Lie algebras and representation theory/Fall 2013

To be returned on Wednesday, September 25, 10.15am at latest

1. Find all characters of irreducible representations of the cyclic group C_{n} (which consists of powers of $\left.e^{\cdot 2 \pi i / n}\right)$.
2. Find all conjugacy classes in the dihedral group D_{n}. (See the problems $1 / 2$ and 4/2.)
3. Let G be the group of all invertible real $n \times n$ matrices A such that $A_{i j}=0$ for $i>j$ and $A_{i i}=1$. Define a left invariant integration on G. Hint: Try first $n=2,3$. You just need to use the standard invariance properties of integration in an Euclidean space \mathbb{R}^{k}. Is the integral also right invariant?
4. On the bases of the exercise 2 we know the number of inequivalent irreducible representations of D_{n}. Find first all 1-dimensional representations. It turns out that the rest of the irreps are 2-dimensional; try to construct some of them. Compare with the number of conjugacy classes in D_{n} ! It turns out to be useful to separate the cases n even and n odd.
