the following

observation. Add a generator L to the algebra U, such that

[E,F]=L, (¢—q¢  )L=K—-K*

[L,E]=q(EK + K 'E), [L,F] = —q¢ "(FK + K 'F).

This defines a new associative algebra U, but it is straightforward to prove that
actually U, ~ U,. The advantage with U, is that it is defined for all values of ¢. In
particular, when ¢ = 1 we have U7 /(K — 1) ~ U(s1(2)).

Exercise 6.3.2 Prove the last isomorphism above.

Next we study the finite-dimensional representations of U,(s1(2)) when ¢ # 0 is
not a root of unity.

If V is a U, module we denote by V() the weight subspace of V' defined as the
space of vectors v for which Kv = A\wv.

By the Lemma 6.3.1, if v € V(\) then Ev € V(¢?)\) and Fv € V(¢ %v.)
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The vector 0 # v € V() is said to be a highest weight vector if Fv = 0. In
an irreducible highest weight module all other vectors are linear combinations of
the vectors v,, = F"™v,vy = v. The nonzero vectors in this sequence are linearly
independent, since the eigenvalues of K are ¢~2"\ and they are all different when

A #0,q # £1. In the case A = 0 we have

K—-K!
EFv = [E,F]’U = —_I’U =0
q—4q
and so F'v generates an invariant subspace. In an irreducible module we must then
have F'v = 0 and so the module becomes the trivial one-dimensional module where
E, F, K are represented by the zero operator.
In general, for X # 0, let n be the smallest integer for which F"*'v = 0. Then
qn K — qfn Kfl
q—q!

qfn)\ _ qn)\fl
q—q!

0=EF""y =[n+1] F'v =[n+1] Up,.

Since v, # 0, we must have ¢~ "\ — ¢"A~! = 0, that is, A2 = ¢®>" or A = £¢". The
dimension of V' is equal to n+ 1. As in the case of sl(2), the space V' is a direct sum
of one-dimensional weight spaces V(1) where now p = ¢~ 2*\ with k = 0,1,...,n.
Taking account A = eq", we see that the spectrum of K consists of the numbers
eq”,eq" 2, ..., eq” ™ with e = £1.

A difference to the classical situation is that for a given dimension n+ 1 we have
two different irreducible highest weight modules labelled by € = £1.

In the case of s1(2) we defined a Casimir element ¢ = yz+ h?+h which commutes

with the whole algebra. Here we can define the quantum Casimir element

q—lK + qK—l
(g—q71)?

Exercise 6.3.3 Show that ¢, commutes with E, F' and K.

cqg=FEF +

The value of the Casimir ¢, in an irreducible highest weight module is

g AT+ g\
(q—q 1)

The case when g # £1 is a root of unity is more tricky. So let us assume that

N is the smallest positive integer for which ¢V = 1.
Lemma 6.3.4. The elements EN, FN, KN commute with the algebra U,.

Proof. Follows from Lemma 6.3.1 since [N] = 0.
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Let A be any 1-dimensional representation of the center of U,. Denote by .Jy the
ideal in U, generated by the elements ¢ — A(c) - 1 where ¢ belongs to the center.
Since the elements E*FJK* span the algebra U, (by PBW theorem) the quotient

algebra U, /.J) is finite-dimensional when ¢V = 1.

Theorem 6.3.5. There are no finite-dimensional irreducible modules of dimension

> N.

Proof. a) Assume first that there is a weight vector 0 # v € V such that Fv = 0.
Now the subspace spanned by the vectors v, Ev, E?v, ... EN "'y is invariant under
the action of E, F, K, K~1 by the defining relations of U, and by the fact that EV
commutes with everything, so by Schur’s lemma EVv = av for some a € C. So if
the dimension of V is bigger than N we have a proper submodule, a contradiction,
since the module is irreducible.

b) Next we assume that there is no weight vector v such that F'v = 0. Because
the module is finite-dimensional there is at least one nonzero eigenvector v for K.
The subspace W spanned by the vectors v, Fv, F2,..., FN=1y is clearly invariant

under F. It is also invariant under K, K ~! by Lemma 6.3.1. In addition,

E(FPv) = EF(FP~1y)
~1 —1
¢ K+4qK ) ~1
= C, — Fp v
( T (g—q1)? ( )
q—lK 4 qK—l
(¢g—q71)?
This shows that E(FPv) belongs to W when p > 0. The case p = 0 can be treated

= ¢, FP 1y — (FP~1v).

using the observation v = const. x FNv. But since the module is irreducible we

must have W =V so that dimV < N.

6.4 The Hopf algebra structure of U,(sl(2))
We define a comultiplication and counit in U, using the generators E, I, K and
K.
AEY=1®FE+E®K, A(F)=K'®@F+F®1

AK)=K®K, A K)Y=K1'eK™!
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The antipode is defined by
S(E)=-EK™', S(F)=—-KF, S(K)=K ', S(K™') =K.

Once the operations are fixed for the generators they are uniquely defined on all
elements in U, by the homomorphism property of €, A and by the antiautomorphism
property of S. The only thing to check is that the mappings satisfy the axioms on
the generators and preserve the defining relations among the generators. We give
a couple of typical computions and leave the rest to the reader.
First, let us take a look at A. Let us show that A preserves the relation
g p) = KT
qa—4q

Starting from the left-hand-side we obtain

[A(E), A(F)]
—(1®E4+EQK) K '®@F+F®1)
~(K'®9F+F®1)(1®E+E®K)
=K '®QEF+FQE+FK '®KF+EF®K
~-K'®9QFE-K'EQFK-FQFE-FE®QK

=K '®|E F|+[E,Flo K
_K'9K-K )+ (K-KH)eK
q—q!

i -1 =1
_AK) A&g’ )::A(KT 1(1>

q9—q q9—q

An example of a calculation to show that A is coassociative:

(ARIDAE) = (ARid)(1F+EQRK)=101QE+1EQQK+EQRK®K

— (i[d® A)(1® E+E®K) = (id® A)A(E).

The axioms for the antipode: We give a sample calculation concerning the rela-

tion KEK ™! = ¢%E.
S(KHS(E)S(K)=K(-EK YK !'=-¢°EK ' = ¢*S(E).

Exercise 6.4.1 Check the relations 3, 2'S(2") = >, S(z)2" = e(z) - 1
when z is any of the generators F, F, K, K—!.
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Theorem 6.4.2. We have S*(u) = KuK~! for any u € U,.

Proof. 1t suffices to check this for generators:

The classical Lie algebra sl(2) acts on the polynomial algebra Clz,y] of two

commuting variables. Explicitly, we have
E =20y, F =y0,, H=1x0,—y0,

and it is easy to verify the Lie algebra commutation relations [E, F| = H, [H, E]| =
2E, [H,F] = —2F. In the case of the quantum algebra U, we construct an action

in the quantum plane A = C,[x, y] of example 6.2.4. The generators are now
E(u) = m@éq)u, F(u) = (0\u)y
where the quantum derivations are defined by
09 (a™y") = [mla™ 1y, O (@™y") = ey .
The action of K is given by
K(z™y") =q™ "a™y"

and K1 is the inverse action.

We can check the commutation relations by a direct computation. For example,

(B, F)(z™y") = E([m]a™ " y" ™) — F([n]a™y" ™)
m, n K-K! m, n
= ([m][n + 1] = [n][m + 1])2™y" = F(QJ y").
It is clear from the definitions that the homogeneous polynomials of order n
form an invariant subspace V,,. There is a highest weight vector v™ = 2™ with the
property Ev™ = 0 and Kvt = ¢"v*. The dimension of V,, is equal to n + 1. Thus

the representation of U, in V,, is equivalent to the highest weight representation

with highest weight A\ = eq™ with e = +1.
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Let us consider in detail the 2-dimensional representation in V7. In a basis where

K is diagonal we can write

(q 0 (0 1 (0 0
=6 n) e=(0) - 0)

Next we define elements A, B,C, D € U; by

o= (B Bt

for u € U,;. We denote by the same symbol the element of U, and the 2 x 2 matrix
representing in in V.

Let H be the algebra generated by the elements A, B, C, D with the multiplica-
tion defined by the coproduct in Uy. For example, AB is the element in Uy defined
by

(AB)(u) = 3 A(W)B(u").
(u)

The coproduct in H is defined as in the case of the quantum matrix algebra M, (2),

A B A B A B
A(c D)_<C D)®<C D>'
It is straightforward to check that the commutation relations of A, B, C, D which
follow from coproduct in U, are exactly the same as the commutation relations of
a,b,c,din SLy(2). In addition, we can define the counit as in SL4(2). To define the

antipode, we need to go to the quotient algebra H/(det,) where det, = AD—q ' BC.

The antipode satisfies

for all w € U, and h € H.

Exercise 6.4.3 Compute S(A) from the definition above.

Exercise 6.4.4 Show that BA = ¢AB. Hint: It is sufficient to evaluate both
sides for the basis elements u = E*FVK* for i, = 0,1,2. (Why?)

One can also check that we have the duality relations
h(uv) = A(h)(u,v)

for h € H and u,v € U;. Thus in some sense H is the dual algebra Uj; this

statement is not completely precise, since U, is infinite dimensional and the dual
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U, is not strictly speaking a Hopf algebra since one cannot identify the algebraic
tensor product Uy ® Uy as the space of bilinear functions on U,. The latter space
contains the former, but is larger.

Exercise 6.4.5 Show that an element u € U,(sl(2)) is group-like if and only if
u = K" for some n € Z.

Exercise 6.4.6 Let ¢ be real and positive. Show that E* = KF, F* = EK ! K*

K determine a star algebra structure on U,. What happens if ¢ is complex?



