Lie algebras and representation theory/Fall 2013 Problem set 1

To be returned on Wednesday, September 11, 10.15 at latest

1. Which of the following are groups or semigroups: a) The set of real $n \times n$ matrices under addition, b) the set of real $n \times n$ matrices under matrix multiplication, c) the set of $n \times n$ nonsingular matrices with integer entries, d) the set of nonzero positive real numbers with the operation $x \circ y=x^{y}$. Show that the set $\operatorname{Map}(X ; G)$ of functions on a set X with values in a group G is a group under point-wise multiplication $(f g)(x)=f(x) g(x)$.
2. Consider the group $G=\left\{e, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ of matrices

$$
\begin{aligned}
e & =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), x_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), x_{2}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \\
x_{3} & =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), x_{4}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), x_{5}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) .
\end{aligned}
$$

Show that this group is isomorphic to a group discussed in the lecture notes.
3. Let p be a prime number. Show that the group $\mathbb{Z}_{p}=\mathbb{Z} / p \mathbb{Z}$ is simple, that is, it has no nontrivial normal subgroups.
4. a) Write the permutations

$$
P_{1}=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
6 & 1 & 4 & 8 & 5 & 7 & 2 & 3
\end{array}\right), P_{2}=\left(\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
3 & 5 & 4 & 1 & 8 & 9 & 6 & 7 & 2
\end{array}\right)
$$

' in terms of cycles. b) Express the permutations P_{1} and P_{2} in terms of transpositions. c) Are P_{1} and P_{2} even or odd permutations?
5. Is the permutation group S_{n} simple? What about the group A_{3} ? Show that A_{4} is not simple. (One can show that A_{n} is simple for all $n \geq 5$.)

