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1 Introduction

The course Mathematical Methods of Physics III (MMP III) is third in the series
of courses introducing mathematical concepts and tools which are often needed in
physics. The first two courses MMP I-II focused on analysis, providing tools to an-
alyze and solve the dynamics of physical systems. In MMP III the emphasis is on
geometrical and topological concepts, needed for the understanding of the symmetry
principles and topological structures of physics. In particular, we will learn group the-
ory (the basic tool to understand symmetry in physics, especially useful in quantum
mechanics, quantum field theory and beyond), topology (needed for many subtler
effects in quantum mechanics and quantum field theory), and differential geometry
(the language of general relativity and modern gauge field theories). There are also
many more sophisticated areas of mathematics that are also often used in physics, no-
table omissions in this course are more advanced topics in fibre bundles and complex
geometry.

Course material will be available on the course homepage.

Let me know of any typos and confusions that you find. The lecture notes are
based on those prepared and used by Claus Montonen, and later expanded by Esko
Keski-Vakkuri, who lectured the course before me. In practice, they often follow very
closely (and often verbatim) the three recommended textbooks:

e H.F. Jones: Groups, Representations and Physics (IOP Publishing, 2nd edition,
1998)

e M. Nakahara: Geometry, Topology and Physics (IOP Publishing, 1990)
e H. Georgi: Lie Algebras in Particle Physics (Addison-Wesley, 1982)

I have added some material, both in the end of the group theory part (some
complements for finite and compact groups, as well a chapter about representations
of semi-simple Lie algebras, somewhat different from the earlier versions) and in the
end of the differential geometry part, in particular about principal bundles and Yang-
Mills theory.



You don’t necessarily have to rush to buy the books, they can be found in the
reference section of the library in Physicum.

2 Group Theory

2.1 Group

Definition. A group G is a set of elements {a,b,...} with a law of composition
(multiplication) which assigns to each ordered pair a,b € G another element ab € G.
(Note: ab € G (closure) is often necessary to check in order for the multiplication to
be well defined). The multiplication must satisfy the following conditions:

G1 (associative law): For all a,b,c € G, a(bc) = (ab)c.
G2 (unit element): There is an element e € G such that for all « € G ae = ea = a.

G3 (existence of inverse): For all a € G there is an element a=' € G such that

ac ' =ala=e.

If G satisfies G1, it is called a semigroup; if it also satisfies (G2, it is called a monoid.
The number of elements in the set G is called the order of the group, denoted by
|G|. If |G| < o0, G is a finite group. If G is a discrete set, G is a discrete group. If
G is a continuous set, (G is a continuous group.

Comments

i) In general ab # ba, i.e. the multiplication is not commutative. If ab = ba for all
a,b € G, the group is called Abelian.

ii) The inverse element is unique: suppose that both b, are inverse elements of a.
Then O = Ve =V (ab) = (b'a)b = eb =b.
Examples
1. Z with "4” (addition) as a multiplication is a discrete Abelian group.

2. R with "4” as a multiplication is a continuous Abelian group, e = 0. R\ {0}
with 7 -7 (product) is also a continuous Abelian group, e = 1. We had to remove
0 in order to ensure that all elements have an inverse.

3. Zy = {0,1} with addition modulo 2 is a finite Abelian group with order 2.
e=0, 17t =1.



Let us also consider the set of mappings (functions) from a set X to a set Y,
Map(X,Y)={f: X =>Y|f(x) €Y forall x € X, f(x) is uniquely determined}.
There are special cases of functions:

i) f: X — Y is called an injection (or one-to-one) if f(z) # f(2') Vo # .
ii) f: X — Y is called a surjection (or onto) if Vy € Y Jx € X s.t. f(z) =y.
iii) if f is both an injection and a surjection, it is called a bijection.

Now take the composition of maps as a multiplication: fg = fog, (fog)(x) = f(g(x)).
Then (Map(X, X),0) (the set of functions f : X — X with o as the multiplication)
is a semigroup. We had to choose ¥ = X to be able to use the composition, as ¢
maps to Y but f is defined in X. Further, (Map(X, X), o) is in fact a monoid with
the identity map id : id(r) = x as the unit element. However, it is not a group,
unless we restrict to bijections. The set of bijections f : X — X is called the set
of permutations of X, we denote Perm(X) = {f € Map(X, X)|f is a bijection}.
Every f € Perm(X) has an inverse map, so Perm(X) is a group. However, in general
flg(z)) # g(f(x)), so Perm(X) is not an Abelian group. An important special case
is when X has a finite number N of elements. This is called the symmetric group
or the permutation group, and denoted by Sy. The order of Sy is |Sy| = N!

(exercise).

Definitions

i) We denote ¢> = gg, ¢°> = 999 = g%g, ..., g" =G -- g for products of the element
geaqG.

ii) The order of the element n of g € GG is the smallest number n such that g" = e.

2.2 Smallest Finite Groups

Let us find all the groups of order n for n = 1,...,4. First we need a handy defini-
tion. A homomorphism in general is a mapping from one set X to another set Y
preserving some structure. Further, if f is a bijection, it is called an isomorphism.
We will see several examples of such structure-preserving mappings. The first one is
the one that preserves the multiplication structure of groups.

Definition. A mapping f : G — H between groups G and H is called a group
homomorphism if for all g1,9, € G, f(g192) = f(91)f(g2). Further, if f is also a
bijection, it is called a group isomorphism. If there exists a group isomorphism
between groups G and H, we say that the groups are isomorphic, and denote G = H.
[somorphic groups have an identical structure, so they can be identified — there is only
one abstract group of that structure.



Example. Take G =R, with ”-” and H = R with ”+” as a multiplication. Define
the mapping f : G — H, f(x) = Inz. Now f is a group homomorphism, because
flzy) = In(zy) = Inx +Iny = f(z) + f(y). In fact, f is also a group isomorphism,
because it is a bijection: f~!(z) = e”.

Now let us move ahead to groups of order n.
Order n = 1. This is the trivial group G = {e}, e* = e.

Order n = 2. Now G = {e,a}, a # e. The multiplications are ¢* = ¢, ea = ae = a.

For a2, let’s first try a® = a. But then a = ae = a(aa™!) =a?a ' =aa"t =¢, a

2

contradiction. So the only possibility is a® = e. We can summarize this in the

multiplication table or Cayley table:

L D

e
a (&

This group is called Z5. You have already seen another realization of it: the set
{0, 1} with addition modulo 2 as the multiplication. Yet another realization of
the group is {1, —1} with product as the multiplication. This illustrates what
was said before: for a given abstract group, there can be many ways to describe
it. Consider one more realization: the permutation group Sy = Perm({1,2}).

Its elements are
1 2
1 2

=(21)

the arrows indicate how the numbers are permuted, we usually use the no-

DO — — o
= NN — N

tation in the right hand side without the arrows. For products of permuta-
tions, the order in which they are performed is "right to left”: we first perform
the permutation on the far right, then continue with the next one to the left,
and so one. This convention is inherited from that with composite mappings:
(fg)(x)=f(g(x)). We can now easily show that S is isomorphic with Z,. Take
e.g. {1,—1} with the product as the realization of Z;. Then we define the
mapping i : Zo — Sa ¢ i(1) = e, i(—1) = a. It is easy to see that i is a group
homomorphism, and it is obviously a bijection. Hence it is an isomorphism,
and Z, = S,. There is only one abstract group of order 2.



Order n = 3. Consider now the set G = {e,a,b}. It turns out that there is again
only one possible group of order 3. We can try to determine it by completing
its multiplication table:

‘ e a b
ele a b
ala 7 7
b|b 7 7

First, guess ab = b. But then a = a(bb™!) = (ab)b™' = bb~! = e, a con-
tradiction. Try then ab = a. But now b = (a7 'a)b = a~(ab) = a~ta = e,

again contradiction. So ab = e. Similarly, ba = e. Then, guess a®> = a.

Now a¢ = aaa™' = aa™! = e, doesn’'t work. How about a®> = e? Now
b = a*h = a(ab) = ae = a, doesn’t work. So a® = b. Similarly, can show

b?> = a. Now we have worked out the complete multiplication table:

e a b

e a b

ala b e

b|b e a
Our group is actually called Z3. We can simplify the notation and call b =
a’, so Zs = {e,a,a’}. Zs and Z, are special cases of cyclic groups Z, =
{e,a,a? ...,a"'}. They have a single ”generating element” a with order n:

a™ = e. The multiplication rules are aPa? = aP+4mod ™) (qP)~1 = g"~P. Some-
times in the literature cyclic groups are denoted by C,,. One possible realiza-
27mik

tion of them is by complex numbers, Z,, = {e™» |k = 0,1,...} with product
as a multiplication. This also shows their geometric interpretation: Z,, is the

symmetry group of rotations of a regular directed polygon with n sides (see
H.F.Jones). You can easily convince yourself that Z, = {0,1,...,n — 1} with
addition modulo n is another realization.

Order n = 4. So far the groups have been uniquely determined, but we’ll see that
from order 4 onwards we’ll have more possibilities. Let’s start with a definition.

Definition. A direct product G; x G5 of two groups is the set of all pairs
(g1,92) where g1 € G; and g2 € Go, with the multiplication (g1, g2) - (91, ¢5) =
(9191, 9295). The unit element is (e1,e3) where e; is the unit element of G;
(1 =1,2). It is easy to see that G| x Gy is a group, and its order is |G X Ga| =
|G1| G|

Now we can immediately find at least one group of order 4: the direct product
Zy X Zy. Denote Zy = {e, f} with f% = e, and introduce a shorter notation for



the pairs: E = (e,e), A = (e, f), B = (f,e), C = (f,f). We can easily find
the multiplication table,

QT = =

Q= >
Su RO B e R e
=~ QW w
e QA

The group Zs x Z, is sometimes also called ” Vierergruppe” and denoted by V.
There is another group of order 4, namely the cyclic group Z; = {e, a,a? a’}.
It is not isomorphic with Zy x Z5. (You can easily check that it has a different

multiplication table.) It can be shown (exercise) that there are no other groups
of order 4, just the above two.

Order n > 5. As can be expected, there are more possible non-isomorphic groups of
higher finite order. We will not attempt to categorize them much further, but
will mention some interesting facts and examples.

Definition. If H is a subset of the group G such that
i) Vhy,hs € H: hiho € H

i) VheH: h'eH,

then H is called a subgroup of GG. Note as a result of i) and ii), every subgroup
must include the unit element e of G.

Trivial examples of subgroups are {e} and G itself. Other subgroups H are called
proper subgroups of G. For those, |H| < |G| — 1.

Example. Take G = Z3. Are there any proper subgroups? The only possibilities
could be H = {e,a} or H = {e,a?}. Note that in order for H to be a group of
order 2, it should be isomorphic with Z,. But since a* # e (because a® = ¢) and
(a*)? = a®a = a # e, neither is. So Z3 has no proper subgroups.

2.2.1 More about the permutation groups S,

It is worth spending some more time on the permutation groups, because on one
hand they have a special status in the theory of finite groups (for a reason that I will
explain later) and on the other hand they often appear in physics.

Let X ={1,2,...,n}. Denote a bijection of X by p: X — X, i+ p(i) = p;. We
will now generalize our notation for the elements of S,,, you already saw it for S;. We
denote a P € S, = Perm(X) by

P:(l 2 ... n)
P1r P2 DPn

9



Recall that the multiplication rule for permutations was the composite operation,
with the "right to left” rule. In general, the multiplication is not commutative:

ro-( )( )#ar.

p1r P2 - Dn 91 g2 - Gn

So, in general, S, is not an abelian group. (Except S;.) For example, in Ss,
1 2 3 123\ (123 (1)
1 3 2 312) \213
1 2 3 123\ (123 @)
31 2 132/) \321)"

which is not the same.
1 2 .-+ n
Jo-

pl— b1 P2 ' DPn
1 2 ... n ’

An alternative and very useful way of writing permutations is the cycle notation.

but
The identity element is
and the inverse of P is

In this notation we follow the permutations of one label, say 1, until we get back
to where we started (in this case back to 1), giving one cycle. Then we start again
from a label which was not already included in the previously found cycle, and find
another cycle, and so on until all the labels have been accounted for. The original
permutation has then been decomposed into a certain number of disjoint cycles. This
is best illustrated by an example. For example, the permutation

1 2 3 4
2 4 31

of Sy decomposes into the disjoint cycles 1 — 2 — 4 — 1 and 3 — 3. Reordering the
columns we can write it as

1234\ [(124]3\ (124 3
2 431) \(241|3) (241 3)°

In a cycle the bottom row is superfluous: all the information about the cycle (like
1 —2—4 —1) is already included in the order of the labels in the top row. So we
can shorten the notation by simply omitting the bottom row. The above example is

(; i g ‘1*):(124)(3).

10

then written as



As a further abbreviation of the notation, we omit the 1-cycles (like (3) above), it
being understood that any labels not appearing explicitly just transform into them-
selves. With the new shortened cycle notation, (1) reads

(23)(132) = (12) (3)

and (2) reads as
(132)(23) = (13) . (4)

In general, any permutation can always be written as the product of disjoint cycles.
What’s more, the cycles commute since they operate on different indices, hence the
cycles can be written in any order in the product. In listing the individual permuta-
tions of S, it is convenient to group them by cycle structure, i.e. by the number and
length of cycles. For illustration, we list the first permutation groups S,,:

n=2: 5 ={FE,(12)}.

(
n=3 S5 ={E,(12),(13),(23), (123), (132)}.
n=4: Sy={FE,(12),(13
(123), (132), (124), (142), (134), (143), (234), (243),

); (14),(23), (24), (34), (12)(34), (13)(24), (14)(23),
(1234), (1243), (1324), (1342), (1423), (1432)}.

You can see that the notation makes it quite easy and systematic to write down all
the elements in a concise fashion.

The simplest non-trivial permutations are the 2-cycles, which interchange two
labels. In fact, any permutation can be built up from products of 2-cycles. First, an
r-cycle can be written as the product of » — 1 overlapping 2-cycles:

(ning...n,.) = (ning)(nengz) - -+ (ny_1n,.) .

Then, since any permutation is a product of cycles, it can be written as a product of
2-cycles. This allows us to classify permutations as "even” and ”"odd”. First, a 2-cycle
which involves just one interchange of labels is counted as odd. Then, a product of
2-cycles is even (odd), if there are an even (odd) number 2-cycles. Thus, an r-cycle
is even (odd), if r is odd (even). (Since it is a product of r — 1 2-cycles.) Finally, a
generic product of cycles is even if it contains an even number of odd cycles, otherwise
it is odd. In particular, the identity F is even. This allows us to find an interesting
subgroup of 5, the alternating group A, which consists of the even permutations
of S,. The order of A, is |A4,| = % - |Sp|. Hence A, is a proper subgroup of S,,. Note
that the odd permutations do not form a subgroup, since any subgroup must contain
the identity £ which is even.

To keep up a promise, we now mention the reason why permutation groups have
a special status among finite groups. This is because of the following theorem (we
state it without proof).

11



Theorem 2.1 (Cayley’s Theorem) Every finite group of order n is isomorphic to
a subgroup of S,,.

Thus, because of Cayley’s theorem, in principle we know everything about finite
groups if we know everything about permutation groups and their subgroups.

As for physics uses of finite groups, the classic example is their role in solid state
physics, where they are used to classify general crystal structures (the so-called crys-
tallographic point groups). They are also useful in classical mechanics, reducing the
number of relevant degrees of freedom in systems of symmetry. We may later study
an example, finding the vibrational normal modes of a water molecule. In addition
to these canonical examples, they appear in different places and roles in all kinds of
areas of modern physics.

2.3 Continuous Groups

Continuous groups have an uncountable infinity of elements. The dimension of a
continuous group G, denoted dim G, is the number of continuous real parameters
(coordinates) which are needed to uniquely parameterize its elements. In the product
g’ = ¢'g, the coordinates of ¢ must be continuous functions of the coordinates of g
and ¢’. (We will make this more precise later when we discuss topology. The above
requirement means that the set of real parameters of the group must be a manifold,
in this context called the group manifold.)

Examples.

1. The set of real numbers R with addition as the product is a continuous group;
dim R = 1. Simple generalization: R™ = {(r1,...,m)|ri € R, i =1,...,n} =

n times
—f—
R x ---x R, with product (r1,...,7,) - (rh,...,70) = (r1 + 7, ...,m0 +70),
dim R" = n.

2. The set of complex numbers C' with addition as the product, dim C' = 2 (recall
that we count the number of real parameters).

3. The set of nxn real matrices M (n, R) with addition as the product, dim M (n, R)
n?. Note group isomorphism: M (n, R) & R™.

4. U(1) = {z € C||z|*> = 1}, with multiplication of complex numbers as the
product. dim U(1) = 1 since there’s only one real parameter 6 € [0, 27|, z = €¥.
Note a difference with U(1) and R: both have dim = 1 but the group manifold

of the former is the circle S' while the group manifold of the latter is the

n times
N

=~

whole infinite z-axis. A generalization of U(1) is U(1)" = f](l) x - x U(1),

12



(e, eifn) . (e, ... ) = (e{O+01)  iOnt0)) The group manifold of

—
U(1)" is an n-torus S* x --- x S*. Again, the n-torus is different from R™: on
the former it is possible to draw loops which cannot be smoothly contracted to
a point, while this is not possible on R".

All of the above examples are actually examples of Lie groups. Their group man-
ifolds must be differentiable manifolds, meaning that we can take smooth (partial)
derivatives of the group elements with respect to the real parameters. We’ll give a
precise definition later — for now we’ll just focus on listing further examples of them.

2.3.1 Examples of Lie groups

1. The group of general linear transformations GL(n, R) = {A € M(n, R)| det A #
0}, with matrix multiplication as the product; dim GL(n, R) = n?. While
GL(n,R), M(n,R) have the same dimension, their group manifolds have a dif-
ferent structure. To parameterize the elements of M (n, R), only one coordinate
neighborhood is needed (R™ itself). The coordinates are the matrix entries @

ayp - QAip

A=
Ap1 -+ Gpp

In GL(n, R), the condition det A # 0 removes a hyperplane (a set of measure
zero) from R™, dividing it into two disconnected coordinate regions. In each
region, the entries a;; are again suitable coordinates.

2. A generalization of the above is GL(n,C') = {n x n complex matrices with
non — zero determinant}, with matrix multiplication as the product. This has
dim GL(n,C) = 2n?. Note that GL(n, R) is a (proper) subgroup of GL(n,C).
The following examples are subgroups of these two.

3. The group of special linear transformations SL(n, R) = {A € GL(n, R)| det A =
1}. It is a subgroup of GL(n, R) since det(AB) = det Adet B. The dimension
is dim SL(n, R) = n? — 1.

4. The orthogonal group O(n, R) = {A € GL(n, R)| ATA =1,}, i.e. the group of
orthogonal matrices. (1,, denotes the n x n unit matrix.) A” is the transpose

of the matrix A:
ailr - Qpl

T _ . . .
AT = : c. : )
Ain -+ Apn

i.e. if A= (a;;) then AT = (a;;), the rows and columns are interchanged. Let’s
prove that O(n, R) is a subgroup of GL(n, R):

13



a) 11 =1, so the unit element € O(n, R)

b) If A, B are orthogonal, then AB is also orthogonal: (AB)T(AB) = BTATAB =
BB =1,.

c) Every A € O(n, R) has an inverse in O(n, R): (A™")T = (A7)l so (A™H)TA™! =
(AT)flAfl — (AAT)fl — ((AT)TAT)fl =11 = 1,.

n

Note that orthogonal matrices preserve the length of a vector. The length of a

vector ¥ is \/v? 4 02 = VTV, A vector ¥ gets mapped to A7, so its length
gets mapped to \/(A7)T (A7) = VT ATAG = V10, the same. We can inter-
pret the orthogonal group as the group of rotations in R™.

What is the dimension of O(n, R)? A € GL(n, R) has n? independent parame-
ters, but the orthogonality requirement AT A = 1,, imposes relations between the

parameters. Let us count how many relations (equations) there are. The diago-
nal entries of AT A must be equal to one, this gives n equations; the entries above
the diagonal must vanish, this gives further n(n — 1)/2 equations. The same
condition is then automatically satisfied by the "below the diagonal” entries,
because the condition ATA = 1,, is symmetric: (ATA)T = ATA = (1,,)T = 1,.
Thus there are only n? —n —n(n —1)/2 = n(n — 1)/2 free parameters. So
dimO(n,R) =n(n—1)/2.

Another fact of interest is that det A = £1 for every A € O(n, R). Proof:
det(ATA) = det(AT)det A = det Adet A = (det A)? = det1, =1 = det A =
+1. Thus the group O(n,R) is divided into two parts: the matrices with
det A = 41 and the matrices with det A = —1. The former part actually
forms a subgroup of O(n, R), called SO(n, R) (you can figure out why this is
true, and not true for the part with det A=-1). So we have one more example:

. The group of special orthogonal transformations SO(n, R) = {A € O(n, R)| det A =
1}. dim SO(n, R) = dimO(n, R) = n(n — 1)/2.

. The group of unitary matrices (transformations) U(n) = {4 € GL(n,C)| ATA =
1.}, where AT = (49T = (AT)*: (A"),; = (A;)*. Note that (AB)' =
BYAf. These preserve the length of complex vectors 7. The length is de-
fined as \/zfz1 + --- 2- 2, = VZ1Z. Under A this gets mapped to /(A2)fAZ =
VZTAYAZ = /ZtZ. The unitary matrices are rotations in C". We leave it as
an exercise to show that U(n) is a subgroup of GL(n,C), and dimU(n) = n?.
Note that U(1) = {a € C| a*a = 1}, its group manifold is the unit circle S* on

the complex plane.

. The special unitary group SU(n) = {A € U(n)| det A = 1}. This is the complex
analogue of SO(n, R), and is a subgroup of U(n). Exercise: dim SU(n) = n*—1.
U(n) and SU(n) groups are important in modern physics. You will probably

first become familiar with U(1), the group of phase transformations in quantum
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mechanics, and with SU(2), in the context of spin. Let’s take a closer look at
the latter. It’s dimension is three. What does its group manifold look like?
Let’s first parameterize the SU(2) matrices with complex numbers a, b, ¢, d:

a b a* c*
pr— T:
a=(ea) =i e)

detA = ad—bc=1
2 2 * *
+ |c]* a*b+c'd 10
ara = (Nl - .
( b*a+d*c |b]? + |d|? 0 1
Let’s first assume a # 0. Then b = —c*d/a*. Substituting to the determinant
condition gives ad — be = d(|a* + |c|?)/a* = d/a* =1 = d = a*. Then ¢ = —b*.

So
a b
A= )
(S o)

Assume then a = 0. Now |c|? =1, ¢*d =0 = d = 0. Then |c]* = |b]* = 1.
Write b = ¢, ¢ = €. Then det A = —bc = /P4 =1 — v = —3+(2n+1)7.
Then ¢ = eV = ¢=BeCn+lm — =16 — _p* Thus

0 b
A= .

Let us trade the two complex parameters with four real parameters x1, s, T3, T4:

Then

a =1 +1xry9, b = x3 4+ 1x4. Then A becomes

A I + ifL‘Q I3 + Z‘ZL'4
—Tg +iTs T — T2 )

The determinant condition det A = 1 then turns into the constraint
xf+x§+x§+xi =1

for the four real parameters. This defines an unit 3-sphere. More generally, we
define an n-sphere S" = {(x1,...,2,:1) € R 37 2? = 1}. The group
manifold of SU(2) is a three-sphere S®. (And the group manifold of U(1) was
a l-sphere S'. As a matter of fact, these are the only Lie groups with n-sphere
group manifolds.) The n-sphere is an example of so-called pseudospheres. We'll
meet other examples in an exercise.

. As an aside, note that O(n, R),SO(n, R),U(n),SU(n) were associated with
rotations in R™ or C", keeping invariant the lengths of real or complex vec-
tors. One can generalize from real and complex numbers to quaternions and
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octonions, and look for generalizations of the rotation groups. This produces
other examples of (compact) Lie groups, the Sp(2n), G, Fy, Fg, E7 and Eg. The
symplectic group Sp(2n) plays an important role in classical mechanics, it is as-
sociated with canonical transformations in phase space. The other groups crop
up in string theory.

2.4 Groups Acting on a Set

We already talked about the orthogonal groups as rotations, implying that the group
acts on points in R". We should make this notion more precise. First, review the
definition of a homomorphism from p. 6, then you are ready to understand the
following

Definition. Let G be a group, and X a set. The (left) action of G on X is
a homomorphism L : G — Perm(X), G 3 g — L, € Perm(X). Thus, L satisfies
(Lg,0Lg,)(x) = Ly, (Lg, () = Lgyg, (), where x € X. The last equality followed from
the homomorphism property. We often simplify the notation and denote gz = L, (z).
Given such an action, we say that X is a (left) G-space. Respectively, the right
action of G in X is a homomorphism R : G — Perm(X), Ry, o R;, = Ry,,, (note
order in the subscript!), zg = R,(z). We then say that X is a right G-space.

Two (left) G-spaces X, X' can be identified, if there is a bijection i : X — X’ such
that i(Ly(7)) = L;,(i(x)) where L, L" are (left) actions of G on X, X'. A mathemati-
cian would say this in the following way: the diagram

X 4 x
Lyl N\ 1L
X 4 X

commutes, i.e. the map in the diagonal can be composed from the vertical and
horizontal maps through either corner.

Definition. The orbit of a point x € X under the action of G is the set O, =
{Ly(x)| g € G}. In other words, the orbit is the set of all points that can be reached
from x by acting on it with elements of GG. Let’s put this in another way, by first
introducing a useful concept.

Definition. An equivalence relation ~ in a set X is a relation between points in
a set which satisfies

i) a ~ a (reflective) V a € X

ii) a ~ b= b~ a (symmetric) ¥ a,b € X
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iii) a ~band b ~ ¢ = a ~ c (transitive) V a,b,c € X

Given a set X and an equivalence relation ~, we can partition X into mutually disjoint
subsets called equivalence classes. An equivalence class [a] = {x € X| x ~ a}, the
set of all points which are equivalent to a under ~. The element a (or any other
element in its equivalence class) is called the representative of the class. Note that
[a] is not an empty set, since a ~ a. If [a](\[b] # 0, there is an x € X s.t. © ~ a
and = ~ b. But then, by transitivity, a ~ b and [a| = [b]. Thus, different equivalence
classes must be mutually disjoint ([a] # [b] = [a]([b] = 0). The set of all equivalence
classes is called the quotient space and denoted by X/ ~

Example. Let n be a non-negative integer. Define an equivalence relation among
integers r,s € Z: r ~ sif r—s =0 (mod n). (Prove that this indeed is an equivalence
relation.) The quotient space is Z/ ~= {[0], [1],[2], ..., [n — 1]}. Define the addition
of equivalence classes: [a|+[b] = [a+b]. Then Z/ ~ with addition as a multiplication
is a finite Abelian group, isomorphic to the cyclic group: Z/ ~= Z,. (Exercise: prove
the details.)

Back to orbits then. A point belonging to the orbit of another point defines an
equivalence relation: y ~ x if y € O,. The equivalence class is the orbit itself:
[z] = O,. Since the set X is partitioned into mutually disjoint equivalence classes,
it is partitioned into mutually disjoint orbits under the action of G. We denote
the quotient space by X/G. It may happen that there is only one such orbit, then
0O, = X Vx € X. In this case we say that the action of G on X is transitive, and X
is a homogenous space.

Examples.

1. G =2y ={1,-1}, X = R. Left actions: Li(x) = x, L_i(x) = —x. Orbits:
Op = {0}, O, = {z,—z} (V © #0). The action is not transitive.
2. G=50(2,R), X = R*. Parameterize

cost) —sind
SO(Q’R)Bg:<sin9 COSQ)

and write
Left action:
Ly(x) = cosf —sinf xy )\ [ cos xy —sind xy
I\ sinf cosf Ty )\ sinf x; + cosf z,
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(rotate vector = counterclockwise about the origin by angle #). Orbits are circles
with radius 7 about the origin: Oy = {0},0,.0 = {x € R?| 21 + 23 = r?},
r = /22 + 2. The action is not transitive. R?/SO(2,R) = {r € R| r > 0}.

3. G =GL(n,R), X = R". Left action: La(x) = 2" where 2} = Y7, Aj;z;. The
orbit of the origin 0 is Oy = {0}, other points have other orbits. So the action
1s not transitive.

2.4.1 Conjugacy classes and cosets

We can also let the group act on itself, i.e. take X = G. A simple way to define the
left action of G on G is the translation, L,(¢') = g¢'. Every group element belongs
to the orbit of identity, since L,(e) = ge = g. So O, = G, the action is transitive. A
more interesting way to define group action on itself is by conjugation.

Definition. Two elements g1, g» of a group G are conjugate if there is an element
g € G such that g; = ggog~'. The element g is called the conjugating element.

We then take conjugation as the left action, L,(¢') = g¢’g~". In general conju-
gation is not transitive. The orbits have a special name, they are called conjugacy
classes.

It is also very interesting to consider the action of subgroups H of G on GG. Define
this time a right action of H on G by translation, Ry(g) = gh. If H is a proper
subgroup, the action need not be transitive.

Definition. The orbits, or the equivalence classes
g ={¢' € G| I3h € H s.t. ¢ = gh} = {gh| h € H}

are called left cosets of H, and usually they are denoted gH. The quotient space
G/H = {gH| g € G} is the set of left cosets. (Similarly, we can define the left action
Ln(g) = hg and consider the right cosets Hg. Then the quotient space is denoted
H\G.)

Comments.

1. ghH = gH for all h € H.
2. If gy H = goH, there is an h € H such that g, = gih i.e. g;'g. € H.

3. There is a one-one correspondence between the elements of every coset and
between the elements of H itself. The map f, : H — gH, f,(h) = gh is
obviously a surjection; it is also an injection since gh; = ghy = hy = hy. In
particular, if H is finite, all the orders are the same: |H| = |gH| = |¢'H|. This
leads to the following theorem:
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Theorem 2.2 (Lagrange’s Theorem) The order |H| of any subgroup H of a finite
group G must be a divisor of |G|: |G| = n|H| where n is a positive integer.

Proof. Under right action of H, G is partitioned into mutually disjoint orbits gH,
each having the same order as H. Hence |G| = n|H| for some n.

Corollary. If p = |G| is a prime number, then G = Z,.

Proof. Pick g € G, g # e, denote the order of the element g by m. Then H =
{e,g,...g™ '} = Z, is a subgroup of G. But according to Lagrange’s theorem

|G| = nm. For this to be prime, n =1 or m =1. But g # e, so m > 1son =1 and
|G| = |H|. But then it must be H = G.

Definition. Let group G act on a set X. The little group of x € X is the subgroup
G, ={g € G| Ly(x) = z} of G. It contains all elements of G which leave = invariant.
It obviously contains the unit element e, you can easily show the other properties of a
subgroup. The little group is also sometimes called the isotropy group, stabilizer
or stability group.

Back to cosets. The set of cosets G/H is a G-space, if we define the left action
ly : G/H — G/H, l,(¢’H) = gg’H. The action is transitive: if g;H # ¢goH, then
lyg71(92H) = g1 H. The inverse is also true:

Theorem 2.3 Let group G act transitively on a set X. Then there exists a subgroup
H such that X can be identified with G/H. In other words, there exists a bijection
i:G/H — X such that the diagram

G/H & X
bl N\ L
G/H 5 X

commautes.

Proof. Choose a point x € X, denote its isotropy group G, by H. Define a map
i: G/H — X, i(¢gH) = Ly(z). It is well defined: if gH = ¢’H, then g = ¢'h
with some h € H and Ly(x) = Lyp(z) = Ly(Ln(z)) = Ly(x). It is an injection:
i(gH) = i(¢'H) = Lg(x) = Ly(z) = x = Ly (L) (2)) = Ly1g(z) = g 'g' € H =
g = gh = gH = ¢’H. It is also a surjection: G acts transitively so for all 2’ € X
there exists g s.t. 2’ = Ly(x) = i(gH). The diagram commutes: (L, 0i)(¢'H) =
Ly(Ly(x)) = Loy (x) = i(gg'H) = (i o l;)(g'H).
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Corollary. A consequence of the proof is that the orbit of a point x € X, O,, can
be identified with G/G, since G acts transitively on its orbits. Thus the orbits are
determined by the subgroups of GG, in other words the action of G on X is determined
by the subgroup structure.

Example. G = SO(3,R) acts on R?, the orbits are the spheres |z|> = 22+ 23+ 123 =
r?, i.e. S? when r > 0. Choose the point = north pole = (0,0, r) on every orbit

r > 0. Its little group is

G, = {( A%“ ‘1) ) | Agys € 50(2,3)} >~ SO(2,R) .

By Theorem 2.3 and its Corollary, SO(3, R)/SO(2, R) = S2.

2.4.2 Normal subgroups and quotient groups

Since the quotient space G/H is constructed out of a group and its subgroup, it is
natural to ask if it can also be a group. The first guess for a multiplication law would
be

(91H)(92H) = g192H .

This definition would be well defined if the right hand side is independent of the
labeling of the cosets. For example gt H = g1hH, so we then need ¢1goH = g1hgo H
i.e. find b € H s.t. g1g2h' = g1hgs. But this is not always true. We can circumvent
the problem if H belongs to a particular class of subgroups, so called normal (also
called invariant, selfconjugate) subgroups.

Definition. A normal subgroup H of G is one which satisfies gHg™' = {ghg~'| h €
H} = H for all g € G.

Another way to say this is that H is a normal subgroup, if for all g € G,h € H
there exists a b’ € H such that gh = h/g.

Consider again the problem in defining a product for cosets. If H is a normal
subgroup, then g1hgs = g1(hga) = g1(g2h’) = g1g2h’ is possible. One can show
that the above multiplication satisfies associativity, existence of identity (it is eH)
and existence of inverse (¢gH)™' = g7'H. Hence G/H is a group if H is a normal
subgroup. When G/H is a group, it is called a quotient group.

Comments:
1. If H is a normal subgroup, its left and right cosets are the same: gH = Hg.
2. If G is Abelian, all of its subgroups are normal.

3. |G/H| = |G|/|H]| (follows from Lagrange’s theorem).

20



Example. Consider the cyclic group Cy, = {e,a,...,a* '},n € Z. Take H =

{e,a? a*,...,a*™ D}, You can easily see that H is a subgroup of Cy,. Because cyclic
groups are Abelian, H is normal. The two cosets are H = a*H = --- = o>V H and
aH ={a,a®,a®,...,a* '} =a®H = --- = a® 'H. Because (¢H)H = aH, HH = H

and (aH)(aH) = a*H = H, the quotient group Cy,/H = C,.

Example. Consider G = SU(2), H = {13, 1o} = Zy. Aly = 1,A for all A €
SU(2), hence H is a normal subgroup. One can show that the quotient group G/H =

U(2)/Z5 is isomorphic with SO(3, R). This is an important result for quantum
mechanics, we will analyze it more in a future problem set.

This is also an example of a center. A center of a group G is the set of all elements
of ¢ € G which commute with every element g € G. In other words, it is the set
{9 € G| g9 = g9’ Vg € G}. You can show that a center is a normal subgroup, so the
quotient of a group and its center is a group. The center of SU(2) is {13, —12}.

We finish by showing another way of finding normal subgroups and quotient
groups. Let the map p : G; — Gy be a group homomorphism. Its image is the
set

Imp = {gs € Gs| 3g1 € Gy s.t. g2 = p(g1)}

and its kernel is the set

Kerp={g1 € Gi| u(g1) = ea} .

In other words, the kernel is the set of all elements of G; which map to the unit
element of G5. You can show that I'my is a subgroup of G, Keru a subgroup of Gy.
Further, Kerp is a normal subgroup: if k € Keru then u(gkg™') = u(g)esp(g™!) =
w(gg™) = pler) = eq ie. gkg™' € Kerp. Hence Gi/Keru is a quotient group. In
fact, it also isomorphic with Imyu !

Theorem 2.4 G,/Kerp = Impu.

Proof. Denote K = Kerp. Define i : G1/K — Impu, i(gK) = u(g). If gK = ¢K
then there is a k € K st. g = ¢g’k. Then i(gK) = u(g) = p(d'k) = p(g)es =
i(¢'K) so i is well defined. Injection: if i(¢K) = i(¢'K) then u(g) = p(g’) so es =
(1(9)tulg) = g™ )g') = ulg~'g’) so g~'g’ € K. Hence 3k € K s.t. ¢ = gk
so ¢ K = gK. Surjection: i is a surjection by definition. Thus ¢ is a bijection.
Homomorphism: i(gK¢'K) = i(99'K) = u(gg’) = p(g)u(g’) = i(gK)i(¢'K). iis a
homomorphism and a bijection, i.e. an isomorphism.

For example, our previous example SU(2)/Zy; = SO(3,R) can be shown this
way, by constructing a surjective homomorphism p : SU(2) — SO(3, R) such that
Kerp = {15, —15}.
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3 Representation Theory of Groups

In the previous section we discussed the action of a group on a set. We also listed
some examples of Lie groups, their elements being n x n matrices. For example, the
elements of the orthogonal group O(n, R) corresponded to rotations of vectors in R".
Now we are going to continue along these lines and consider the action of a generic
group on a (complex) vector space, so that we can represent the elements of the group
by matrices. However, a vector space is more than just a set, so in defining the action
of a group on it, we have to ensure that it respects the vector space structure.

3.1 Complex Vector Spaces and Representations

Definition. A complex vector space V is an Abelian group (we denote its mul-
tiplication by ”+” and call it a sum), where an additional operation, scalar mul-
tiplication by a complex number p € C has been defined, such that the following
conditions are satisfied:

1) (0 + 0a) = pth + pth
ii) (1 + p2)V= v+ pov

iii) g1 (p2t) = (p1p2)0

—_
<y
I
<y

v

)
iv)
) 07 =0 (0is the unit element of V)

We could have replaced complex numbers by real numbers, to define a real vector
space, or in general replaced the set of scalars by something called a ”field”. Complex
vector spaces are relevant for quantum mechanics. A comment on notations: we
denote vectors with arrows: v, but textbooks written in English often denote them
in boldface: v. If it is clear from the context whether one means a vector or its
component, one may also simply use the notation v for a vector.

Definition. Vectors 93,...,7, € V are linearly independent, if > " 4,7, = 0
only if the coefficients p; = po = --- = p, = 0. If there exist at most n linearly
independent vectors, n is the dimension of V', we denote dimV =n. If dimV = n,
aset {¢',...,e"} of linearly independent vectors is called a basis of the vector space.

Given a basis, any vector U can be written in a form ¢ = ) ., v;e’, where the
components v; of the vector are found uniquely.
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Definition. A map L : V; — V5 between two vector spaces Vi, V5 is linear, if it
satisfies

L(pn 0y + poty) = pn L(0h) + po L)

for all pq, o € C and v, 05 € V. A linear map is also called a linear transforma-
tion, or especially in physics context, a (linear) operator. If a linear map is also
a bijection, it is called an isomorphism, then the vector spaces V; and V5 are iso-
morphic, V; =2 V;. It then follows that dim V; = dim V5. Further, all n-dimensional
vector spaces are isomorphic. An isomorphism from V' to itself is called an auto-
morphism. The set of automorphisms of V' is denoted Aut(V'). It is a group, with
composition of mappings L o L' as the law of multiplication. (Existence of inverse is
guaranteed since automorphisms are bijections).

Definition. The image of a linear transformation is
imL = f(V)) = {L(%)| v, € Vi} C Vs

and its kernel is the set of vectors of V; which map to the null vector 62 of Va:
ker L = {#} € Vi| L(%}) = 0,} C V4 .

You can show that both the image and the kernel are vector spaces. I also quote a
couple of theorems without proofs.

Theorem 3.1 dim V) = dimker L + dimimL.

Theorem 3.2 A linear map L : V — V is an automorphism if and only if ker L =

{0}.

Note that a linear map is defined uniquely by its action on the basis vectors:
L(0) = L vé') =Y vL(&)
i=1 i

then we expand the vectors L(é') in the basis {¢’} and denote the components by
L

jit

J

v J
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so the image vector L(¥) has the components L(0); = >, Ljv;. Let dimV; =
dim V5 = n. The above can be written in the familiar matrix language:

L(5)1 Ly Lyp -+ Ly (%1
L(U)z _ Loy Ly --- Ly, V2
L(/U)n Lnl ttt Lnn Un,

We will often shorten the notation for linear maps and write Lt instead of L(¢), and
L1Ls7 instead of Li(Ly(?)). From the above it should also be clear that the group
of automorphisms of V' is isomorphic with the group of invertible n x n complex
matrices:

Aut(V) ={L:V — V| L is an automorphism} = GL(n,C) .

(The multiplication laws are composition of maps and matrix multiplication.)

Now we have the tools to give a definition of a representation of a group. The idea
is that we define the action of a group G on a vector space V. If V were just a set,
we would associate with every group element g € G a permutation L, € Perm(V).
However, we have to preserve the vector space structure of V. So we define the action
just as before, but replace the group Perm(V') of permutations of V' by the group
Aut(V) of automorphisms of V.

Definition. A (linear) representation of a group G in a vector space V' is a homo-
morphism D : G — Aut(V), G 5 g — D(g) € Aut(V). The dimension of the
representation is the dimension of the vector space dim V.

Note:

1. D is a homomorphism: D(g192) = D(g1)D(g2)-
2. D(g7!) = (D(9))".

Example. Let G = C,; = {e,c,c? ¢} and V = R% One possible representation of
Gis D:G — Aut(V),

o= (] ) e=pe)=wer=(y ) =1

Note that the matrix D(c) corresponds to a 90° rotation in the R? plane.

We say that a representation D is faithful if KerD = {e}. Then ¢; # ¢go =
D(g1) # D(g2). Whatever the KerD is, D is always a faithful representation of the
quotient group G/KerD.

A mathematician would next like to classify all possible representations of a group.
Then the first question is when two representations are the same (equivalent).
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Definition. Let Dy, Dy be representations of a group G in vector spaces Vi, Vo. An
intertwining operator is a linear map A : V; — V5 such that the diagram

Vi & W
Di(g) 1 N\ 1 D2(9)
Vi 4w

commutes, i.e. Dy(g)A = AD;(g) for all g € G. If A is an isomorphism (we then need
dim V] = dim V%), the representations D; and Dy are equivalent. In other words,
there then exists a similarity transformation Dy(g) = AD;(g)A™! for all g € G.

Example. Let dimV; = n, Vo, = C™. Thus any n-dimensional representation is
equivalent with a representation of G by invertible complex matrices, the homomor-
phism Dy : G — GL(n,C).

Definition. A scalar product in a vector space Visamap V xV — C, (v, ) —
(U1|U,) € C which satisfies the following properties:

i) (U
i) (
(0

iii)

Ulpath + piata) = pa (0]01) + puo(0]0)
W) = (wl]v)”
d|7) > 0 and (0]0) =0 < 7 = 0.

@1

Given a scalar product, it is possible to normalize (e.g. by the Gram-Schmidt method)
the basis vectors such that (€'|é’) = §”. Such an orthonormal basis is usually the
most convenient on to use. The adjoint A" of an operator (linear map) A : V — V

is the one which satisfies (7] ATw) = (A0|w) for all v, w € V.

Definition. An operator (linear map) U : V — V is unitary if (¢]w) = (Uv|Uw)
for all ¥,% € V. Equivalently, a unitary operator must satisfy UTU = idy = 1. It
follows that the corresponding n x n matrix must be unitary, i.e. an element of U(n).
Unitary operators form a subgroup Unit(V') of Aut(V) = GL(n,C).

Definition. An unitary representation of a group G is a homomorphism D :
G — Unit(V).

Definition. If Uy, U; are unitary representations of G in Vi, V5, and there exists an
intertwining isomorphic operator A : Vi — V5 which preserves the scalar product,
(AU|Adl)y, = (U|w)y, for all v, w € Vi, the represenations are unitarily equivalent.
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Example. Every n-dimensional unitary representation is unitarily equivalent with
a representation by unitary matrices, a homomorphism G — U(n).

As always after defining a fundamental concept, we would like to classify all pos-
sibilities. The basic problem in group representation theory is to classify all unitary
representations of a group, up to unitary equivalence.

3.2 Symmetry Transformations in Quantum Mechanics

We have been aiming at unitary representations in complex vector spaces because of
their applications in Quantum Mechanics (QM). Recall that the set of all possible
states of a quantum mechanical system is the Hilbert space H, a complex vector space
with a scalar product. State vectors are usually denoted by |¢) as opposed to our
previous notation ¥, and the scalar product of two vectors |¢), |x) is denoted (1]x).
Note that usually the Hilbert space is an infinite dimensional vector space, whereas
in our discussion of representation theory we’'ve been focusing on finite dimensional
vector spaces. Let’s not be concerned about the possible subtleties which ensue, in
fact in many cases finite dimensional representations will still be relevant, as you will
see.

According to QM, the time evolution of a state is controlled by the Schrodinger
equation,

d
1) = HI)

where H is the Hamilton operator, the time evolution operator of the system. Suppose
that the system possesses a symmetry, with the symmetry operations forming a group
G. In order to describe the symmetry, we need to specify how it acts on the state
vectors of the system — we need to find its representation in the vector space of
the states, the Hilbert space. The norm of a state vector, its scalar product with
itself (1)|1)) is associated with a probability density and normalized to one, similarly
the scalar product (¥|x) of two states is associated with the probability (density) of
measurements. Thus the representations of the symmetry group G must preserve the
scalar product. In other words, the representations must be unitary. Moreover, in a
closed system probability is preserved under the time evolution. Thus, unitarity of
the representations must also be preserved under the time evolution.

We can summarize the above in a more formal way: if g — U, is a faithful unitary
representation of a group G in the Hilbert space of a quantum mechanical system,
such that for all g € G

UHU, ' = H (5)

where H is the Hamilton operator of the system, the group G is a symmetry group
of the system.

The condition (5) arises as follows. Suppose a state vector |1) is a solution of the
Schrodinger equation. In performing a symmetry operation on the system, the state
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vector is mapped to a new vector Ugy|t). But if the system is symmetric, the new state
Uy,|v) must also be a solution of the Schrodinger equation: ih(d/dt)U,|v) = HU,|v)).
But then it must be ih(d/dt)[Y) = ih(d/dt)U; Uglp) = Uy ' HUylp) = HJp) =
U 'HU, = H.

Consider in particular the energy eigenstates |¢,) at energy level E,:

An energy level may be degenerate, say with £ linearly independent energy eigenstates
{lon1s - - |Pnk)}. They span a k-dimensional vector space H,, a subspace of the full

Hilbert space. If the system has a symmetry group,
HU9|¢n> = U9H|¢n> = EnUg|¢n>

so all states U,|¢,) are eigenstates at the same energy level £,. Thus the represen-
tation U, maps the eigenspace H,, to itself; in other words the representation U, is
a k-dimensional representation of G' acting in ‘H,,. By an inverse argument, suppose
that the system has a symmetry group G. Its representations then determine the
possible degeneracies of the energy levels of the system.

3.3 Reducibility of Representations

It turns out that some representations are more fundamental than others. A generic
representation can be decomposed into so-called irreducible representations. That is
our next topic. Again, we start with some definitions.

Definition. A subset W of a vector space V is called a subspace if it includes all
possible linear combinations of its elements: if v, € W then \v + puw € W for all
A\ peCl

Let D be a representation of a group G in vector space V. The representation
space V is also called a G-module. (This terminology is used in Jones.) Let W be
a subspace of V. We say that W is a submodule if it is closed under the action of
the group G: W € W = D(g)w € W for all g € G. Then, the restriction of D(g) in
W is an automorphism D(g)w : W — W.

Definition. A representation D : G — Aut(V) is irreducible, if the only submod-
ules are {0} and V. Otherwise the representation is reducible.

Example. Choose a basis {€¢'} in V, let dim V' = n. Suppose that all the matrices
D(g9)i; = (¢'|D(g)ve?) turn out to have the form

D(g) = ( M(g) S(g) ) (6)



where M (g) is a ny x ny; matrix, 7'(g) is a ny X ny matrix, n; +ny = n, and S(g) is a
n1 X ng matrix. Then the representation is reducible, since

U1

W=t ()= 7)

Un,
is a submodule:

0 (£)- (M) - (M) ew

If in addition S(g) = 0 for all g € G, the representation is obviously built up by
combining two representations M (g) and T'(g). It is then an example of a completely
reducible representation. We’'ll give a formal definition shortly.

Definition. A direct sum V;®V; of two vector spaces V; and V5 consists of all pairs
(v1,v9) with vy € Vi, vy € Va, with the addition of vectors and scalar multiplication

defined as

(v1,v2) + (v}, v5) = (v1 + 0,00 + )

)\(Ul, UQ) = ()\Ul, )\Ug)

It is simple to show that dim(V; @ V) = dim Vj + dim V5. If a scalar product has
been defined in V; and V5, one can define a scalar product in V; & V5 by

(01, v2)[(v1, 05)) = (o1, 01) + (vafv3) -

Suppose Dy, Dy are representations of GG in V;, V5, one can then define a direct sum
representation D & Dy in Vi & Vi

(D1 @ D) (g)(v1,v2) = (D1(g)v1, D2(g)va) -

In this case it is useful to adopt the notation

RS
vov={( %)} -t

Now the matrices of the direct sum representation are of the block diagonal form

(D1 ® Ds)(g) = ( Dlo(g) Dzo(g) > '

oSt

so that
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Definition. A representation D in vector space V is completely reducible if

for every submodule W C V there exists a complementary submodule W’ such that
V:W®W, andD%’DW@DW/.

Comments.

1. According to the definition, we need to show that D is equivalent with the
direct sum representation Dy, @ Dy». For the matrices of the representation,
this means that there must be a similarity transformation which maps all the
matrices D(g) into a block diagonal form:

apa” = (7 50 )

2. Strictly speaking, according to the definition also an irreducible representation
is completely reducible, as W = V, W’ = {0} or vice versa satisfy the require-
ments. We will exclude this case, and from now on by completely reducible
representations we mean those which are not irreducible.

The goal in the reduction of a representation is to decompose it into irreducible

pieces, such that
D=D®Dy®DsD -

(then dim D = ). dim D;). This is possible if D is completely reducible. So, given
a representation, how do we know if it is completely reducible or not? Interesting
representations from quantum mechanics point of view turn out to be completely
reducible:

Theorem 3.3 Unitary representations are completely reducible.

Proof. Since we are talking about unitary representations, it is implied that the
representation space V has a scalar product. Let W be a submodule. We define
its orthogonal complement W, = {tv € V| (d|w) = 0 Vo € W}. I leave it as an
excercise to show that V =2 W & W,. We then only need to show that W, is also
a submodule (closed under the action of G). Let ¢ € W, and denote the unitary
representation by U. For all & € W and g € G (U(g)d|w) = (U(g)v|U(g9)U*(g)w) =
(U (9)U ()0~ (9)i5) 2 (GU~ (1) = (51U (g~1)ed) L (#u7) £ 0, where the step a
follows since U is unitary, step b since W is a G-module, and the step c is true since
v € W,. Thus U(g)v € W, so W is closed under the action of G.

If G is a finite group, we can say more.

Theorem 3.4 Let D be a finite dimensional representation of a finite group G, in
vector space V. Then there exists a scalar product in 'V such that D is unitary.
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Proof. We can always define a scalar product in a finite dimensional vector space,
e.g. by choosing a basis and defining (0|w) = > | vfw; where v;, w; are the compo-
nents of the vectors. Given a scalar product, we then define a ”group averaged” scalar
product ((7|w)) = ‘G| > gec(D(g)0]D(g')w). 1t is straightforward to show that ((|))
satisfies the requirements of a scalar product. Further,

((D(g)v|D(g)w)) = Z )31 D(g") D(g)w)

_ z;; )0 D(g'g)w)
_ |_<1?| S (D(g") D"y @) = (5]@)) .

In other words, D is unitary with respect to the scalar product ((])).

Since we have previously shown that unitary representations are completely re-
ducible, we have shown the following fact, called Maschke’s theorem.

Theorem 3.5 (Maschke’s Theorem) FEvery finite dimensional representation of a
finite group is completely reducible.

3.4 Irreducible Representations

Now that we have shown that many representations of interest are completely re-
ducible, and can be decomposed into a direct sum of irreducible representations, the
next task is to classify the latter. We will first develop ways to identify inequivalent
irreducible representations. Before doing so, we must discuss some general theorems.

Theorem 3.6 (Schur’s Lemma) Let Dy and Dy be two irreducible representations
of a group G. Fvery intertwining operator between them is either a null map or an
1somorphism; in the latter case the representations are equivalent, D1 = Ds.

Proof. Let A be an intertwining operator between the representations, i.e. the

diagram
i A
Di(g) 1 \. | Da(g)
i A

commutes: Dy(g)A = AD;(g) for all ¢ € G. Let’s first examine if A can be an
injection. Note first that if KerA = {7 € V4| AT = 05} = {0}, then A is an injection
since if AV = Aw then A( — @) = 0 = 7 — @ € KerAd = {0,} = ¢ = @. So
what is KerA? Recall that KerA is a subspace of V;. Is it also a submodule, i.e.
closed under the action of G? Let & € KerA. Then AD,(g)7 = Dy(g)AT = 0,
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hence Dy(g)v € KerA i.e. KerA is a submodule. But since D; is an irreducible
representation, either KerA = V; or KerA = {0;}. In the former case all vectors of
Vi map to the null vector of V5, so A is a null map A = 0. In the latter case, A is
an injection. We then use a similar reasoning to examine if A is also a surjection.
Let o € ImA = {U € V,| 30} € V] s.it. U = Avh}. Then we can write th = A#.
Then Dy(g)tvy = Dy(g9)At, = A(D1(g)01) so also Dy(g)Us € ImA. Thus, ImA is a
submodule of V5. But since D, is irreducible, either ImA = {05} i.e. A = 0, or
ImA =V, i.e. Ais a surjection. To summarize, either A = 0 or A is a bijection i.e.
an isomorphism (since it is also a linear operator).

Corollary. If D is an irreducible representation of a group G in (complex) vector
space V, then the only operator which commutes with all D(g) is a multiple of the
identity operator.

Proof. If Vg € G AD(g) = D(g)A, then for all u € C also (A — pl)D(g) =
D(g)(A — ul). According to Schur’s lemma, either (A — p1)~! exists for all u € Cor
(A — pl) = 0. However, it is always possible to find at least one p € C such
that (A — ul) is not invertible. In the finite dimensional case this is follows from
the fundamental theorem of algebra, which guarantees that the polynomial equation
det(A — pu1) = 0 has solutions for p. (The infinite dimensional case is more delicate,
but turns out to be true as well). So it must be A = pul.

We will next discuss a sequence of theorems, starting from the rather abstract
fundamental orthogonality theorem and then moving towards its more intuitive and
user-friendly forms.

Theorem 3.7 (Fundamental Orthogonality Theorem) Let D' and D? be two
unitary irreducible representations of a group G in vector spaces Vi and V,. Fix basis
{of,..., 0} } (with k = 1,2) in the vector spaces Vi.. Write a linear map T : Vo — V4
as a matriz (T;;) in these basis. Then

n
> Di(9)Di(g") = —Ta(T " )is - 6

m
geG 1

where n = |G|, the representations D¥(g) are written as matrices in the corresponding
basis, and
5 {O when D', D? are nonequivalent

1 when D*(g) = T~'D'(g)T for all g € G.

Proof. 1) Assume that D', D? are nonequivalent. Let M be an arbitrary m; x my
matrix and set

F = ZD YMD?*(g™ ).
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Then D'F = FD? by a direct calculation and so F' = 0 by Schur’s Lemma. Choosing
now My = 0405 and taking the matrix element Fj; = 0 gives the claim in the
nonequivalent case.

2) Let then D?*(g) = T~'D*'(g)T for all g € G for a linear isomorphism T : V5 —
V1. In this case m; = my. Let us define the matrices M, F' as in the case (1). Now

(FT™HD' = FD*T' = DY(FT™)

and so again by Schur’s Lemma FT~! = X - 1. We write A = )j;, since the constant
A depends on the choice of indices in the definition of M. Now we have

AjeTi = ZD (9)Dia(g™ ).

Multiplying this equation with (7'~!);; and summing over i, we get

Ajimy = > g 2T Dy (9) Diy(97)
= g > (D*(9)T 1) Dia(97))
> (D29~ ) DX )T )y = n - (T )y

In the unitary case D?,(g~"') = D%;(g) and the left hand side can be interpreted
as a scalar product of two vectors, then the right hand side is an orthogonality re-
lation for them. Namely, consider a given representation (labeled by «), and the
ijth elements of its representation matrices. They form a |G|-component vector
(Dg;‘) (g1), Dg;‘) (g2),- -, DZ(;X) (9)c1)) where g; are all the elements of the group G. So we
have a collection of vectors, labeled by «,,j. Then the case (1) is an orthogonality
relation for the vectors, with respect to the scalar product (v]v") = Z‘ZGll vivi. How-
ever, in a |G| dimensional vector space there can be at most |G| mutually orthogonal
vectors. The index pair ij has (dim D(®)? possible values, so the upper bound on the
total number of the above vectors is

> _(dim D@)* < |G|,
where the sum is taken over all possible unitary inequivalent representations (labeled
by «). In fact, the sum turns out to be equal to the order |G|. This theorem is due
to Burnside:

Y (dim D)? = |G|,

a

We shall prove it later.

Burnside’s theorem helps to rule out possibilities for irreducible representations.
Consider e.g. G = Ss, |S3] = 6. The possible dimensions of inequivalent irreducible
representations are 2,1,1 or 1,1,1,1,1,1. It turns out that S5 has only three inequivalent
irreducible representations (show it). So the irreps have dimensions 2,1,1.
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3.5 Characters

Characters are a convenient way to classify inequivalent irreducible representations.
To start with, let {e*,...,é"} be an orthonormal basis in a n-dimensional vector
space V' with respect to scalar product (J).

Definition. A trace of a linear operator A is
tr A= Z(éﬂAe
i=1

Note. Trace is well defined, since it is independent of a choice of basis. Let
{&",...,&"} be another basis. Then tr A = Y (¢']4&") = Y .(&'e7)(e7|Ae") =
S (ATeTe) (@led) = 3o, (ATe|ed) = 3 (€7]|Ag7). Recall also that associated
with the operator A is a n x n matrix with components A;; = (e*|Aé”). Thus tr A is
equal to the trace of the matrix.

Now, let D(®)(g) be an unitary representation of a finite group G in V.

Definition. The character of the representation D(® is the map

X G = C, x9(g) =tr DY(g).

Note. Equivalent representations have the same characters: tr (AD® A=) = tr (A~tAD(

tr D@ where we used cyclicity of the trace: tr ABC = tr CAB = tr BC A etc.
Recall that conjugation L,(go) = ggog ™" is one way to define how G acts on itself,
the orbits {ggog™!| ¢ € G} were called conjugacy classes. Since tr D(ggog™') =
tr (D(g9)D(go)D~(g)) = tr D(go), group elements related by conjugation have the
same character (again, use cyclicity of trace). So characters can be interpreted as
mappings
X : {conjugacy classes of G} — C

Note also that the character of the unit element is the same as the dimension of the
representation: x(®(e) = tr D(¥(e) = tr idy = dim V = dim D@,

Recall then the fundamental orthogonality theorem, in its basis-dependent form,
Theorem 3.7. Now we are going to set ¢ = 7,k = [ in 3.7 and sum over ¢ and k. The
left hand side becomes

SS D) S D g) = S @ (g

geG 1 k geG

The right hand side becomes

G G
le|ll‘) aﬁ Z 51]{?5116 ’ | (a) aﬁ Z 512 |G’ 5&5 .
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We have derived an orthogonality theorem for characters:

> ox@ = |Gl dap - (9)
geG
It can be used to analyze the reduction of a representation. In the reduction of
a representation D, it may happen that an irreducible representation D(® appears
multiple times in the the direct sum:

D=DYaeDVgepBaeD?Dgp®g...

Then we shorten the notation and multiply each irreducible representation by an
integer n, to account for how many times D(® appears:

D =3DY @ D® @ DO EBna

Ne is called the multiplicity of the representation D(® in the decomposition. Since
tr is a linear operation, obviously the characters of the representation satisfy

=5 nax®

with the same coefficients n,. If we know the character y of the reducible representa-
tion D, and all the characters x(* of the irreducible representations, we can calculate
the multiplicities of each irreducible representation in the decomposition by using the
orthogonality theorem of characters:

Na = |—(1;| > x@(9)x(9)

Then, once we know all the multiplities, we know what is the decomposition of the
representation D. In practise, characters of finite groups can be looked up from
character tables. You can find them e.g. in Atoms and Molecules, by M. Weissbluth,
pages 115-125. For more explanation of construction of character tables, see Jones,
section 4.4. You will work out some character tables in a problem set.

Again, the orthogonality of characters can be interpreted as an orthogonality

relation for vectors, with useful consequences. Let C7,Cs, ..., Cy be the conjugacy
classes of GG, denote the number of elements of C; by |C;|. Then (9) implies
Z ’Ci|W(Ci)X(ﬂ)(Ci) = |G| bagp - (10)
{Ci}

Consider then the vectors @, = (1/[C1[x*(C1), ..., VICk]x®(Cy)). The number of
such vectors is the same as the number of irreducible representations. On the other
hand, (10) tells that the vectors are mutually orthogonal, so the can be no more of
them than the dimension of the vector space k, the number of conjugacy classes.
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Theorem 3.8 The number of nonequivalent unitary irreducible representations of a
finite group s less or equal to the number of its conjugacy classes.

If the group is Abelian, the conjugacy class of each element contains only the
element itself: ggog™' = gogg~' = go. So the number of conjugacy classes is the same
as the order of the group |G|, this is then also the upper bound of the number of
unitary irreducible representations.

Theorem 3.9 All unitary irreducible representations of an Abelian group are one
dimensional.

Proof. In a representation D of an abelian group D(g) commutes with any other
element D(g’), so by Schur’s Lemma D(g) = A, - 1 for some constant A\, € C. But
now any l-dimensional subspace of the representation space is invariant, so the whole
representation must be 1-dimensional by the irreducibility.

We introduce now an important algebraic tool in the representation theory of finite
groups, namely the group algebra. Let G be any finite group and consider formal linear
combinations zgea aq- g where a, € C. Note that here a sum g; + g2 does NOT mean
a group multiplication even when G is abelian. Formal linear combinations can be
added as > ag-g+ >, b, 9=>_ (a,+b,)-g and multiplied naturally by complex
numbers. In addtion, we define a multiplication as

(Z ag - g)- (Z by - g') = Zagbg’ 99 = Z(Z agbg-1n) - h

which by a direct computation is associative. We denote by A(G) the group algebra
of G. As a vector space, its dimension is equal to |G]|.
Given a representation D of G we can extend it to a representation of the algebra

A(G) by setting
D) a,-9)=> aD(g)

where the sum on the right-hand-side is simply interpreted as a sum of matrices. In
this way representations of G' and representations of A(G) are in 1-1 correspondence.
The regular representation of G is defined as the representation in A(G) (viewed as a
vector space!) defined by

D(g)x:D(g)Zah-h:gm:Zah~ghzz%flh-h.
h

h h

The dimension of D is |G|. This representation is faithful: For example, D(g)e =
ge = g = D(¢')e if and only if g = ¢’. In general, it is reducible,

D = ;DY
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where the D®’s are nonequivalent irreducible representations and ¢; = 0,1,2,.... By
the orthogonality of characters we know that

¢ = ﬁ ; x(9)x”(9)

where y is the character of D and x¥ is the character of D). Since y(g) = 0 when
g # e and x(e) = |G| we find

1

¢ = —|G|x(e) = tr DV (e
GG )

and thus ¢; is equal to m; = dim D®.

Theorem 3.10 (Burnside’s Theorem) Let m; be the dimensions of the nonequivalent
wrreducible representations of a finite group G. Then

Zm? = |G]|.

Proof. Using the decomposition

x=>_ ax"

for the character of the regular representation we get
1 — 1 , .
= a7 > x(9)x(g) = @l D aaix(9xV(g) = aigidi; =Y a =D m}
g g bJ 1,3 i i

according to the orthogonality relations of the characters.

Denote by G; C G the different conjugacy classes in G, with ¢« = 1,2,...,r. By
abuse of notation, we also denote G; = _ ., g € A(G) the corresponding element
in the group algebra. Since aG;Gja™! = aG;a 'aG;a™ = G;G; the product (in A(G)
1) of two conjugacy classes can be written as

GiG;=> hEGy
k

where the hfj’

is an element in A(G) corresponding to another conjugacy class G;. Denote by n;

s are nonnegative integers. We define G; ! = > gea; g ! and so G;*

the number of elements in the conjugacy class Gj; clearly n; = ny. Denote by G, the
conjugacy class containing only the neutral element e. Now GG;G contains the element
e exactly n; times, so hj;, = n;. On the other hand, when j # i’ then G;G; does not
contain the element e and so hilj =0 for j # 4. For an irreducible representation D
we set

T = 3" D(g) = D(G)).

gEGj
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By the representation property Tj(i)D(") (9) = DW (g)Tj(i) for all ¢ € G and thus by
irreducibility
(@)
T = )1
for some complex number ;. Since x”(g) = x?(h) when g, h are in the same conju-
gacy class, we have
trT “Aj =tr ZD’) —njxg-i)

geG;

where m; is the dimension of D® and X] = x¥(g) for any g € G;. Thus

nj ) X
)\j—EXj =N gi)'
Using
LT = Yacaysea, DO(@DO(B) = 5 DO(ab) =

= DO(G;Gx) = Yy Wy DY(Ga) = Yooy Wiy 1Y
we get AjAx = D, bS5\, that is,

njnka Xk = Zh]sz nng)

s=1
and so
nﬂlkaj Zh sz xans
where D@ are all nonequivalent irreducible representations of G, withi =1,2,...,p.

Using the formula
P
X = Z miX(l)7
i=1

where m; is the dimension of D and the fact that x(e) = |G| and x(g) = 0 for

g ¢ Gy we have ), mixgi) = Xj, which is equal to |G| for j = 1 and zero for j # 1.

This implies
gy Z Xk; Xl Z Z hklnsles Z hiuns|Glos1 = hl{;lnllG| = 1| GO,
s=1 i=1
where n; = |G;| and XJ = x¥(g) for g € G;. Thus we have proven

Theorem 3.11 The characters of the inequivalent irreducible representations of a
finite group G satisfy the orthogonality relations

DG G
E Xz(e)Xz():—[ "51%
ny

i

where the index j' corresponds to the conjugacy class G;l.
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Theorem 3.12 The number of irreducible inequivalent representations of a finite
group G is equal to the number of conjugacy classes in G.
Proof. Define the vectors y; = (Xﬁ”, . ’ngp)) € CP. From the previous Theorem
follows that the vectors xi,..., X, are linearly independent, so » < p. On the other
hand, we already know that the number r of inequivalent representations is less or
equal to the number p of conjugacy classes, Theorem 3.8.

Theorem 3.13 The matriz elements {D](Z) (9)} of inequivalent irreducible (unitary)
representations of a finite group G' form a complete set of functions on G. If f : G — C
1s any function on G then we can write

flg) =" a(i.j;a) D (g)

2,70
where @
o dim D@ —_—
a(t, j; o) = N > F(9)Di5(g).
g

Proof. From Theorem 3.7 follows that the matrix elements of the different irre-
ducible representation form an orthogonal system. On the other hand, on G there
are exactly |G| linearly independent functions; but we know that the number of matrix
elements = Y m? = |G].

This theorem can be extended to much wider class of groups than the finite groups,
namely the compact groups. The class of compact groups includes many important
groups in the applications like the groups U(n), SU(n), SO(n), Sp(2n,C)NU(2n), .....
We state the Theorem without proofs.

As a tool we need the Haar measure on a compact group G. We need a volume
measure on G in order to define integration of functions, which is in turn necessary
since for infinite groups we cannot use the usual summation over group elements, like
in the previous theorems for finite groups; instead, we have to use integration over
the group,

> s~ [ saue

geG
There is a general theorem which guarantees the existence of a left (or right) invariant
measure for all locally compact groups. A locally compact group is a topological group
(the multiplication and taking the inverse are continuous operations) such the the
neutral element has a compact neighborhood. Nonlocally compact groups turn up
usually only in infinite-dimensional situations. All the matrix groups which we have
met before are locally compact. A measure is left invariant if

/G f(9)duag = /G f(g09)dpc
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for all gy € G and for all integrable functions f. One defines a right invariant measure
in a similar way.
Example 1 In the case of the matrix group GL(n,R) the integration is simply

defined as o)
_ 9 g
/Gf(g)d,uG - / |det(g)|" ]Z;Idgzja

as the usual (Lebesgue, or in the case of a continuous function, Riemann) integration
over the matrix entries g;; € R.

Example 2 The group U(1) = S! is compact and the measure is the standard
(normalized) measure % on the circle.

Example 3 The group SU(2) can be identified as the 3-dimensional unit sphere
S3 and the Haar measure is the (normalized) volume element, evaluated using the
standard rotation invariant metric coming from S% C R*.

In the case of a compact group there is a measure which is at the same time left and
right invariant, and it is uniquely defined up to positive scaling factor dug — A - dpug.

We can then normalize the measure such that the volume of G is equal to one.

Theorem 3.14 The matrixz elements of the different irreducible unitary representa-
tions of a compact group G satisfy

_ 1
o s _
/GD( )i(9) DR (9)due = T Oa.80ik 050

m
where duc is the (normalized) Haar measure on G. In addition, any square-integrable
complex function f on G can be uniquely written as a linear combination of the matrix
elements, where the coefficients in the expansion of f are given as

a(i,j;a) = dimD(“’-/f(g)D(“%j(g)dua-
G

As in the case of a finite group we can define the regular representation of a
compact group as the representation in the Hilbert space H = L*(G, du) of complex
valued square-integrable functions given by [D(go)f](9) = f(g5'g). By the above
theorem, the regular representation is a direct sum of the irreps D@, each appearing
with the multiplicity = dim D(® in the decomposition.

Note that in the case of G = U(1) = S! the above theorem gives just the
Fourier decomposition of a square-integrable function! All the representations are
1-dimensional and are given as g — D(g) = ¢g" = €™ for n € Z. The generalization
to other (Lie) groups leads to a branch of mathematics called harmonic analysis on
Lie groups.

39



4 Representations of the symmetric group

4.1 Conjugacy classes in S5,

Recall the notation for elements in the symmetric group S, :

1 2 ... n
i~ )
fi fo oo fa
denotes the map k +— fi in the set {123...n}. The p-cycles in S, are denoted by
(41142 ...1,) are permutations where 4; +— 4g, iy — i3 .... and i, — i;. We have shown

that any permutation is a product of disjoint cycles. Furthermore, a cycle (i; .. .1%,)
is a product of transpositions,

(iy ... ip) = (iyis)(inis) . . . (ip1ip).
If f €S, is an arbitrary permutation then
f(ili? e ip)f_l = (fi1fi2 e fip)

as can be seen directly from the definitions.

We denote by [n1,ng,...,n,] the set of elements in S,, which can be written as
products of disjoint cycles of lengths ny,ng, ..., n,.
Theorem 4.1 The conjugacy classes in S, are subsets of the type [ni,na,...,ny)

where we can choose ny > ng > -+ > ny, withny +ng + -+ +n, = n.

Proof. We have seen above that the sets [ny, no, ..., n,| are conjugacy classes. On
the other hand, given an element ¢ in a conjugacy class, we can write it as a a
product of cycles in some [n, ng, ..., n,l. . Any other element in the same conjugacy
class is then of the form fgf~! for f € S, and these are all included in the same
(1, Mg, ..., Nyl

It follows now from the Theorem 3.12 that the number of nonequivalent irreducible
representations of S, is equal to the number of partitions n = ny +ng +--- +n, to
positive integers with n; > ny > --- > n,,. In particular, for n = 2 we have two irreps
and for n = 3 the number is 3.

4.2 A List of irreducible representations of S,

We give the description of all nonequivalent irreducible representations of .S,, without
proof. For proofs, see for example the monograph D.E. Robinson: Representation
Theory of the Symmetric Group.

Let ny > ny > --- > n, be a partition of n to positive integers. We first form
the Young pattern with p rows as given in the Figure 1, with row lengths n;. The
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Young tableau is then formed by filling the rows with integers 12 - --n. According to
the following rules:
(1) In each row the numbers appear in increasing order from left to right
(2) In each column the numbers appear in increasing order from top to bottom
(3) Each number appears exactly once.
See the Figure (2).
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Theorem 4.2 The number of different Young tableau corresponding to a partition
[n1,n2,...,n,| is equal to

n!
— Tl -1
Lo 1) g( 2

where l; =n; +p—1i withi=1,2,...,p.

Label the rows by 1,2, 3, ... from to to bottom. Denote by s; the label of that row
which contains the integer i. We denote this set by |s1, s9, ..., Sy >, the Yamanouchi
symbol of the Young tableau. By the ordering principle of the integers in the rows of
a Young tableau, the Yamanouchi symbol completely characterizes a Young tableau.

Next we define a complex vector space V' = Vny, na,...,n,| corresponding to a
given Young pattern. The basis is labelled by the Young tableaux corresponding to
the Young pattern. We can as well label the basis vectors in V' by the Yamanouchi
symbols [s1, S, ..., 8, > .

A representation of S, in V' is now defined as follows. A transposition (k — 1, k)
acts in V' as a linear operator D(k — 1, k) such that

D(k —1,k)|s1,89,...,8, >=
+|s1, 82, ...,8, > if k— 1,k appear in the same row
—|s1,89,...,8, > if k— 1,k are located in the same column
%\51,52, 80> V1 —h72[sy, ..., Sk, Sk_1,. .., 5, > otherwise ,

where the hook h is the distance between the numbers &,k — 1 in the given Young
tableau; that is, it is £+ the number of steps in the horizontal direction + the number
of steps in the vertical direction needed to reach k from the location of k — 1; we
choose the positive sign if if s, < s;_; and the negative sign for s > sx_1. See the
Figure 3.

Since every element in S, can be written as a product of transpositions we get an
action for every permutation as a linear operator in V.

Theorem 4.3 The above construction defines an irreducible representation of S, in
V = Vini,na,...,n,l for every partition of n as a sum of decreasing sequence of
positive integers. Furthermore, these representations are nonequivalent and they form
a complete set of nonequivalent irreducible representations of \S,,.

We can define an inner product in the vector space V' be declaring that the basis
vectors |s1, Sa, ..., S, > corresponding to the different Yamanouchi symbols form an
orthonormal basis. This representation is unitary (Exercise: Check this from the
defining relations!)

Given any group G and a subgroup H, a representation D of GG can be restricted
to the subgroup giving naturally a representation of H. In a typical case, even when
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D is irreducible, its restriction D|y is not irreducible. In the case of the symmetric
group we have

Theorem 4.4 When an wrreducible representation of S, corresponding to a Young
pattern [ny,ng, ..., n,| is restricted to the subgroup S,—1 C S, (those elements which
leave n fized) it is a direct sum of irreducible representations of S,_1 corresponding
to Young tableauz [mq,my, ..., m,] such that there exists 1 < i < p with m; = n; for
j # i and m; = n; — 1. Fach of these representations occur with multiplicity = 1 in
the decomposition.

5 Some tensor analysis and representation theory

5.1 Tensor products of representations and the symmetric
group

We shall explain some constructions of representations of classical Lie groups without
proofs. By classical groups one means the matrix groups GL(n,R), GL(n,C) and their
compact subgroups SO(n),U(n), SU(n) and the symplectic group Sp(2n) (both the
real and the complex form). There is a close relation between representations and
the corresponding Lie algebras (see the Exercises to the Section 2). The Lie algebra
of a matrix group G consists of matrices X such that e € G for all t € R. So given
a representation D of a G in a vector space V' we can define the matrices

d

—D(e")]i=0

d(X) = o

and then
[d(X),d(Y)] = d[[X,Y]).

This relation follows from the equation
D(etX)D(eSY)D(e_tX)D(e_SY) — D(etXesye—tXe—sY)

after a differentiation with respect to both t,s at t = s = 0. Starting from a repre-
sentation d(X) of a Lie algebra one could try to form a representation of the corre-
sponding group using the exponential map g = X — D(g) = e¥*). However, there
might be a problem with this construction since the exponential map is 1-1 only in
some neighborhood of the point X = 0. We state without a proof:

Theorem 5.1 Let G be a simply connected Lie group (i.e., a Lie group where any
continuous loop can be continuously deformed to a point) and g its Lie algebra. Then
any finite-dimensional representation of g can be exponentiated to a representation of
the group G.
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Tensor analysis provides some very simple constructions of representations. It is
somewhat harder to see that we get all irreducible representations this way. The
reader is recommended to look at the classical text H. Weyl: Classical Groups and
their Invariants and Representations.

A useful tool in the tensor analysis comes from physics: The use of the algebra of
bosonic or fermionic creation and annihilation operators. We shall briefly discuss this
method, through examples, in the end of the section. The linear groups SU(n) and
SO(n) appear in physics often as symmetries of many particle systems. This could be
for example a nucleus exhibiting various kinds of particle interchange and combined
rotational symmetries. If the symmetry is exact, that is, the group commutes with
the hamiltonian, then one can classify eigenvectors of the hamiltonian belonging to
the same eigenvalue using the representation theory of the symmetry group G. Even
in the case when the symmetry is only approximate it might still be of advantage to
classify the physical states according to representations of G (supermultiplets’).

Let V, W be a pair of finite-dimensional vector spaces (over real or complex num-
bers). The tensor product V' ® W is then a vector space of dimension nm, where
n =dimV and m = dim W. All vector spaces of the same dimension are isomorphic,
so the construction of V' ® W is not critical. It suffices to say that given a basis
{v1,...,v,} in V and a basis {wy,...,wy,} in W then a basis in V ® W is given
by the symbols v; ® w;. By linearity of the tensor product, if v = > a;v; € V and
w =) bjw; then the product v@w € V@ W is defined as v @w = ), ; a;bjv; ® wj.

For those readers who are more familiar with linear algebra, the tensor product can
be defined in a basis independent way as the vector space Hom(V*, W) of linear maps
from the dual vector space V* to W. Given linear maps A:V — V and B: W — W
one can define a linear map A B: VW — V @ W by

(A® B)(vew) = A(v) ® B(w).

To see how the symmetry operates on many particle systems let us assume first
that G is represented in a vector space V (’single particle space’) with basis vectors
vy . ..U, A 2-particle system is then described using the tensor product space V ® V/
carrying the tensor product representation of GG. Tensors can be split two antisym-
metric and symmetric tensors. Writing a general element of V@V ast = > t;;0;, ®v;

we can split
1 1
t:a+8, CLZ'j = §(tij_tji>78ij = §(t2]+t2]),
where s is symmetric and a is antisymmetric in the indices.
Writing a group element g € G as a matrix g;; acting on the coordinates in
the v; basis we observe that in the tensor product representation the G action is

ti; = Giagjptay (sum over repeated indices) and therefore by linearity

/ /
@ 5 = GiagjbQab, S5 = GiagjbSab,
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i.e. the antisymmetric and symmetric parts transform separately. We have therefore
two subrepresentations, one in the space of antisymmetric tensors and one in the
space of symmetric tensors.

In general, the antisymmetric and symmetric parts can be further reduced to
irreducible components. There are some exceptions, most notably the case when
G = SU(n) or G = GL(n) acting in V through the defining representation. In these
cases one can prove that the representations A and S are already irreducible.

One can go on and consider 3-, 4-,...n-particle systems. For example, in quan-
tum mechanics a system of indistinguishable half-integer spin particles (fermions, e.g.
electrons) obeys the Pauli exclusion principle: no two particles should be in the same
state. Mathematically, this means that the system is described by elements in the
completely antisymmetric tensor product space A¥V. Here k is the number of parti-
cles. The number of particles cannot exceed the number of one-particle levels n for
combinatorial reasons; there are no completely antisymmetric tensors of rank k > n.
For k < n the number of independent antisymmetric tensors is

Nk n!

(k:m) = S =
This is the number of ways how one can select k different numbers from the sequence
1,2, ...,n. Each such selection defines a basis vector in A¥V by

(11, .., 1K) — Ze(a)vil ® - Qv
where the sum is over all permutations of k letters and €(o) = 1 depending whether
the permutation is a product of even or odd number of transpositions. It is clear that
any antisymmetric tensor can be written uniquely as a linear combination of these
elementary tensors.

In the case of integral spin particles (bosons) there is no Pauli exclusion principle;
instead, the multiparticle wave function should be completely symmetric with respect
to the interchange of arguments (Bose statistics). That is, the k particle states should
be elements in the completely symmetrized tensor product S¥V. A complete basis in
SkV is obtained by symmetrizing the vectors Uy @ - @, with 43 <dg < -0 <y,
Now i1 < io+1 < i3+ 2--- < ip+ k — 1 are different positive integers in the set
1,2,...,n+k — 1 and therefore the dimension

(n+k—1)!

dim(S*V) = T

In situations where not all of the particles are indistinguishable one has to deal
with tensors of mized symmetry type. For example, we could consider third rank
tensors obtained from arbitrary tensors by an application of the mixed symmetry
operator

R=(1-(13))(1+ (12)),
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where (ij) means the transposition of the i:th and of the j:th index; thus
(Rt>i1i2i3 - ti1i2i3 + ti2ili3 - ti3i2i1 - ti2i3i1'

Note that the order of permutations is important. We denote tensors Rt symbolically
by the Young diagram

i1 | iz
i3

The completely symmetric tensors are denoted by . : . and the completely
antisymmetric ones by

As another example of tensors of mixed symmetry type consider the Young diagram

i1 |2

13 | 24

The corresponding Young symmetrizer is R = QP where
P=(14+(12))(1+ (34)) and @ = (1 — (13))(1 — (24)).

The general principle is the following: To each row in the Young diagram one as-
sociates a symmmetrizer in the corresponding tensor indices. Then one forms the
product of all row symmetrizers; here the order is unimportant because the different
rows do not mix. To each column one associates an antisymmerizer in the indices
included in the column. Finally one multiplies by the product of antisymmetrizers
from the left. So in the case of the above diagram one has

(Rt)iyigisia = tiyinisia — Cigiviria — Livigizis + Ligigizia
+ti2i1i3i4 - ti2i3i1i4 — ligiqigio + ti4i3i1i2

t
+ti1i2i4i3 - ti3i2i4il - t11141223 + ti3i4i2i1
t

+ti2i1i4i3 - ti2i3i4i1 T Vigiaio13 + ti4i3i2i1

All the permutation operators R commute with the linear group transformations
g € G. For this reason a tensor of the type Rt is transformed into a similar tensor
Rt'. Thus the space RV* of tensors of type R carries a representation of the group
G. In fact, one can show that in the case of G = SU(n) or GL(n) in the defining
representation this is irreducible. Not so in the case of SO(n). The reason is simple:
For the orthogonal group there are geometric invariants formed by the partial traces
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tjjirio... Of the tensors. For example, all the tensors for which this partial trace van-
ishes form an invariant subspace (the orthogonal transformations preserve the real
euclidean inner product).

The operators R are idempotents modulo a normalization factor. This means
that R?> = np - R for some integer ng. Exercise: Prove this in the case of the 3-
box Young diagram above. The idempotent property means that (the normalized)
symmetrization operators R act as projectors in the space of all tensors, projecting
to the various irreducible representations of SU(n) (or GL(n)).

Let g — D®(g) be representations of a matrix group G in vector spaces V;
i=1,2. When g = g(t) = ¥ for some X € g then in the tensor product we have

Fli=o(DW @ DP)(eX) (v @ vy) =
dili=o DV (g)v1 @ DB (g)ve = dV(X)v1 @ vp + 01 @ dP(X)vy
Sl0)
d(X)=dYX)®1+12d?(X)
where d denotes the representation of g in V; ® V5 corresponding to the group repre-
sentation D = D @ D@,
Example G = SU(3), defining representation in V' = C3. Consider representa-

tions of SU(3) also as representations of its Lie algebra su(3), and also as its complezi-
fication Ay (by taking complex linear combinations of the elements in the Lie algebra).

b1 22‘

The Young diagram gives the adjoint representation. The adjoint representa-

&
tion of any Lie algebra g is defined as the natural representation in the vector space
g, as ad,(y) = [z,y] with = € g and also y € g, but with y considered as an element in
the representation space. To see this consider the tensor u = R(e; ® e; ® e5), where ¢;
is the standard basis in C?. The eigenvalues of diagonal matrices for a tensor product
Lie algebra representation add up, so u is an eigenvector of hy (here h; = e; — % 1)
% = 1 and the eigenvalue for h, is —% — % + % = 0 giving
the highest weight (more about weights later) (1,0) of the adjoint representation of

with eigenvalue % + % —

su(3). Furthermore, u is annihilated by e;5 and eg3. For example,
612(61 X €1 X 62) =€ X €1 X €1

which is mapped to zero by R because of the antisymmetrization (). Thus ejou = 0.
Similarly,
easz(e] ®ep ®eg) =0

(since egze; = 0 = eg3ey) and therefore also epzu = 0. It follows that u is a highest
weight vector. Finally, one checks that R(e; ® e; ® es) # 0. This agrees with the
action of the Lie algebra su(3), in the adjoint representation, on the vector v = ej3.
This is in agreement of the classification of irreducible representations of Lie algebras
like su(n) in terms of highest weights and highest weight vectors to be discussed in
more detail later.
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5.2 Creation and annihilation operator formalism

In the case of completely symmetric wave functions (bosons) there is a simple for-
malism to describe the many particle states. To each bases vector v; for one-particle
states one associates a creation operator a; with the commutation relations

a7, a3] = 0.

A vacuum (zero particle state) is denoted by |0 > . Multiparticle states are then
obtained as polynomials

k1, Koy ook >= (@) (a2) 0 >

acting on the vacuum; here the k;’s are arbitrary nonnegative integers. The bosonic
structure of the indistinguishable particles is encoded in the commutation relations:
the order of factors is unimportant and therefore the states |k; ...k, > can be put
to correspond vectors in the completely symmetric tensor product S¥V, where k =
ky+ - 4 Ey,

k1. k> S(01®...01 QU@ ... 102 QU @+ R Uy)

where S is the complete symmetrization opeator (sum over all permutations of k
factors), the number of vy’s is ky, ...., the number of v,’s is k,.

To describe the inner product in the Hilbert space of multiparticle states (called
the bosonic Fock space F) it is convenient to introduce also the annihilation oper-
ators a; with the commutation relations

[ai, CLj] = 0, but [ai, CL;] = 51]

The inner product is now fixed uniquely by the requirement that 1) the annihilation
operator a; is the adjoint of af, 2) the vacuum is annihilated by all annihilation
operators, a;|0 >= 0, and 3) the normalization < 0|0 >= 1. For example,

<1,11,1 > =< 0|(afa3)*(aja’)|0 >=< 0lagaiaja’|0 >
=< 0|aslay, at]a3|0 >=< 0]aza’|0 >=< 0|[as, a3]|0 >=< 0|0 >=1

We define the operators
e,-j = (I;-kCLj.

It is easy to check the commutation relations

[eija €k1] = 5jk€il - 5il€kj-
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We have thus constructed the Lie algebra of the general linear group GL(n,C) acting
in the bosonic Fock space. This representation is reducible. Define the particle number

*
N = E a; a;.
i

This commutes with all the operators e;; and it follows that the different eigenspaces

operator

of N are invariant under the Lie algebra gl(n). This corresponds to the fact that the
Fock space consists of completely symmetric tensors of arbitrary rank; the symmetric
tensors of fixed rank form an irreducible representation space. Let |m >= (a})™[0 > .
This vector is of rank m and is annihilated by all e;; with ¢ < j. It is also an eigen-
vector of all elements e;; (the Cartan subalgebra, to be discussed later). The property
e;jlm >= 0 for i < j means that |m > is a highest weight vector corresponding to the
weight A(e;;) = m - 0q;.

As already noted before, the group GL(n) acts irreducibly in the space of com-
pletely symmetric tensors; therefore a complete set of vectors in the subspace F,, =
{Y € FIN¢Y = ma)} is obtained by acting with the operators e;; on the highest weight
vector ¥, € F,,. We can write

F=FoF1DFs...

and each F,, carries an irreducible representation of GL(n).

In order to construct more general representations using the Fock space methods
one has to increase the number of independent bosonic oscillator modes. We can
prove that all finite-dimensional highest weight representations of GL(n) or SU(n)
can be constructed using a set a;j,a;; of creation and annihilation operators with
1 <14,75 <n, commutation relations

aij, ag] = Girdji,

all other commutators being zero. The Lie algebra is constructed as
€ij = Z afkajk.
k

For each sequence m = (mjy,ma,..., m,) of nonnegative integers we construct the
vector
w(m) = [ [(det(ay;)ij<r)™10 > .
k

Using the antisymmetry of a determinant as a function of the row vectors we first
observe that e;;1(m) = 0 for all i < j. The vector ¢)(m) is also an eigenvector of each
eqi; e acts like a number operator for the oscillator modes with first index equal to
1. The determinants are homogenenous functions of order 1 in each of the rows and
columns and it follows that the action of e; on ¢(m) is just a multiplication by the
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total degree m,, +m,_1 + - -+ m;. Thus we get for the components \; = A(e;;) of the
highest weight, \; = m; +m;.1 - - - + m,,. In particular

AM>X>0.00, 20

and all the components are integers. Conversely, for each such a sequence A there is
a unique set of nonnegative integers m with the above relation to \.

Remark In the next Section we shall discuss the representation theory of simple
Lie algebras like Ay, the complexification of su(¢ + 1). (Here ¢ = n — 1.)The rep-
resentations are labelled by highest weights; here the weight is given by the set of
eigenvalues \; of the diagonal elements in su(¢ + 1). There is a natural inner product
in the set of weights and a bracket < A\, u >= 2(\, u)/(p, ). One can then show
that < A\, a >= o) 0,1,2,... for each so-called simple root o = ;41 of Ay

(o)
are essentially the conditions on the components \; derived above. All the finite-

dimensional representations of A,_; are generated by the different highest weight
vectors t(m) in the bosonic Fock space for n? independent oscillators. In the Young
diagram notation, the representation A\ corresponds to the diagram with row lengths
A1 > Ag- - > A\, read from top to bottom.

The completely antisymmetric representations (only one column in the Young
diagram) are best constructed using the fermionic oscillators b},b;,, i =1,2,... n.
The defining relations are described by anticommutators [A, B]y = AB+ BA instead
of commutators,

b7, 0;]+ = 0y

and all other anticommutators are zero. The Lie algebra of GL(n) is now constructed
as
Cij = b: bj.

The commutation relations can be checked using the identity

The fermionic Fock space consists of all creation operator polynomials acting on the
vacuum |0 > . As in the bosonic case the vacuum is defined by the relations ;|0 >= 0.
The vacuum is again normalized, < 0|0 >= 1 and b} is supposed to be the adjoint of
b;. These requirements fix the inner product uniquely.

The bosonic Fock space was infinite-dimensional. In the fermionic case the di-
mension is finite. The reason is that, because of the anticommutation relations, all
the powers (b7)* vanish identically for & > 1. The only nonzero vectors in the Fock
space are of the type

b;,b;, ... b; |0 >,
where all the indices i, are distinct. By the anticommutation relations we can assume
that 47 > is - -+ > i; (a change in the ordering corresponds just a multiplicative factor
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+1.) Thus the number of independent vectors of length k is (Z) , which is equal

to the number of independent components of a fully antisymmetric tensor of rank
k in dimension n. We can again introduce a number operator N = ), biby. The
eigenvalue of N is now the rank of the antisymmetric tensor, or in other words, the
number of boxes in the one-column Young diagram.

6 Semisimple Lie algebras

6.1 Lie algebras

Let F be the field of real or complex numbers. A Lie algebra is a vector space g over
F with a Lie product (or commutator ) [-,-] : g X g — g such that

1. x + [z,y] is linear for any y € g,
2. [ZL‘,y] = —[y,x],
3. [z, [y, 2l + [y [z 2]] + [2, [=,4]] = 0.

The last condition is called the Jacobi identity . From (1) and (2) it follows that

also y — [z,y] is linear for any x € g. In this chapter we shall consider only finite-

dimensional Lie algebras. In any vector space g one can always define a trivial Lie

product [z,y] = 0. A Lie algebra with this commutator is Abelian. The space gl(n,R)

of all real n x n matrices is naturally a Lie algebra with respect to the matrix com-

mutator [X,Y] = XY — Y X, and correspondingly the complex algebra gl(n, C).
Some other nontrivial examples follow:

Example 1 Let o(n) denote the space of all real antisymmetric n X n matrices.
The commutator of a pair of matrices is defined by

[z,y] = xy — yx

(ordinary matrix multiplication in zy). Since (xy)' = y'z', where x' denotes the
transpose of the matrix x, the commutator of two antisymmetric matrices is again
antisymmetric. The commutator clearly satisfies (1) and (2); (3) is checked by a
simple computation. The dimension of the real vector space o(n) is in(n — 1).

The matrix Lie algebras, like o(n) above, are closely related to groups of matrices.
Let O(n) denote the group of all orthogonal n x n matrices A, A’A = 1. Then the Lie
algebra o(n) consists precisely of those matrices x for which A(s) = expsz € O(n)
for all s € R. Namely, taking the derivative of A(s)'A(s) = 1 at s = 0 one gets
'+ 2 =0. So A(s) € O(n) implies z € o(n). On the other hand if € o(n) then

(exp sz)! = exp szt = exp(—sz) = (exp sx)~!, so A(s) € O(n).

52



Example 2 The real vector space u(n) consisting of anti- Hermitian nxn matrices
x,r* = —x, where z* = 7' and the bar means complex conjugation, is a Lie algebra
with respect to the matrix commutator. Its dimension is n?. Denoting by U(n) the
group of unitary matrices A, A*A = 1, one can prove as in the case of orthogonal
matrices that exp sz € U(n) Vs € R iff z € u(n).

Example 3 The traceless anti-Hermitian n x n matrices form a Lie algebra to be
denoted by su(n) and it corresponds to the group SU(n) = {A € U(n) | det A = 1}.
The dimension of su(n) is n? — 1.

Example 4 Let J be the antisymmetric 2n X 2n matrix

o0 ...0 -1 0 ... O
00 ...0 0O =1 ... O
0 0 0 0 -1
1 0 0 O 0
1 0 0 0 0
o0 ...1 0 0 ... O

Since det J = (—1)"*! # 0 the form (x,y) = z'Jy is nondegenerate (the vectors
x,y are written as column matrices). Define sp(2n,R) to consist of all real 2n x 2n
matrices x such that 2'J + Jx = 0. This is a Lie algebra and one can associate to
sp(2n,R) the group Sp(2n,R) consisting of real matrices A such that A'JA = J, or
equivalently such that A preserves the form (u,v) = u'Jv, (Au, Av) = (u,v) for all
u,v € R?*™. Sp(2n,R) is the symplectic group defined by J.

One can analogously define the complex orthogonal Lie algebra
o(n,C) and the complex symplectic Lie algebra sp(2n,C).

We have also the Lie algebra sl(n,C) of complex traceless n X n matrices and
correspondingly the real Lie algebra sl(n, R).

Let {Xi, Xs,...,X,} be a vector space basis of a Lie algebra g. We define the
structure constants cfj by

[Xi, X;] = ¢ X5,

(sum over the repeated index k; we shall use the same summation convention also
later). From the defining properties (1) and (2) follows that the commutator [X, Y]
for arbitrary X,Y € g is determined by the structure constants. The Jacobi identity

can be written as
I m I m I m _
G T ¢y + iy =0

Vi, j, k, m. By the antisymmetry of the Lie product we have cfj = —cfi.
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Example Let g be a two dimensional Lie algebra with a basis { Xy, Xp}. If g is
not commutative we can define a nonzero element

e1 = [ X1, Xo] = a Xy + BXs.
Choose a pair of numbers v, 0 such that ad — v =1 and set
€y = ’)/Xl + (SXQ

Then [e1, e5] = e;. Thus we have found the general structure of a noncommutative
two dimensional Lie algebra.
Let g and g’ be Lie algebras. A linear map ¢ : g — ¢’ is a homomorphism if

¢([z,9]) = [¢(x), o (y)]

Vz,y € g. An invertible homomorphism is an isomorphism . The inverse of an iso-
morphism is also an isomorphism. An isomorphism of g into itself is an automorphism
of the Lie algebra g.

A linear subspace k C g is a subalgebra of g if [z,y] € kVx,y € k. A subalgebra
is a Lie algebra in its own right.

A subspace k C g is an ideal if [z,y] € kVx € g and y € k. In particular, an ideal
is always a subalgebra. If k C g is an ideal then the quotient space g/k is naturally a
Lie algebra: The commutator of the cosets z + k and y + k is by definition the coset
z,yl +k If2'+k=z+kandy +k =y+k (ie, 2’ —x € kand ¢y —y € k)
then [2/,¢y] = [x + (¢ — 2),y + (¥ — y)] = [x,y] mod k by the ideal property of k;
thus [2/,1/] represents the same element in g/k as [z,y] and so the commutator is
well-defined in g/k.

Theorem 6.1 Let ¢ : g — ¢ be a homomorphism which is onto (i.e., g = img).
Then the Lie algebras g’ and g/ker¢ are isomorphic.

Proof. Define 9 : g/ker¢ — ¢ by ¥ (x+kerg) = ¢(x). Obviously ¢ is one-to-one
and it is a homomorphism by ¢ ([x+kero, y+kerg]) = o ([x, y|+kere) = o([z,y]) =
[ (z+kerg), v (y+kere)].

A linear map o : A — A in an algebra is a derivation if
d(axb)=0d(a)*xb+axdb)

for all a,b € A.

Let Der(.A) be the set of all derivations of A. Then Der(.A) is a Lie subalgebra of
the Lie algebra of all endomorphisms of A.

In the special case when A = g is a Lie algebra we can define a derivation adx of
g for any X € g by

ady :g — g, adx(Y) = [X,Y].

This defines a homomorphism ad: g — Der(g); this is called the adjoint representation
of g. The derivations adx are called inner derivations, the rest are outer derivations.
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6.2 Ideals in Lie algebras

A left (right) ideal in an algebra A is a linear subspace I C A such that x xy € [
(yxxel)forall x € Aand y € I. An (two sided) ideal is both left and right ideal.

If A is a Lie algebra, there is no difference between left and right ideals since
rxy = [v,y] = —[y, 2]

The center of a Lie algebra g is the subspace Z(g) = {z € g|[z,y] = 0Vy € g}.
Clearly the center is an ideal. Another ideal is the subspace [g, g] consisting of all
linear combinations of commutators in the Lie algebra.

Lemma The vector space sum of two ideals in g is again an ideal in g. The
commutator [/, J] of a pair of ideals is also an ideal.

Proof. The first claim follows directly from the definition. The second is a simple
consequence of the Jacobi identity.

A Lie algebra g is simple if its only ideals are the trivial ideals 0 and g itself and
if g is not the commutative one dimensional Lie algebra. If g is simple then g = [g, g]
and Z(g) = 0.

1
The basic example. Let g = sl(2,C). We choose a bases h = < 0 ) T =

0 —1
0 1 00
= . Th
(0 0)v= (1 ) e
[h,x] =2z, [h,y] = =2y, [z,y] = h.
Let I C g be a nonzero ideal. We choose 0 # z = ax + by + ch € I. Then
[z, z] = bh — 2cx and [z, bh — 2cz| = —2bx.

Thus bz € I and [y, [y, z]] = —2ay € I.

1) If a# 0theny € I and so [z,y] =h € [ and —3[z,h] =z € [ and so I = g.
Likewise the case b # 0.

2)Ifa=b=0thenc# O0Oand z =ch € I,soh €I,y = 3[y,h] € I. and
x = —3[z,h] € I. It follows that I = g.

Thus s1(2,C) is simple. Actually, the above proof holds for s1(2,F) when F is an
arbitrary field of characteristic not equal to 2.

Theorem 6.2 1. Let ¢ : g — ¢ be a Lie algebra homomorphism and I C g an
ideal such that I C kerg. Then there exists a unique homorphism ¥ : g/1 — ¢
such that ¢ = 1) o w, where w: g — g/ is the canonical homomorphism.

2. If I,J C g is a pair of ideals with I C J then J/I is an ideal in g/I and
(9/1)/(J/1) >~ g/ J.

3. If I,J C g is any pair of ideals then (I + J)/J ~T1/(INJ).
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Proof. (1) Define the map ¢ : g/I — g by ¥(z + I) = ¢(x). Tt is easy to see
that this is a homomorphism which satisfies the requirement. If ¢’ is another such a
homomorphism, then (¢ — 1) om = 0 and so ¢’ — 1) = 0 since 7 is onto.

(2) The first statement follows directly from definitions. For the second, define
amap : (g/1)/(J/I) — g/I by f((x+ 1)+ J/I) = x + J. This map is the required
isomorphism.

(3) Define f:I/(INJ)— (I+J)/J by f(x+1NnJ)=x+J and check that this
is an isomorphism.

A representation of a Lie algebra g in a vector space V is a Lie algebra homo-
morphism ¢ : g — End(V). As an example, any Lie algebra has the natural adjoint
representation in the vector space V = g, ad,(y) = [z, y].

A representation is irreducible if the representation space V' does not have any
invariant subspaces except of course 0 and V; a subspace W C V is invariant if
¢(x)v e W for all z € g and v € W.

If g is a simple Lie algebra then the adjoint representation is necessarily irreducible.
Conversely, if g is noncommutative and the adjoint representation is irreducible then
g is simple.

If g is simple then Z(g) = 0 and it follows that the kernel of the adjoint repre-
sentation ad: g — End(g) is zero. Thus g is isomorphic to a subalgebra of End(g).
Choosing a basis in g we see that any simple Lie algebra is isomorphic to a Lie algebra
of matrices.

Let § € Der(g), g any finite-dimensional Lie algebra. Since 4 is a linear operator
in a finite-dimensional vector space we may form the exponential
1

3
3!(5 +...

1
e =1+4+0+ 552 +
to define a linear operator exp(d) : g — g.

Theorem 6.3 The map exp(d) is an automorphism of g.

Proof. First, exp(d) is a linear isomorphism since it has the inverse exp(—d). But

exp(§)[z,y] = Z%é”[w,y]

> 3
~_—
|

| . .
" are the binomial

and so exp(d) is a Lie algebra homomorphism. Here ( TR

coefficients.
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The automorphisms of the type exp(d) when § = ad, are called inner automor-
phisms. They generate a group (upon multiplication), to be denoted by Int(g); this
is a subgroup of the group Aut(g) of all automorphims of g.

Theorem 6.4 The group Int(g) is a normal subgroup of Aut(g).

Proof. Let ¢ € Aut(g) and x,y € g. Then

poad, o¢ (y) = o[z, ¢ (y)]) = [¢(x), y] = ady@) (v)

and thus ¢poad, o ¢! = adg(z) which proves the statement.

6.3 The structure of semisimple Lie algebras

A Lie algebra L is semisimple if the canonical symmetric bilinear form, the Killing
form , defined by
(X,Y) =tr adxady,

is nondegenerate; we denote ady : L — L is the linear map adx(Y) = [X,Y], the
adjoint representation of L. Nondegenerate means that (X,Y) = 0 for all Y if and
only if X = 0. In the case of the Lie algebra of SU(2) or of SO(3) a basis is given
by vectors Ly such that [Ly, Ls] = L3, and cyclic permutations of this relation (the
angular momentum algebra in physics!) and it is easy to compute that

(Lj, L) = —26»,

which clearly shows that the Killing form is nondegenerate. From the definition it
follows that the Killing form is invariant in the sense that

([X’ Y]>Z) = _<Yv [Xv Z])

for all elements X,Y, Z. Now an exponential of an antisymmetric matrix is an or-
thogonal matrix (exercise!) and therefore the transformations exp(ady) : L — L are
orthogonal with respect to the Killing form, that is, the Killing form is preserved
under these transformations.

One can show that a semisimple Lie algebra is a direct sum of simple Lie algebras.
The angular momentum Lie algebra is simple. Other simple Lie algebras are the Lie
algebras associated to the rotation groups SO(n) when n # 2,4, the Lie algebras
of the special unitary groups SU(n), and the Lie algebras of the symplectic groups
Sp(2n). In fact, this list is almost exhaustive. Any complex simple Lie algebra is
either isomorphic to a complexification of one of the Lie algebras in this list or it
is one of the so-called exceptional Lie algebras G, Fyy, Eg, E7, Es. These latter Lie
algebras are associated also to some groups, but they cannot be described so easily
as the other classical Lie algebras.
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We list now some basic properties of the semisimple Lie algebras. It is useful to
think about some specific example, like the complexified Lie algebra A, of the group
SU(¢+1). In a semisimple Lie algebra L there is a Cartan subalgebra which is a
maximal abelian subalgebra b such that the maps ady : L — L can be simultaneously
diagonalized for all A € . In the case of A, the Cartan subalgebra can be chosen as
the algebra of diagonal traceless matrices. A basis for § is given by

1
hn = €nn — H—lzeih

where e;; is the (£ 4 1) x (£ + 1) matrix such that the matrix element at the position
(77) is 1 and all other matrix elements are equal to 0. The commutation relations for
the e;;’s are
[€ijs €mn] = 0jm€in — Oin€m;.
It follows that
adp, €ij = (0pi — Onj)eis-

From these relations one can then check that

In general, we call the eigenvalues of the Cartan subalgebra in the adjoint action
roots for the pair (L,h). The Lie algebra L decomposes to eigenspaces which are
called the root subspaces,

L=hO LD Ls®...

The labels «, 3, ... of the root subspace are some linear functions from h to C; the
root subspace L, is characterized by the property

[h,x] = a(h)z for z € L, and h € by .

Thus in the above example (A, h) the one-dimensional root subspaces are spanned
by the vectors e;; with ¢ # j. The zero root subspace is the Cartan subalgebra itself.

One can prove that the root subspaces (for nonzero roots) are all one-dimensional
for any semisimple Lie algebra and the subspaces corresponding to different roots are
orthogonal with respect to the Killing form.

In the set ® of nonzero roots one can select a set A of simple roots. All other
roots are either linear combinations of roots in A with positive integral coefficients
(these are the positive roots @) or linear combinations with negative integral coef-
ficients (these are the negative roots ®~). We have ® = & U P~ and A C . In
the case of A, we can take A as the set of roots corresponding to the root subspaces
ennt1 forn=1,2,... f. Let us denote these roots by oy, ..., a,. The positive roots
are generated as follows. First, ej3 = [e12, e23] which implies, using the Jacobi identity,

[h, 613] = [[h, 612], 623] + [612, [h, 623]] = (Oél(h) + Oéz(h))@lg.
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So a3 = a1 + ap. By induction we obtain o;; = o + - -+ + 1 for i < j. So the set
of positive roots contains all o;; for ¢+ < j. Similarly, the set of negative roots consists
of the roots a;; with j <.

One can introduce a scalar product in the real vector space R’ spanned by the
root vectors. The simple roots form a basis of this vector space. First one proves
that the restriction of the Killing form to the Cartan subalgebra b is nondegenerate.
It follows that there is a natural linear isomorphism from the dual vector space h* to
b, A= hy,

(h,hy) = A(h) for all h € b.

We can define an inner product in b by setting (A, i) = (hy, hy).
Example Consider the algebra A, (notation as before). For each root o;; € b*
we construct the vector hy; = hy,,. We can write

l+1

hz‘j = Zakhk, ar € C, with Zak = 0.
k=1 k

Using (h;, h;) = 2(¢ 4 1)d;; — 2 we obtain

(hijahk) = Oéij(hk) = Oik — Oji;
l
= (Sanhn, i) =Y 2a,[(0 + 1)0n, — 1]
n=1
1+1
= 200+ 1)ay —2 Zan = 2(0 + 1)ay.
n=1
We have a linear system of equations for the unknowns a;. The solution is easily
found to be a; =1/2(¢ + 1), a; = —1/2(( 4+ 1) and a;, = 0 for k # i, j. Thus

1
hij = m(hi — hy).

From this we can compute the inner products

1
(Oéiga Oémn) = m(hz - hj; Pon, — hn)
1
= m(5im+5jn—5jm—5i ).

Usually it is sufficient to know the root space structure of a semisimple Lie algebra
in terms of the inner products of the roots and an explicit knowledge of a matrix
realization of the algebra in question is not needed.

The rank of a semisimple Lie algebra is the dimension of its Cartan subalgebra.
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Theorem 6.5 Let g be a semisimple Lie algebra of rankl, ) C g a Cartan subalgebra,
and A a system of simple roots for (g,h). Then A forms a basis of h*. Let E denote
the real vector space spanned by A. Then the dual (-,-) : b* x h* — C of the Killing
form is a positive definite inner product in E.

An important tool in the study of semisimple Lie algebras is the Weyl group of the
root system. The Weyl group W of a root system @ is generated by the reflections
o, with a € ®. The reflection is defined as the linear map in R¢

0a(B) = B— < B,a>a
for 5 € R’ we have inrtoduced the notation

(o, B)

<a,f>=2——=
’ (8,5)
for vectors such that 5 # 0. Note that o,(«) = —a and 0,(5) = [ if the vector
is orthogonal to a. Thus o, is indeed a reflection in the plane orthogonal to a. The
basic property of the reflection is that it preserves inner products and thus also the
brackets < -,- > . Also one can prove

Theorem 6.6 The reflections o, and therefore also any element of the Weyl group
maps the system ® onto itself. Furthermore, if A, A" C ® are systems of simple roots
then there exists 0 € W such that o(A) = A’

Example In the case of A, a simple root «; is orthogonal with respect to «;
except when j =4 or j = ¢ £ 1 and in that latter case < a;,a; >= —1 and so the
the fundamental reflections o; = o,, act on the basis vectors a; as 0;(a;) = a; when
j#iit1, () = —; and 0;(11) = i1 + .

We can now check the following properties of the root system ® of A,. Since the
dimension of h and thus of h* is ¢, we can view ® as a subset of vectors in £ = R’.

The system ® spans E and 0 ¢ ¢

If & € ® then ka € @ if and only if £k = +1
for any o € @ also 0,(P) C P

the numbers < «, 3 > are integers for «, § € ®

Actually, one can take these properties as axioms for root systems. Namely, one
can prove that the root system of any semisimple Lie algebra satisfies the conditions
(1) - (4) above.

Let A = {ay,...,q} be a system of simple roots. Denote

(v, )

M =< oy,05 >=2 - .
Y v (aj, )
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The numbers M;; form a ¢ x ¢ integral matrix, called the Cartan matriz of the root
system. In the 2-dimensional cases we have the matrices

2 0 2 1 2 9 2 1
AlXAlz(o 2);A2:(—1 2>;BQZ<—1 2);G2:(—3 2)'

When A’ is another basis then o(A) = A’ for some o € W. The brackets < «, 5 >
are invariant under the Weyl group. It follows that the Cartan matrix does not
depend on the choice of A, modulo reordering of the basis.

Theorem 6.7 Let (E,®) and (E',®") be a pair of root systems with A C ® and
A" C ¥ systems of simple roots. If the Cartan matrices M and M' are equal (with
some choice of ordering of basis) then the root systems are isomorphic.

Proof. Set A ={ay,...,a,} and A" ={o],...,a}}. We can define a linear isomor-
phism ¢ : E — E’ by ¢(a;) = o since the simple roots form a basis. Then for any
a, €A,

ose)(@(B)) = ¢(B)— < ¢(B), d(a) > d(a)
= 0(B)— <f,a>¢(a) = o(f— < B,a>a)=¢(0a(F))

The second equality follows from the asssumption that the Cartan matrices are equal.
Since A is a basis, we obtain ogq) 0 ¢ = ¢ 0 04, that is, p 0 0, 0 97! = 0y for all
a € A. Since the simple reflections generate the Weyl group, we reduce that the map
o— pooo¢ ! from W to W is an isomorphims of Weyl groups.

Let next 3 € ® and choose o € W such that o(5) € A. Then

¢(8) = (poo oo ")p(a(B)) € ¥

and so ¢(®) C @'. In the same way one shows that ¢~1(®') C ® and thus ¢(P) = &'
If v is another element of ® then, by the linearity of < -,- > in the first argument
and by the equality of Cartan matrices,

<1B> = <o(),0(8) >=<doa(y),doa(f) >
= <(¢poo ' od ) (¢oa()), (9o 0 ) (Poa(B) >=<¢(7),6(B) > .

We have used the fact that the Weyl groups W, W’ preserve the brackets. We have
shown that ¢ is an isomorphism of the root systems.

If a # (8 is a pair of positive roots then < «, f >< 3, > is one of the integers
0,1,2,3. We determine the Cozeter graph of the root system ® from its Cartan matrix.
The graph consists of £ nodes corresponding to the number of simple roots and lines
connecting the nodes. The number of lines connecting the nodes o, a; (for i # j) is
equal to < a;, a; >< o, 05 > .
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In the case when all simple roots have equal lengths the Dynkin diagram is equal
to the Coxeter graph. In the case when a pair o;, o; of simple roots have unequal
lengths we set an arrow to point towards the shorter root. On the enclosed sheet B
we list all the Dynkin diagrams of simple Lie algebras.

The Dynkin diagram determines completely the Cartan matrix and therefore also
the root system of a semisimple Lie algebra. In the case when the simple root lengths
are equal, we have < o, aj >= —(< @, aj >< aj,a; >)Y/2, for i # j. This gives all
the matrix elements of the Cartan matrix. Suppose then that (o, ;) # (o, ;) but
we know that «; is shorter, for example. Then from the table of of root lengths and
angles (EXERCISE!) we see that < a;, a; >< aj, ; > is either 2 or 3. In the former
case < oy, >= —1 and < a;,a; >= —2. In the latter case < o;,; >= —1 and
< aj, 0 >= —3.

For example, from the Dynkin diagram of F; we can read its Cartan matrix

2 -1 0 O
Py -1 2 =2 0
0 -1 2 -1
0o 0 -1 2

A root system @ is irreducible when its Dynkin diagram is connected. Let A =
A1UA5 - - -UA; be a decomposition of the simple roots corresponding to the connected
components of the Dynkin diagram. Then A; LA; for ¢ # j and let E; be the subspace
of E spanned by the roots A;, E = E1®--- @ E;. Denote ®; the subset of roots which
are linear combinations of the roots A;.

Now the Weyl group W maps ®; onto itself: To see this it is sufficient to show
that 0,(®;) C ®; for any simple root a. If a ¢ A; then 0,(8) = f— < f,a >a =0
for any § € ®;. But if @ € A; then 0,(8) = f— < B,a > a € ®; by the definition of
D, .

If 5 € ® is an arbitrary root we may choose o € W such that o(8) € A. But then
o(B) belongs to some A; and by the observation above 5 € ®;. Thus we have

(I):(I)luq)guq)t
We have proven:

Theorem 6.8 Any root system ® C E is a union of irreducible root systems ®; C E;
with E = Fy & --- & E;, as an orthogonal direct sum.

Now we list all irreducible root systems. We denote the standard basis vectors in
R’ by ey, ..., e;.

Theorem 6.9 Let E be the subspace of the euclidean space R with ¢ > 1 consisting
of vectors a such that (o, €;) = 0. Let L be the integral lattice in E and set & =
{a € L|(o,0) = 2}. Then (E, ®) is an irreducible root system and its Dynkin diagram
1s the Dynkin diagram of the Lie algebra Aj.
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Proof. Clearly
O = {e;, —ejli #j}.

Let A consist of the vectors a; = e; — e;.1 with ¢ = 1,2,..., /. These vectors form
a basis of E. Furthermore, each element in ® is an integral linear combination of
vectors in A with only nonnegative or only nonpositive coefficients, so it satisfies the
requirements of a system of simple roots; we also observe that clearly the first two
axioms of a root system are satisfied. Next < B,a >= 2(5,a)/(a,a) = (B, a) €
{0,£1, 2} so that also the fourth axiom holds.

Since < oy, a1 >= (a4, a;41) = —1 but < oy, a; >= 0 for j # i£1 we see that the
Dynkin diagram is really the diagram A, listed in the appendix B; one can then check
by direct computation that the root system corresponding to the Cartan subalgebra
of diagonal matrices in sl(¢ + 1, F), with the choice of simple roots corresponding to
the root vectors e; ;11 € sl({ 4+ 1,F), leads to the system (E,®,A).

Theorem 6.10 Let E = R” with £ > 2 and ® the set of vectors o in its integral lattice
L such that (o,) = 1 or (a,) = 2. Then (E,®) is an irreducible system of roots

with a Dynkin diagram corresponding to the Lie algebra By of complex antisymmetric
(20 +1) x (20 + 1) matrices.

Proof. Now ® = {+e;|1 < i < (} U {+£(e; £ e;)|i # j}. The subset A of vectors
a; = € —ei,t < {—1, and oy = ey is linearly independent and the number of
vectors is equal to the dimension of F, thus it is a basis of E. Furthermore,

+te; = +(a;+...q)
i(ei_ej) = :i:(al—i—"'—i—aj) fOI‘Z<j

So A has the properties of a system of simple roots. When i, j < £—1 the length of the
roots oy, ; is equal to V2 and < «, a; >=0for¢ # j=£1,i # j. For j = i+ 1 we have
< oy, g >< e, >= 1. The length of ay is 1 and < a1, ap >< ayp, p_1 >= 2.
It follows that the Dynkin diagram is the diagram B, in the appendix. One can then
check (a useful exercise!) that with a choice of a Cartan subalgebra this system indeed
comes from the Lie algebra so(2¢ + 1,C), the complexification of the Lie algebra of
the group SO(20 + 1).

Theorem 6.11 Let E =R with £ > 3 and ® = {£2e;|1 < i < (} U {E(e; +e;)|i #
j}. Then (E,®) is an irreducible root system corresponding to the Dynkin diagram
Cy.

Remark We could have defined also C5 but then Cy = Bs. This root system
corresponds to the Lie algebra of the complex symplectic group Sp(2¢). This group
plays a central role in the formulation of classical Hamiltonian mechanics.
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Theorem 6.12 Let E = R’ for ¢ > 4 and define ® as the set of vectors a in the
integral lattice with (o, ) = 2. Then ®{£(e; L e;)|i # j} and it is an irreducible root
system with Dynkin diagram D, corresponding to the Lie algebra of antisymmetric
20 x 20 matrices, the complexified Lie algebra of the rotation group SO(2/).

Proof. This is actually a subalgebra of By, by leaving out the short roots +e;. The
simple roots are a; = e; —e; 1 fori =1,2,... /— 1 and ay = e,_1 + €.

We shall now describe the exceptional Lie algebras in terms of their root systems.

Gy Let {v1, v2,v3} be the standard basis of R and let E be the plane orthogonal
to v; + vg + v3. A basis of E is given by {v; — vy, —2v; + vy + v3} = A. This is a
system of simple roots for G5. The positive roots are @ = {v; — vy, —v1 + v3, —vy +
v3, —2v1 + Vg + v3, V1 — 209 + V3, —v] — Vg + 203}

EFy Let E = R* and A = {vy — v3,v3 — vy, V4, %(vl — vy — w3 — vy)}. The root
system of F} consists of all integral linear combinations « of elements in A such
that [|a]|* = 1 or ||||* = 2. One can show that ® = {Zv;};; U {E£(v; L v;) | i #
7} U{£5(vi £ vy £ v3 £+ vy) | all signs}. Thus the number of elements in @ is 48.

Exercise What is the system of positive roots for F;?

EyLet E=R8and A = {%(?}1—’—’08)—%(?}2—’—. ..+ 7), 01 + Vg, Vg — U1, Vg — Vg, Vg —
U3, Vs — V4,V — Vs, V7 — Vg}. The root system ®(FEg) consists of all integral linear
combinations a of elements in A such that ||a||? = 2. One can show that

B = {0+ v;) | i # j} U {% SO eli) = 0,15 Y eli) € 22}

There are 240 elements in .

E; A and ® are defined here in a similar way as in the case of Fy except that the
last vector v; — vg in A is left out. There are 126 roots.

FEg Same as above, but now the two last vectors vg — v5 and
v7 — vg are dropped. The number of roots is 72.

7 Representations of semisimple Lie algebras

A representation ¢ of a Lie algebra g in a vector space V is fully reducible if V can
be written as a direct sum V =V, @ Vo @ --- @V, of invariant subspaces such that
the restriction of ¢ to each V; is an irreducible representation of g.

From known representations one can build new ones by taking direct sums. If ¢;
is a representation of g in V; (i € A), then a representation ¢ of g in @) ., V; is
defined by

o(x)(vi)iex = (o(x)vi)ien,
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where v; € V;. If ¢ is a representation of g in a vector space V such that there is
an invariant subspace W, then one can construct a representation v in the quotient
space V/W by setting ¢ (x)(v + W) = ¢(z)v + W, for any v € V.

Theorem 7.1 Any finite-dimensional representation of a semisimple Lie algebra is
fully reducible.

Thus for the purpose of classification of finite-dimensional representations of a semisim-
ple Lie algebra it is sufficient to know the irreducible representations.
Let us denote by {z,y, h} a basis of Ay, with the commutation relations

[z,y] = h, [h,z] =2z, [h,y] = —2y.

A representation ¢ : g — EndV of g = A; is a highest weight representation if there
is a vector 0 #£ v € V (the highest weight vector) such that

(1) épw = 0
(2) ¢(h)v = v for some A € C

(3) Vo= {¢(u)v|uellg)}

Here U(g), called the universal enveloping algebra of g, is just the associative algebra
formed from all polynomials in x,y, h, subject to the commutation relations above.
The content of (3) is that any vector in V' can be reached from v by repeated action
of ¢(x), 6(y), and (h).

The number A is the highest weight of the representation.

Two representations ¢ : g — End V, ¢' : ¢ — End V' of a Lie algebra g are said to
be equivalent if there is a linear isomorphism « : V' — V' such that

ad(r)a™t = ¢'(z) Vr € g.

An irreducible highest weight representation (¢, V') of A; is uniquely determined, up
to an equivalence, by the highest weight .

1) Let A ¢ N. By (1) - (3) the space V' is spanned by the vectors {¢(y)"v | n =
0,1,2,...}. Using the commutation relations above we get

()" Y(y)"v = v, oy #0.

Thus ¢¥(y)"v # 0 for n = 0,1,2,.... The system {¢(y)" | n € N} is linearly
independent since different vectors correspond to different eigenvalues of the operator

Y(h),
Y(h)(y)"v = (A = 2n)Y(y)"v.

A little more abstractly, we may think of V' as a quotient space U(g)/I,, where I
is the left-ideal generated by the elements h — A(h) and z, that is, they consist of
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linear combibations ui(h — A(h)) + ugx, where wuy,uy are arbitrary polynomials of
the generators x,y,h. A representation ¢ of g in the quotient space is defined by
o(2)(u+ 1)) = zu+ I, for z = x,y,h and v € U(g). This is often (also for other Lie
algebras) a powerful method to construct representations; one needs only specify a
left-ideal which should kill a fixed vector in the representation. The method does not
give any guarantee of the irreducibility.

We can define a linear isomorphism « : U(g)/Ix — V by a(v,) = ¥(y)"v, where
v, = y" + I,. We can check that a¢(z)a™! = 1(z) Vz € g. For example,

ad(y)o (y)"v] = ad(y)vn = avn
= )" =Yy [(Y) ).

2) The case A € N. Using the commutation relations we have

Y(@)"Py)"v = au#£0 n=0,1,2...,\

It follows that {¢(y)"v | n =0,1,2,...,A} is a basis of V. The rest of the proof goes
like in the case 1.

Remark An irreducible finite-dimensional representation
(¥, V) of A; is always a highest weight representation. Let 0 # w € V be any
eigenvector of ¢(h) in V' (which exists because of dimV < c0). If ¥(z)w = 0 then w
is a highest weight vector; otherwise set v = ¢ (x)"w, where n is the largest integer
such that ¥ (x)"w # 0. Then w is a highest weight vector. [Because of the irreducibil-
ity of the representation, the invariant subspace {)(u)w | v € U(g)} must be the
whole space V', and so also the condition (3) is satisfied.]

We shall now generalize the results obtained earlier for A;, to the case of an
arbitrary semisimple Lie algebra g over C. Note first that a semisimple Lie algebra
is always spanned by subalgebras of the type A;. Namely, let h C g be a Cartan
subalgebra and ® the system of nonzero roots. If & € ® then also —a € ® (just look
at the various root systems listed earlier). Choose 0 # x, € g, and 0 # y, € g_a,
remembering that dimg, = 1Va € ®. Set k, = x4, Ya). If b € b then

[h7 ka] = [h7 [xm ya“ = [ZL’a, [yon h]] - [yow [h7 l‘a“
= —[rar @)yl — s @l)] = 0.

Since the Cartan subalgebra is a maximal commutative subalgebra of g, we have
ko € B. Since
[kbm xa] = )\xa [kaa ya] = _)‘ya

with A = a(k,), the subspace spanned by {ya, ka, o} is a subalgebra of g. We want
to show that A # 0.
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Theorem 7.2 (1) If a,f € ®U{0} and o+ 3 # 0 then g,Lgs with respect to the
Killing form.

(2) [waaya] = ($a,ya)ha Ya € .

Proof. (1) Let h € b such that (a+3)(h) # 0. Choose 0 # z, € g, and 0 # x5 € gg.
Now

a(h)<xavxﬁ) = ([h>xa]7$[3) = (xou [l’g,h])
= —B(h)(za, 2p)

and so (a+ B)(h)(za,23) = 0 and (x4, 23) = 0.
(2) Let h € h. Then

(ha [:Ea, ya] - (:L“a, ya)ha) = (hv [xom ya]) - (:Ea, ya)<hv hoc)

= ([yom h]>xa) - (maa ya)a<h)
= a(h)(Ya, Ta) — a(h)(Ta; Ya) = 0.

Thus § L[z, Ya] — (Za, Ya)ha- Since the restriction of the Killing form to b is nonde-
generate, the assertion follows.

Renormalizing the basis by © = v/aza, y = v/aya, h = ak,, where a = 2/ (and
A= (Ta,Ya)a(ha) = (Ta,Ya)(a,a) # 0) we get the familiar commutation relations
[z,y] = h, [h,x] = 2x, [h,y] = —2y of A;. We have now proven:

Theorem 7.3 If a € ® and 0 # T4 € ga, 0 # Yo € - then {Ya, ha,xo} spans a
subalgebra isomorphic to A;.

A representation ¢ :— EndV is a highest weight representation if there is 0 #v € V
such that

1. ¢(x4)v =0V € O
2. ¢(h)v = A(h)uVh € b
3. V={o(u)v |ueclU(g)}

where A : h — C is some linear form, the highest weight of the representation. From
now on, when there is no danger of confusion, we shall write shortly zv instead of
¢(z)v, when v € V and z € g. Consider a finite-dimensional highest weight rep-
resentation of g in V, with highest weight vector v. Then for each o € ®* there
has to be n, € N such that y?"'v = 0; otherwise {y'v | i € N} would span an
infinite-dimensional subspace because these vectors are linearly independent by the
eigenvector property

ha¥ot = [Mha) — ia(ha)lysv.
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On the other hand, by a similar calculation as was done for Ay,

1
xayzv = k(xomya) /\(ha) - i(kj - 1)a(hoc> yi_lv'
It follows that in the finite-dimensional case (denoting by n, the smallest number
n for which y?™'v = 0) we must have A(ha) = 3n, - a(ha). Using the notation

(N a) = 2% (where the inner product in the dual h* is defined using the Killing

form as (A, X') = (hy, hy), see section 6) this relation can be written as
ne = (A, ).
In fact, one can prove a stronger result:

Theorem 7.4 An irreducible highest weight representation of a semi-
simple Lie algebra is finite-dimensional if and only if the highest weight satisfies
(\,a) € N for all « € A, where A C Ot is a system of simple roots; these weights
form the set AT of positive integral weights. For any linear form A : h — C
which satisfies the above condition there is a unique, up to an equivalence, irreducible
finite-dimensional representation with highest weight ).

One can define the fundamental weights for a system (®,A) as the weights \°
with the property that < A, a; >= d;; where both 7,5 = 1,2,..., (. By defition, the
fundamental weights are positive integral weights, they form a basis in At so that any
positive integral weight is a linear combination, with nonnegative integer coefficients,
of the fundamental weights.

Example Let us consider the case of g = A,. This is important in particle physics
for at least two reasons. First, it is an approximate internal symmetry of strongly
interacting particles ("eightfold way’ of Gell-Mann and Ne’eman). Second, it is a gauge
symmetry , in a similar way as in ordinary electrodynamics one can replace a vector
potential A, by the equivalent potential A, + 0, x, where the gauge transformation x
is a smooth function in space-time. In the case of Ay (or SU(3) in the group language)
gauge symmetry the transformation is somewhat more complicated and instead of one
potential there is a multiplet of eight potentials.

In this case the bases of the Cartan subalgebra is hy = e;; — ¢, hy = e — ¢,
where ¢ = l(611 + €99 + e33) commutes with everything. The simple roots are aqz, a3

3
corresponding to the root vectors ejs, €93. The integrality conditions read

1
/\(ha12)7 )‘(hoén) S EN

The factor 1/6 comes from our normalization (aqz, a12) = 1/3 = (ans, agg) (note that
the normalization of the inner product is completely arbitrary, the only things which
really matters are the ratios < a, f >= 2(«, 8)/(5, 5)) and from

(A @)
(o, )

(N a)=2
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Since hay, = §(h1 — h2) and ha,, = §(ha — hy) = g(h1 + 2hs) the condition for
A being dominant integral are that the highest weight vector is an eigenvector of
h1, he with eigenvalues i, Ay satisfying Ay — Ay € N and Ay + 2\ € N. The case
A1 = Ay = 0 corresponds to the trivial one-dimensional representation. The lowest
nontrivial case is A\; = 2/3, \y = —1/3 corresponds to the defining representation of
Ay as complex 3 x 3 matrices. This weight is also the fundamental weight A! for
As. One can check from the definitions that the second fundamental weight A\? has
the property A*(hy) = 3 = A?(hy), and this corresponds to the complex conjugate of
the defining representation. That representation is actually also the antisymmetrized
tensor product of the defining representation with itself. Another important low di-
mensional example is A\ = 1, Ay = 0. This is the adjoint 8 dimensional representation.
The highest weight vector is the root vector e;3 and the weight is equal to A\t 4+ \2.

In the case of A; a complete set of vectors in an irreducible representation was
obtained by applying the shift operator L_ = y step by step, starting from the
highest weight vector. The relation of the angular momentum operators Ly, L, L3 to
the standard basis x,y, h in Ay is h = 2iLs,x = L1 +iLs,y = —Lq +iLs. In the case
of A, one needs 3 independent shift operators (because there are 3 negative roots).
These can be taken to be Ss3p = €32, 531 = €32€91 + e31(€11 — €22), and So; = e91. The
first two connect vectors which are of highest weight with respect to a A; subalgebra.
The last one decreases the A; weight inside of a representation of Aj.

The linear groups SU(n) and SO(n) appear in physics often as symmetries of
many particle systems. This could be for example a nucleus exhibiting various kinds
of particle interchange and combined rotational symmetries. If the symmetry is exact,
that is, the group commutes with the hamiltonian, then one can classify eigenvectors
of the hamiltonian belonging to the same eigenvalue using the representation theory
of the symmetry group G. Even in the case when the symmetry is only approximate it
might still be of advantage to classify the physical states according to representations
of G (’supermultiplets’).

8 Reduction of tensor products of representions

Let D® be a complete set of inequivalent representations of a compact group G. The
in general the representation D @ DU is reducible and we can write

D(l) ® D(J) — @kcijkD(k)

where the nonnegative integer c;j;, is the multiplicity of the representation D®) in the
tensor product.

Let us start by analyzing in detail the example G = SU(2). We have seen that
the irreducible representations are labelled by the highest weight A = 0,1,2,..., the
highest eigenvalue of the element h in the Cartan subalgebra h. (In physics, \/2
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is interpreted as the angular momentum of a quantum mechanical system.) So in
this case we can take the index i equal to A, the representations are labelled by
0,1,2,.... Since the element h is represented as h ® 1 + 1 ® h in the tensor product,
the weights of D@ @ DU are the sums m; + m; where m; = —i,—i + 2,...,+i
and m; = —j,—7 +2,...,+j. The weight spaces in any irreducible representation
of SU(2) have dimension equal to 1, so in the tensor product the highest weight
is ¢ + j with multiplicity 1, the next highest is i + j — 2 with multiplicity 2 (since
i+j—2=(G—-2)+j=1i+(j—2),) the next is i + j — 4 with multiplicity 3 and so
on.

It follows that in the tensor product D® ® DU the representation D0F7) occurs
with multiplicity 1. But since that representation contains a weight vector with weight
147 —2, we have only one remaining linearly independent vector with weight i+ j —2.
Thus the multiplicity of D#*+7=2) is also equal to 1! By induction, one can prove that
this is the case up to the weight |i — j| and after that we exhausted the possible
highest weights. Thus

DW @ DU = g Xﬂ: D®
k=|i—j

With the aid of Young tableaux, we can give an algorithm for the Clebsch-Gordan
decomposition of a tensor product of representations of SU(n) for any n. The method
is a bit complicated to explain, but stick with it. We’ll do lots of examples later.

Suppose we want to decompose the tensor product of irreducible representations «
and ( corresponding to tableaux A and B. Put a’s in the top row of B, b’s in the
second row, ¢’s in the third row, and so on. Take the boxes from the top row of B
and add them to A, each in different column, to form new tableaux. Then, take the
second row and add them to form tableaux, again each box in a different column,
then go to third row and so on until all rows in B have been exhausted. There is one
additional restriction. Reading from right to left and from the top down, the number
of a’s must be greater than or equal to the number of b’s, greater or equal to the
number of ¢’s ..... This avoids double counting of tensors. The tableaux formed in
this way correspond to the irreducible representations in a ® [3.

We take some examples in the case of SU(3). Here 3 denotes the defining 3-
dimensional representation, 3 the complex conjugate of the defining representation
(which is the same as the representation on completely antisymmetric tensors of rank
2); the adjoint representation 8 corresponds to the Young tableau with row lengths
(2,1).
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Examples:

(e[d- [Taef]

33= 663
H@@— “Jg
3®3= 841

A less trivial example:

(efs- = -

! !

] P

P @)
3®3= 8 ) 1

The first and third tableau do not satisfy the constraint that the number of a’s is
greater than the number of b’s. Note that we did this one in a stupid way (on purpose
to illustrate the constraint). A sensible person would work out 3 ® 3 and not move
so many boxes around.

Example: Finally, let us work out 8 ® 8:

al

oL@

D a D b &) a
b a alb
SR8= 27310010080 8¢ 1

The two 8’s are different because they have a different pattern of a’s and b’s.

9 Differentiable Manifolds

9.1 Topological Spaces

The topology of a space X is defined via its open sets.
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Let X= set, 7 = {X,}aes a (finite or infinite) collection of subsets of X. (X, 7) is a
topological space, if

Tl Qer, Xer
T2 all possible unions of X,’s belong to 7 (Uae[’ X,eTr, I'C I)
T3 all intersections of a finite number of X,’s belong to 7. (., Xa, € 7)

The X, are called the open sets of X in topology 7, and 7 is said to give a topology
to X.

So: topology = specify which subsets of X are open.

The same set X has several possible definitions of topologies (see examples).

Examples

(i) 7={0,X} 7trivial topology”

(ii) 7 = {all subsets of X} "discrete topology”

(iii) Let X =R, 7 = {open intervals ]a, b[ and their unions} "usual topology”

(iv) X =R" 7 ={]ay, [ %X ... X]ay,, b,[ and unions of these.}

Definition: A metric on X is a function d : X x X — R such that
M1 d(z,y) = d(y, z)

M2 d(z,y) > 0, and d(x,y) = 0 if and only if z = y.

M3 d(z,y) + d(y, z) > d(z,z) ”triangle inequality”

Example:

1
X:Rna dp(x7y) = <Z|xl_yz|p> ) p>0
i=1
If p = 2 we call it the Euclidean metric.

If X has a metric, then the metric topology is defined by choosing all the ”open
disks”
U(w) ={y e X|d(z,y) <e}

and all their unions as open sets.
The metric topology of R™ with metric d, is equivalent with the usual topology (for
allp>01)
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Let (X,7) be a topological space, A C X a subset. The topology 7 induces the
relative topology 7’ in A,

T,:{UZ'PIA|UZ'€T}

This is how we obtain a topology for all subsets of R™ (like S™).

9.1.1 Continuous Maps

Let (X, 7) and (Y, o) be topological spaces. A map f: X — Y is continuous if and
only if the inverse image of every openset V € o, f7}(V)={ze X | f(x) e V}, is
an open set in X: f~Y(V) er.

A function f: X — Y is a homeomorphism if f is continuous, and has an inverse
f~1:Y — X which is also continuous.

If there exists a homeomorphism f : X — Y, then we say that X is homeomorphic
to Y and vice versa. Denote X ~ Y.
This (~~) is an equivalence relation.

Intuitively : X and Y are homeomorphic if we can continuously deform X to Y
(without cutting or pasting).
Example: coffee cup ~ donut.

The fundamental question of topology :  classify all homeomorphic spaces.

One method of classification: topological invariants i.e. quantities which are in-
variant under homeomorphisms.
If a topological invariant for X; # for X, then X; % X,.

The neighbourhood N of a point x € X is a subset N C X such that there exists
anopenset U er, x € U and U C N.
(N does not have to be an open set).

(X, 1) is a Hausdorff space if for an arbitrary pair z, 2’ € X, = # 2/, there always
exists neighbourhoods N > z, N’ 3 2’ such that N N N’ = ().

We’ll assume from now on that all topological spaces (that we’ll consider) are Haus-
dorff.

Example: R™ with the usual topology is Hausdorff.
All spaces X with metric topology are Hausdorff.
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A subset A C X is closed if its complement X — A={x € X |z ¢ A } is open.
N.B. X and () are both open and closed.

A collection {A;} of subsets A; C X is called a covering of X if |J, 4; = X.
If all A; are open sets in the topology 7 of X, {A;} is an open covering.

A topological space (X, 7) is compact if, for every open covering { U; | ¢ € I} there
exists a finite subset J C I such that { U; | i € J} is also a covering of X, i.e. every
open covering has a finite subcovering.

Basic example According to the Heine-Borel theorem a subset A C R™ is com-
pact (in the standard Euclidean metric topology) if and only if it is closed and
bounded. Bounded means that |z| < R for some R > 0 and for all z € A.

X is connected if it cannot be written as X = X |J X, with X3, X5 both open,
nonempty and disjoint, i.e. X[ Xs = 0.

A loop in topological space X is a continuous map f : [0,1] — X such that
f(0) = f(1). If any loop in X can be continuously shrunk to a point, X is called
simply connected.

Examples: R? is simply connected.
Torus 77 is not simply connected.

Examples of topological invariants = quantities or properties invariant under home-
omorphisms:

1. Connectedness

2. Simply connectedness

3. Compactness

4. Hausdorff

5. Euler characteristic (see below)

Let X C R®, X ~ polyhedron K. (monitahokas)

Euler characteristic:

X(X) = x(K) = (# vertices in K) — (# edges in K) + (# faces in K)
( = K:n kérkien lkm. — K:n sivujen lkm. + K:n tahkojen lkm.)

Example: x(T?) =16 — 32+ 16 = 0.
x(S?) = x(cube) =8 — 12+ 6 = 2.
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9.2 Homotopy Groups
9.2.1 Paths and Loops

Let X be a topological space, I = [0,1] C R.

A continuous map « : I — X is a path in X. The path « starts at oy = a(0) and
ends at oy = «(1).

If ag = a3 = xg, then « is a loop with base point xy. We will focus on loops.

Definition: A product of two loops «, § with the same base point zy, denoted by
a « 3, is the loop

9.2.2 Homotopy

Let o, 8 be two loops in X with base point 5. « and 3 are homotopic, a ~ g3, if
there exists a continuous map F' : [ x I — X such that

F(s,0) = a(s) Vs el
F(s,1) = ((s) Vs el
F(0,t) = F(1,t) = xg vt el

F is called a homotopy between « and (5.
Homotopy is an equivalence relation:

1. a ~ a: choose F(s,t) =a(s) Vtel
2. a ~ [, homotopy F(s,t) = 3 ~ a, homotopy F(s,1—1)

3. a ~ 3, homotopy F'(s,t); B ~ 7, homotopy G(s,t). Then choose

F(s,2t) 0<t<i
H(s,t) = ’ - =2
(5:%) {G(S,2t—1) s<t<1

= H(s,t) is a homotopy between a and 7, so a ~ 7.

The equivalence class [o] is called the homotopy class of «.
([a] = { all paths homotopic with « }).

Lemma: Ifa~ao and §~ 3, then ax (G~ o' x 3.
Proof: Let F(s,t) be a homotopy between a and o' and let G(s,t) be a homotopy
between (3 and (3. Then



is a homotopy between a % § and o x 5. O
By the lemma, we can define a product of homotopy classes:  [a] % [(] = [a* 3]

Theorem: The set of homotopy classes of loops at xy € X, with the product defined
as above, is a group called the fundamental group (or first homotopy group) of
X at xg. It is denoted by I1; (X, z¢)

Proof:

(0) Closure under multiplication: For all [a], [5] € II;(X,z) we have [a] x [5] =
la* (] € II1(X, xp), since a* (3 is also a loop at .

(1) Associativity: We need to show (a* ) xy ~ ax (5% 7).

4s 1
o (i5) 0<s< i
Homotopy F(s,t) = Bds—t—1) 1 <s<2H
(M) Arsssl

= [(axB)x7]=[ax(Bx7)] = [a*xB*7]

(2) Unit element: Let us show that the unit element is e = [C,,], where C,, is the
constant path C,,(s) = zo Vs € I. This follows since we have the homotopies:

&(A) 0<g< 12t
axCh ~a: F(s,t) = 1+t -T2
0 0<s< =t
Cpox v~ a: F(s,t) = . C 2.
: {(—) e

= [axCy] = [Cyy *x o] = [a.

(3) Inverse: Define a'(s) = a(l —s). We need to show that o' is really the

inverse of a: [a* a™!] = [C,,]. Define:
f a2s(1—-1)) 0<s<i
Flst) = { a2(1—s)(1-1) L<s<l

1

Now we have F(s,0) = axa™! and F(s,1) = C,, so axa™! ~ C,,. Similarly

a™lxa ~ C,, so we have proven the claim: [a ! xa] = [axa™!] = [C,,]. O

In general, a homotopy between two maps f,g : X — Y is defined as a map
F : X x[0,1] such that F(z,0) = f(z) and F(z,1) = g(z). The topological spaces
X,Y are said to be homotopy equivalent if there is a pair of maps f : X — Y and
g 'Y — X such that f o g is homotopic to idy and g o f id homotopic to idx.
Many topological notions are invariant under a homotopy equivalence; for example,
the fundamental groups of X and Y are isomorphic if X, Y are homotopy equivalent.
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9.2.3 Properties of the Fundamental Group

1. If zp and z; can be connected by a path, then IT; (X, z¢) = I1; (X, z1). If X is
arcwise connected, then the fundamental group is independent of the choice of
xo up to an isomorphism: IT; (X, zq) = T1; (X).

(A space X is arcwise connected if any two points xg,z; € X can be
connected with a path. It can be shown that an arcwise connected space
is always connected, but the converse is not true. However a connected
metric space is also arcwise connected.)

2. TI;(X) is a topological invariant: X ~Y = II;(X) = II;(Y).
3. Examples:

e I1,(R?) =0 (= the trivial group)
o IL(TH =T,(S'x S =ZDZ.

(One can show that IT;(X x Y') = I1;(X) @ I1;(Y) for arcwise connected spaces
X and Y.)

The real projective space is defined as RP™ = { lines through the origin in R"*!}. If
r = (2% a',...,2") # 0, then z defines a line. All y = Az for some nonzero A € R
are on the same line and thus we have an equivalence relation: y ~ x <y = Az, A\ €
R — {0} < (z and y are on the same line.)

So RP" = {[z]| z € R"™! — 0} with the above equivalence relation.

Example: RP? ~ (S? with opposite points identified)
1, (RP2) = Zs.

9.2.4 Higher Homotopy Groups

Define: 1" ={(s1,...,5,)] 0<s; <1, 1 <i<n}
OI" = boundary of I"™ = {(si,...,s,)| some s; = 0 or 1}
A map « : I™ — X which maps every point on 0I" to the same point xo € X
is called an n-loop at o € X. Let a and 3 be n-loops at xy. We say that « is
homeotopic to 3, a ~ 3, if there exists a continuous map F': I"™ x I — X such that

F(s1,...,8,,0) = a(s1,...,5n)
F(Sl,...,Sn,l):6<51,...,Sn)
F(s1,...,80,t) =29 Vte€ I when (sq1,...,s,) € 0I".
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Homotopy o ~  is again an equivalence relation with respect to homotopy classes

[of.
05(251782,...,871) Ogslgé
Define: a*xf3: a*xp(sy,...,8,) = 5251 — 1.5, o) L<s <1
) VAR n 2_ iy .
al: at (s, 8) =all —s1,...,8,)
[a] < [B] =[x f]

= I1,,(X, 7¢), the n*® homotopy group of X at x(. (This classifies continuous maps
ST — X))
Example: II,,(S™) = Z for all n > 1 whereas II;(S™) = 0 for k < n.

One of the classic problems in algebraic topology is to compute the homotopy
groups mx(S™) of spheres. This is still unsolved for general values of n, k; partial
answers are known when % is not too large compared to n. For example, T14(S5?) =
[15(S?) = Zs.

For more information on homotopy groups and algebraic topology in general, see
M. Greenberg and J.R. Harper: Algebraic Topology, A First Course.

One can prove (and you might be able to provide the proof) that the higher
homotopy groups I1,,(X), for n > 2, are all commutative.

9.3 Differentiable manifolds
9.3.1 The definition of a differentiable manifold

Let M be a topological space. We normally assume also the Hausdorff property: For
any pair x,y of distinct points there is a pair of nonoverlapping open sets U, V' such
that r € U and y € V.

Actually, all the spaces we study in (finite dimensional) differential geometry are
locally homeomorphic to R™.

Definition A topological space M is called a smooth manifold of dimension n if

e there is a family of open sets U, (with oo € A) such that the union of all U,’s is
equal to M

e for each « there is a homeomorphism ¢, : U, — V,, C R™ such that

e the coordinate transformations ¢ao¢gl on their domains of definition are smooth
functions in R™.

Example 1 R" is a smooth manifold. We need only one coordinate chart U = M
with ¢ : U — R"” the identity mapping.

Example 2 The same as above, but take M C R"™ any open set.

Example 3 Take M = S!, the unit circle. Set U equal to the subset parametrized
by the polar angle —0.1 < ¢ < 740.1 and V equal to the set 7 < ¢ < 27. Then UNV
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consists of two intervals 7 < ¢ < 7+ 0.1 and —0.1 < ¢ <0~ 21 — 0.1 < ¢ < 2.
The coordinate transformation is the identity map ¢ — ¢ on the former and the
translation ¢ — ¢ + 27 on the latter interval.

Example 4 The unit sphere S in n dimensions. Let’s realize S™ as a subset of
Rt 7 = {z e R™ YT (21)? = 1}
One possible atlas:

e coordinate neighbourhoods:

Uy = {z € S"2" > 0}
Ui ={z € S"x' <0}

e coordinates:

pir (2, ...
0 o ..

’xn) — (.CEO,...,xi_l,xi—i_l,...,xn) cR"
pi (7", x" "

Y

(so these are projections on the plane z’ = 0.)

The transition functions (i # j, o =+, 8 = %),

Viajs =Pia © P35,

0 i J—1 j+1 n
(x°,...2t 2"

are .
There are other compatible atlases, e.g. the stereographic projection.

Example 5 The group GL(n,R) of invertible real n x n matrices is a smooth
manifold as an open subset of R™. Tt is an open subset since it is a complement of
the closed surface determined by the polynomial equation detA = 0.

9.3.2 Differentiable maps

Let M, N be a pair of smooth manifolds (of dimensions m,n) and f : M — N a
continuous map. If (U, ¢) is a local coordinate chart on M and (V, ) a coordinate
chart on NV then we have a map ¥ o f o ¢~! from some open subset of R™ to an open
subset of R™. If the composite map is smooth for any pair of coordinate charts we say
that f is smooth. The reader should convince himself that the condition of smoothness
for f does not depend on the choice of coordinate charts. From elementary results
in differential calculus it follows that if ¢ : N — P is another smooth map then also
go f: M — P is smooth.
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Note that we can write the map ¢ o fo ¢! as

y= ' . ") =t 2™,y (2 a™)
in terms of the Cartesian coordinates. Smoothness of f simply means that the coor-
dinate functions y'(z', 2% ... 2™) are smooth functions.

Remark In a given topological space M one can often construct different inequiv-
alent smooth structures. That is, one might be able to construct atlases {(U,, ¢o)}
and {(Va, %)} such that both define a structure of smooth manifold, say My and
My, but the manifolds My, My are not diffeomorphic (see the definition below). A
famous example of this phenomen are the spheres S7, S (John Milnor, 1956). On the
sphere S7 there are exactly 28 and on S'' 992 inequivalent differentiable structures!
On the Euclidean space R* there is an infinite number of differentiable structures
(S.K. Donaldson, 1983). In dimensions n = 1,2, 3,5, 6 there is exactly one sphere (up
to a diffeomorphism) whereas the case n = 4 is still open.

A diffeomorphism is a one-to-one smooth map f : M — N such that its inverse
f~': N — M is also smooth. The set of diffeomorphisms M — M forms a group
Diff(M). A smooth map f : M — N is an immersion if at each point p € M the
rank of the derivative % is equal to the dimension of M. Here h = 1) o f o ¢~ with
the notation as before. Finally f: M — N is an embedding if f is injective and it is
an immersion; in that case f(M) C N is an embedded submanifold.

A smooth curve on a manifold M is a smooth map v from an open interval of the
real axes to M. Let p € M and (U, ¢) a coordinate chart with p € U. Assume that
curves 7, v go through p, let us say p = +;(0). We say that the curves are equivalent

at p, 11 ~ 72, if ] )
%(b(’h(t))’t:o = aqﬁ(’m(t))‘t:o.

This relation does not depend on the choice of (U, ¢) as is easily seen by the help of
the chain rule:

SOn0) = 50a(0) = oo - (oln) - Fou)) =0

at the point ¢ = 0. Clearly if v; ~ 75 and 7, ~ 73 at the point p then also y; ~ 3 and

7

Yo ~ 1. Trivially v ~ ~ for any curve v through p so that 7 ~ 7 is an equivalence
relation.
A tangent vector v at a point p is an equivalence class of smooth curves [y] through

p. For a given chart (U, ¢) at p the equivalence classes are parametrized by the vector

SO (O)limo € "

Thus the space T, M of tangent vectors v = [7] inherits the natural linear structure of
R™. Again, it is a simple exercise using the chain rule that the linear structure does
not depend on the choice of the coordinate chart.

81



We denote by T'M the disjoint union of all the tangent spaces T, M. This is called
the tangent bundle of M. We shall define a smooth structure on T'M. Let p € M and
(U, ¢) a coordinate chart at p. Let m : TM — M the natural projection, (p,v) — p.
Define ¢ : 771 (U) — R™ x R as

~ d

o(p, 7)) = (6(p), 7 (7(t))]i=0)-

If now (V) is another coordinate chart at p then

(Bod™)(z,v) = (6 (x)), (pov™) (x)v),

by the chain rule. It follows that q@o 1/;_1 is smooth in its domain of definition and
thus the pairs (7~ 1(U), ¢) form an atlas on TM, giving TM a smooth structure.
Example 1 If M is an open set in R™ then TM = M x R".
Example 2 Let M = S'. Writing 2 € S! as a complex number of unit modulus,

* with v € R. This gives in fact a

consider curves through z written as v(t) = ze®
parametrization for the equivalence classes [] as vectors in R. The tangent spaces at
different points 21, 2, are related by the phase shift 2,2, ' and it follows that T'M is
simply the product S x R.

Example 3 In general, TM # M x R™. The simplest example for this is the unit
sphere M = S2. Using the spherical coordinates, for example, one can identify the
tangent space at a given point (6, ¢) as the plane R However, there is no natural
way to identify the tangent spaces at different points on the sphere; the sphere is not
parallelizable. This is the content of the famous hairy ball theorem. Any smooth
vector field on the sphere has zeros. (If there were a globally nonzero vector field
on S? we would obtain a basis in all the tangent spaces by taking a (oriented) unit
normal vector field to the given vector field. Together they would form a basis in the
tangent spaces and could be used for identifying the tangent spaces as a standard
R2)

Exercise The unit 3-sphere S® can be thought of complex unitary 2 x 2 matrices
with determinant =1. Use this fact to show that the tangent bundle is trivial, T.S® =
S3 x R3.

Let f: M — N be a smooth map. We define a linear map

Tpf . TpM — Tf(p)N, as Tpf . [’y] = [f o ’y],

where 7 is a curve through the point p. This map is expressed in terms of local
coordinates as follows. Let (U,¢) be a coordinate chart at p and (V,v) a chart
at f(p) € N. Then the coordinates for [y] € T,M are v = L¢(v(t))|—o and the
coordinates for [f o] € Ty, N are w = L4)(f(v(t)))|i=0. But by the chain rule,

w= (o fos™Y(r) o0 E)leo = (Wo fos™ V() v
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with = ¢(p). Thus in local coordinates the linear map T, f is the derivative of
Yo fog¢ ! at the point z. Putting together all the maps T}, f we obtain a map

Tf:TM — TN.

Theorem 9.1 The map T'f : TM — TN is smooth.

Proof. Recall that the coordinate charts (U, ¢), (V, 1) on M, N, respectivly, lead to

coordinate charts (71 (U), #) and (7=(V),¢) on TM,TN. Now

(WoTfod ) z,v)=(Wofod ") (x),(Wofogp ) (x))

for (z,v) € ¢(m 1 (U)) € R™ x R™. Both component functions are smooth and thus
T f is smooth by definition.

If f: M — N and g: N — P are smooth maps then go f : M — P is smooth
and

T(go f)=TgoTf.

To see this, the curve v through p € M is first mapped to f o through f(p) € N
and further, by Tg, to the curve g o f o~y through g(f(p)) € P.

In terms of local coordinates z; at p, y; at f(p) and z; at g(f(p)) the chain rule
becomes the standard formula,

ol — Oyt Oxd’

9.3.3 Manifold with a Boundary

Let H be the "upper” half-space: H™ = {(z!,...,2™) € R™ | 2™ > 0}.

Now require for the coordinate functions: ¢; : U; — U] C H™, where U] is open in
H™. (The topology on H™ is the relative topology induced from R™.)

Points with coordinate ™ = 0 belong to the boundary of M (denoted by OM). The
transition functions must now satisfy: ;; : ¢;(U; N U;) — ¢;(U; N U;) are C* in an
open set of R™ which contains ¢, (U; N U;). .

9.3.4 Vector fields

We denote by C*°(M) the algebra of smooth real valued functions on M. A derivation
of the algebra C*°(M) is a linear map d : C*°(M) — C*°(M) such that

d(fg) =d(f)g+ fd(g)

for all f,g. Let v € T,M and f € C*°(M). Choose a curve ~ through p representing
v. Set

v f = 5o
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Clearly v : C*°(M) — R is linear. Furthermore,

v+ (£9) = S FOENmo0g(r(0)) + F2(0)) 1o = (v Palp) + F(p)(v- )

A wvector field on a manifold M is a smooth distribution of tangent vectors on
M, that is, a smooth map X : M — T'M such that X(p) € T,M. From the previous
formula follows that a vector field defines a derivation of C*°(M); take above v = X (p)
at each point p € M and the right- hand-side defines a smooth function on M and
the operation satisfies the Leibnitz’ rule.

We denote by D'(M) the space of vector fields on M. As we have seen, a vector
field gives a linear map X : C*°(M) — C*°(M) obeying the Leibnitz’ rule. Conversely,
one can prove that any derivation of the algebra C'°(M) is represented by a vector
field.

One can develop an algebraic approach to manifold theory. In that the commu-
tative algebra A = C°°(M) plays a central role. Points in M correspond to mazimal
ideals in the algebra A. Namely, any point p defines the ideal I, C A consisting of all
functions which vanish at the point p.

The action of a vector field on functions is given in terms of local coordinates

xl, ... 2" as follows. If v = X (p) is represented by a curve v then

(X D) = ZI6ONe0 =Y 255t =0)= Y xHw)2E

Thus a vector field is locally represented by the vector valued function (X!(z),..., X"(x)).
In addition of being a real vector space, D'(M) is a left module for the algebra
C*°(M). This means that we have a linear left multiplication (f, X) — fX. The value
of fX at a point p is simply the vector f(p)X(p) € T,M.
As we have seen, in a coordinate system x; a vector field defines a derivation with

k

local representation X = ), X k%. In a second coordinate system z’* we have a

representation X = > X’ k%. Using the chain rule for differentiation we obtain the

coordinate transformation rule

k aIL’/k :
X/ (l'/) — ax] X](x)7
J
for o' = /% (!, ... a™).
We shall denote 9, = % and we use Einstein’s summation convention over re-

peated indices,
Let X,Y € D'(M). We define a new derivation of C*(M), the commutator
[X,Y] € DY(M), by
(X Y]f = X(YF) = Y(X]).
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We prove that this is indeed a derivation of C*°(M).

(X, Y](fg) = X(Y(fg)—Y(X(fg)=X(fYg+gY[)-Y(fXg+gX[)
= (XNHY9)+fXYg)+(Xg)(Y[)+9X(Y[f)—- Y[ Xg) — fY(Xg)
—(Yg)(Xf) —gY(X[f) = fIX,Y]g + g[X,Y]f.

Writing X = X*9;, and Y = Y*9,, we obtain the coordinate expression
(X, Y]F = X70,Y* - Y79, X"

Thus we may view D!(M) simply as the space of first order linear partial differ-
ential operators on M with the ordinary commutator of differential operators. The
commutator [X, Y] is also called the Lie bracket on D'(M). It has the basic properties
of a Lie algebra:

e [X,Y] is linear in both arguments
o [X,Y]=—[Y,X]
o X[V, Z]|+[V,[Z, X]| +[Z,[X. Y]] =0.
Exercise Check the relations
(X, fY] = fIX, Y]+ (X[)Y, and [fX, Y] = fIX,Y] - (V)X

for X, Y € DY(M) and f € C>(M).

Let f: M — N be a diffeomorphism and X € D!(M). We can define a vector
field Y = f.X on N by setting Y(¢) = T,f - X(p) for ¢ = f(p). In terms of local
coordinates,

0 _ xi oyt 0 '

oyF Oxd OyF

In the case M = N this gives back the coordinate transformation rule for vector
fields.

Yy =Y*

9.3.5 The flow generated by a vector field
Let X € D'(M). Consider the differential equation

X (1)) = S)

for a smooth curve ~. In terms of local coordinates this equation is written as

Cdt

By the theory of ordinary differential equations this system has locally, at a neighbor-

XE(2(t)) ),k =1,2,....n. (1)

hood of an initial point p = 7(0), a unique solution. However, in general the solution
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does not need to extend to —oo < t < +00 except in the case when M is a compact
manifold. The (local) solution + is called an integral curve of X through the point p.
The integral curves for a vector field X define a (local) flow on the manifold M.
This is a (local) map
f:RxM—-M

given by f(t,p) = v(t) where = is the integral curve through p. We have the identity

f(t+s,p) = f(t, f(s,p)),

which follows from the uniqueness of the local solution to the first order ordinary
differential equation. In coordinates,

%f’“(t,f(s,m)) = XF(f(t, f(s,2)))

and

SN+ ) = XM+ 5,)).

Thus both sides of (1) obey the same differential equation. Since the initial conditions
are the same, at ¢ = 0 both sides are equal to f(0, f(s,z)) = f(s,x), the solutions
must agree.

Denoting fi(p) = f(t,p), observe that the map R — Diffj,.(M), t — f;, is a
homomorphism,

Jtofs= fiys

Thus we have a one parameter group of (local) transformations f; on M. In the case
when M is compact we actually have globally globally defined transformations on M.
The vector field X is called the infinitesimal generator of the flow (¢,p) — fi(p).

Example Let X(r,¢) = (—rsing,rcos¢) be a vector field on M = R2 The
integral curves are solutions of the equations

Z(t) = —r(t)sing(t)
y(t) = r(t)cose(t)

and the solutions are easily seen to be given by (z(t),y(t)) = (ro cos(d+ o), ro sin(¢p+
¢0)), where the initial condition is specified by the constants ¢, 9. The one parameter
group of tranformations generated by the vector field X is then the group of rotations
in the plane.

Given a vector field X, the corresponding flow in local coordinates is often denoted
by

ol'(z) = ot (t,r) = exp(tX)z" = ()"
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and called the exponentiation of X. This is because

dot(s, ) 1, d*ct(s,x)
Jf(x):x“—FtT _0+§t2T _0+"'
d 1 ,d
= (14 t— 4 22— 1 ...|gH
( T tataeE T ) (s ) 0
= clasoh(s, x) =Xt

Further reading: M. Nakahara: Geometry, Topology and Physics, Institute of
Physics Publ. (1990), sections 5.1 - 5.3 . S. S. Chern, W.H. Chen, K.S. Lam: Lectures
on Differential Geometry, World Scientific Publ. (1999), Chapter 1.

9.3.6 Dual Vector Space

Let V be a complex vector space and f a linear function V' — C. Now V* =
{f|f is a linear function V" — C} is also a complex vector space, the dual vector
space to V:

o (fi+ f2)(0) = f1(V) + f2(7)
o (af)(V) = a(f(V))
e 0y-(0) =0 YoeV
The elements of V* are called the dual vectors.
Let {€1,...,&,} be a basis of V. Then any vector ¥ € V can be written as ¥ = v'¢;.
We define a dual basis in V* such that e*(&;) = ¢’;. From this it follows that
dim V = dim V* = n (dual basis = {e*!,...,e*}). We can then expand any f € V*
as f = f;e* for some coefficients f; € C. Now we have
f@) = fie" (&) = fie(€)) = fiv".
This can be interpreted as an inner product:
<,>: V'xV-=C
< f,?_f > = fﬂ)Z

(Note that this is not the same inner product < | > which we discussed before:
<,>: V*xV—-Chut< | >: VxV—=C)
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Pullback: Let f:V — W and g : W — C be linear maps (g € W*). It follows
that go f : V — C is a linear map, i.e. go f € V™.

f

vV = W
N Ly
gof C

Now f induces a map f*: W* — V* g go fie [f*(g)=gofeV* f*(g)is
called the pullback (takaisinveto) of g.

Dual of a Dual: Let w: V* — C be a linear function (w € (V*)*). Every ¢ € V
induces via inner product wy € (V*)* defined by wz(f) =< f,¢ > . On the other
hand, it can be shown this gives all w € (V*)*. So we can identify (V*)* with V.

Tensors: A tensor of type (p,q) is a function of p dual vectors and ¢ vectors, and
is linear in its every argument!

ﬁ q

A

™

T V*x.. xV'xVx. .xV—C.

Examples: (0,1) tensor = dual vector : V' — C
(1,0) tensor = (dual of a dual) vector
(1,2) tensor: T : V* x V x V — C. Choose basis {¢;} in V and {e*'} in V*:
=T,
T(f,0,W) = T(fie*, v'&;, whey) = flw* T(e*, &, &) = T’y frv'w",
where Tijk are the components of the tensor and they uniquely determine the tensor.

Note the positioning of the indices.
In general, (p, q) tensor components have p upper and g lower indices.

Tensor product: Let Rbea (p,q) tensor and S be a (p/, ¢’) tensor. Then T = R®S
is defined as the (p+ p’,q + ¢) tensor:

T(fh BRI fp7 fp+17 BRI fp+p’;171a s 727q;17q+17 s aﬁq-&-q’)
= R(fh CII) fp;Ula s 717q)8(fp+17 CII) fp—i—p’;ﬁq—&-lv cee aﬁq—&-q’)'
In terms of components:

il...ipierl...ierp/ o i1-~-ip iP+1“‘ip+p’
Jredqdaw1-Jgyq 7 d1dq T g1 dgyg!

1So T is a multilinear object.
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Contraction: This is an operation that produces a (p—1,¢—1) tensor from a (p, q)

tensor:
. T = c(ij) >
(p.q)
pa (p—1,4—1)

where the (p — 1, ¢ — 1) tensor T is

ith jth
"*k'\ ~ =~
Tc(ij)(fla--'vfp—l;vla"'7/Uq—1):T(fla"'a € 7"'7fp—l;v17"'7 €k a'-->Uq—l)~

Note the sum over k in the formula above. In component form this is

Liodpyr  rpdyedioakliodp 1
c(if) mi..mg—1 ~ T mi..mij_1kmj..mg_1

Now we can return to calculus on manifolds.

9.3.7 1-forms (i.e. cotangent vectors)

Tangent vectors of a differentiable manifold M at point p were elements of the vector
space T,M. Cotangent vectors or 1-forms are their dual vectors, i.e. linear
functions T,M — R. In other words, they are elements of the dual vector space
TyM. Let w € TyM and v € T, M, then the inner product <, >:T*M x T,M — R
is

<w,v>=w(v) € R.

The inner product is bilinear:

<w, v+ oy > = w(aup + agty) = ap < w, v > Fag < w, vy >

< aqwy + aewe, v > = (qqwy + aawy)(v) = oy < Wi, v > Fag < we, v > .

Let {e,} = {32} be a coordinate basis of 7,M. (Note that the correct notation would
be {(8%)1)}, but this is somewhat cumbersome so we use the shorter notation.) The
dual basis is denoted by {dz*} and it satisfies by definition

0

< dx" 0 >= dx“(axy

" Oz

)= o

v*

Now we can expand w = w,dz" and v = v” agw Then

wv) =< w,v >= w,v’dz"( = w, vt

Rl
Consider now a function f € F(M) (i.e. fisasmooth map M — R). Its differential
df € T; M is the map

w91

vt ——.
oxH

df (v) =< df,v >=v(f) =
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Thus the components of df are (,;9 - and

(9f
Gx”

Consider two coordinate patches U; and U; with p € U; NU;. Let x = ¢;(p) and
y = ¢;(p) be the coordinates in U; and U, respectively. We can derive how the

df =

components of a 1-form transform under the change of coordinates:

Let w = w,da* = w,dy” € T*M and v = vpaap =7 37 € T,M be a 1-form and a

vector. We already know that 0" = gy# v, so we get
- Oy
w(v) = w" = w, 0" =W, ax“v“,
so we find the transformed components
oy _ ox”
wy, Val‘ﬂ or w, w,,a—yu.

The dual basis vectors transform as
oy
oxH

dz*.

dy” =

9.3.8 Tensors

A tensor of type (¢, ) is a multilinear map

q
A

r
A\

T:TyMx...xT/MxXT,Mx...xT,M—R.

Denote the set of type (g, r) tensors at p € M by T?,(M). Note that Ty, = (T M)* =
T,M and T? (M) = T M.
The basis of T}, is

{ ° ®-® 0 @dx“1®-~-®d“"w}'

Oxm Oxta

The basis vectors satisfy (as a mapping Ty M x ... x TyM X T,M x ... x T,M — R):

0 0 ” ” o 0y O 0
(8;5#1 ®.“®8xﬂq Rd" ® - ® dx > <dx oo dr ’8xﬁ1’“.’8xm)
= 0%, ... 0% 0 .0
(Note that 32 (dz®) =< dz®, 32; >= 0,. On the left 77 is interpreted as an element

of (T;M)*.)

We can expand as T = 7", VT{%@...@@%@)dxm®...®dxur} 0

1Z

. S J2 5y ¥4 141
T(wi, ..., Wev1,...,v) =THH  wyy,, w01 v
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The tensor product of tensors T' € T (M) and U € T;,(M) is the tensor T @ U €
T (M) with
(T ® U)(wla sy We, Wat 1y - vy Watsy; V1 o5 Upy Upt 1, - - 7v7”+t)
=T(wy,..., w501, ., V) U(Wyt1, - oy Wots; Vpgs - -+ Upr).

Vr

= 'u’l"'iu‘q 141
- T V1...er1u1 o wq'u,qvl “e . U’f‘

e B B
Ut 5, WatDas - - - Wigts)asVpid - - - Urge-
Contraction maps a tensor 7' € T} (M) to a tensor T" € Tf:llp(M ) with components

T/HL-Hg—1 — THLHie 1P fig—1

Vi...Up—1 V1...Vj,1puj...ur_1

Under a coordinate transformation, a tensor of type (g, r) transforms like a product
of ¢ vectors and r one-forms (note that v, ® --- ® v, ® w1 ® ... ® w, is one example
of a (g,r) tensor). For example T' € T; ,(M) tensor of type (1,2):

0 ~ 0
_ B1 B2 _ Vi v
T="1 812 G R dx” @ dx? =1 “Vm " ® dy” ® dy

gives us the transformation rule for the components

e oy* OxPr OxP2
vivy T O ayul 63/”2 B152

9.3.9 Tensor Fields

Suppose that a vector v(p) has been assigned to every point p in M. This is a
(smooth) vector field, if for every C* function f € F the function v(p)(f) : M —
R is also a smooth function. We denote v(p)(f) by v[f]. The set of smooth vector
fields on M is denoted by x(M).

Smooth cotangent vector field : For every p € M there is w(p) € T, M such
that if V' € x(M), then the function

w[V] . M —=R
p = wlV](p) =w(p)(V(p))

is smooth. The set of cotangent vector fields is denoted by Q'(M).

Smooth (g, r)-tensor field : If for all p € M there is T'(p) € T} (M) such that
if wy,...,w, are smooth cotangent vector fields and vy,...,v, are smooth tangent
vector fields, then the map

pr—= T[wb <oy Wes V1, - ,UT](p) = T(P)(wl(p), s awq(p);vl(p>v 5 ue(p))

is smooth on M.
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9.3.10 Differential Map and Pullback

Let M and N be differentiable manifolds and f : M — N smooth.

f induces a map called the differential map (tyontokuvaus) f, : T,M — T,N. It is
defined as follows:

If g€ F(N) (i.e. g: N — R smooth), and v € T,M, then

(fev)lg] = vlgo f].

In other words, if v characterizes the rate of change of a function along a curve ¢(t),
then f.v characterizes the rate of change of a function along the curve f(c(t)).

Let x be local coordinates on M and y be local coordinates on N, "y = f(z)”. Also
let v = v"-2- and (f*v)”a%u. Then

oxH
A(g(f(2))) dg Jy” g
— M — M = v_Z
vlge fl=v'"— 0 Y oy o (f20) Ay
and we get
(fev)? =o* Oy” where y = f(x)
* oz’ 4 ‘
. o v v v o 8 wo o —1\v
[More precisely z* = ¢*(p), y* = ¥"(f(p)) and % = %-]

Example. Let (z!,2?) and (y', y?, y*) be the coordinates in M and N, respectively,
and let V = az2 + bz be a tangent vector at (z!,2%). Let f: M — N be a map
whose coordinate presentation is y = (z',2%,1/1 — (z')? — (22)2). Then

oy 0 9 s, yt oyt 0
oxh Oy aayl + b8y2 B <ay3 + by?’)ayi"

fV=V#

The function f also induces the map
[ TN = TyM, (ffw)(v) = w(fv),

where v € T,M and w € T }‘(p)N are arbitrary. f* is called the pullback.
In local coordinates, w = w,dy",

oy* 0 oy
_ 7 _ I _ [ x B (g
(o) = vy (950 ) w0 2= (Pl = (Fu)()

from which we get
‘ dy"
(ffw), = Wy

The pullback f* can also be generalized to (0,7) tensors and similarly the differential
map f. can be generalized to (g¢,0) tensors.
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9.3.11 Lie Derivative

Let o,(z) be a flow on M generated by vector field X: % = X"(oy(x)). Let Y be

another vector field on M. We want to calculate the rate of change of Y along the
curve z#(t) = ol'(x).
The Lie derivative of a vector field Y is defined by

1
EXY —e—0 E ((Ufe)*Y

oe(z) — Y’x) .

Let’s rewrite this in a more user-friendly form: First

0
Y _YM
o= V()5
0
Y—: By ——
s = V(@) 5,

where we have for the coordinates

T =0t (x) = 2" + eX*(x) + O(€?)
= ot = 7" — eXH (") + O(?).

Hhs 9 oY)\ 0
(R 2 yn v R N
Y|z = Y*(x+eX)) e (Y (x) +eX v ) oy
Differential map from z to x:
Gxi +0(©)
ox“ Y H(x) 0X(7)
N —yr Y (yn v a _ 92 W)
(o-0¥e =55 = (v + exs (@ ) (on, - 20
aYy™ o0X~
_ « 14 . 17 2
=Y (x)—i—e(X (x) 57 YH(x) 81:“) + O(€7)
LOYH LOXHN 0
LY = (X oy W) 2
So we got
,OYH LJOXEN 0
LyY = (X 7 =Y 81:”) 5 = XY,

where the commutator (”Lie bracket”) acts on functions by
(X, Y] f = XIY[f]] = YIXIf]:
Note that XY is not a vector field but [X, Y] is:

XY f = X[Y[f]] = X19,[Y"0,f] = X*(0,Y")0, f + X'Y*8,0, J.

vector field not a vector field
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Lie derivative of a one-form: Let w € Q'(M) be a one-form (cotangent vector).
Define the Lie derivative of w along X as

1
Lxw = - (a:w

oe(r) — w|a:) .

Let’s simplify this. The coordinates at o.(x) : y* = o¥(x) >~ 2 4+ e X" (x).

w0 = wa(n) 22 = 9 B xs
(ofw)a = wp(y) o —w[g(:l:—l—eX)ama(x +eX?)

= (wg(x) + EX“Gng(x))(éﬁa + e@aXﬁ)
= Wo + (X" Opwa + w,0,X")

Thus we find
Lxw = (X'O,wa + w,0,z") dzx”.

Lie derivative of a function: A natural guess would be Lx f = X|[f]. Let’s check
if this works:

Lof =0 <(f(0e@) = (@) =0 = (fl +€X) = [(2)) = X0,/ = X f = Xf].

Thus the definition works.

Lie derivative of a tensor field: We define these using the Leibnitz rule: we
require that
Lx(t1 ®ty) = (Lxt1) @ty +t; @ (Lxta).

This is true if ¢; is a function ((0,0) tensor) and ¢ is a one form or a vector field, or
vice versa. (exercise)

Example: Let’s find the Lie derivative of a (1,1) tensor: t =t "dz* ®e,; e, = aiy.

,CXt = (Extu”)dx“ X e, + tuy(ﬁxdﬁu) X e, + tuudl’u & (EXGV)
= (X0ut,")do" @ e, +1," (0, X")dz” ® e, —t,"dz" @ (0,X")eq
= (XOat,” + 1,70, X% — 1,20, X")dz" @ e,.

[We used here e, = 7%, (e,)® = §,% (dv"), = 0%, (Lxe,)® = X D,(e,)* —
)a

oz
(€)'0, X" = —0,X and also (Lxdx"), = X"0,(dzt)s + (dzt), 0, X" = 0a X".]

9.3.12 Differential Forms

A differential form of order r (or r-form) is a totally antisymmetric (0, r)-tensor:

p €S, wpay, .-, Vpey) = sgn(p) w(vi, ..., v,),
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where sgn(p) is the sign of the permutation p:

+1 for an even permutation

—(—1 number of exchanges __
sgn(p) = (=1) —1 for an odd permutation.

Example: p: (123) — (231) : Two exchanges [(231) — (213) — (123)] to (123), thus
p is an even permutation.

D : (123) — (321) : One exchange to (231) and then two exchanges to (123), thus p
is an odd permutation.

The r-forms at point p € M form a vector space Q2 (M). What is its basis?
We define the wedge product of 1-forms:

dx' Ndxt? AN datt = Z sgn(p) daztr® @ ... & datr)
pPES,

Then { dx" A ... Adzt

pr < g < ... < p, } forms the basis of Q7 (M).

Examples: dax* A dz¥ = dz* @ dx¥ — dx¥ & dzt
dzt N dx? N dx? = dr' @ dz? @ do? + d2? @ do? @ dat 4 do? @ dat @ da?
—dx? @ dr' @ dz® — dx® ® do? @ dz' — dat @ da? @ da?.

Note:
o dzt A ... Adx' =0 if the same index appears twice (or more times).
o dxM A... Adxt = sgn(p)datr®) A ... A dxtr@ . (reshuffling of terms.)

In the above basis, an r-form w € (M) is expanded

1
w = memmdx“l AL N dxt.

Note: the components w,, ., are totally antisymmetric in the indices

(e.g. Wpy pops..ppr = _wuzmus...ur)~

One can show that dim Qp (M) = r,(leT), = ("), where m = dimM.

Note also: Q}(M) = T, (M) cotangent space
Q)(M) =R by convention

Now we generalize the wedge product for the products of a g-form and an r-form
and call it exterior product:
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Definition: The exterior product of a g-form w and an r-form 7 is a (¢ + r)-form
wAmn:
1

=5 D sy 0p(g) - M(Upar1)s - -5 Uplan):

(WA (v1,. .o Vgpr) = o
pGSqu'r'

If g+r >m = dim(M), then w An = 0. The exterior product satisfies the properties:
(i) w Aw =0, if q is odd.
(i) wAn=(-1)"nAw.
(iii) (WA AE=wA(nAg).

[Proof: exercise]

Example. Take the Cartesian coordinates (z,y) in R%. The two-form dzdy is the
oriented area element (the vector product in elementary vector algebra). In polar
coordinates this becomes

dxdy = (cosOdr — rsin 0d0)(sin Odr + r cos 0d6)
= cos0sinOdrdr + r(cos 0)?drdf — r(sin 0)%d0dr — r? sin 6 cos 0d0do
rdrdf.

We may assign an r-form smoothly at each point p on a manifold M, to obtain an
r-form field. The r-form field will also be called an r-form for short.

The corresponding vector spaces of r-forms (r-form fields) are called Q" (M):

QY(M) = F(M) smooth functions on M
Q' (M) =T*(M) cotangent vector fields on M
(M) = sp{dz" Ndx” | p < v}

9.3.13 Exterior derivative
The exterior derivative d is a map Q"(M) — Q"(M),

1 1 0w
W= =Wy undr" A AN det e do = — —EEdr Adatt AL LA dat
r! " rl dav

Example: dim M = m = 3. We have the following r-forms:

e r=0: wy= f(z,y,2),
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o r=1: w =wy(x,y,2)de +wy(z,y,2)dy + w,.(z,y, 2)dz,
o r=2: wy=wy(r,y 2)drANdy+wy,.dy A\dz+ w,dz A dz,
o r=3: w3=wydrNdyANdz.

The exterior derivatives are:

o dwy = af ~dx + af dy + 8f dz. Thus the components are the components of V f.

o dwy = 2dyNdo+ 2= dz Ndo+ 52 de Ady+ %2 dz Ndy + % do Adz+ S dy Ndz
= (% — ‘9“’1> dx N\ dy + (‘9“’; — 8‘”7’> dy N dz + (‘9“’“” — ‘9“’2) dz N dx
These are the components of V x d (& = (wy, wy,w.))

o dwy = w””dz/\dx/\dy+(%yzdx/\dy/\dz—kawmdy/\dz/\da:
= <8wyz + 8‘”2“ + ‘%”‘) de Ndy Ndz

The component is a divergence: V-’ (where &' = (wy,, Wsz, Way))

e Thus the exterior derivatives correspond to the gradient, curl and divergence!
[du)g = 0]

What is d(dw)?

antisymmetric in o and 3

1 0’ e
d(dw) = ] Spagys Wi dx® Ndx” A dx' AL Ndat | = 0.

symmetric in « and (3

So d? = 0. Note that (for dim M = 3)

0? 0?
0xdy B 0yox

d(df):d(&rfdx—ir@yfdy—l—azfdz):( >da:/\dy+...=0,

so we recover V x Vf = 0. Similarly d(dw;) =0« V-V x & = 0.

If dw = 0, we say that w is a closed r-form. If there exists an (r-1)-form w,_; such
that w, = dw,_1, then we say that w, is an exact r-form.

The exterior derivative induces the sequence of maps

0500 Dot d g2l gz gt dngt omdn

where Q" = Q"(M), i is the inclusion map 0 — Q°(M) and d, denotes the map

d. - Q1 — Q' w+s dw. Since d?> = 0, we have Imd, C kerd,; . Such
exact r-forms closed r+1 forms

a sequence is called an exact sequence. This particular sequence is called the de
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Rham complex. The quotient space Ker d,,1/Im d, is called the r* de Rham
cohomology group.

A differential form w of degree k can be thought of as a totally antisymmetric mul-
tilinear function of k vector fields, with values in C*(M). To evaluate w(Xy, Xo, ..., X)
one simply evaluates the form w at an arbitrary point x on the manifold M and feeds
into the form w the tangent vectors X;(z) at the same point. The result is a smooth
function of the argument z. Using this point of view one can prove (Exercise!) that
the exterior derivative is given in a coordinate independent form as

k+1
dw(Xla s 7Xk+1) = Z(_1)171X2 ’ W(le s >Xi7 s 7Xk+1)

i=1

—f-Z(—l)i—HW([XZ‘,Xj],Xl, N 7XZ', ce ,X]‘, ce 7Xk+1)

i<j

where the hat means that the corresponding argument is removed. For example,
when k =1
dw(X, V) =X -wY)-Y  -wX)—w(X,Y]).

Again, X - w(Y") is the derivative of the smooth function w(Y) in the direction of X.
There is one more basic operation on differential forms, the interior product by
a vector field X. In the coordinate free notation above this is given by

(in)(Xla s 7Xk71) = w(X> X17 s 7Xk’71)-
This ix maps linearly k forms to k—1 forms. One can prove a basic identity (Exercise!)
Lx=doix+ixod

where Ly is the Lie derivative acting on forms.

9.3.14 Lie Groups and Algebras
A Lie group G is a differentiable manifold with a group structure,
(i) product G x G — G, (g1, 92) — G192, such that ¢1(g293) = (9192)9s,
(ii) unit element: point e € G such that eg = ge = g Vg € G,
(iii) inverse element: Vg € G 3¢~ € G such that gg~! = g7 lg = ¢,

in such a way that the map GxG — G, (g1, g2) — ¢192 is differentiable. We already
know some examples: GL, SL, O, U, SU and SO.

Example: Coordinates on GL(n,R) : 2% (g) = ¢ (and thus z(e) = ¢“.) One chart
is sufficient : U = GL(n,R). (thus U is open in any topology.)
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e To be exact we don’t yet have a topology on GL(n,R). We can define the

topology in several (inequivalent) ways. One way would be to choose a topology
manually, for instance choose the discrete or trivial topology. This is rarely a
useful method. A better way of defining the topology is to choose a map f from
GL(n,R) to some known topological space N and then choose the topology on
GL(n,R) so that the map f is continuous, i.e. define

V C GL(n,R) is open +» V = f~'W for some W open in N.

(check that this defines a topology). Here are two possible topologies:

1.

Choose f : GL(n,R) — R, ¢ + det(g). (So we choose N = R). The
induced topology is:

V CGL(n,R) is open < V = f~1(W) for some W open in R.

Note that GL(n,R) is not Hausdorff with respect to this topology, since
if g1,9o € GL(n,R), g1 # g2, and det g; = det go, then any open set
containing g; also contains gs.

Choose N =R", f:GL(n,R) — R" defined by

P L.

2
= (2t 22t 2t 2™ e R

xnl co. gpnm

This is clearly injective, and when we define topology as above, we see that
f is a homeomorphism from GL(n,R) to an open subset of R™. Since R™
is Hausdorff, so is GL(n,R) with this topology. Thus this topology is
not equivalent to the one defined in the first example. This is the usual
topology one has on GL(n,R).

Let a € G be a given element. We can define the left-translation

L,:G— G, L,(g) =ag (group action on itself from the left).

This is a diffeomorphism G — G.
A vector field X on G is left-invariant, if the push satisfies

(La)sXlg = Xlag

Using coordinates, this means

and thus

(L) Xy = X4(0) s S| = X, = Xolag) 5|
X(ag) = x(9) )
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A left-invariant vector field is uniquely defined by its value at a point, for example at
e € GG, because
Xlg = (Lg)sXe = LyV,

where V' = X|. € T.G. Let’s denote the set of left-invariant vector fields by G. It is

a vector space (since Ly, is a linear map); it is isomorphic with 7.G. Thus we have
dim G = dim G.

Example: The left-invariant fields of GL(n, R):

V:Viji

5| € T.GL(n,R),

—a*m ()
d(="(g) lg( ) 0 d
0@ (g)z™ (e i m
Xlg = LV =V 0z (e) oxkm(e) - V]gjkl(g)(sééj dzkm(g)
ij ki — ki iJ — kj
Vi (g)—axkj(g) ™ (g)V 5277 (3) (9V) FECTIR

(gV)ki

where V¥ is an arbitrary n x n real matrix.

Since G is a collection of vector fields, we can compute their commutators. The result
is again left-invariant!

I. inv.

Lax [X, Y”g = [LaxXgs Lan Y]] =" [Xlag, Yag] = [X, Y]|ag-

Soif X,Y € G, also [X,Y] € G.

Definition: The set of left-invariant vector fields G with the commutator (Lie
bracket) [, | : G x G — G is called the Lie algebra of a Lie group G.

Examples:
1. gl(n,R) = n x n real matrices (Lie algebras are written with lower case letters).

2. sl(n,R) : Take a curve ¢(t) that passes through e € SL(n,R) and compute its
tangent vector (¢(0) = e = 1,). For small ¢: ¢(t) = 1, + tA, ‘é—ﬂtzo =Ae€
T.SL(n,R). Now det ¢(t) = det (1, +tA) =1+ttr A+...=1. Thustr A=0
and sl(n,R) = {A| A is a n x n real matrix, tr A = 0}.

3. so(n) : ¢(t) =1, +tA. We need c¢(t) to be orthogonal:
ct)et)t = (1 +tA)(1+tAT) =1+ t(A+ AT) + O(#*) = 1. Thus we need to
have A = —AT and so so(n) = {4| A is an antisymmetric n X n matrix }.
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For complex matrices, the coordinates are taken to be the real and imaginary parts
of the matrix

4. u(n) : c(t) = 1,+tA. Thus c(t)c(t)t = (1+tA)(1+tAT) = 1+t(A+AT)+O0(#?) =
1. So A= —A" and u(n) = {A|A is an antihermitean n x n complex matrix }.

Note: In physics, we usually use the convention c(t) = 1+ itA = AT = A
=u(n) = {Hermitean n x n matrices }.

5. su(n) = {n x n antihermitean traceless matrices }.

9.3.15 Structure Constants of the Lie Algebra

Let {Vi,...,V,} be a basis of T.G (assume dim G = n < o0). Then X,|, =
LV, p=1,...,n1is a basis of T;G (usually it is not a coordinate basis). Since
the vectors {V1,...,V,,} are linearly independent, {Xi|,, ..., X,|,} are also linearly
independent. (L, is an isomorphism between T,.G and T,G; (Lg.) ™t = L,-1,). Since
V), are basis vectors of T.G, we can expand

Vi, Vil = ¢, Vi,
Let’s then push this to T,G:

9*[Vu> V,,] = [Lg*vm Lg*VV] = [Xu’gaXV‘g]
9*(C;4V/\V/\) = CuVAXA|Q

= [Xu|gaXV|g] = CWAXA|9‘

L
L

Letting g vary over all G, we get the same equation everywhere on GG with the same
numbers CW)‘. Thus we can write

(X, X,] = ¢, X

nuv

The CW)‘ are called the structure constants of the Lie algebra. Evidently we have

CWA = —cw)‘. We also have the Jacobi identity (of commutators)

Cu' G0+, e+, e, =0.
9.3.16 The adjoint representation of ¢
Let b be some element of GG, b € GG. Let us define the map
ady : G — G, ady(g) = adyg = bgb™ .

This is a homomorphism: adyg; - adygs = ady(g192), and at the same time defines an
action of G on itself (conjugation): ad, - ad. = ady., ad. = idg. (Note that this
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is really a combined map: ady - ad. = ad, o ad.). The differential map adp, pushes
vectors from T,G to T,4,,G. If g = e, adye = beb~! = e, so ady, maps T.G to itself.
Lets denote this map by Ad,:

Ady . T.G - T,G, Ad,= adb*|T€G

One can easily show that (f o g), = fi o gs, thus adp.ade. = adpe,. It then follows
that Ad, is a representation of G in the vector space G = T,G, the so-called adjoint
representation:

Ad: G — Aut(G), b Ad,.
If G is a matrix group (O, SO,...), then V € T,G = G is a matrix and

Ad,V = gVg .
(This follows from ady(e +tV) = e+ tgVg'.) So, if {V,} is a basis of G,

gVug~t = V,D"Y (g).

9.4 de Rham cohomology

Recall the definition of the de Rham cohomology groups: First, d : QF(M) —
QOFFL(M) is a linear map with d> = 0. We set B¥(M) = d(QF1(M)) C QF(M)
and Z*(M) = kerd = {w € QF|dw = 0} C Q¥(M). These are linear subspaces with
the property B¥(M) C Z*(M), because of d*> = 0. Elements of Z* are called closed
forms and elements of B* are exact forms. We set

H*(M) = Z*(M)/B*(M), with k =0,1,2,...

where HO(M) = Z°(M). Note that H*(M) = 0 for k > n since Q%(M) = 0 for k > n.
The vector spaces H¥(M) are called the de Rham cohomology groups of M. In case
when M is compact, one can prove that dimH*(M) < oo for all k.

Example M = R3. Since df = 0 for f € C®°(M) = Q°M) means that f
is a constant function, we get H(R?) = R. If w = w;dx’ satisfies dw = 0 then
the vector field (wy,ws,ws) has zero curl, and we know vector analysis that there
is a scalar potential f such that Vf = w, in other words, df = w. Thus B! = Z!
and so H'(R) = 0. If w = jw;;da’ A da? is a 2-form with dw = 0 then divw = 0
with w = (wa3,ws1,w12). This implies that there is a vector potential A such that
V x A = w, or in other words, dA = w, A = A;dx'. Again, Z?> = B? and H?*(R3) = 0.
In the same vein one can show that H3(R?) = 0.

Theorem 9.2 (Poincare’s lemma) Let M C R"™ be a star shaped open set. This
means that there is a point z € M such that the line tx + (1 —t)z,0 < t < 1, belongs
to M for any x € M. Let w be a closed k—form on M, k > 0. Then there exists a
(k — 1)-form 0 such that df = w.
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Proof. Write 1

= Wi (z)dz™ A - A dx'™

w
and define

1 Lo .
61’1...1'1%1 (l‘) = (k’ _ 1)' /0 tk 1(1'J - Z])wjhiznikq (tm + (1 - t)Z)dt.

We claim that df = w. Now

1 1 . . .
do = =1 / t* i i (4 (1 —t)2)da? Ada™ AL da' 1 dt (11)
—1!J,
X =Y /f’c(ﬂ — NOwjiy i, (tx + (1 —t)2)dz’ Ada™ A ... dz'—1dH12)

The equation dw = 0 gives
Owji, ..i,_, T cyclic permutations of 157y ...7,_1 =0,

where the signs are given by the parity of the cyclic permutation. From this equation
one can reduce, by setting the contraction is,dw equal to zero,

k- 8lei1_._ik_1dxl Adx™ A A dager = @wlil_._ik_ldxl Ao Adxr
Note that in local coordinates
ig;dw .+ digiw. . = Lyw. . = Ojw. .

Inserting this to the second term I in (12) we obtain

1 L ) A |
[2 = E . (ZL'J — Zj)tkajwlh...ik_l (tl‘ + (1 — t)Z)dl'l Adz® - A dr-1dt

1 [t L d l § .

- E 0 t Ewlilmik—l (tl‘ + (1 - t>Z>d«T ANdz" ... dx dt
1 1 ' ‘
- / 7w,y (b 4 (1= t)2)da’ Ada™ A dx—dt
=1 Jy

1 | |

+ leil...ik,ldxl Adx't - A dxtt,

Insertion to (12) completes the proof of df = w.

The above result extends (by a use of coordinates) to the case when M is a
contractible subset of a smooth manifold: contractibility means that the identity map
on M can be smoothly deformed to a constant map = +— Xy on M. Let f, : M — M
be such a contraction, fo(z) = x¢ and fi(xz) =z, 0 < ¢ < 1. Then one can repeat the
proof but with the straight lines t — tz 4 (1 — t)z replaced by t — fi(z), z = zo, see
Nakahara, section 6.3, for details.
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Example 1 Let M = S*. The 1-form d¢ is closed but d¢ # df for any smooth
function f on S!. Note that the polar angle ¢ is not a function on S* since it is
nonperiodic. Any 1-form on S! is given as f(¢)d¢ for some periodic function f of ¢.
The integral of f over the interval [0, 27| gives a real number A;. If Ay = A, for any
two functions f, g then we can write f — g = A’ for a periodic function h, that is,
fdp—gde = dh. Tt follows that the cohomology classes [f] € H'(S!) are parametrized
by the integral A\; and so H*(S') = R.

Example 2 On the unit sphere S? the area form is given as w = sin 6df A d¢ in
spherical coordinates. Locally, w = d(— cos0d¢) = d(—¢sin 0df). Note that the first
expression becomes singular at the poles § = 0, m whereas the second is nonperiodic
in the coordinate ¢. One can prove that H?(S5?) = R and that the cohomology classes
are parametrized by the integral of the 2-form over S2%. In general, it is known that
H*(S")=0for 1 <k <n—1and that H°(S") =R = H"(S").

Example 3 H'(S! x S') = R? (basis of 1-forms d¢;,d¢;) and H*(S! x S1) =R,
basis d¢; A dgs.

9.5 Integration of differential forms

We define an orientation on a manifold M of dimension n. The manifold is oriented
if we have a complete system of local coordinates such that all coordinate transfor-
mations ' = z/*(x', ..., 2") satisfy the condition det(%) > 0.

Not every manifold can be oriented. The standard spheres S™ inherit an orien-
tation from R™"!. The orientation on R" is given by the ordered set of Cartesian
coordinates (z',z?%,...,2™). A coordinate system (y',...,4™) on the embedded unit
sphere in R™"! is then oriented if the vectors (v,d,...,d,) (in y coordinates) are
compatible with the orientation of R"*!. Here v is the outward unit normal vector
field on the sphere and compatibility means that the matrix relating the given tan-
gent vectors to the standard basis has positive determinant. On the other hand, the
real projective plane PR* = 5% /Zy = (R3 — {0})/R., consisting of lines through the
origin in R3, has no orientation.

Let M be a smooth oriented manifold of dimension n. We fix an atlas of coor-
dinate neighborhoods compatible with the given orientation. Let 2!, ... 2™ be local
coordinates on an open set U C M. Asssume that f € C°°(M) is such that f(z) =0
when z is outside of a compact subset K of U. Then w = f(x)dz' Adx?--- Adz" is a

n— form on M. We define the integral

/w:/f(x)dxldxg...dx",

as the ordinary Riemann integral in R"™.
Let us assume that we have a locally finite atlas (U,, ¢o). This means that for
any x € M there is an open neighborhood V' of z such that V intersects only a
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finite number of the sets U,. A space which has a locally finite cover is said to
be paracompact. In fact, finite-dimensional manifolds are normally defined to be
paracompact. A locally finite atlas has a subordinate partition of unity. That is,
there is a family of smooth nonnegative functions p, : M — R such that

e suppp, C Uy
o > polz)=1forall z € M.

The support suppf of a function f is defined as a closure of the set of points = for

which f(z) # 0.
fio- 5

Let w € Q*(M). we define
and we apply the previous definition to each term on the right-hand-side. The integral
converges always when M is compact.
Exercise Show that the above definition does not depend on the choice of the par-
tition of unity or of the locally finite atlas.
Example Let M = S', U; = S1—{(1,0)}, Uy = S*—{(—1,0)}. Choose the (inverse)

coordinate functions as

0t (0,21) = Uy, 6; +— (cosfy,sind)
m

)
0yt (=, ) — U, 0y (cos By, sin )

Partition of unity: pi(6;) = sin® %, pa(6) = cos? 2. (Note that this satisfies (i)
- (iii)). Choose f : S' — R as f(f) = sin’f and w = f-df on U; and w =
fd(92+27'(') = 1d62 on UQ. Now

/Slw—Z/ Pzw—/ df), sin® —sm 91+/ dfs cos? e—sm 20, — g g:m

as expected.

Next we want to define the integral of a form w € QF(M) over a parametrized k—
surface for arbitrary 0 < k£ < n.

A standard k-simplez in R¥ is the subset

op={(a',...,2") eR* Y 2" < 1,27 >0},

So oy is just a point, oy is the unit interval, o, is a triangle, etc.

A singular k-simplex is any smooth map s : 0, — M. A k-chain is a formal linear
combination Y a4 Sk, With a, € R and each sy, is a singular k— simplex.

We define an affine map F} : o 1= O where i = 0,1, ..., k. Note that the subset
of points in o, with the coordinate #* = 0 can be naturally identified as a k—1 simplex
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o1 for 1 < i < k. This defines the map (as an identity map) for i = 1,2... k. The
remaining map FY sends the (k—1)-simplex oj_; to the face of the k-simplex which is
not parallel to any of the coordinate axes. The map is completely fixed by requiring
it to be affine and compatible with the orientations, and such that the origin of o5
is mapped to the vertex of o4 lying on the first coordinate axes, and the vertex of
o)1 lying on the i :th coordinate axes is mapped to the vertex of o) on the (i+1):th

coordinate axes, for i =1,2,....k — 1. So
k-1
!, 2" = (1—2371791;1,...,33]“*1)
i=1
Fi(a', ..., 2"Y) = (2. 250,22 ) withi=1,2,... k.

The boundary of a singular k-simplex sy : o — M is the singular k-chain defined

as
k

Osy, = Z(—l)isk o F}.

i=0
we extend the definition, by linearity, to the space C} of singular k-chains, 0 : C}, —

Cr-1.

Theorem 9.3 0% = 0.

Proof. We first observe that
FioF)  =Fl oF~} forj<i.

Let s =) aaSka € Ck. Then

k
0*s = GZaaZ(—l)isk’aoF,ﬁ
o =0
k

k
= D o) (~1)' Y spao Fio Fly(~1)
o 1=0

J=0

= Zao‘ ( Z (—1) " spaFpo Fl_,

0<i<j<k—1

> <>)

0<j<i<k

= Zaa( Z (—1)i+jsk’aF,§oFlg_l

0<i<j<k—1

S F,z‘j) |

0<j<i<k
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Relabel i +— 7,5 +— ¢ — 1 in the first term of right-hand-side of the last equality; then
the terms cancel.

A cycle is a singular chain s such that ds = 0. A boundary is a singular chain b
such that b = Js for some singular chain s. Denote by Z; the space of k-cycles and
by By the space of k-boundaries. Finally, the singular k-homology group is the space

Hi (M) = Hy(M,R) = Z,(M)/By,(M).

Sometimes one considers also the homology group Hy(M,Z) which is defined as the
real homology group but one restricts to integral linear combinations of the singular
k-simplexes.

Exercise Show that Hy(M) is isomorphic with R¥, where & is the number of path
connected components of M.

The homology groups Hj of contractible manifolds vanish for £ > 0, so in par-
ticular Hi(R™) = 0 for k& > 0. On the other hand, H,(S™) = R but H(S™) = 0 for
0<k<n.

We define the integral of a k-form over a singular k-chain s = ) aqskq,

/w:E aa/ Sy qW-
S a Ok

Each of the integral on the right is an ordinary Riemann integral of a smooth function
defined in the standard simplex o, C R¥, after writing each of the pull-back forms as
f(x)dxy A ... dxy.

Theorem 9.4 (Stokes’ theorem)

/dw:/w
s Os

for any w € Q¥ (M) and for any singular k-chain s.

Proof. By linearity, it is sufficient to give the proof for a single singular k-simplex
si. But in this case a typical term in s;w can be written as

k
Spw = ij(x)d:cl A.dad AL daf(—1)!
j=1

for some smooth functions #/. Then
d(spw) = sp(dw) = Z(ﬁjbj)dxl A Nda® = f(x)dat A A da

We can now apply the familiar Gauss’ theorem for vector fields in R¥,

/ oVdxt ... da* = / b - ndS,
ok dog
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where n is the outward normal vector field on o, and dS'is the Euclidean area measure
on the surface doy of the k-simplex. But the right-hand-side of the equation is equal
to the integral |, dos spw, which proves the theorem.

We have a pairing Hy,(M) x H*(M) — R which is given as

< [8], [] >= /Sw.

Because of Stokes” theorem the right-hand-side does not depend on particular repre-
sentatives of the (co)homology classes, i.e., if s — s is a boundary and w — ' is a

coboundary then
/ w= / W'

For compact oriented manifolds one can prove that the pairing is nondegenerate, i.e.,
if < [s], [w] >= 0 for all [w] (resp. for all [s]) then [s] =0 (resp. [w] = 0).

There is a more refined version of Stokes’ theorem (which we are not going to
prove). This uses the idea of a closed submanifold with boundary. A manifold M
with boundary is defined using the half space R? = {z € R"[2" > 0} as a model
instead of the vector space R™. That is, M should be equipped with a cover by open
sets U and coordinate maps ¢ : U — R’} which are homeomorphism to open subsets
of the half space. The coordinate transformations ¢ o ¢~! are again required to be
smooth in their domain of definition. Note that the derivative in the 2™ direction at
the boundary points 2™ = 0 is only defined to the positive direction.

Example The closed unit ball B® = {z € R"|||z|| < 1} is a manifold with
boundary. The set of boundary points is the manifold S™~!.

Let N C M be an oriented manifold with boundary (dimension n) embedded in
M. Tts boundary dN is a manifold of dimension n — 1. Let w € Q""'(M). Then one

can prove
dw = / w.
o=,

Note that the integral on the left is an integral of a n-form over a manifold of dimension
n (and this we have already defined) and on the right we have an integral of a (n—1)-
form over a manifold of dimension n — 1.

Additional reading: Nakahara: 5.4, 5.5, and Chapter 6
Chern, Chen, and Lam: Chapters 2 and 3

10 Riemannian Geometry (Metric Manifolds)

(Chapter 7 of Nakahara’s book)
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10.1 The Metric Tensor

Let M be a differentiable manifold. The Riemannian metric on M is a (0,2)-
tensorfield, which satisfies

i) ¢(U,V)=9g,(V,U) Vpe M, UV e€T,M (ie. gis symmetric)
(ii) ¢,(U,U) >0, and ¢,(U,U) =0« U = 0 (g is positive definite).

If instead of (ii) g satisfies
(i) If g,(U, V) =0for all U € T,M, then V =0,

we say that g is a pseudo-Riemannian metric (symmetric and non-degenerate).

(M, g) with a (pseudo-) Riemannian metric is called a (pseudo-) Riemannian manifold.
The spacetime in general relativity is an example of a pseudo-Rimannian manifold.
In local coordinates g = g, dz" ® dz”. (The Euclidean metric: g,, = d,,. Then
g(U. V) =3, UV")

10.2 The Induced Metric

Let (NV,gn) be a Riemannian manifold, dim N = n. We define an m dimensional
submanifold M of N:

Let f : M — N be a smooth map such that f is an injection and the push
fo t TyM — TypyN is also an injection. Then f is an embedding of M in N
and the image f(M) is a submanifold of N. However, it follows that M and f(M)
are diffeomorphic, so we can call M a submanifold of N.

Now the pullback f* of f induces the natural metric gy, on M:

av = fTgn-

The components of g, are given by

of*ofr
gMMV(x) - gNa,@(f(x))al‘u axl,‘
[By the chain rule: gy, dot @ da¥ = gNag%%dx“ ® dx”|

Example: Let (6,¢) be the polar coordinates on S? and f : S* — R3 the usual
embedding: f(6, ) = (sinf cosp,sinfsin p,cosf). On R?* we have the Euclidean
metric d,,. We denote y' = 6, y* = ¢. We obtain the induced metric on S*:

afe off

- 7 vo_ 12
agay# Dy dy" @ dy” = df @ df + sin” Odp @ dp.

Gudy" @ dy” =9,

Thus the components of the metric are g11(6,¢) =1, go2(0, ) =sin®0, g12(0,p) =
921(0, ) = 0.
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Why the notation ds? is often used for the metric?

Often the metric is denoted ds* = g, dz" @ dx”. The reason for this is as follows. Let
c¢(t) be a curve on manifold M with the metric g. The tangent vector of the curve is
¢(t), which in local coordinates is ¢(t) = (%t(t)). [e(t) = (x#(t))]

If M = R® with the Euclidean metric g,, = d,,, the length of the curve between ¢,

and ¢; would be

Lgs = /tl dtr/(21)2 + (2)2 + (i3)2 = /tl dt\/8 TP

to to

In general case the length of the part of the curve between ¢y and t; is then

t1
lengthL:/ dty/ g TV (13)

to

If o and t; are infinitesimally close : t; =ty + At, then

Azt AxY
As =L ~ Aty/guarta” ~ At gWTxtTJ; =/ guAxrAx”.

Thus ds* = g, datdz is the square of an ”infinitesimal length element” ds. We will
have more to say about the formula for the length later.

10.3 An application to Maxwell’s equations

We arrange the Cartesian coordinates of the electric field E and the magnetic field B
as an antisymmetric 4 X 4 matrix,

E 0 —cB, +cB
Fz/ _ T z Y
( ”) E, ¢B, 0 —cB,

E., —cB, cB, 0

We label the rows and columns by pu,v =0,1,2,3 and we set F' = %F’“’dmu ANdx,.
Let ¢ be an electric scalar potential and A a magnetic vector potential. Then

E=-V¢—"Aand B=V x A,

where 0y = %% but we shall work in units with speed of light ¢ = 1. Define the 1-form
A = A,dz" with Ay = ¢ and A; = cA;. Thus we may write

F,=0,A,-0,A,,

that is, F' = dA.
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Since d*> = 0 we have automatically dF' = 0. Written in electric and magnetic field
components this gives the second set of Maxwell’s equations,
V-B =0
0B
VXE = ———.
ot

In order to obtain a differential form expression for the first set of Maxwell’s equations,

V-E = p/e
OE
B — 2=

with poep = 1/¢*, we must first fix a metric tensor (g,,) in space-time; this could
be just the Minkowski metric diag(1,—1,—1,—1) but we may take any (pseudo)
Riemannian metric. Note that the second set of Maxwell’s equations is intrinsic to
any smooth manifold, it does not depend on the choice of metric.

We shall denote g;; = ¢(0;,0;) for a (pseudo) Riemannian metric g, : T, M X
T,M — R. A metric tensor is pseudo-Riemannian if it has the properties of a
metric tensor except that we do not require that it is positive definite; for example,
in relativity theory (in four space-time dimensions) the metric tensor has one positive
eigenvalue and three negative eigenvalues. We assume that the manifold is oriented.

A metric defines also a duality operation * : Q%(M) — Q"*(M) on differential
forms. In local coordinates,

W o = Hili%,;nikdx“ Adz" . ..dz'* with

1 .
Oiy i, = |det(gij)|1/2g€i1...in—k‘71‘..jkwjlmjk’

where €;, ;. is the totally antisymmetric tensor with €5, = +1 and the raising
of indices is done with the help of the metric tensor as in general relativity, i.e.,
Aoron = goabrogorbe Ag 5 where (%) is the inverse of the matrix (g;;).

Example Let M = R* and g;; the Minkowski metric. Then voly = da® A da' A
dz? A dz®. The dual of the Maxwell 2-form F' = £ F},,dz" A dz” is given by

1 «
(%) = §€/w ﬂFaﬁa

so (xF)1y = —Fps, and cyclic permutations of 123, and (xF)g; = Fbs, and cyclic
permutations of 123. That is, the magnetic components of the dual are equal to
(—1)x the electric components of the original and the electric components of the
dual are equal to the magnetic components of the original field.

The complete set of Maxwell’s equations can now be written as

d+F = J
dFf = 0,

where the 3-form J is defined as %euam(]“dxa A dxP A dxY with JO = p/€eo and

J¥ = cpuoj*. Here p is the charge density and j is the electric current density.
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10.4 Affine Connection

Recall that x(M) = { vector fields on M}. An (affine) connection V is a map
X(M) x x(M) — x(M), (X,Y)— VxY such that

1. Vx(Y +2)=VxY +VxZ (linear in the 2"¢ argument)
2. Vixv)Z =VxZ +VyZ (linear in the 1% argument)

3. fisafunction on M (f € F(M)) = VixY = fVxY

4. Vx(fY) = X[f]Y + fVxY.

Now take a chart (U, ) with coordinates z = ¢(p). Let {e, = 32} be the coordinate
basis of T,M. We define (dim M)? connection coefficients I'*,, by

A
Veuel, =T We,\.

We can express the connection in the coordinate basis with the help of connection
coefficients: Let X = X*e, and Y = Y"e, be two vector fields. Denote V, = V.
Now

v

oY
VxY 2 XPV,(Y7e,) £ X'e,[YV]e, + XYV e, = XP

e, + XFY T ex

oz
— X#(Z—Z +TA,Y")ey = XH(V,.Y) ey,
where we have oy
(VYY) = a_%; +T4, 7"

Note that VxY contains no derivatives of X unlike LxY .

10.5 Parallel Transport and Geodesics

Let ¢ : (a,b) — M be a curve on M with coordinate representation z# = z#(t). Its
tangent vector is

dz(c(t))
V= V“6M|C(t) =€ ().
c(t

If a vector field X satisfies
VyX =0 (along c(t)),

then we say that X is parallel transported along the curve ¢(¢). In component

form this is .
ax# e dz" (t)

——=X*=0.
dt vAdt 0
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If the tangent vector V itself is parallel transported along the curve c(t),
geodesiclVyV =0, (14)

then the curve ¢(t) is called a geodesic. The above equation is the geodesic equa-
tion and in component form it is
d*at dz? da?

e — |
dt2 T dt dt

Geodesics can be interpreted as the straightest possible curves in a Riemannian man-
ifold. If M = R™ and g = ¢ (the Euclidean metric), then the geodesics are straight
lines.

10.6 The Covariant Derivative of Tensor Fields

Connection was a term that we used for the map V : (X,Y) — VxY. The map
Vx :x(M) — x(M), Y — VxY is called the covariant derivative. It is a proper
generalization of the directional derivative of functions to vector fields, and as we’ll
discuss next, to tensor fields.

For a function, we define Vx f to be the same as the directional derivative:

Vxf=X [f ]
Thus the condition number 4 in the definition of V is the Leibnitz rule:
Vx(fY) = (Vx )Y + f(VxY).
Let’s require that this should be true for any product of tensors:
Vx(Th @Ty) = (VxTh) @ To + 11 @ (VxT),

where T7 and T; are tensor fields of arbitrary types. The formula must also be true
when some of the indices are contracted. Thus we can define the covariant derivative
of a one-form as follows. Let w € Q'(M) be a one-form ((0,1) tensor field), Y € x(M)
be a vector field ((1,0) tensor field). Then < w,Y >€ F(M) is a smooth function on
M. Recall that < w,Y >=w[Y] = w,Y*. (Here p is the contracted index.) Then

0 Ow,, 15044
Y >=XWwlY]) = X—(w,Y") = X¥—Y" + X .
Vx <w,Y > (w[Y]) oy (w,Y") Do + X w, o

On the other hand because of the Leibnitz rule we must have

Vx <w,Y >=<Vxw,Y >+ <w,VxY >= (Vxw), Y’ +w,(VxY)”

v

Y
= <VXCU)VYV + WVXMg

T XY
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iFrom these two formulas we find (Vxw),. (Note that the two X “wy% terms

cancel.)
ow
— XYM LA, B¢’
= (Vxw), =X (8:13“ r Wwa> .
When X = a -, this reduces to
Ow, o
(VMC(J)V = % -T Wu}a.

Further when w = dz?: V,dz”7 = —I'?  dz".

For a generic tensor, the result turns out to be

AAp g pALA AL g2 Ao 4ALA
Vot = Oty pr + T 2y + oo+ 17 e =t?
TP Al Ap TP AL
U o g = - =T l/uqtui Tg1p°
(Note that we should really have written ™ m .uq> but this was not done for typo-

graphical reasons.)

10.7 The Transformation Properties of Connection Coeffi-
cients

Let U and V' be two overlapping charts with coordinates:

0
onU: = eM:%,
. 0 oxt
onV: y eyzayyza—yyeu.

Let p € UNV # (). The connection coefficients on V are

ox”

véa éﬁ = f‘yaﬁé’Y - ffyaﬁa_y,yev

On the other hand

{e%

m 2.V A o
Vo iy véa(ﬁx < 0*x 8x Ox )el,

8_?;56“): 0y°‘y5 oy Oy’

Thus

~_ Ox” Pxv Ox Oxt
e rv
8 Oy (8yay5 T oy 0y )

.From this we find the transformation rule for the connection coefficients:

o _aparar o oy
of T Gav Qye dyB T M QyeyB dav
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We notice that the first term is just the transformation rule for the components of a
(1,2)-tensor. But we also have an additional second term, which is symmetric in «
and 3. Thus I' is almost like a (1,2)-tensor, but not quite. To construct a (1,2)-tensor
out of I'; define

T . =17

0B 0B F7ﬁa = ZFV[QB] = the torsion tensor

(note: tng = 3(tas — tpa) is the antisymmetrization of indices. )

10.8 The Metric Connection
Let ¢ be an arbitrary curve and V its tangent vector. If a connection V satisfies?
Vy(9(X,Y))=0 when VyX =0 and VyY =0,

then we say that V is a metric connection. Since

=0 =0

V,(g(X,Y)) = (Vvg)(X.Y) + g(Tv X, Y) + g(X, Ty 7) = 0,

the metric connection satisfies
va =0.

In component form:

L (Vi9)ap = 9ugas — I adrs — T7,5000 = 0.
And by cyclic permutation of p, @ and § we get:

2‘ (Vag)ﬁlt - chﬁu - F)\aﬂg)\,u - F)\a“gﬁA - O
3. (Vﬁg)ua = aﬁg/m - PAﬁug,\a - FAgagpA =0

Let us denote the symmetrization of indices: I, = 5(I" 3 +T75,). Then adding
-(1)+(2)+(3) gives

—Ou9ap + Oagpu + Opgua + T)\,MQAB + T)\uﬁg)\a - QP)\(QQ)QA;L =0
In other words
1
F/\(aﬁ)g)\,u - 5 {(aagﬁ,u + aﬁg,ua - augaﬁ) + T/\uag)\ﬁ + T)\,uﬂg)\a}

Thus 1
Fﬂ(aﬁ) = {H(Xﬂ} + §(Tanﬁ + Tﬁna)7

2This condition means that the angle between vectors is preserved under parallel transport.
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where {kaf} = 19"(0a9su + 039ua — Ougas) are the Christoffel symbols and
T,"s = garg™T? 5.
The coefficients of a metric connection thus satisfy

K K K 1 K K K
I aﬁzr (aﬁ)—l-F [aﬁ]:{/ﬂ?aﬁ}+§(Taﬁ"‘Tﬁa‘i‘TQﬁ)

J/

VvV
EK’ﬁaﬁ: contorsion

If the torsion tensor vanishes, 7% ; = 0, the metric connection is called the Levi-
Civita connection:

Fﬂaﬂ = {Kaﬁ} :

10.9 Curvature And Torsion

We define two new tensors:
(Riemann) curvature tensor: R : x(M) x x(M) x x(M) — x(M)

R(X,Y,Z)= R(X,Y)Z = VxVyZ — VyVxZ — Vixy Z.
Torsion tensor: T : x(M) x x(M) — x(M)

T(X,Y) = VyY - VyX — [X,Y].
Let’s check that these definitions really define tensors, i.e. multilinear maps. Obvi-
ously R(IX+X"Y,Z)=R(X,Y, Z)+ R(X'",Y, Z) etc. are true, but it is less obvious
that R(fX,hY,gZ) = fghR(X,Y,Z) where f,g,h € F(M). Let’s calculate:

X, gY] = [X[g]lY — gV [f]X + fg[X,Y] (15)
Using this we obtain

R(fX,9Y)(hZ) = fVx(9Vy(hZ)) — gVy(fVx(hZ))
— [ X[9]Vy(hZ) + gY [fIVx(hZ) — fgVxy|(hZ).

Here the first term is

fVx(gVy(h2)) = [Vx(gY [N Z + ghVy Z) = [X[g)Y [MZ + f9(X[Y[h]})Z
+ fgY RV xZ + fgX[WVyZ + fhX[g]VyZ + fghV xVy Z,

and the second term is obtained by changing X < Y and f < g. Continuing

R(fX,gY)(hZ) = fX[g)Y[NZ + fg(X[Y[R))Z + fgY [h|VxZ + fgX[hVyZ
+ fhX[9]VyZ + fghVxVyZ — gY [fIX[hZ — fg(Y[X[n]])Z
— [gX[WVyZ = fgY RN xZ — ghY [fIVxZ — fghVyVxZ
— [X[g]Y[h|Z — fhX[g]VyZ + gY [fIX[NZ + ghY [f]VxZ
— f9([X,Y][R)Z — fghV xyZ = fgh(VxVyZ = VyVxZ = Vxy|Z)
= fghR(X,Y)Z.
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Thus R is a linear map. In other words, when X = X*9,,Y = Y9, and Z = Z*d,,
we have

R(X,Y)Z = X"Y"Z*R(0,,0,)05.

R maps three vector fields to a vector field, so it is a (1,3)-tensor. A similar (but
shorter) calculation shows that T'(fX, ¢Y) = f¢T'(X,Y),so T(X,Y) = X*Y"T(0,, 0,).
T is a (1,2) tensor.

The operations of R and T on vectors are obtained by knowing their actions on the

basis vectors 8H8%. Denote
T

R(ey,0,)0x = a vector,( expand in basis 0,) = R") ,,0x.

Note the placement of indices. We can derive a formula for obtaining the components
R"y,,- Recall that [0,,0,] = 0 and dz"(9,) = 6*,. Thus we get

RHAW = dz"(R(0, 0,)0n) = daz"(V,V, 0\ — V,V,,05) = da"(V (1" ,,0,) — Vvaﬂ]u/\an))
= dz"((0,1",2)0n) + 17 \I7 005 = (0,17 )0y = T \17,,,0)
(16)

Therefore

] Ry, =00%,, —0,I" , +1" I, —T" I, \

Similarly if we denote T(8,,9,) = T?,,0x and derive the components 7%, :

T, = daNT(9,,0,)) = dz*(V .0, — V,0,) = da*(T",,0, — T",,0,),

pv

and therefore
A A A
T = r = r

vyt

Thus this is the same torsion tensor as the one we had defined earlier.

Geometric interpretation:
SEE THE FIGURES IN SECTION 7.3.2. OF NAKAHARA

Let us also define:

The Ricci tensor: Ric(X,Y) = dz*(R(ey,Y)X). Thus the components are:
(Ric),w = Ric(ey,e,) = RY,,,. (Usual notation (Ric),, = Ry,.)

The scalar curvature: R = ¢g"’(Ric),, = RV,,.

The Einstein tensor: G, = (Ric),, — %ng,.
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10.10 Geodesics of Levi-Civita Connections

The length of a curve ¢(s) = (2#(s)) is defined by

dz+ dxv
I(c):/dSZ/ guV%%ds’E/Lds/

Thus along a curve L is constant. One can normalize s’ such that L = 1 so s’ = s.
Curves with extremal (minimum or maximum) length satisfy §/ = 0 about the curve.
(Variational principle.) They satisfy the Euler-Lagrange equations (familiar from
calculus of variations (FYMM II)):

d ( OL oL dz*
ELL _9 here o/ — 22 |
ds (da:’“) dat 0 where & ds (17)

L = Lagrange function or Lagrangian. Instead of L, which contains a square root,
we can equivalently use a simpler Lagrange function

1 datdx” 1 72

oo, Grmar 2
o In ds ds 27
because
d(OF\ _OF _ (d (LN 0L\ 0L dL _,
ds \ dz'» dxt ds \ dx'* dxt ox'm ds
~ - \6’
-0 =

when 2#(s) satisfies the Euler-Lagrange equation. Then 6( [ Fds) = 0 gives

4 g
ds \ """ ds 2 02> ds ds
Ogay dat da” d?z* 10g,, dr* dz”

oxv ds ds + 9w ds®2 202> ds ds

d?z* 1 (0gy,  Ogn,  Ogu \ dxt dx”
= [ — — - 0
P g2 + 2 (81”’ Ozt x> ) ds ds
Multiply this by ¢"* and sum over A:
geodesid d;f; + {ruv} S = 0, ‘ (18)

This is the geodesic equation with a Levi-Civita connection! The action I = [ Fds
sometimes provides a convenient starting point for computing the Christoffel symbols
{kpv}: plug in the metric to I, derive the Euler- Lagrange equations and read off
the Christoffel symbols comparing the Euler-Lagrange equations with the general
geodesic equations.

Note: previously when we discussed the geodesic equation in the context of general
connection, we said that geodesics are the "straightest” possible curves. Now, in the

118



context of the Levi-Civita connection which is only based on the metric, we that the
geodesics are also the shortest possible curves.

Note also that we can explicitly restore a parameter m and write the action of

dx# dxv
ds’ ds’

a free massive point particle (with mass m) moving on a curved spacetime. Thus

the length of the curve as I =m [ /g ds’. This is the relativistic action of

the free point particles move along geodesics. If m? > 0 (usual particles), we say
that the corresponding geodesics (on a pseudo-Riemannian manifold) are timelike,
if m? < 0 (tachyonic particles) the geodesics are spacelike. Massless particles (such
as the photon) move along null geodesics. The invariant length vanishes along a null
geodesic, ds? = 0. This equation can be used to determine the null geodesics.

10.11 Lie Derivative And the Covariant Derivative

Let I'* | be an arbitrary symmetric (I, = I'¥, ) connection. We can then re-express
the Lie derivative with the help of the covariant derivative as follows:

(LxY)* =X"0,YF —Y"0, X = X"V, YH — (V,XH)Y”
This is true because of the symmetry of the connection:

X"V, YF—(V,X"Y" = XY(9,Y" + T \Y) — (0, X" +T" , XY
X"9,Y* —YY9, X"+ (T*,, —T*, ) X"V
=0

For a generic (p,q)-tensor:

LTy e = (XAVOTR e — (VAXI)TR2 0 — = (VX )T
+ (Vo XTI, 4+ (Vo XTI

10.12 Isometries

[sometries are a very important concept. They are symmetries of a Riemannian
manifold. If the manifold is a spacetime, we usually require a physical theory to be
invariant under isometries.

Definition. Let (M, g) be a (pseudo)-Riemannian manifold. A diffemorphism f :
M — M is an isometry if it preserves the metric,

f*gf(l?) =9,

for all p € M.

If we interpret the metric as a map on vector fields, the above requirement means
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9rp) (X, £Y) = g,(X,Y)

for all tangent vectors X,Y € T,M. In component form the above equation is

Oy Oy’

St 9 I8 (P)) = 9 (p) (19)

where z,y are coordinates of the points p, f(p) respectively. This means that an
isometry must preserve the angles between all tangent vectors and their lengths.

The identity map is trivially an isometry, also the composite map f o g of two
isometries f, g is an isometry. Further, if f is an isometry, so is its inverse f~!. This
means that isometries form a group with composition of maps as the product, called
the isometry group. The isometry group is a group of symmetries of a (pseudo)-
Riemannian manifold.

Examples.

e (M, g) = the Euclidean space (R", 0) with the Euclidean metric. All translations
x# — zt 4 ¢’ in some direction a = (a*) are isometries, and so are rotations.
The isometry group {translations, rotations, and their combinations} is called
the Euclidean group or Galilean group and denoted by E".

e (M, g) = the (d+1)-dimensional Minkowski space(time) (R%?, 1) with the Min-
kowski metric 7. Again, spacetime translations zpu +— x* + a* are isometries,
additional isometries are (combinations of these and) space rotations and boosts.
The isometry group {translations, rotations, boosts, and their combinations}
is called the Poincaré group.

In typical laboratory scales, our spacetime is approximately flat (a Minkowski
space) so its approximate isometry group is the Poincaré group. That’s the reason
for special relativity and the requirement that physics in the laboratory be relativistic,
i.e. Poincaré invariant. More precisely, that requirement is necessary for experiments
which involve scales where relativistic effects become important. For lower scales,
time ”decouples” and we can make a further approximation where only the Euclidean
isometries of the spacelike directions are relevant. Recall also that symmetries such
as the time translations and space translations lead into conservation laws, like the
conservation of energy and momentum. As you can see, important physical principles
are a reflection of the isometries of the spacetime.

10.13 Killing Vector Fields

Let us now consider the limit of ”"small” isometries, .e. infinitesimal displacements
x=p+— f(p) =y ~x+eX. Here € is an infinitesimal parameter and X is a vector
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field indicating the direction of the infinitesimal displacement. If the above map is an
isometry, the vector field X is called a Killing vector field. Since the infinitesimal
displacement is an isometry, eqn. must be satisfied and it now takes the form

O(x® + eX) (z° + eXP) B

By Taylor expanding the left hand side, and requiring that the leading infinitesimal

term of order € vanishes (there’s no e-dependence on the right hand side), we obtain
the equation
Xsaggm, + a'uXagaV + 8,,Xﬂguﬁ - O . (2].)

We can recognize the left hand side as a Lie derivative, so (21) can be rewritten as
L XGuw = 0.
Expressing Lxg,,, with the help of the covariant derivative,
=0

="
EXguV - XA v)\guu +(VMX>\)g>\V + (VVX)\)Q/D\ = 0.

(Vg = 0) for a metric connection). Thus Killing vector field satisfies

’ VX, +V, X, =0 ‘ Killing equation.

Let X and Y be two Killing vector fields. We can easily verify that
a) all linear combinations aX + bY with a,b € R are also Killing vector fields

b) the Lie bracket [X, Y] is a Killing vector field

It then follows that the Killing vector fields form an algebra, the Lie algebra of the
isometry group. (The isometry group is usually a Lie group.)

Now let z#(t) be a geodesic, its tangent vector U = ds—:, and let V* be a Killing
vector. Then,
UV, (U"V,) = vrorv,v, 4V, UV, U" =0.
e ——
:%UHUV(VHVV+VVWL) =0 (geodesic)

Thus U*V,, = U -V is a constant on a geodesic.

An m-dimensional manifold M can have at most %m(m + 1) linearly independent
Killing vector fields. Manifold with the maximum number of Killing vector fields are
called maximally symmetric. E.g. R™ is maximally symmetric (g, =0, =T =
0). The Killing equation 9,V, 4+ 9, V,, = 0 has solutions:

Viiy=46; (m of these)
V., =au,z” with  ay, =—a, = constant #0 (22)
) ———

5m(m—1) components

Thus in total we have m + $m(m — 1) = 2m(m + 1). Ok.
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10.14 APPENDIX: Einstein’s Field Equations

The FEinstein tensor is defined as
1

G,uzz - R/.Ll/ - Qg/.LVR7 (23)

where R = ¢g" R, is the Ricci scalar. We assume that the metric g,, is pseudo-
Riemannian of signature (1, 3) (one positive direction and three negative directions).
The connection is the Levi-Civita connection computed from the metric and R, =

Rﬁ v 15 the Ricci tensor.

Exercise 1 Writing Rogu = garR3,,, show that

Ra,@,uzz = _Rﬁaw/ = _Raﬂuu = Ruuaﬂ'

Show that this implies that 1, is symmetric.
The Einstein tensor is symmetric. Furthermore, its covariant divergence vanishes,

V,.G* = 9,G" + T, G 4 T, G = 0. (24)

This is seen as follows. First, taking Z = 0,,X = 0,,Y = 0, and using the defining
properties of a metric connection, we obtain

Qo = T0,980 + T0,9u8 = Davy + Lo (25)

This can be also written as
(Vag)uu = 0. (26>

For the inverse tensor g" = (¢71),,, one gets
Oag"” + Thpg"” +Th g™ = 0. (27)

Note the difference in sign for the covariant derivative of the metric tensor and its
inverse.

Exercise 2 For any vector field X = X", the components of the covariant
derivatives are (V,X)* = 9,X* 4+ I'* X Show that the covariant divergence is
given by

(V. X)" = (—det g)1/20,((— det )2 X™").

In relativity theory literature, it is a custom to use the abbreviation X, =
(V,X), for the covariant differentiation of vector (and higher order tensor) indices.
With this notation, we can write the second Bianchi identity as

Ra,@ul/;)\ + Raﬂw\;u + Raﬁz\u;u = 0. (28)
Contracting the a and p indices in this identity with the metric tensor, we get
gw(Raﬁuvv\ + Raﬁv)\;u + Raﬂ)\u;u) =0. (29)
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By the definition of the Ricci tensor, this can be written as
RBVJA + RZV}\;}L - Rﬁ>\§l’ = 07 (30)

where we have taken into account that the covariant derivative of g"” vanishes, im-
plying that the multiplication with the components of the metric tensor commutes
with covariant differentiation; in particular, index raising and lowering commutes
with covariant derivatives. Using the results of Exercise 1, we get

ga'uRa,B)\,u;zx = _ga‘uRa,B,u)\;y = _Rﬁ)\;y- (31>

Contracting Eq. (30) once again with g%, we get

9% (Rgun + Rf,5 — Roxa) =0, (32)
or in other words,
R§)\ - le\;u - V)\;u = O (33)

Note that since R is a scalar, R,, = 0,R. An equivalent form of the previous equation
is

(2R" — §R) = 0. (34)

g7

Raising the index A and dividing by 2 finally leads to

1
(- L) o -

s

Einstein’s gravitational field equations are written simply as
17 G 17
GM" = SFET“ , (36)

where G on the right-hand side (not to be confused with Einstein’s tensor!) is
Newton’s gravitational constant and 7" is the stress-energy (energy-momentum)
tensor. It describes the distribution of matter and energy in space-time. For ex-
ample, the electromagnetic field gives a contribution to 7}, defined by Tﬁ,M =
0 F, M Fay + LG N Fag.

Another example is the energy-momentum tensor of a perfect fluid .A perfect fluid
is characterized by a 4-velocity field u, a scalar density field py and a scalar pressure
field p. The energy-momentum tensor is defines as

T;w = (/OU + p)u,uul/ — PYuv-

A special case of this is p = 0 which can be viewed as the energy momentum tensor
of a flow of noninteracting dust particles. Normally p and p, are not independent
but they are related by the equation of state of the form p = p(pg,T), where T
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is the temperature. The requirement that the covariant divergence of the energy-
momentum tensor vanishes leads to equations of motion for the perfect fluid. In
fact, in case of Minkowski space-time and in a certain limit one gets the classical
Navier-Stokes equations (from 0*T),, = 0 for k =1,2,3),

p [%—I:ﬂL(u-V)u} =—-Vp

and the continuity equation (from 07,y = 0),

dp
—+V. =0.
5 TV (pu)
Here p = po(1 — u?).
Let S be some space-like surface with a time-like unit normal vector field n*,
ng > 0. Then,

/(— det g)/*T"n,, d*x
s

gives the energy and momentum contained in S. Equation (24) leads to the following
conservation law of energy and momentum. Suppose that the metric g,3 does not
depend on a particular coordinate z,. Then,

0= augaﬁ = Fuﬁa + F;waﬁ = Faﬁu + Fﬂau' (37)
Thus, I'yp, is antisymmetric in the first two indices. Now,
(V,T)", =0,T" +Tu,T), — T, T%. (38)

The third term on the right-hand side is equal to —FMMT”’\ and it vanishes because
the second factor is symmetric in its indices, whereas the first factor is antisymmetric
in A and v by the remark above. On the other hand, the sum of the first two terms
is (—g)~'/%0,[(—g)"/*T"], according to the result of Exercise 2. Thus, for fixed p,

jv = (—g)l/QTZ is conserved in the usual sense,

d,j" = 0. (39)

In order to avoid convergence problems with the infinite integrals, we assume that
all energy and momentum are contained in a compact region K in space-time. Con-
sider a surface S, consisting of two space-like components S; and S5 and some surface
Sz ‘far away’ such that T vanishes on S3. Using Gauss’ law and the current conser-
vation, we conclude that the surface integral of (— det g)*/ ZTan, over S vanishes. In
other words,

/S (— det g)1/2Tl;n,, dPr = /s (— det g)l/le;n,, dz. (40)
1 2
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We have taken into account that, since n is future pointing, one of the normal vector
fields on S} and S is outward directed and the second inward directed. Equation (40)
tells us that the stress-energy, in the u-direction, on S is the same as the correspond-
ing quantity on Sy; one could think of S; as a fixed time slice at time ¢; and one
obtains the usual law of conservation of energy or momentum.

Often one uses units in which G = 1 and ¢ = 1 so that one does not need to write
explicitly the coefficient G//c? in Einstein’s equations.

10.14.1 The Newtonian Limit

It is known that the Newtonian gravitational theory is valid for fields, which can
produce only velocities much smaller than the velocity of light. Since the components
T% and T% are related to spatial momenta and T is related to energy, this condition
says that |T%| is much larger than the other components. Because of Einstein’s
equations, the same is true for the components of the Einstein tensor. Furthermore,
we expect that for weak gravitational fields the metric g"” differs slightly from the
Minkowski metric n*,

g =+ B (41)

for a small perturbation h*”. Next, we compute the connection, curvature, and finally
the Ricci tensor to first order in the perturbation A*”. A straight-forward computa-

tion, starting from the definitions of the various tensors, gives G* = —%D(h“” —
%n“”h), where h = n,,h*"". Thus, Einstein’s equations, in this approximation, are
linear,
1 1 G
—O Y — =npth | =8n—=T"". 42

Taking into account the remark in the beginning of this section, only the 00-component
is relevant,

1 G
O (hOO — §h> = —167p, (43)

where p = T%/c? is the matter density in the rest system of the source. We can also
drop the time derivatives (in the system of coordinates, where the source is slowly
moving, because 0y = %at) and so the only relevant equation becomes

1 G
This means that,
1 4
W0~ h =50, (45)

where ¢ is the gravitational potential for the matter distribution p. (Compare Eq.
(62) with the Newtonian equation VZ¢ = 47Gp, where ¢ = —GM/r!)
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Since all the other components of h’“’—%n’“’h vanish at this order of approximation,

we finally get
2GM

c2r

2
hHH = gqﬁ =— (no summation!) (46)

for all p =10,1,2,3.

Next, we shall compute the geodesics for the metric g = n* + h*” in the linear
approximation (we neglect higher order terms in h*¥). For small velocities, the time
component &o(s) of the 4-velocity is much larger than the spatial components. For
this reason, we can approximate the geodesic equations of motion as

d?a* daz®\ 2

In the linear approximation,
T = 009, Too = i (48)
Thus, the geodesic equations become
Fo + 0op(20)> = 0, #; + 0;p(i)* = 0. (49)

In the coordinate system, where the source is at rest, the first equation says that we
can choose the time t as the geodesic parameter, z4(s) = s = ct, and then the second
equation becomes

The right-hand side (after multiplication by the mass m of the test particle) is the
gravitational force of the source on m, so this equation is just Newton’s second law,
ma =F, where F = —V® and & = m¢.

10.14.2 The Schwarzschild Metric

The basic problem in Newtonian celestial mechanics is to solve the equations of mo-
tions outside of a spherically symmetric mass distribution (orbits of the planets around
the Sun, orbits of satellites around the Earth). In general relativity the first natural
problem is to search for spherically symmetric solutions of Einstein’s equations.

Actually, there is a unique 1-parameter family of spherically symmetric solutions,
which are asymptotically flat, meaning that at large distances from the source the
metric tends to the flat Minkowski metric ds? = dz2 — dz? — dx3 — dz?. This is the
content of Birkhoff’s theorem (which we are not going to prove). The line element of
the metric is given as

-1
e (1 _ QG_M) da? — (1 _ 2GM) dr? — 12402, (51)

c2r c2r
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where d$)? is the angular part of the Euclidean metric in R?, d)? = d6?+sin? 0 d¢?. It
is clear from Eq. (51) that for large distances r the metric approaches the Minkowski
metric. The line element (51) is called the Schwarzschild metric.

When r > 2GM/c? the Schwarzschild metric is supposed to describe the grav-
itational field outside of a spherically symmetric star. The other disconnect region
r < 2GM/c? is the Schwarzschild black hole. The singularity at r = 2GM/c? is actu-
ally due to a bad choice of coordinates. There is a way to glue the inside solution in a
smooth way to the outside solution by a suitable choice of coordinates; the complete
discussion of this was first given by Kruskal and Szekeres in 1960. The Kruskal-
Szekeres metric is given as follows. The coordinates are denoted by (u,v,0,¢). The
latter two are the ordinary spherical coordinates on a unit sphere. The coordinates
(u,v) are restricted to the region L C R? defined by

2GM
w < .
c2e
The metric is then
2 16° (2u—r)/2 2 1092
ds® = ——e'*# Fdudv — r*dQ*, (52)

r
where 1 = MG/c* and r is a function of u,v defined by

v = (2 — )2, (53)

Note that f(z) = ze®/* is monotonically increasing when x > —a (and f(z) > —a/e)
and therefore y = f(z) has a unique solution x for any y > —a/e. We treat u as a
kind of universal time; a time-like vector is future directed if its projection to 0, is
positive. The orientation (needed in integration!) is defined by the ordering (v, u, 8, ¢)
of coordinates. Note that the radial null lines (radial light rays) are given by du =0
or dv = 0.

The Kruskal-Szekeres space-time can be divided into four regions: K; consists of
points v > 0, u < 0, region K, of points u,v > 0, in region K, we have u,v < 0,
and finally region K3 is characterized by u > 0, v < 0. The boundaries between
these regions are non-singular points for the metric. The only singularities are at the
boundary uv = 2u/e.

The region K, is equivalent with the outer region of a Schwarzschild space-time.
This is seen by performing the coordinate transformation (v,u,6,¢) — (t,7,0,¢),
where r = r(u,v) as above and the Schwarzschild time is ¢ = 2uln(—v/u). With a
similar coordinate transformation the region K3 is seen to be equivalent with the outer
Schwarzschild solution. The region K, is equivalent with the Schwarzschild black
hole. The equivalence is obtained through the coordinate transformation (v, u, 8, ¢) —
(t,r,0,¢), where r = r(u,v) is the same as before but now ¢t = 2uIn(v/u).

It is easy to construct smooth time-like curves which go from either K7 or K3 to
the black hole K,. However, we shall prove that once an observer falls to the black
hole there is no way to go back to the ‘normal’ regions K; and Kj.
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Let x(t) be the time-like path of the observer. Then along the path

dr Ordu Ordv r or or

o L /o | /(¢ or /(4

it oudt  Ovdt 82 5,900, 7' (D) + 5-9(Du, 2 (D) | <0,
since z(t) is time-like and in K5 holds r% = —2uve®=")/2 < () and similarly for the

v-coordinate.

The boundary between K» and the normal regions is r = 2u (i.e., u = 0 or v = 0).
The function r(z(t)) was seen to be decreasing, and therefore the path x(t) can never
hit the boundary » = 2u. But the observer entering K5 has a deplorable future, since
it will eventually hit the true singularity » = 0, again using the monotonicity of the
function r(x(t)).

There is also another singularity, the outer boundary of region K3. But this is of
no great concern because it is in the past; no future directed time-like curve can enter
that singularity.

11 Principal bundles and Yang-Mills systems
11.1 Cartan’s structural equations
Let Xi,..., X, be a basis of Lie(G). Then

(X, X;] = ¢ X,

where the cfj are the structural constants. Since the Lie bracket is antisymmetric we
have cfj = —c;?i and by the Jacobi identity we have

k m

k. m k m __
CiiCri + CiCrj + CiCh = 0

for all 7, 7,1, m. In terms of the left invariant vector fields X;, any tangent vector v at
g € G can be written as v = v'X;(g). Let us define 6" € QY(Q) as 0'(g)v = v'. We
compute the exterior derivative df’ :

do'(9)(Xj, X) = X;0'(Xy) = Xp'(X;) = 0'([X;;, Xi])
= X;0ir — Xpij — 0'(c,. X1) = —ciy..

On the other hand,
(0" A O7)( Xy, X)) = 0(X3)67 (X)) — 0/(X))6 (X1) = dindj — Sud.
Thus we obtain Cartan’s structural equations,

. 1 .
db' = 20" N
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Denote X;0° = g~ 'dg. This is a Lie(G)-valued 1-form on G. It is tautological at the
identity: (¢g~'dg)(v) = v for v € T\G. For § = g~'dg the structural equations can be
written as

1
a6+ [0 7 6] =0,

where [0 A 0] = [X;, X;]0° A 67,

11.2 Principal bundles

Let G be a Lie group and M a smooth manifold. A principal G bundle over M is a
manifold which locally looks like M x G.

Definition A smooth manifold P is a principal G bundle over the manifold M,
if a smooth right action of G on P is given, i. e., a map P x G — P, (p,g) — pg,
such that p(gq’) = (pg)g’Vp € P and g,q" in G, and if there is given a smooth map
m: P — M such that

e w(pg) =m(p) forall gin G.

e Vx € M there exists an open neighborhood U of x and a diffeomorphism (local
trivialization) f : 7Y (U) — U x G of the form f(p) = (7(p), ¢(p)) such that

d(pg) = ¢(p)gVp e 1 (U), g € G.

The manifold P is the total space of the bundle, M is the the base space, and 7
is the bundle projection. The trivial bundle P = M x G is defined by the projection
m(x,g) = x and by the natural right action of G on itself.

Consider two bundles P, = (P;, m;, M;; G) with the same structure group G. A
smooth map ¢ : P, — Py is a G bundle map , if ¢(pg) = ¢(p)g for all p and g. Two
bundles P; and P, are isomorphic if there is a bijective bundle map P, — P,. An
isomorphism of a bundle onto itself is an automorphism .

If H C G is a closed subgroup then G is a principal H bundle over the homoge-
neous space GG/H. The right action of H on G is just the right multiplication in G
and the projection is the canonical projection on the quotient.

Example Take G = SU(2) and H = U(1)

e 0
H:<0 ew),goeR.

Z1 —Z2
g= _ )
zZ2 Z1

with |z1]2 + |22 = 1. Writing 21 and zy in terms of their real and imaginary parts we

see that the group G can be identified with the unit sphere S® in R*. We can define
1

A general element g of G is

amap 7 : G — S% by n(g) = gozg™!, where o3 is the matrix diag(1,—1); elements
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of R? are represented by Hermitian traceless 2 x 2 matrices. The Euclidean metric is
given by ||z||* = —det z. The kernel of the map 7 is precisely U(1); thus we have a
U(1) fibration over S? = SU(2)/U(1) in S3.

Exercise Let S, = {z € S?|lz3 # —1} and S_ = {z € S?|z3 # +1}. Construct
local trivializations fi : 77 1(S1) — Sy x U(1).

The bundle S? — S? is nontrivial; it is not isomorphic to S? x S! for topological
reasons. Namely, S is a simply connected manifold whereas the fundamental group
of 52 x S'is equal to m;(S?) = Z [M. Greenberg: Lectures on Algebraic Topology].

Let {U,}aca be an open cover of the base space M of a principal bundle P and
let p — (7(p), pa(p)) € Us X G be a set of local trivializations. If p € 7~1(U, N Up),
we can write

Pa(p) = Sas(P)Ps(P),

where {u5(p) € G. Now ¢a(pg) = ¢a(p)g and ds(pg) = ¢3(p)g from which follows
that £,p(pg) = &ap(p) and thus &,5 can be thought of as a function on the base

space U, NUg. If p € 771U, NUz N U,) and z = 7(p), then ¢,(p) = &us(z)ds(p) =
ap(2)€5, ()b (p) sO that
€ap(@)Eay(2) = &y (2).

In general, a collection of G-valued functions {{,s} for the covering {U,} is a one-
cocycle (with values in G) if the above equation holds for all = in U, N Uz N U, and
for all triples of indices.

If we make the transformations ¢!, = 17,¢, for some functions 7, : U, — G, then

Eap = Enp = N Eaplp-

If we can find the maps 7, such that & ; = 1Va, 3, then {,5 = nangl and we say that
the one-cocycle £ is a coboundary.

Let (P,m, M), (P',7', M") be a pair of principal G bundles and let f: P — P’ be
a bundle map. We define the induced map f : M — M’ by f(z) = «'(f(p)), where p
is an arbitrary element in the fiber 7=!(z).

Theorem 11.1 Let P and P’ be a pair of principal G bundles over M. Let {Uy,, ¢a }aca
(respectively, {Uy, ¢ Yaen) be a system of local trivializations for P (respectively, for
P'). Let §op and &5 be the corresponding transition functions. Then there exists an
isomorphism f : P — P’ such that f = idys if and only if the transition functions
differ by a coboundary, that is, &,5(x) = no(x)  Eap(x)ns(x) in Uy N Uy for some
functions n : Uy, — G.

Proof. 1) Suppose first that £ ; = natEapnp for all a, B € A. Define f : P — P’
as follows. Let p € P and x = w(p). Choose a € A such that z € U,. Using a local

trivialization (U,, ¢!, at x we set f(p) = (z, fu(p)), Where fo(p) = na(z) oo (p). We
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have to show that the map is well-defined: If x € U, N Up then ¢3(p) = &ga(z)Pu(p)
and thus

fs(p) = np(x) " os(p) = ns(x) " Epalz)da(p)
o (2) N () " 00 (P)] = Epar(2) falp)-

We conclude that (z, fo(p)) and (z, f3(p)) represent the same element in P’. The

equation f(pg) = f(p)g follows from ¢4 (pg) = ¢a(p)g.
2) Let f: P — P’ be an isomorphism. We can define

Na(x) = a(p)dn(f(p) ",

where p € 7! (x) is arbitrary. It follows at once from the definition of the transition
functions that the collection {7, }aca satisfies the requirements.

Let {€a5}a,pen be a one-cocycle with values in G, subordinate to an open cover
{U,} on a manifold M. We can construct a principal G bundle P from this data. Let
C =l(a, U, x G) be the disjoint union of all the sets U, x G. Define an equivalence
relation in C' by (o, z,9) ~ (/,2',¢') if and only if x = 2’ and ¢ = Eya(x)g. Set
P = C/ ~. The action of G in P is given by (o, z,¢9)g0 = (o, z, ggo). The smooth
structure on P is defined such that the sets U, x GG are smooth coordinate charts for
P.

Exercise Complete the construction of P above.

Let (P, 7, M) be a principal G bundle. A (global) section of Pisamap ¢ : M — P
such that mo ¥ = idy,.

Exercise Show that a principal bundle is trivial if and only if it has a global
section.

A local section consists of an open set U C M and a map ¢ : U — P such that
mo =idy. If f: 771 (U) — U x G is a local trivialization we can define a local
section by ¥ (z) = f~!(x, h(x)), where h : U — G is an arbitrary (smooth) function.

Let H C G be a closed subgroup. We say that the bundle P has been reduced
to a principal H subbundle @), if ) C P is a submanifold such that ¢h € @ for all
q€Q,he Hr(Q)=M and H acts transitively in each fiber Q, = 77 1(2) N Q.

Any manifold M of dimension n carries a natural principal GL(n,R) bundle,
namely, the bundle F'M of linear frames. The fiber F,M at a point x € M consists
of all frames (ordered basis) of the tangent space T, M. The group GL(n,R) acts in
FoM by (fu, far o ) A= QUi A fi, 200 Ainfiy o 20011 Ainfi), where the fi's are
tangent
vectors at * and A = (A;;) € GL(n,R). One can construct a local trivialization
by choosing a local coordinate system (x1, 3, ..., x,) in M. In local coordinates the
vectors of a frame f can be written as f; = ) fi;0;. This defines a mapping f —
(fi;) € GL(n,R). The collection (04, ..., d,) of vector fields defines a local section of
FM.
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If the manifold M has some additional structure the bundle F'M can generally be
reduced to a subbundle. For example, if M is a Riemannian manifold with metric
g, then we can define the subbundle OF M C FM consisting of orthonormal frames
with respect to the metric g. If in addition M is oriented, then it makes sense to speak
of the bundle SOFM of oriented orthonormal frames: A frame (f1,..., f,) at a point
x is oriented if o(x; fi, ..., f,) is positive, where ¢ is a n form defining the orientation.
The structure group of OF M is the orthogonal group O(n) and of SOF M the special
orthogonal group SO(n) consisting of orthogonal matrices with determinant=1.

Let g be the Lie algebra of the Lie group G. To any A € g there corresponds
canonically a one-parameter subgroup h(t) = exptA. We define a vector field A on
the G bundle P such that the tangent vector A(p) at p € P is equal to Lip-ha(t)]|i=o-
Let g € G be any fixed element. The right translation r,(p) = pg on P determines
canonically a transformation X — (r,).X on vector fields: The tangent vector of the
transformed field at a point p is simply obtained by applying the derivative of the
mapping r, to the tangent vector X (pg~').

Theorem 11.2 For any A € g the vector field A is equivariant, that is, (Tg)*A =
ad,1AVg € G.

Proof. Using a local trivialization,

Alp) = 5 (x(r), olpe'™))

t=0

and therefore

() A)D) = Tyry S lrlog™), 6pg~ e )lco
d

= a(ﬂ(pg‘l),cb(pg‘le“g))lt:o

d g1
= 20,005 ) g

= ad;'A(p).

11.3 Connection and curvature in a principal bundle

Let £ and M be a pair of manifolds, V' a vector space and 7 : £ — M a smooth
surjective map.
Definition The manifold E is a vector bundle over M with fiber V, if

o £, =7 Y(z) is isomorphic with the vector space V for each v € M

o m: FE — M is locally trivial: Any x € M has an open neighborhood U with a
diffeomorphism ¢ : w1 (U) — U x V, ¢(2) = (7(2),£(2)), where the restriction
of & to a fiber E, is a linear isomorphism onto V.
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The product M x V is the trivial vector bundle over M, with fiber V. In this case
the projection map M x V — M is simply the projection onto the first factor.

A direct sum of two vector bundles F and F over the same manifold M is the
bundle E @ F with fiber E, @ F, at a point x € M. The tensor product bundle E ® F
is the vector bundle with fiber £, ® F, at x € M.

Example The tangent bundle T'M of a manifold M is a vector bundle over M
with fiber T,M ~ R", where n = dimM . The local trivializations are given by local
coordinates: If (zq, s, ..., z,) are local coordinates on U C M, then the value of ¢ for
a tangent vector w € T, M, x € M, is obtained by expanding w in the basis defined
by the vector fields (0, ..., 0,).

A section of a vector bundle E is a map ¢ : M — FE such that w o1 = idy,;. The
space ['(E) of sections of E is a linear vector space; the addition and multiplication by
scalars is defined pointwise. A principal bundle may or may not have global sections
but a vector bundle always has nonzero sections. A section can be multiplied by a
smooth function f € C*°(M) pointwise, (f1)(x) = f(z)(z).

Let (P,m, M) be a principal G bundle. The space V of vertical vectors in the
tangent bundle T'P is the subbundle of T'P with fiber {v € T,P|r(v) =0} at p € P.
If P is trivial, P = M x G, then the vertical subspace at p = (x, g) consists of vectors
tangential to G at ¢g. In general, the dimension of the fiber V, is equal to dim G.

Definition A connection in the principal bundle P is a smooth distribution p +—
H, of subspaces of T), such that

o The tangent space T}, is a direct sum of V,, and H, Vp € P
o The distribution is equivariant, i.e., roH, = Hy,, Vp € P,g € G.

Smoothness means that the distribution can be locally spanned by smooth vector
fields. We shall denote by pry, (respectively, pr,) the projection in 7T}, to the horizontal
subspace H, (respectively, vertical subspace V},).

Let A € g and let A be the corresponding equivariant vector field on P. The field
A is vertical at each point. Since the group G acts freely and transitively on P, the
mapping A — /Al(p) is a linear isomorphism onto V), for all p € P. Thus for each
X € T,P there is a uniquely defined element ¢,(X) € g such that

—

WP(X> - pTvX

at p. The mapping w), : T,P — g is linear, thus defining a differential form of degree
one on P, with values in the Lie algebra g. The form w is the connection form of the
connection H.

Theorem 11.3 The connection form satisfies

o w(A(p) = AVA€cg,
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o r'w=uad,wVa € G.

Furthermore, each g-valued differential form on P which satisfies the above conditions
15 a connection form of a uniquely defined connection in P.

Proof. The first equation follows immediately from the definition of w. To prove
the second, we first note that

1 d ~1 d .
(ady ' A)(p) = %pemda A= = Epa_lemah:o =r,A(pa™").

By the equivariantness property of the distribution H,,, the right translations r, com-
mute with the horizontal and vertical projection operators. Thus

(adawp (X)) (p) = 15" - wp(X)(pa)

Taking account that (riw),(X) = wya(r.X) we get the second relation.
Let then w be any form satisfying both equations. We define the horizontal sub-
spaces H, = {X € T,Jw,(X) = 0}. If X € H,NV,, then X = A(p) for some A € g

~

and ¢,(A(p)) = A = w,(X) = 0, from which follows H,NV, = 0. By (1) and a simple
dimensional argument we get T, = H, + V). For X € H, and a € G we obtain

wWpa(raX) = (raw)p(X) = adawy(X) =0,

and therefore r, X € H,,, which shows that the distribution H, is equivariant and
indeed defines a connection in P.

Let w be a connection form in (P,m, M). Let U C M be open and ¢ : U — P
a local section. The pull-back A = ¢¥*w is a one-form on U. Consider another
local section ¢ : V. — P and set A" = ¢*w. We can write ¢(z) = ¢(x)g(z) for
g:UNV — G, where g(z) is a smooth G valued function. We want to relate A to
A’. Noting that

Tt =g Lot + (97 ' Tog) (6())
by the Leibnitz rule, we get

Ap(u) = Wiy (Tt - u) = Wap () (7’9(96)7136925 ey (g_leg -u)(¢()))
= adg’é)wﬂz) (Tp¢-u)+ g 'Tpg - u.

For a matrix group G we can simply write

A=gT Ag+g'dg.
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The transformation relating A to A’ is called a gauge transformation . Next we define
the two-form 1
F=dA+ 5[14, A]

on U. The commutator of Lie algebra valued one-forms is defined by
[A7 B] (U,, U) = [A(’LL), B<U>] - [A(U)u B(U)]

for a pair u, v of tangent vectors. We shall compute the effect of a gauge transforma-
tion (U,v) — (V,¢) on F:

F = dA+i[AA]
= g 'dAg— g "dg, g " A'g] — i[9~ 'dg, g7 dy]
+3lg ' Alg+ g7 dg, g Ay + g N dyg)
= g (dA' +5[A AT)g =g Fg.

The curvature form F' is a pull-back under ¢ of a gobally defined two-form 2 on P.
The latter is defined by
Q,(u,v) = a ' F,(ru, mv)a,

where p € 7 !(x), u,v tangent vectors at p and a € G is an element such that
p = ¥(x)a. The left-hand side does not depend on the local section. Writing p =

¢(z)a’ = Y(x)g(z)a’ we get
a'E (mu, mv)d = d " tg(x) T Fy(mu, o) g(x)d = a”Fy(ru, Tv)a.
Since A is the pull-back of w and F' is the pull-back of €2 we obtain from 4.3.5
Q=dw+ %[w, w]

Exercise Prove the Bianchi identity dF'+[A, F| = 0. (The 3-form [A, F is defined
by an antisymmetrization of [A(u), F'(v,w)] with respect to the triplet (u,v,w) of
tangent vectors.)

Let (P, 7, M) be a principal G bundle and p : G — AutV a linear representation
of G in a vector space V. We define the manifold P x4V to be the set of equivalence
classes P x V/ ~, where the equivalence relation is defined by (p,v) ~ (pg™!, p(g)v),
for g € G. There is a natural projection § : PxgV — M, [(p,v)] — m(p). The inverse
image 071 (x) = V, since G acts freely and transitively in the fibers of P. The linear
structure in a fiber 671(z) is defined by [(p,v)] + [(p,w)] = [(p,v + w)], I[(p,v)] =
[(p,lv)]. Local trivializations of P x V are obtained from local trivializations p —
(m(p),d(p)) € M x G of P by [(p,v)] — (7(p), p(é(p))v). Thus P x¢ V is a vector
bundle over M, the vector bundle associated to P via the representation p of G.

Example Let P = SU(2),M = 5% = SU(2)/U(1),G =U(1),V = C and p()\) =
A? for A € U(1). The associated vector bundle E = SU(2) xy(1y C is in fact the
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tangent bundle of the sphere S?. The isomorphism is obtained as follows. Fix a
linear isomorphism of C = R? with the tangent space of S? at the point x, which has
as its isotropy group the given U(1). The map E — T'S? is defined by (g,v) — D(g)v,
where D(g) is the 2-1 representation of SU(2) in R3. The tangent vectors of S? are
represented by vectors in R? by the natural embedding S? C R3.

11.4 Parallel transport

Let H be a connection in a principal G bundle (P, 7, M). A horizontal lift of a smooth
curve y(t) on the base manifold M is a smooth curve 4*(¢) on P such that the tangent
vector 4*(t) is horizontal at each point on the curve and 7(y*(t)) = ().

Lemma Let X (t) be a smooth curve on the Lie algebra g of G, defined on an interval

[to,t1]. Then there exists a unique smooth curve a(t) on G such that a(t)a(t)™! =

X (t)Vt € [to, t1] and such that a(ty) = e.

Proof. See Kobayashi and Nomizu, vol. I, p. 69.

Theorem 11.4 Let v(t) be a smooth curve on M and p an element in the fiber over
v(to). Then there exists a unique horizontal lift v*(t) of ~(t) such that v*(to) = p.

Proof. Choose first any (smooth) curve ¢(¢) on P such that 7(¢) = v and ¢(ty) = p.
We are looking for the solution in the form ~*(t) = ¢(¢)g(t), where g(t) is a curve on
G such that g(ty) = e. Now 7*(t) is a solution if

V(1) = row - S() + (9(8) () To(1)g(t)]

is horizontal. Let ¢ be the connection form of the connection H. A tangent vector on
P is horizontal if and only if it is in the kernel of w. We get the differential equation

0= 0(3(1)) = 0(ryo(t)) +w(lg() " a(B)]o(t)g(t)])
= adg_(i)w@(t)) +g(t)"1a(t).
Applying ad, to this equation we get
g()g(t)™ = —w(o(t)).

The solution g(t) exists and is unique by the previous lemma.

Example Let P = M x U(1), M simply connected. A connection form ¢ can be
written as w(g ) (u,a) = A, (u) + g~ - a, where u is a tangent vector at € M and
a is a tangent vector at g € U(1); the Lie algebra of U(1) is identified by the set of
purely imaginary complex numbers. Let () be a curve on M. The horizontal lift of
v(t) which goes through (y(t), g) at time ¢t = 0 is v*(t) = (y(¢), g(t)) with

g(t) = g-exp (/Ot — A (7(3))ds> .
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In particular, for a closed contractible curve, v(0) = (1), we get by Stokes’s theorem

g(1) = g - exp(— SF),

where ' = dA is the curvature two-form and the integration is taken over any surface
on M bounded by the closed curve ~.

We define the parallel transport along a curve v(t) on M as a mapping 7 :
7 (zg) — 71 (z1) (w0 = Y(to), 1 = 7(t1) points on the curve). The value 7(py)
for py € T !(zp) is given as follows: Let v*(¢) be a horizontal lift of (¢) such that
v*(to) = po. Then 7(pg) = v*(t1).

Exercise Prove the following properties of the parallel transport.

eTory,=r,07Vg € G

e If 7, is a path from zy to x; and v is a path from x; to x5 then the parallel
transport along the composed path ~, * 71 is equal to the product of parallel
transport along ~; followed by a parallel transport along ~s.

e The parallel transport is a one-to-one mapping between the fibers 771 (zg) and
-1
7).

11.5 Covariant differentiation in vector bundles

Let E be a vector bundle over a manifold M with fiber V', dim V = n. The vector
space V' is defined over the field K = R or K = C. A vector bundle can always be
thought of as an associated bundle to a principal bundle. Namely, let P, denote the
space of all linear frames in the fiber E, for z € M. Using the local trivializations of
FE' it is not difficult to see that the spaces P, fit together and form naturally a smooth
manifold P. Fix a basis w = {wy,...,w,} in E,. Then any other basis of E, can
be obtained from w by a linear tranformation w; = ) Aj;w; and therefore P, can
be identified with the group GL(n,K) of all linear transformations in K"; it should
be stressed that this identification depends on the choice of w. However, we have a
well-defined mapping P x GL(n,K) — P given by the basis transformations and this
shows that P can be thought of as a principal GL(n,K) bundle over M.

The vector bundle E is now isomorphic with the associated bundle P x, K",
where p is the natural representation of GL(n,K) in K”. The isomorphism is defined
as follows. Let w € P, and a € K". We set ¢(w,a) = > a;w;. This gives a mapping
from PxK" to E which is obviously linear in a. For a fixed w the mapping a — ¢(w, a)
gives an isomorphism between K" and E,. Let w' = w - g and a’ = p(¢g~')a for some
g € GL(n,K). We have to show that ¢(w’, a’) = ¢(w, a); but this follows immediately
from the definitions.

Often the bundle E can be thought of as an associated bundle to a principal
bundle with a smaller structure group than the group G L(n,K). This happens when
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there is some extra structure in E. For example, assume there is a fiber metric
in F: This means that there is an inner product < -,- >, in each fiber F, such
that = —< ¥(x),¢¥(x) >, is a smooth function for any (local) section 1. We can
then define the bundle of orthonormal frames in E with structure group U(n) in the
complex case and O(n) in the real case. The vector bundle F is now an associated
bundle to the bundle of orthonormal frames.

We shall now assume that E is given as an associated vector bundle P x, V to
some principal bundle P, with a connection H, over M. Let GG be the structure group
of P. For each vector field X on M we can define a linear map Vx of the space I'(E)
of sections into itself such that

[ ] VX+YIVX+VY
e Vix =[fVx
o Vx(fY) =X+ fVxi

for all vector fields X, Y, smooth functions f and sections ¢). We shall give the defi-
nition in terms of a local trivialization £ : U — P, where U C M is open. Locally, a
section ¢ : M — FE can be written as

where ¢ : U — V is some smooth function. Let A denote the pull-back £*¢ of the
connection form w in P. The representation p of G in V' defines also an action of the
Lie algebra g in V. We set

Vxtp = (§, Xo + A(X)9),

where A(X) is the Lie algebra valued function giving the value of the one-form A in
the direction of the vector field X.

We have to check that our definition does not depend on the choice of the local
trivialization. So let {'(x) = &(x) - g(x) be another local trivialization, where g : U —
G is a smooth function. The vector potential with respect to the trivialization &’ is
A =gt Ag+gtdg. Now (&, ¢) ~ (¢/,¢'), where ¢' = g~'¢ (we simplify the notation
by dropping p) and therefore (¢, X¢' + A'(X)¢’) is equal to

(€. —g " (Xg9)g "o+ 9 ' X+ (97 Ag+ g Xg)g ")
= (€9 (Xo+A(X)9p)) ~ (&, Xo+ A(X)9)

which shows that Vx is well-defined.
Exercise Prove that Vx defined above satisfies (1)-(3).
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The commutator of the covariant derivatives V x is related to the curvature of the
connection in the following way:

[V, Vvl = (& [X + AX), Y + A(Y)]9)
(& ([(X, Y]+ X - A(Y) =Y - AX) + [A(X), A(Y)))¢)
= (& (FXY) + X Y]+ A(X, Y])9)

where F' = dA + 1[A, A]. Thus we can write
Vx,Vy] = Vixy) = F(X,)Y)

when acting on the functions ¢.

A section v is covariantly constant if Vx1 = 0 for all vector fields. From the
above commutator formula we conclude that one can find at each point in the base
space a local basis of covariantly constant sections of the vector bundle if and only if
the curvature vanishes.

11.6 An example: The monopole line bundle

Let G be a Lie group and g its Lie algebra. Let us denote by ¢, the left translation
l,(a) = ga in G. The left invariant Maurer-Cartan form 6, = g~'dg is the g-valued
one form on G which sends a tangent vector X at g € GG to the element fg_lX eT.G
in the Lie algebra. Similarly, we can define the right invariant Maurer-Cartan form
Or = dgg™', Or(g; X) = rg’lX. By taking commutators, we can define higher order
forms. For example, the form [¢~'dg, g~ dg| sends the pair (X,Y) of tangent vectors
at g to 2[(,' X, (Y] € g.

Taking projections to one dimensional subspaces of g we get real valued one-forms
on G.

Let < -,- > be a bilinear form on g and ¢ € g. Then o =< 0,97 'dg > is a
well-defined one form. Let us compute the exterior derivative of a. Let X,Y be a
pair of left invariant vector fields on G. Now

da(g; X,Y) = X-aY) =Y a(X) - o[X,Y])
= —ao([X,Y])
since a(Y)(g) =< 0,£,'Y > is a constant function on G and similarly for a(X).
Since the left invariant vector fields on a Lie group span the tangent space at each

point, we conclude
do = — < 0,5[g" dg, g dg] > .

We have not yet defined the exterior derivative of a Lie algebra valued differential
form, but motivated by the computation above we set

_ 1, _ _
d(g~'dg) =—5lg 'dg, g~ 'dg].
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A bilinear form < -, - > on g is invariant if
<[X,)Y],Z >=—-<Y,[X,Z] >

for all X, Y, and Z. Given an invariant bilinear form, the group G has a natural
closed three-form c3 which is defined by

e3(g; X, Y, Z) =< L' X, [0'Y, 0,1 7] >

Thus
c3 =< g 'dg, g "'dg, 9" dg] >

Theorem 11.5 dcs = 0.

Proof. Recall the definition of the exterior differentiation d: If w is a n-form and
Vi, ..., Va1 are vector fields, then

n+1

dw(‘/l)-"vvn-i—l) = Z(_l)i—i_l‘[i'w(‘/lw'-uf/’iw“avn—i-l)
=1
D D)WV Vi) Vi e, Vi, Vi, Vi),

1<J

where the caret means that the corresponding variable has been dropped. Let us com-
pute dcg for left invariant vector fields X, ..., X4. Taking account that c3(X;, X, Xj)
is a constant function we get

ng(Xl, X4) = —-2< [Xl,XQ], {Xg,X;l] > 42 < [XI,X:J,], [XQ,XA >
-2 < [Xl,X4], [XQ,Xg] >
= 2 <Xy, [[X3, Xa], Xo] = [[Xo, Xu], X3] + [ X0, X3], Xu] >
= 0

by Jacobi’s identity.
If G is a group of matrices we can define an invariant form on g by < XY >=
tr XY. Then the form ¢z can be written as

cg = tr (g dg)>.

As an example we shall consider in detail the case G = SU(2). Let o3 = (é 0 )

—i
and define the one-form a = —1tro39~'dg. Remember that SU(2) — SU(2)/U(1) =
S? is a principal U(1) bundle. The form « is invariant with respect to right trans-
lations g +— gh by h € U(1). Thus « is a connection form in the bundle SU(2) [the
Lie algebra of the structure group U(1) can be identified with iR]. Let us compute
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the curvature. The exterior derivative of « is %tr o3lg'dg, g 'dg]. A tangent vector
at © € S? can be represented by a tangent vector ¢,X at g € 7 !(x),X € g, such
that X is orthogonal to the U(1) direction, trosX = 0. The curvature in the base
space S? is then Q(X,Y) = Stros[X,Y]. The form Q is X the volume form on S:
If {X,Y} is an orthonormal system at z € S?, then [X,Y] = £103 (exercise), the sign
depending on the orientation. We obtain Q(X,Y) = £itroj = +L.

The basic monopole line bundle is defined as the associated bundle to the bundle
SU(2) — S?, constructed using the natural one dimensional representation of U(1)
in C.

Embedding S? C R? and using Cartesian coordinates {zy, xq, z3} we can write the
curvature form as

1 ..
0= 4—10357']’6.’131'd33j VAN da:k,

2 =122 + 22 + 232 is equal to 1 on S?. However, we can extend () to the space

where r
R3\ {0} using the above formula. The coefficients of the linearly independent forms
dxo N dxs, dxs A dry and dxy A dxy form a vector B = ﬁ(:cl, Lo, X3) = % The field
B satisfies

— —

V-B=0
ﬁxéz(),

i.e., it satisfies Maxwell’s equations in vacuum. On the other hand,

/ B-dS =2r
52

for any sphere containing the origin. Because of these properties, the field B can be
interpreted as the magnetic field of a magnetic monopole located at the origin. The
integral (3) multiplied by the dimensional constant 1/e (e is the unit electric charge)
is called the monopole strength.

11.7 Yang-Mills equations

Let M be a Riemann manifold with Riemann metric g. In local coordinates the metric
is represented as a symmetric nondegenerate tensor field g;;(z) withé,j =1,2,...,n,
where n = dim M. Let 7 : P — M be a principal G bundle over M. Let p : G —
Aut(V') be a unitary finite-dimensional representation of G' in V. This defines an
associated vector bundle £/ = P x, V' and the curvature tensor F' of a connection in
P is represented (locally) by matrix functions Fj;(x) = 0;A; — 0;A; + [A;, A;] acting
on vectors in V.

We shall define raising and lowering of space-time indices (i.e., coordinate indices
in M) as usual, A" = g A;, B; = g;;B?, where the matrix (¢%) is the inverse of (g;;).
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Recall also that the metric g defines a volume form on M, d(voly,) = y/det(g)dx; A
dxy - -+ A dx,. We define the Yang-Mills functional

1
Y(A) = Z/Mtr F,, F*d(voly).

The Yang-Mills action is invariant under gauge transformations F’ = ¢g~'Fg. There
is an alternative way to write the YM action as

Y(A):—%/Mtr FA+F

The action leads to field equations through Euler-Lagrange variational priciple. Let
A+ tB be a 1-parameter family of vector potentials:

d 1
EY(A + tB>|t:O = 5 /Mtr FW(@LBV - az/Bu + [Aua Bu] + [BuvAuDd(UOZM)-

When M is a manifold without boundary, we can integrate by parts and we get
VY (A) = —/ tr B, (0, F" + [A,, F*"])d(voly).
M
If Ais an extremal the YM action then we obtain the Yang-Mills equations
D, F* = 0,F" +[A,, F*] = 0.

When G is abelian this gives the Maxwell’s equations 0,F* = 0 in vacuum. In
addition, we have the Bianchi identities

D,F,\+ D\F,, + D,F\, =0
for all indices A, u, v. If there are external sources we have instead
D,F" = j¥

for some Lie algebra valued current j*.

The Yang-Mills equations is a complicated nonlinear system of second order partial
differential equations. Not much is known about the general solutions. However, there
is a class of solutions which is well understood. These so-called (anti) instantons are
characterized by the (anti) self-duality property F' = xF (F = — % F') in the case of
a Riemannian 4-manifold M. Recall that

%0 QF (M) — QF(M)

is a linear map and *x = 1. When n = 4 and k = 2 the sign is + (exeercise) For
this reason the eigenvalues of * are 1, when restricted to 2-forms on a 4-manifold.
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In the case of Lorentzian metric ** = —1 on 2-forms and therefore in this case there
are no real eigenvalues (and no real (anti) instantons).
In the case of an instanton we have

Y(A):—%/Mtr FAF

and so the value of the YM functional is given by the second Chern class. In particular,
when M = S* we get

Y(A) ~ /SS tr (g~ 'dg)’,

where ¢ : S® — G is the transition function on the equator. Thus for self-dual
solutions the YM functional is quantized in units (27)?k with k € Z.
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