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1 Introduction

The course Mathematical Methods of Physics III (MMP III) is third in the series

of courses introducing mathematical concepts and tools which are often needed in

physics. The first two courses MMP I-II focused on analysis, providing tools to an-

alyze and solve the dynamics of physical systems. In MMP III the emphasis is on

geometrical and topological concepts, needed for the understanding of the symmetry

principles and topological structures of physics. In particular, we will learn group the-

ory (the basic tool to understand symmetry in physics, especially useful in quantum

mechanics, quantum field theory and beyond), topology (needed for many subtler

effects in quantum mechanics and quantum field theory), and differential geometry

(the language of general relativity and modern gauge field theories). There are also

many more sophisticated areas of mathematics that are also often used in physics, no-

table omissions in this course are more advanced topics in fibre bundles and complex

geometry.

Course material will be available on the course homepage.

Let me know of any typos and confusions that you find. The lecture notes are

based on those prepared and used by Claus Montonen, and later expanded by Esko

Keski-Vakkuri, who lectured the course before me. In practice, they often follow very

closely (and often verbatim) the three recommended textbooks:

• H.F. Jones: Groups, Representations and Physics (IOP Publishing, 2nd edition,

1998)

• M. Nakahara: Geometry, Topology and Physics (IOP Publishing, 1990)

• H. Georgi: Lie Algebras in Particle Physics (Addison-Wesley, 1982)

I have added some material, both in the end of the group theory part (some

complements for finite and compact groups, as well a chapter about representations

of semi-simple Lie algebras, somewhat different from the earlier versions) and in the

end of the differential geometry part, in particular about principal bundles and Yang-

Mills theory.
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You don’t necessarily have to rush to buy the books, they can be found in the

reference section of the library in Physicum.

2 Group Theory

2.1 Group

Definition. A group G is a set of elements {a, b, . . .} with a law of composition

(multiplication) which assigns to each ordered pair a, b ∈ G another element ab ∈ G.

(Note: ab ∈ G (closure) is often necessary to check in order for the multiplication to

be well defined). The multiplication must satisfy the following conditions:

G1 (associative law): For all a, b, c ∈ G, a(bc) = (ab)c.

G2 (unit element): There is an element e ∈ G such that for all a ∈ G ae = ea = a.

G3 (existence of inverse): For all a ∈ G there is an element a−1 ∈ G such that

aa−1 = a−1a = e.

IfG satisfies G1, it is called a semigroup; if it also satisfies G2, it is called a monoid.

The number of elements in the set G is called the order of the group, denoted by

|G|. If |G| <∞, G is a finite group. If G is a discrete set, G is a discrete group. If

G is a continuous set, G is a continuous group.

Comments

i) In general ab 6= ba, i.e. the multiplication is not commutative. If ab = ba for all

a, b ∈ G, the group is called Abelian.

ii) The inverse element is unique: suppose that both b, b′ are inverse elements of a.

Then b′ = b′e = b′(ab) = (b′a)b = eb = b.

Examples

1. Z with ”+” (addition) as a multiplication is a discrete Abelian group.

2. R with ”+” as a multiplication is a continuous Abelian group, e = 0. R \ {0}
with ”·” (product) is also a continuous Abelian group, e = 1. We had to remove

0 in order to ensure that all elements have an inverse.

3. Z2 = {0, 1} with addition modulo 2 is a finite Abelian group with order 2.

e = 0, 1−1 = 1.
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Let us also consider the set of mappings (functions) from a set X to a set Y ,

Map(X, Y ) = {f : X → Y |f(x) ∈ Y for all x ∈ X, f(x) is uniquely determined}.
There are special cases of functions:

i) f : X → Y is called an injection (or one-to-one) if f(x) 6= f(x′) ∀x 6= x′.

ii) f : X → Y is called a surjection (or onto) if ∀y ∈ Y ∃x ∈ X s.t. f(x) = y.

iii) if f is both an injection and a surjection, it is called a bijection.

Now take the composition of maps as a multiplication: fg = f◦g, (f◦g)(x) = f(g(x)).

Then (Map(X,X), ◦) (the set of functions f : X → X with ◦ as the multiplication)

is a semigroup. We had to choose Y = X to be able to use the composition, as g

maps to Y but f is defined in X. Further, (Map(X,X), ◦) is in fact a monoid with

the identity map id : id(x) = x as the unit element. However, it is not a group,

unless we restrict to bijections. The set of bijections f : X → X is called the set

of permutations of X, we denote Perm(X) = {f ∈ Map(X,X)|f is a bijection}.
Every f ∈ Perm(X) has an inverse map, so Perm(X) is a group. However, in general

f(g(x)) 6= g(f(x)), so Perm(X) is not an Abelian group. An important special case

is when X has a finite number N of elements. This is called the symmetric group

or the permutation group, and denoted by SN . The order of SN is |SN | = N !

(exercise).

Definitions

i) We denote g2 = gg, g3 = ggg = g2g, . . . , gn =

n︷ ︸︸ ︷
g · · · g for products of the element

g ∈ G.

ii) The order of the element n of g ∈ G is the smallest number n such that gn = e.

2.2 Smallest Finite Groups

Let us find all the groups of order n for n = 1, . . . , 4. First we need a handy defini-

tion. A homomorphism in general is a mapping from one set X to another set Y

preserving some structure. Further, if f is a bijection, it is called an isomorphism.

We will see several examples of such structure-preserving mappings. The first one is

the one that preserves the multiplication structure of groups.

Definition. A mapping f : G → H between groups G and H is called a group

homomorphism if for all g1, g2 ∈ G, f(g1g2) = f(g1)f(g2). Further, if f is also a

bijection, it is called a group isomorphism. If there exists a group isomorphism

between groups G and H, we say that the groups are isomorphic, and denote G ∼= H.

Isomorphic groups have an identical structure, so they can be identified – there is only

one abstract group of that structure.
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Example. Take G = R+ with ”·” and H = R with ”+” as a multiplication. Define

the mapping f : G → H, f(x) = lnx. Now f is a group homomorphism, because

f(xy) = ln(xy) = ln x + ln y = f(x) + f(y). In fact, f is also a group isomorphism,

because it is a bijection: f−1(x) = ex.

Now let us move ahead to groups of order n.

Order n = 1. This is the trivial group G = {e}, e2 = e.

Order n = 2. Now G = {e, a}, a 6= e. The multiplications are e2 = e, ea = ae = a.

For a2, let’s first try a2 = a. But then a = ae = a(aa−1) = a2a−1 = aa−1 = e, a

contradiction. So the only possibility is a2 = e. We can summarize this in the

multiplication table or Cayley table:

e a

e e a

a a e

This group is called Z2. You have already seen another realization of it: the set

{0, 1} with addition modulo 2 as the multiplication. Yet another realization of

the group is {1,−1} with product as the multiplication. This illustrates what

was said before: for a given abstract group, there can be many ways to describe

it. Consider one more realization: the permutation group S2 = Perm({1, 2}).
Its elements are

e =

 1 2

↓ ↓
1 2

 ≡ ( 1 2

1 2

)

a =

 1 2

↓ ↓
2 1

 ≡ ( 1 2

2 1

)
,

the arrows indicate how the numbers are permuted, we usually use the no-

tation in the right hand side without the arrows. For products of permuta-

tions, the order in which they are performed is ”right to left”: we first perform

the permutation on the far right, then continue with the next one to the left,

and so one. This convention is inherited from that with composite mappings:

(fg)(x)=f(g(x)). We can now easily show that S2 is isomorphic with Z2. Take

e.g. {1,−1} with the product as the realization of Z2. Then we define the

mapping i : Z2 → S2 : i(1) = e, i(−1) = a. It is easy to see that i is a group

homomorphism, and it is obviously a bijection. Hence it is an isomorphism,

and Z2
∼= S2. There is only one abstract group of order 2.
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Order n = 3. Consider now the set G = {e, a, b}. It turns out that there is again

only one possible group of order 3. We can try to determine it by completing

its multiplication table:
e a b

e e a b

a a ? ?

b b ? ?

First, guess ab = b. But then a = a(bb−1) = (ab)b−1 = bb−1 = e, a con-

tradiction. Try then ab = a. But now b = (a−1a)b = a−1(ab) = a−1a = e,

again contradiction. So ab = e. Similarly, ba = e. Then, guess a2 = a.

Now a = aaa−1 = aa−1 = e, doesn’t work. How about a2 = e? Now

b = a2b = a(ab) = ae = a, doesn’t work. So a2 = b. Similarly, can show

b2 = a. Now we have worked out the complete multiplication table:

e a b

e e a b

a a b e

b b e a

Our group is actually called Z3. We can simplify the notation and call b =

a2, so Z3 = {e, a, a2}. Z3 and Z2 are special cases of cyclic groups Zn =

{e, a, a2, . . . , an−1}. They have a single ”generating element” a with order n:

an = e. The multiplication rules are apaq = ap+q(mod n), (ap)−1 = an−p. Some-

times in the literature cyclic groups are denoted by Cn. One possible realiza-

tion of them is by complex numbers, Zn = {e 2πik
n |k = 0, 1, . . .} with product

as a multiplication. This also shows their geometric interpretation: Zn is the

symmetry group of rotations of a regular directed polygon with n sides (see

H.F.Jones). You can easily convince yourself that Zn = {0, 1, . . . , n − 1} with

addition modulo n is another realization.

Order n = 4. So far the groups have been uniquely determined, but we’ll see that

from order 4 onwards we’ll have more possibilities. Let’s start with a definition.

Definition. A direct product G1 × G2 of two groups is the set of all pairs

(g1, g2) where g1 ∈ G1 and g2 ∈ G2, with the multiplication (g1, g2) · (g′1, g′2) =

(g1g
′
1, g2g

′
2). The unit element is (e1, e2) where ei is the unit element of Gi

(i = 1, 2). It is easy to see that G1×G2 is a group, and its order is |G1×G2| =
|G1||G2|.

Now we can immediately find at least one group of order 4: the direct product

Z2 × Z2. Denote Z2 = {e, f} with f 2 = e, and introduce a shorter notation for
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the pairs: E = (e, e), A = (e, f), B = (f, e), C = (f, f). We can easily find

the multiplication table,
E A B C

E E A B C

A A E C B

B B C E A

C C B A E

The group Z2×Z2 is sometimes also called ”Vierergruppe” and denoted by V4.

There is another group of order 4, namely the cyclic group Z4 = {e, a, a2, a3}.
It is not isomorphic with Z2 × Z2. (You can easily check that it has a different

multiplication table.) It can be shown (exercise) that there are no other groups

of order 4, just the above two.

Order n ≥ 5. As can be expected, there are more possible non-isomorphic groups of

higher finite order. We will not attempt to categorize them much further, but

will mention some interesting facts and examples.

Definition. If H is a subset of the group G such that

i) ∀ h1, h2 ∈ H : h1h2 ∈ H

ii) ∀ h ∈ H : h−1 ∈ H ,

then H is called a subgroup of G. Note as a result of i) and ii), every subgroup

must include the unit element e of G.

Trivial examples of subgroups are {e} and G itself. Other subgroups H are called

proper subgroups of G. For those, |H| ≤ |G| − 1.

Example. Take G = Z3. Are there any proper subgroups? The only possibilities

could be H = {e, a} or H = {e, a2}. Note that in order for H to be a group of

order 2, it should be isomorphic with Z2. But since a2 6= e (because a3 = e) and

(a2)2 = a3a = a 6= e, neither is. So Z3 has no proper subgroups.

2.2.1 More about the permutation groups Sn

It is worth spending some more time on the permutation groups, because on one

hand they have a special status in the theory of finite groups (for a reason that I will

explain later) and on the other hand they often appear in physics.

Let X = {1, 2, . . . , n}. Denote a bijection of X by p : X → X, i 7→ p(i) ≡ pi. We

will now generalize our notation for the elements of Sn, you already saw it for S2. We

denote a P ∈ Sn ≡ Perm(X) by

P =

(
1 2 · · · n

p1 p2 · · · pn

)
.
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Recall that the multiplication rule for permutations was the composite operation,

with the ”right to left” rule. In general, the multiplication is not commutative:

PQ =

(
1 2 · · · n

p1 p2 · · · pn

)(
1 2 · · · n

q1 q2 · · · qn

)
6= QP .

So, in general, Sn is not an abelian group. (Except S2.) For example, in S3,(
1 2 3

1 3 2

)(
1 2 3

3 1 2

)
=

(
1 2 3

2 1 3

)
(1)

but (
1 2 3

3 1 2

)(
1 2 3

1 3 2

)
=

(
1 2 3

3 2 1

)
, (2)

which is not the same.

The identity element is

E =

(
1 2 · · · n

1 2 · · · n

)
and the inverse of P is

P−1 =

(
p1 p2 · · · pn
1 2 · · · n

)
.

An alternative and very useful way of writing permutations is the cycle notation.

In this notation we follow the permutations of one label, say 1, until we get back

to where we started (in this case back to 1), giving one cycle. Then we start again

from a label which was not already included in the previously found cycle, and find

another cycle, and so on until all the labels have been accounted for. The original

permutation has then been decomposed into a certain number of disjoint cycles. This

is best illustrated by an example. For example, the permutation(
1 2 3 4

2 4 3 1

)
of S4 decomposes into the disjoint cycles 1→ 2→ 4→ 1 and 3→ 3. Reordering the

columns we can write it as(
1 2 3 4

2 4 3 1

)
=

(
1 2 4 | 3

2 4 1 | 3

)
=

(
1 2 4

2 4 1

)(
3

3

)
.

In a cycle the bottom row is superfluous: all the information about the cycle (like

1→ 2→ 4→ 1) is already included in the order of the labels in the top row. So we

can shorten the notation by simply omitting the bottom row. The above example is

then written as (
1 2 3 4

2 4 3 1

)
= (124)(3) .
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As a further abbreviation of the notation, we omit the 1-cycles (like (3) above), it

being understood that any labels not appearing explicitly just transform into them-

selves. With the new shortened cycle notation, (1) reads

(23)(132) = (12) (3)

and (2) reads as

(132)(23) = (13) . (4)

In general, any permutation can always be written as the product of disjoint cycles.

What’s more, the cycles commute since they operate on different indices, hence the

cycles can be written in any order in the product. In listing the individual permuta-

tions of Sn it is convenient to group them by cycle structure, i.e. by the number and

length of cycles. For illustration, we list the first permutation groups Sn:

n = 2: S2 = {E, (12)}.

n = 3: S3 = {E, (12), (13), (23), (123), (132)}.

n = 4: S4 = {E, (12), (13), (14), (23), (24), (34), (12)(34), (13)(24), (14)(23),

(123), (132), (124), (142), (134), (143), (234), (243),

(1234), (1243), (1324), (1342), (1423), (1432)}.

You can see that the notation makes it quite easy and systematic to write down all

the elements in a concise fashion.

The simplest non-trivial permutations are the 2-cycles, which interchange two

labels. In fact, any permutation can be built up from products of 2-cycles. First, an

r-cycle can be written as the product of r − 1 overlapping 2-cycles:

(n1n2 . . . nr) = (n1n2)(n2n3) · · · (nr−1nr) .

Then, since any permutation is a product of cycles, it can be written as a product of

2-cycles. This allows us to classify permutations as ”even” and ”odd”. First, a 2-cycle

which involves just one interchange of labels is counted as odd. Then, a product of

2-cycles is even (odd), if there are an even (odd) number 2-cycles. Thus, an r-cycle

is even (odd), if r is odd (even). (Since it is a product of r − 1 2-cycles.) Finally, a

generic product of cycles is even if it contains an even number of odd cycles, otherwise

it is odd. In particular, the identity E is even. This allows us to find an interesting

subgroup of Sn, the alternating group An which consists of the even permutations

of Sn. The order of An is |An| = 1
2
· |Sn|. Hence An is a proper subgroup of Sn. Note

that the odd permutations do not form a subgroup, since any subgroup must contain

the identity E which is even.

To keep up a promise, we now mention the reason why permutation groups have

a special status among finite groups. This is because of the following theorem (we

state it without proof).
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Theorem 2.1 (Cayley’s Theorem) Every finite group of order n is isomorphic to

a subgroup of Sn.

Thus, because of Cayley’s theorem, in principle we know everything about finite

groups if we know everything about permutation groups and their subgroups.

As for physics uses of finite groups, the classic example is their role in solid state

physics, where they are used to classify general crystal structures (the so-called crys-

tallographic point groups). They are also useful in classical mechanics, reducing the

number of relevant degrees of freedom in systems of symmetry. We may later study

an example, finding the vibrational normal modes of a water molecule. In addition

to these canonical examples, they appear in different places and roles in all kinds of

areas of modern physics.

2.3 Continuous Groups

Continuous groups have an uncountable infinity of elements. The dimension of a

continuous group G, denoted dimG, is the number of continuous real parameters

(coordinates) which are needed to uniquely parameterize its elements. In the product

g′′ = g′g, the coordinates of g′′ must be continuous functions of the coordinates of g

and g′. (We will make this more precise later when we discuss topology. The above

requirement means that the set of real parameters of the group must be a manifold,

in this context called the group manifold.)

Examples.

1. The set of real numbers R with addition as the product is a continuous group;

dimR = 1. Simple generalization: Rn = {(r1, . . . , rn)|ri ∈ R, i = 1, . . . , n} =
n times︷ ︸︸ ︷

R× · · · ×R, with product (r1, . . . , rn) · (r′1, . . . , r
′
n) = (r1 + r′1, . . . , rn + r′n),

dimRn = n.

2. The set of complex numbers C with addition as the product, dimC = 2 (recall

that we count the number of real parameters).

3. The set of n×n real matricesM(n,R) with addition as the product, dimM(n,R) =

n2. Note group isomorphism: M(n,R) ∼= Rn2
.

4. U(1) = {z ∈ C||z|2 = 1}, with multiplication of complex numbers as the

product. dimU(1) = 1 since there’s only one real parameter θ ∈ [0, 2π], z = eiθ.

Note a difference with U(1) and R: both have dim = 1 but the group manifold

of the former is the circle S1 while the group manifold of the latter is the

whole infinite x-axis. A generalization of U(1) is U(1)n =

n times︷ ︸︸ ︷
U(1)× · · · × U(1),
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(eiθ1 , . . . , eiθn) · (eiθ′1 , . . . , eiθ′n) = (ei(θ1+θ′1), . . . , ei(θn+θ′n)). The group manifold of

U(1)n is an n-torus

n︷ ︸︸ ︷
S1 × · · · × S1. Again, the n-torus is different from Rn: on

the former it is possible to draw loops which cannot be smoothly contracted to

a point, while this is not possible on Rn.

All of the above examples are actually examples of Lie groups. Their group man-

ifolds must be differentiable manifolds, meaning that we can take smooth (partial)

derivatives of the group elements with respect to the real parameters. We’ll give a

precise definition later – for now we’ll just focus on listing further examples of them.

2.3.1 Examples of Lie groups

1. The group of general linear transformationsGL(n,R) = {A ∈M(n,R)| detA 6=
0}, with matrix multiplication as the product; dimGL(n,R) = n2. While

GL(n,R), M(n,R) have the same dimension, their group manifolds have a dif-

ferent structure. To parameterize the elements of M(n,R), only one coordinate

neighborhood is needed (Rn2
itself). The coordinates are the matrix entries aij:

A =

 a11 · · · a1n

...
. . .

...

an1 · · · ann

 .

In GL(n,R), the condition detA 6= 0 removes a hyperplane (a set of measure

zero) from Rn2
, dividing it into two disconnected coordinate regions. In each

region, the entries aij are again suitable coordinates.

2. A generalization of the above is GL(n,C) = {n× n complex matrices with

non− zero determinant}, with matrix multiplication as the product. This has

dimGL(n,C) = 2n2. Note that GL(n,R) is a (proper) subgroup of GL(n,C).

The following examples are subgroups of these two.

3. The group of special linear transformations SL(n,R) = {A ∈ GL(n,R)| detA =

1}. It is a subgroup of GL(n,R) since det(AB) = detA detB. The dimension

is dimSL(n,R) = n2 − 1.

4. The orthogonal group O(n,R) = {A ∈ GL(n,R)| ATA = 1n}, i.e. the group of

orthogonal matrices. (1n denotes the n× n unit matrix.) AT is the transpose

of the matrix A:

AT =

 a11 · · · an1

...
. . .

...

a1n · · · ann

 ,

i.e. if A = (aij) then AT = (aji), the rows and columns are interchanged. Let’s

prove that O(n,R) is a subgroup of GL(n,R):
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a) 1Tn = 1n so the unit element ∈ O(n,R)

b) IfA,B are orthogonal, thenAB is also orthogonal: (AB)T (AB) = BTATAB =

BTB = 1n.

c) EveryA ∈ O(n,R) has an inverse inO(n,R): (A−1)T = (AT )−1 so (A−1)TA−1 =

(AT )−1A−1 = (AAT )−1 = ((AT )TAT )−1 = 1−1
n = 1n.

Note that orthogonal matrices preserve the length of a vector. The length of a

vector ~v is
√
v2

1 + · · · v2
n =
√
~vT~v. A vector ~v gets mapped to A~v, so its length

gets mapped to
√

(A~v)T (A~v) =
√
~vTATA~v =

√
~vT~v, the same. We can inter-

pret the orthogonal group as the group of rotations in Rn.

What is the dimension of O(n,R)? A ∈ GL(n,R) has n2 independent parame-

ters, but the orthogonality requirement ATA = 1n imposes relations between the

parameters. Let us count how many relations (equations) there are. The diago-

nal entries of ATA must be equal to one, this gives n equations; the entries above

the diagonal must vanish, this gives further n(n − 1)/2 equations. The same

condition is then automatically satisfied by the ”below the diagonal” entries,

because the condition ATA = 1n is symmetric: (ATA)T = ATA = (1n)T = 1n.

Thus there are only n2 − n − n(n − 1)/2 = n(n − 1)/2 free parameters. So

dimO(n,R) = n(n− 1)/2.

Another fact of interest is that detA = ±1 for every A ∈ O(n,R). Proof:

det(ATA) = det(AT ) detA = detA detA = (detA)2 = det 1n = 1 ⇒ detA =

±1. Thus the group O(n,R) is divided into two parts: the matrices with

detA = +1 and the matrices with detA = −1. The former part actually

forms a subgroup of O(n,R), called SO(n,R) (you can figure out why this is

true, and not true for the part with detA=-1). So we have one more example:

5. The group of special orthogonal transformations SO(n,R) = {A ∈ O(n,R)| detA =

1}. dimSO(n,R) = dimO(n,R) = n(n− 1)/2.

6. The group of unitary matrices (transformations) U(n) = {A ∈ GL(n,C)|A†A =

1n}, where A† = (A∗)T = (AT )∗: (A†)ij = (Aji)
∗. Note that (AB)† =

B†A†. These preserve the length of complex vectors ~z. The length is de-

fined as
√
z∗1z1 + · · · z∗nzn =

√
~z†~z. Under A this gets mapped to

√
(A~z)†A~z =√

~z†A†A~z =
√
~z†~z. The unitary matrices are rotations in Cn. We leave it as

an exercise to show that U(n) is a subgroup of GL(n,C), and dimU(n) = n2.

Note that U(1) = {a ∈ C| a∗a = 1}, its group manifold is the unit circle S1 on

the complex plane.

7. The special unitary group SU(n) = {A ∈ U(n)| detA = 1}. This is the complex

analogue of SO(n,R), and is a subgroup of U(n). Exercise: dimSU(n) = n2−1.

U(n) and SU(n) groups are important in modern physics. You will probably

first become familiar with U(1), the group of phase transformations in quantum
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mechanics, and with SU(2), in the context of spin. Let’s take a closer look at

the latter. It’s dimension is three. What does its group manifold look like?

Let’s first parameterize the SU(2) matrices with complex numbers a, b, c, d:

A =

(
a b

c d

)
, A† =

(
a∗ c∗

b∗ d∗

)
.

Then

detA = ad− bc = 1

A†A =

(
|a|2 + |c|2 a∗b+ c∗d

b∗a+ d∗c |b|2 + |d|2

)
=

(
1 0

0 1

)
.

Let’s first assume a 6= 0. Then b = −c∗d/a∗. Substituting to the determinant

condition gives ad− bc = d(|a|2 + |c|2)/a∗ = d/a∗ = 1⇒ d = a∗. Then c = −b∗.
So

A =

(
a b

−b∗ a∗

)
.

Assume then a = 0. Now |c|2 = 1, c∗d = 0 ⇒ d = 0. Then |c|2 = |b|2 = 1.

Write b = eiβ, c = eiγ. Then detA = −bc = ei(β+γ+π) = 1→ γ = −β+(2n+1)π.

Then c = eiγ = e−iβei(2n+1)π = −e−iβ = −b∗. Thus

A =

(
0 b

−b∗ 0

)
.

Let us trade the two complex parameters with four real parameters x1, x2, x3, x4:

a = x1 + ix2, b = x3 + ix4. Then A becomes

A =

(
x1 + ix2 x3 + ix4

−x3 + ix4 x1 − ix2

)
.

The determinant condition detA = 1 then turns into the constraint

x2
1 + x2

2 + x2
3 + x2

4 = 1

for the four real parameters. This defines an unit 3-sphere. More generally, we

define an n-sphere Sn = {(x1, . . . , xn+1) ∈ Rn+1|
∑n+1

i=1 x
2
i = 1}. The group

manifold of SU(2) is a three-sphere S3. (And the group manifold of U(1) was

a 1-sphere S1. As a matter of fact, these are the only Lie groups with n-sphere

group manifolds.) The n-sphere is an example of so-called pseudospheres. We’ll

meet other examples in an exercise.

8. As an aside, note that O(n,R), SO(n,R), U(n), SU(n) were associated with

rotations in Rn or Cn, keeping invariant the lengths of real or complex vec-

tors. One can generalize from real and complex numbers to quaternions and
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octonions, and look for generalizations of the rotation groups. This produces

other examples of (compact) Lie groups, the Sp(2n), G2, F4, E6, E7 and E8. The

symplectic group Sp(2n) plays an important role in classical mechanics, it is as-

sociated with canonical transformations in phase space. The other groups crop

up in string theory.

2.4 Groups Acting on a Set

We already talked about the orthogonal groups as rotations, implying that the group

acts on points in Rn. We should make this notion more precise. First, review the

definition of a homomorphism from p. 6, then you are ready to understand the

following

Definition. Let G be a group, and X a set. The (left) action of G on X is

a homomorphism L : G → Perm(X), G 3 g 7→ Lg ∈ Perm(X). Thus, L satisfies

(Lg2 ◦Lg1)(x) = Lg2(Lg1(x)) = Lg2g1(x), where x ∈ X. The last equality followed from

the homomorphism property. We often simplify the notation and denote gx ≡ Lg(x).

Given such an action, we say that X is a (left) G-space. Respectively, the right

action of G in X is a homomorphism R : G → Perm(X), Rg2 ◦ Rg1 = Rg1g2 (note

order in the subscript!), xg ≡ Rg(x). We then say that X is a right G-space.

Two (left) G-spaces X,X ′ can be identified, if there is a bijection i : X → X ′ such

that i(Lg(x)) = L′g(i(x)) where L,L′ are (left) actions of G on X,X ′. A mathemati-

cian would say this in the following way: the diagram

X
i→ X ′

Lg ↓ ↘ ↓ L′g
X

i→ X ′

commutes, i.e. the map in the diagonal can be composed from the vertical and

horizontal maps through either corner.

Definition. The orbit of a point x ∈ X under the action of G is the set Ox =

{Lg(x)| g ∈ G}. In other words, the orbit is the set of all points that can be reached

from x by acting on it with elements of G. Let’s put this in another way, by first

introducing a useful concept.

Definition. An equivalence relation ∼ in a set X is a relation between points in

a set which satisfies

i) a ∼ a (reflective) ∀ a ∈ X

ii) a ∼ b⇒ b ∼ a (symmetric) ∀ a, b ∈ X
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iii) a ∼ b and b ∼ c⇒ a ∼ c (transitive) ∀ a, b, c ∈ X

Given a setX and an equivalence relation∼, we can partitionX into mutually disjoint

subsets called equivalence classes. An equivalence class [a] = {x ∈ X| x ∼ a}, the

set of all points which are equivalent to a under ∼. The element a (or any other

element in its equivalence class) is called the representative of the class. Note that

[a] is not an empty set, since a ∼ a. If [a]
⋂

[b] 6= ∅, there is an x ∈ X s.t. x ∼ a

and x ∼ b. But then, by transitivity, a ∼ b and [a] = [b]. Thus, different equivalence

classes must be mutually disjoint ([a] 6= [b]⇒ [a]
⋂

[b] = ∅). The set of all equivalence

classes is called the quotient space and denoted by X/ ∼.

Example. Let n be a non-negative integer. Define an equivalence relation among

integers r, s ∈ Z: r ∼ s if r−s = 0 (mod n). (Prove that this indeed is an equivalence

relation.) The quotient space is Z/ ∼= {[0], [1], [2], . . . , [n− 1]}. Define the addition

of equivalence classes: [a]+ [b] = [a+ b]. Then Z/ ∼ with addition as a multiplication

is a finite Abelian group, isomorphic to the cyclic group: Z/ ∼∼= Zn. (Exercise: prove

the details.)

Back to orbits then. A point belonging to the orbit of another point defines an

equivalence relation: y ∼ x if y ∈ Ox. The equivalence class is the orbit itself:

[x] = Ox. Since the set X is partitioned into mutually disjoint equivalence classes,

it is partitioned into mutually disjoint orbits under the action of G. We denote

the quotient space by X/G. It may happen that there is only one such orbit, then

Ox = X ∀x ∈ X. In this case we say that the action of G on X is transitive, and X

is a homogenous space.

Examples.

1. G = Z2 = {1,−1}, X = R. Left actions: L1(x) = x, L−1(x) = −x. Orbits:

O0 = {0}, Ox = {x,−x} (∀ x 6= 0). The action is not transitive.

2. G = SO(2, R), X = R2. Parameterize

SO(2, R) 3 g =

(
cos θ − sin θ

sin θ cos θ

)
,

and write

R2 3 x =

(
x1

x2

)
.

Left action:

Lg(x) =

(
cos θ − sin θ

sin θ cos θ

)(
x1

x2

)
=

(
cos θ x1 − sin θ x2

sin θ x1 + cos θ x2

)
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(rotate vector x counterclockwise about the origin by angle θ). Orbits are circles

with radius r about the origin: O0 = {0}, Ox 6=0 = {x ∈ R2| x2
1 + x2

2 = r2},
r =

√
x2

1 + x2
2. The action is not transitive. R2/SO(2, R) = {r ∈ R| r ≥ 0}.

3. G = GL(n,R), X = Rn. Left action: LA(x) = x′ where x′i =
∑n

j=1Aijxj. The

orbit of the origin 0 is O0 = {0}, other points have other orbits. So the action

is not transitive.

2.4.1 Conjugacy classes and cosets

We can also let the group act on itself, i.e. take X = G. A simple way to define the

left action of G on G is the translation, Lg(g
′) = gg′. Every group element belongs

to the orbit of identity, since Lg(e) = ge = g. So Oe = G, the action is transitive. A

more interesting way to define group action on itself is by conjugation.

Definition. Two elements g1, g2 of a group G are conjugate if there is an element

g ∈ G such that g1 = gg2g
−1. The element g is called the conjugating element.

We then take conjugation as the left action, Lg(g
′) = gg′g−1. In general conju-

gation is not transitive. The orbits have a special name, they are called conjugacy

classes.

It is also very interesting to consider the action of subgroups H of G on G. Define

this time a right action of H on G by translation, Rh(g) = gh. If H is a proper

subgroup, the action need not be transitive.

Definition. The orbits, or the equivalence classes

[g] = {g′ ∈ G| ∃h ∈ H s.t. g′ = gh} = {gh| h ∈ H}

are called left cosets of H, and usually they are denoted gH. The quotient space

G/H = {gH| g ∈ G} is the set of left cosets. (Similarly, we can define the left action

Lh(g) = hg and consider the right cosets Hg. Then the quotient space is denoted

H\G.)

Comments.

1. ghH = gH for all h ∈ H.

2. If g1H = g2H, there is an h ∈ H such that g2 = g1h i.e. g−1
1 g2 ∈ H.

3. There is a one-one correspondence between the elements of every coset and

between the elements of H itself. The map fg : H → gH, fg(h) = gh is

obviously a surjection; it is also an injection since gh1 = gh2 ⇒ h1 = h2. In

particular, if H is finite, all the orders are the same: |H| = |gH| = |g′H|. This

leads to the following theorem:
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Theorem 2.2 (Lagrange’s Theorem) The order |H| of any subgroup H of a finite

group G must be a divisor of |G|: |G| = n|H| where n is a positive integer.

Proof. Under right action of H, G is partitioned into mutually disjoint orbits gH,

each having the same order as H. Hence |G| = n|H| for some n.

Corollary. If p = |G| is a prime number, then G ∼= Zp.

Proof. Pick g ∈ G, g 6= e, denote the order of the element g by m. Then H =

{e, g, . . . gm−1} ∼= Zm is a subgroup of G. But according to Lagrange’s theorem

|G| = nm. For this to be prime, n = 1 or m = 1. But g 6= e, so m > 1 so n = 1 and

|G| = |H|. But then it must be H = G.

Definition. Let group G act on a set X. The little group of x ∈ X is the subgroup

Gx = {g ∈ G| Lg(x) = x} of G. It contains all elements of G which leave x invariant.

It obviously contains the unit element e, you can easily show the other properties of a

subgroup. The little group is also sometimes called the isotropy group, stabilizer

or stability group.

Back to cosets. The set of cosets G/H is a G-space, if we define the left action

lg : G/H → G/H, lg(g
′H) = gg′H. The action is transitive: if g1H 6= g2H, then

lg1g−1
2

(g2H) = g1H. The inverse is also true:

Theorem 2.3 Let group G act transitively on a set X. Then there exists a subgroup

H such that X can be identified with G/H. In other words, there exists a bijection

i : G/H → X such that the diagram

G/H
i→ X

lg ↓ ↘ ↓ Lg
G/H

i→ X

commutes.

Proof. Choose a point x ∈ X, denote its isotropy group Gx by H. Define a map

i : G/H → X, i(gH) = Lg(x). It is well defined: if gH = g′H, then g = g′h

with some h ∈ H and Lg(x) = Lg′h(x) = Lg′(Lh(x)) = Lg′(x). It is an injection:

i(gH) = i(g′H) ⇒ Lg(x) = Lg′(x) ⇒ x = Lg−1(L′g(x)) = Lg−1g′(x) ⇒ g−1g′ ∈ H ⇒
g′ = gh ⇒ gH = g′H. It is also a surjection: G acts transitively so for all x′ ∈ X
there exists g s.t. x′ = Lg(x) = i(gH). The diagram commutes: (Lg ◦ i)(g′H) =

Lg(Lg′(x)) = Lgg′(x) = i(gg′H) = (i ◦ lg)(g′H).
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Corollary. A consequence of the proof is that the orbit of a point x ∈ X, Ox, can

be identified with G/Gx since G acts transitively on its orbits. Thus the orbits are

determined by the subgroups of G, in other words the action of G on X is determined

by the subgroup structure.

Example. G = SO(3, R) acts on R3, the orbits are the spheres |x|2 = x2
1 +x2

2 +x2
3 =

r2, i.e. S2 when r > 0. Choose the point x = north pole = (0, 0, r) on every orbit

r > 0. Its little group is

Gx =

{(
A2×2 0

0 1

)
| A2×2 ∈ SO(2, R)

}
∼= SO(2, R) .

By Theorem 2.3 and its Corollary, SO(3, R)/SO(2, R) = S2.

2.4.2 Normal subgroups and quotient groups

Since the quotient space G/H is constructed out of a group and its subgroup, it is

natural to ask if it can also be a group. The first guess for a multiplication law would

be

(g1H)(g2H) = g1g2H .

This definition would be well defined if the right hand side is independent of the

labeling of the cosets. For example g1H = g1hH, so we then need g1g2H = g1hg2H

i.e. find h′ ∈ H s.t. g1g2h
′ = g1hg2. But this is not always true. We can circumvent

the problem if H belongs to a particular class of subgroups, so called normal (also

called invariant, selfconjugate) subgroups.

Definition. A normal subgroupH ofG is one which satisfies gHg−1 = {ghg−1| h ∈
H} = H for all g ∈ G.

Another way to say this is that H is a normal subgroup, if for all g ∈ G, h ∈ H
there exists a h′ ∈ H such that gh = h′g.

Consider again the problem in defining a product for cosets. If H is a normal

subgroup, then g1hg2 = g1(hg2) = g1(g2h
′) = g1g2h

′ is possible. One can show

that the above multiplication satisfies associativity, existence of identity (it is eH)

and existence of inverse (gH)−1 = g−1H. Hence G/H is a group if H is a normal

subgroup. When G/H is a group, it is called a quotient group.

Comments:

1. If H is a normal subgroup, its left and right cosets are the same: gH = Hg.

2. If G is Abelian, all of its subgroups are normal.

3. |G/H| = |G|/|H| (follows from Lagrange’s theorem).
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Example. Consider the cyclic group C2n = {e, a, . . . , a2n−1}, n ∈ Z. Take H =

{e, a2, a4, . . . , a2(n−1)}. You can easily see that H is a subgroup of C2n. Because cyclic

groups are Abelian, H is normal. The two cosets are H = a2H = · · · = a2(n−1)H and

aH = {a, a3, a5, . . . , a2n−1} = a3H = · · · = a2n−1H. Because (aH)H = aH, HH = H

and (aH)(aH) = a2H = H, the quotient group C2n/H ∼= C2.

Example. Consider G = SU(2), H = {12,−12} ∼= Z2. A12 = 12A for all A ∈
SU(2), hence H is a normal subgroup. One can show that the quotient group G/H =

SU(2)/Z2 is isomorphic with SO(3, R). This is an important result for quantum

mechanics, we will analyze it more in a future problem set.

This is also an example of a center. A center of a group G is the set of all elements

of g′ ∈ G which commute with every element g ∈ G. In other words, it is the set

{g′ ∈ G| g′g = gg′ ∀g ∈ G}. You can show that a center is a normal subgroup, so the

quotient of a group and its center is a group. The center of SU(2) is {12,−12}.
We finish by showing another way of finding normal subgroups and quotient

groups. Let the map µ : G1 → G2 be a group homomorphism. Its image is the

set

Imµ = {g2 ∈ G2| ∃g1 ∈ G1 s.t. g2 = µ(g1)}

and its kernel is the set

Kerµ = {g1 ∈ G1| µ(g1) = e2} .

In other words, the kernel is the set of all elements of G1 which map to the unit

element of G2. You can show that Imµ is a subgroup of G2, Kerµ a subgroup of G1.

Further, Kerµ is a normal subgroup: if k ∈ Kerµ then µ(gkg−1) = µ(g)e2µ(g−1) =

µ(gg−1) = µ(e1) = e2 i.e. gkg−1 ∈ Kerµ. Hence G1/Kerµ is a quotient group. In

fact, it also isomorphic with Imµ !

Theorem 2.4 G1/Kerµ ∼= Imµ.

Proof. Denote K ≡ Kerµ. Define i : G1/K → Imµ, i(gK) = µ(g). If gK = g′K

then there is a k ∈ K s.t. g = g′k. Then i(gK) = µ(g) = µ(g′k) = µ(g′)e2 =

i(g′K) so i is well defined. Injection: if i(gK) = i(g′K) then µ(g) = µ(g′) so e2 =

(µ(g))−1µ(g′) = µ(g−1)µ(g′) = µ(g−1g′) so g−1g′ ∈ K. Hence ∃k ∈ K s.t. g′ = gk

so g′K = gK. Surjection: i is a surjection by definition. Thus i is a bijection.

Homomorphism: i(gKg′K) = i(gg′K) = µ(gg′) = µ(g)µ(g′) = i(gK)i(g′K). i is a

homomorphism and a bijection, i.e. an isomorphism.

For example, our previous example SU(2)/Z2
∼= SO(3, R) can be shown this

way, by constructing a surjective homomorphism µ : SU(2) → SO(3, R) such that

Kerµ = {12,−12}.
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3 Representation Theory of Groups

In the previous section we discussed the action of a group on a set. We also listed

some examples of Lie groups, their elements being n× n matrices. For example, the

elements of the orthogonal group O(n,R) corresponded to rotations of vectors in Rn.

Now we are going to continue along these lines and consider the action of a generic

group on a (complex) vector space, so that we can represent the elements of the group

by matrices. However, a vector space is more than just a set, so in defining the action

of a group on it, we have to ensure that it respects the vector space structure.

3.1 Complex Vector Spaces and Representations

Definition. A complex vector space V is an Abelian group (we denote its mul-

tiplication by ”+” and call it a sum), where an additional operation, scalar mul-

tiplication by a complex number µ ∈ C has been defined, such that the following

conditions are satisfied:

i) µ(~v1 + ~v2) = µ~v1 + µ~v2

ii) (µ1 + µ2)~v = µ1~v + µ2~v

iii) µ1(µ2~v) = (µ1µ2)~v

iv) 1 ~v = ~v

v) 0 ~v = ~0 (~0 is the unit element of V )

We could have replaced complex numbers by real numbers, to define a real vector

space, or in general replaced the set of scalars by something called a ”field”. Complex

vector spaces are relevant for quantum mechanics. A comment on notations: we

denote vectors with arrows: ~v, but textbooks written in English often denote them

in boldface: v. If it is clear from the context whether one means a vector or its

component, one may also simply use the notation v for a vector.

Definition. Vectors ~v1, . . . , ~vn ∈ V are linearly independent, if
∑n

i=1 µi~vi = ~0

only if the coefficients µ1 = µ2 = · · · = µn = 0. If there exist at most n linearly

independent vectors, n is the dimension of V , we denote dimV = n. If dimV = n,

a set {~e1, . . . , ~en} of linearly independent vectors is called a basis of the vector space.

Given a basis, any vector ~v can be written in a form ~v =
∑n

i=1 vi~e
i, where the

components vi of the vector are found uniquely.
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Definition. A map L : V1 → V2 between two vector spaces V1, V2 is linear, if it

satisfies

L(µ1~v1 + µ2~v2) = µ1L(~v1) + µ2L(~v2)

for all µ1, µ2 ∈ C and ~v1, ~v2 ∈ V . A linear map is also called a linear transforma-

tion, or especially in physics context, a (linear) operator. If a linear map is also

a bijection, it is called an isomorphism, then the vector spaces V1 and V2 are iso-

morphic, V1
∼= V2. It then follows that dimV1 = dimV2. Further, all n-dimensional

vector spaces are isomorphic. An isomorphism from V to itself is called an auto-

morphism. The set of automorphisms of V is denoted Aut(V ). It is a group, with

composition of mappings L ◦ L′ as the law of multiplication. (Existence of inverse is

guaranteed since automorphisms are bijections).

Definition. The image of a linear transformation is

imL = f(V1) = {L(~v1)| ~v1 ∈ V1} ⊂ V2

and its kernel is the set of vectors of V1 which map to the null vector ~02 of V2:

kerL = {~v1 ∈ V1| L(~v1) = ~02} ⊂ V1 .

You can show that both the image and the kernel are vector spaces. I also quote a

couple of theorems without proofs.

Theorem 3.1 dimV1 = dim kerL+ dim imL.

Theorem 3.2 A linear map L : V → V is an automorphism if and only if kerL =

{~0}.

Note that a linear map is defined uniquely by its action on the basis vectors:

L(~v) = L(
n∑
i=1

vi~e
i) =

∑
i

viL(~ei)

then we expand the vectors L(~ei) in the basis {~ej} and denote the components by

Lji:

L(~ei) =
∑
j

Lji~e
j.

Now

L(~v) =
∑
i

∑
j

viLji~e
j =

∑
j

(∑
i

Ljivi

)
~ej ,
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so the image vector L(~v) has the components L(~v)j =
∑

i Ljivi. Let dimV1 =

dimV2 = n. The above can be written in the familiar matrix language:
L(~v)1

L(~v)2

...

L(~v)n

 =


L11 L12 · · · L1n

L21 L22 · · · Lnn
...

. . .
...

Ln1 · · · Lnn




v1

v2

...

vn

 .

We will often shorten the notation for linear maps and write L~v instead of L(~v), and

L1L2~v instead of L1(L2(~v)). From the above it should also be clear that the group

of automorphisms of V is isomorphic with the group of invertible n × n complex

matrices:

Aut(V ) = {L : V → V | L is an automorphism} ∼= GL(n,C) .

(The multiplication laws are composition of maps and matrix multiplication.)

Now we have the tools to give a definition of a representation of a group. The idea

is that we define the action of a group G on a vector space V . If V were just a set,

we would associate with every group element g ∈ G a permutation Lg ∈ Perm(V ).

However, we have to preserve the vector space structure of V . So we define the action

just as before, but replace the group Perm(V ) of permutations of V by the group

Aut(V ) of automorphisms of V .

Definition. A (linear) representation of a group G in a vector space V is a homo-

morphism D : G → Aut(V ), G 3 g 7→ D(g) ∈ Aut(V ). The dimension of the

representation is the dimension of the vector space dimV .

Note:

1. D is a homomorphism: D(g1g2) = D(g1)D(g2).

2. D(g−1) = (D(g))−1.

Example. Let G = C4 = {e, c, c2, c3} and V = R2. One possible representation of

G is D : G→ Aut(V ),

D(c) =

(
0 −1

1 0

)
, D(e) = D(c4) = (D(c))4 =

(
1 0

0 1

)
= 1.

Note that the matrix D(c) corresponds to a 90◦ rotation in the R2 plane.

We say that a representation D is faithful if KerD = {e}. Then g1 6= g2 ⇒
D(g1) 6= D(g2). Whatever the KerD is, D is always a faithful representation of the

quotient group G/KerD.

A mathematician would next like to classify all possible representations of a group.

Then the first question is when two representations are the same (equivalent).
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Definition. Let D1, D2 be representations of a group G in vector spaces V1, V2. An

intertwining operator is a linear map A : V1 → V2 such that the diagram

V1
A→ V2

D1(g) ↓ ↘ ↓ D2(g)

V1
A→ V2

commutes, i.e. D2(g)A = AD1(g) for all g ∈ G. If A is an isomorphism (we then need

dimV1 = dimV2), the representations D1 and D2 are equivalent. In other words,

there then exists a similarity transformation D2(g) = AD1(g)A−1 for all g ∈ G.

Example. Let dimV1 = n, V2 = Cn. Thus any n-dimensional representation is

equivalent with a representation of G by invertible complex matrices, the homomor-

phism D2 : G→ GL(n,C).

Definition. A scalar product in a vector space V is a map V ×V → C, (~v1, ~v2) 7→
〈~v1|~v2〉 ∈ C which satisfies the following properties:

i) 〈~v|µ1~v1 + µ2~v2〉 = µ1〈~v|~v1〉+ µ2〈~v|~v2〉

ii) 〈~v|~w〉 = 〈~w|~v〉∗

iii) 〈~v|~v〉 ≥ 0 and 〈~v|~v〉 = 0↔ ~v = ~0.

Given a scalar product, it is possible to normalize (e.g. by the Gram-Schmidt method)

the basis vectors such that 〈~ei|~ej〉 = δij. Such an orthonormal basis is usually the

most convenient on to use. The adjoint A† of an operator (linear map) A : V → V

is the one which satisfies 〈~v|A† ~w〉 = 〈A~v|~w〉 for all ~v, ~w ∈ V .

Definition. An operator (linear map) U : V → V is unitary if 〈~v|~w〉 = 〈U~v|U ~w〉
for all ~v, ~w ∈ V . Equivalently, a unitary operator must satisfy U †U = idV = 1. It

follows that the corresponding n×n matrix must be unitary, i.e. an element of U(n).

Unitary operators form a subgroup Unit(V ) of Aut(V ) ∼= GL(n,C).

Definition. An unitary representation of a group G is a homomorphism D :

G→ Unit(V ).

Definition. If U1, U2 are unitary representations of G in V1, V2, and there exists an

intertwining isomorphic operator A : V1 → V2 which preserves the scalar product,

〈A~v|A~w〉V2 = 〈~v|~w〉V1 for all ~v, ~w ∈ V1, the represenations are unitarily equivalent.
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Example. Every n-dimensional unitary representation is unitarily equivalent with

a representation by unitary matrices, a homomorphism G→ U(n).

As always after defining a fundamental concept, we would like to classify all pos-

sibilities. The basic problem in group representation theory is to classify all unitary

representations of a group, up to unitary equivalence.

3.2 Symmetry Transformations in Quantum Mechanics

We have been aiming at unitary representations in complex vector spaces because of

their applications in Quantum Mechanics (QM). Recall that the set of all possible

states of a quantum mechanical system is the Hilbert space H, a complex vector space

with a scalar product. State vectors are usually denoted by |ψ〉 as opposed to our

previous notation ~v, and the scalar product of two vectors |ψ〉, |χ〉 is denoted 〈ψ|χ〉.
Note that usually the Hilbert space is an infinite dimensional vector space, whereas

in our discussion of representation theory we’ve been focusing on finite dimensional

vector spaces. Let’s not be concerned about the possible subtleties which ensue, in

fact in many cases finite dimensional representations will still be relevant, as you will

see.

According to QM, the time evolution of a state is controlled by the Schrodinger

equation,

ı~
d

dt
|ψ〉 = H|ψ〉

where H is the Hamilton operator, the time evolution operator of the system. Suppose

that the system possesses a symmetry, with the symmetry operations forming a group

G. In order to describe the symmetry, we need to specify how it acts on the state

vectors of the system – we need to find its representation in the vector space of

the states, the Hilbert space. The norm of a state vector, its scalar product with

itself 〈ψ|ψ〉 is associated with a probability density and normalized to one, similarly

the scalar product 〈ψ|χ〉 of two states is associated with the probability (density) of

measurements. Thus the representations of the symmetry group G must preserve the

scalar product. In other words, the representations must be unitary. Moreover, in a

closed system probability is preserved under the time evolution. Thus, unitarity of

the representations must also be preserved under the time evolution.

We can summarize the above in a more formal way: if g 7→ Ug is a faithful unitary

representation of a group G in the Hilbert space of a quantum mechanical system,

such that for all g ∈ G
UgHU

−1
g = H (5)

where H is the Hamilton operator of the system, the group G is a symmetry group

of the system.

The condition (5) arises as follows. Suppose a state vector |ψ〉 is a solution of the

Schrodinger equation. In performing a symmetry operation on the system, the state
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vector is mapped to a new vector Ug|ψ〉. But if the system is symmetric, the new state

Ug|ψ〉 must also be a solution of the Schrodinger equation: i~(d/dt)Ug|ψ〉 = HUg|ψ〉).
But then it must be i~(d/dt)|ψ〉 = i~(d/dt)U−1

g Ug|ψ〉 = U−1
g HUg|ψ〉 = H|ψ〉 ⇒

U−1
g HUg = H.

Consider in particular the energy eigenstates |φn〉 at energy level En:

H|φn〉 = En|φn〉 .

An energy level may be degenerate, say with k linearly independent energy eigenstates

{|φn1, . . . , |φnk〉}. They span a k-dimensional vector space Hn, a subspace of the full

Hilbert space. If the system has a symmetry group,

HUg|φn〉 = UgH|φn〉 = EnUg|φn〉

so all states Ug|φn〉 are eigenstates at the same energy level En. Thus the represen-

tation Ug maps the eigenspace Hn to itself; in other words the representation Ug is

a k-dimensional representation of G acting in Hn. By an inverse argument, suppose

that the system has a symmetry group G. Its representations then determine the

possible degeneracies of the energy levels of the system.

3.3 Reducibility of Representations

It turns out that some representations are more fundamental than others. A generic

representation can be decomposed into so-called irreducible representations. That is

our next topic. Again, we start with some definitions.

Definition. A subset W of a vector space V is called a subspace if it includes all

possible linear combinations of its elements: if ~v, ~w ∈ W then λ~v + µ~w ∈ W for all

λ, µ ∈ C.

Let D be a representation of a group G in vector space V . The representation

space V is also called a G-module. (This terminology is used in Jones.) Let W be

a subspace of V . We say that W is a submodule if it is closed under the action of

the group G: ~w ∈ W ⇒ D(g)~w ∈ W for all g ∈ G. Then, the restriction of D(g) in

W is an automorphism D(g)W : W → W .

Definition. A representation D : G→ Aut(V ) is irreducible, if the only submod-

ules are {~0} and V . Otherwise the representation is reducible.

Example. Choose a basis {~ei} in V , let dimV = n. Suppose that all the matrices

D(g)ij = 〈~ei|D(g)vej〉 turn out to have the form

D(g) =

(
M(g) S(g)

0 T (g)

)
(6)
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where M(g) is a n1× n1 matrix, T (g) is a n2× n2 matrix, n1 + n2 = n, and S(g) is a

n1 × n2 matrix. Then the representation is reducible, since

W =


(
~v
~0

)
| ~v =

 v1

...

vn1


 (7)

is a submodule:

D(g)

(
~v
~0

)
=

(
M(g)~v + S(g)~0

T (g)~0

)
=

(
M(g)~v
~0

)
∈ W. (8)

If in addition S(g) = 0 for all g ∈ G, the representation is obviously built up by

combining two representations M(g) and T (g). It is then an example of a completely

reducible representation. We’ll give a formal definition shortly.

Definition. A direct sum V1⊕V2 of two vector spaces V1 and V2 consists of all pairs

(v1, v2) with v1 ∈ V1, v2 ∈ V2, with the addition of vectors and scalar multiplication

defined as

(v1, v2) + (v′1, v
′
2) = (v1 + v′1, v2 + v′2)

λ(v1, v2) = (λv1, λv2)

It is simple to show that dim(V1 ⊕ V2) = dimV1 + dimV2. If a scalar product has

been defined in V1 and V2, one can define a scalar product in V1 ⊕ V2 by

〈(v1, v2)|(v′1, v′2)〉 = 〈v1, v
′
1〉+ 〈v2|v′2〉 .

Suppose D1, D2 are representations of G in V1, V2, one can then define a direct sum

representation D1 ⊕D2 in V1 ⊕ V2:

(D1 ⊕D2)(g)(v1, v2) = (D1(g)v1, D2(g)v2) .

In this case it is useful to adopt the notation

V1 =

{(
~v1

~0

)}
; V2 =

{(
~0

~v2

)}
so that

V1 ⊕ V2 =

{(
~v1

~v2

)}
= {(~v1, ~v2)} .

Now the matrices of the direct sum representation are of the block diagonal form

(D1 ⊕D2)(g) =

(
D1(g) 0

0 D2(g)

)
.
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Definition. A representation D in vector space V is completely reducible if

for every submodule W ⊂ V there exists a complementary submodule W ′ such that

V = W ⊕W ′ and D ∼= DW ⊕DW ′ .

Comments.

1. According to the definition, we need to show that D is equivalent with the

direct sum representation DW ⊕ DW ′ . For the matrices of the representation,

this means that there must be a similarity transformation which maps all the

matrices D(g) into a block diagonal form:

AD(g)A−1 =

(
DW (g) 0

0 DW ′(g)

)
.

2. Strictly speaking, according to the definition also an irreducible representation

is completely reducible, as W = V,W ′ = {0} or vice versa satisfy the require-

ments. We will exclude this case, and from now on by completely reducible

representations we mean those which are not irreducible.

The goal in the reduction of a representation is to decompose it into irreducible

pieces, such that

D ∼= D1 ⊕D2 ⊕D3 ⊕ · · ·

(then dimD =
∑

i dimDi). This is possible if D is completely reducible. So, given

a representation, how do we know if it is completely reducible or not? Interesting

representations from quantum mechanics point of view turn out to be completely

reducible:

Theorem 3.3 Unitary representations are completely reducible.

Proof. Since we are talking about unitary representations, it is implied that the

representation space V has a scalar product. Let W be a submodule. We define

its orthogonal complement W⊥ = {~v ∈ V | 〈~v|~w〉 = 0 ∀~w ∈ W}. I leave it as an

excercise to show that V ∼= W ⊕W⊥. We then only need to show that W⊥ is also

a submodule (closed under the action of G). Let ~v ∈ W⊥, and denote the unitary

representation by U . For all ~w ∈ W and g ∈ G 〈U(g)~v|~w〉 = 〈U(g)~v|U(g)U−1(g)~w〉 =

〈~v|U †(g)U(g)U−1(g)~w〉 a
= 〈~v|U−1(g)~w〉 = 〈~v|U(g−1)~w〉 b

= 〈~v|~w′〉 c
= 0, where the step a

follows since U is unitary, step b since W is a G-module, and the step c is true since

~v ∈ W⊥. Thus U(g)~v ∈ W⊥ so W⊥ is closed under the action of G.

If G is a finite group, we can say more.

Theorem 3.4 Let D be a finite dimensional representation of a finite group G, in

vector space V . Then there exists a scalar product in V such that D is unitary.
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Proof. We can always define a scalar product in a finite dimensional vector space,

e.g. by choosing a basis and defining 〈~v|~w〉 =
∑n

i=1 v
∗
iwi where vi, wi are the compo-

nents of the vectors. Given a scalar product, we then define a ”group averaged” scalar

product 〈〈~v|~w〉〉 = 1
|G|
∑

g′∈G〈D(g′)~v|D(g′)~w〉. It is straightforward to show that 〈〈|〉〉
satisfies the requirements of a scalar product. Further,

〈〈D(g)~v|D(g)~w〉〉 =
1

|G|
∑
g′∈G

〈D(g′)D(g)~v|D(g′)D(g)~w〉

=
1

|G|
∑
g′∈G

〈D(g′g)~v|D(g′g)~w〉

=
1

|G|
∑
g′′∈G

〈D(g′′)~v|D(g′′)~w〉 = 〈〈~v|~w〉〉 .

In other words, D is unitary with respect to the scalar product 〈〈|〉〉.

Since we have previously shown that unitary representations are completely re-

ducible, we have shown the following fact, called Maschke’s theorem.

Theorem 3.5 (Maschke’s Theorem) Every finite dimensional representation of a

finite group is completely reducible.

3.4 Irreducible Representations

Now that we have shown that many representations of interest are completely re-

ducible, and can be decomposed into a direct sum of irreducible representations, the

next task is to classify the latter. We will first develop ways to identify inequivalent

irreducible representations. Before doing so, we must discuss some general theorems.

Theorem 3.6 (Schur’s Lemma) Let D1 and D2 be two irreducible representations

of a group G. Every intertwining operator between them is either a null map or an

isomorphism; in the latter case the representations are equivalent, D1
∼= D2.

Proof. Let A be an intertwining operator between the representations, i.e. the

diagram

V1
A→ V2

D1(g) ↓ ↘ ↓ D2(g)

V1
A→ V2

commutes: D2(g)A = AD1(g) for all g ∈ G. Let’s first examine if A can be an

injection. Note first that if KerA ≡ {~v ∈ V1| A~v = ~02} = {~01}, then A is an injection

since if A~v = A~w then A(~v − ~w) = 0 ⇒ ~v − ~w ∈ KerA = {~01} ⇒ ~v = ~w. So

what is KerA? Recall that KerA is a subspace of V1. Is it also a submodule, i.e.

closed under the action of G? Let ~v ∈ KerA. Then AD1(g)~v = D2(g)A~v = ~02,
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hence D1(g)~v ∈ KerA i.e. KerA is a submodule. But since D1 is an irreducible

representation, either KerA = V1 or KerA = {~01}. In the former case all vectors of

V1 map to the null vector of V2, so A is a null map A = 0. In the latter case, A is

an injection. We then use a similar reasoning to examine if A is also a surjection.

Let ~v2 ∈ ImA ≡ {~v ∈ V2| ∃~v1 ∈ V1 s.t. ~v = A~v1}. Then we can write ~v2 = A~v1.

Then D2(g)~v2 = D2(g)A~v1 = A(D1(g)~v1) so also D2(g)~v2 ∈ ImA. Thus, ImA is a

submodule of V2. But since D2 is irreducible, either ImA = {~02} i.e. A = 0, or

ImA = V2 i.e. A is a surjection. To summarize, either A = 0 or A is a bijection i.e.

an isomorphism (since it is also a linear operator).

Corollary. If D is an irreducible representation of a group G in (complex) vector

space V , then the only operator which commutes with all D(g) is a multiple of the

identity operator.

Proof. If ∀g ∈ G AD(g) = D(g)A, then for all µ ∈ C also (A − µ1)D(g) =

D(g)(A− µ1). According to Schur’s lemma, either (A− µ1)−1 exists for all µ ∈ Cor

(A − µ1) = 0. However, it is always possible to find at least one µ ∈ C such

that (A − µ1) is not invertible. In the finite dimensional case this is follows from

the fundamental theorem of algebra, which guarantees that the polynomial equation

det(A− µ1) = 0 has solutions for µ. (The infinite dimensional case is more delicate,

but turns out to be true as well). So it must be A = µ1.

We will next discuss a sequence of theorems, starting from the rather abstract

fundamental orthogonality theorem and then moving towards its more intuitive and

user-friendly forms.

Theorem 3.7 (Fundamental Orthogonality Theorem) Let D1 and D2 be two

unitary irreducible representations of a group G in vector spaces V1 and V2. Fix basis

{vk1 , . . . , vkmk} (with k = 1, 2) in the vector spaces Vk. Write a linear map T : V2 → V1

as a matrix (Tij) in these basis. Then∑
g∈G

D1
ij(g)D2

kl(g
−1) =

n

m1

Til(T
−1)kj · δ

where n = |G|, the representations Dk(g) are written as matrices in the corresponding

basis, and

δ =

{
0 when D1, D2 are nonequivalent

1 when D2(g) = T−1D1(g)T for all g ∈ G.
.

Proof. 1) Assume that D1, D2 are nonequivalent. Let M be an arbitrary m1 ×m2

matrix and set

F =
∑
g

D1(g)MD2(g−1).
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Then D1F = FD2 by a direct calculation and so F = 0 by Schur’s Lemma. Choosing

now Mab = δajδbk and taking the matrix element Fil = 0 gives the claim in the

nonequivalent case.

2) Let then D2(g) = T−1D1(g)T for all g ∈ G for a linear isomorphism T : V2 →
V1. In this case m1 = m2. Let us define the matrices M,F as in the case (1). Now

(FT−1)D1 = FD2T−1 = D1(FT−1)

and so again by Schur’s Lemma FT−1 = λ · 1. We write λ = λjk since the constant

λ depends on the choice of indices in the definition of M. Now we have

λjkTil =
∑
g

D1
ij(g)D2

kl(g
−1).

Multiplying this equation with (T−1)li and summing over i, l we get

λjkm1 =
∑

g

∑
i,l(T

−1)liD
1
ij(g)D2

kl(g
−1)

=
∑

g

∑
l(D

2(g)T−1)ljD
2
kl(g

−))

=
∑

g(D
2(g−1)D2(g)T−1)kj = n · (T−1)kj.

In the unitary case D2
kl(g

−1) = D2
lk(g) and the left hand side can be interpreted

as a scalar product of two vectors, then the right hand side is an orthogonality re-

lation for them. Namely, consider a given representation (labeled by α), and the

ijth elements of its representation matrices. They form a |G|-component vector

(D
(α)
ij (g1), D

(α)
ij (g2), . . . , D

(α)
ij (g|G|)) where gi are all the elements of the group G. So we

have a collection of vectors, labeled by α, i, j. Then the case (1) is an orthogonality

relation for the vectors, with respect to the scalar product 〈~v|~v′〉 =
∑|G|

i=1 v
∗
i v
′
i. How-

ever, in a |G| dimensional vector space there can be at most |G| mutually orthogonal

vectors. The index pair ij has (dimD(α))2 possible values, so the upper bound on the

total number of the above vectors is∑
α

(dimD(α))2 ≤ |G| ,

where the sum is taken over all possible unitary inequivalent representations (labeled

by α). In fact, the sum turns out to be equal to the order |G|. This theorem is due

to Burnside: ∑
α

(dimD(α))2 = |G|.

We shall prove it later.

Burnside’s theorem helps to rule out possibilities for irreducible representations.

Consider e.g. G = S3, |S3| = 6. The possible dimensions of inequivalent irreducible

representations are 2,1,1 or 1,1,1,1,1,1. It turns out that S3 has only three inequivalent

irreducible representations (show it). So the irreps have dimensions 2,1,1.
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3.5 Characters

Characters are a convenient way to classify inequivalent irreducible representations.

To start with, let {~e1, . . . , ~en} be an orthonormal basis in a n-dimensional vector

space V with respect to scalar product 〈|〉.

Definition. A trace of a linear operator A is

tr A ≡
n∑
i=1

〈~ei|A~ei〉 .

Note. Trace is well defined, since it is independent of a choice of basis. Let

{~e′1, . . . , ~e′n} be another basis. Then tr A =
∑

i〈~ei|A~ei〉 =
∑

ij〈~ei|~e
′j〉〈~e′j|A~ei〉 =∑

ij〈A†~e
′j|~ei〉〈~ei|~e′j〉 =

∑
ij〈A†~e

′j|e′j〉 =
∑

j〈~e
′j|A~e′j〉. Recall also that associated

with the operator A is a n× n matrix with components Aij = 〈~ei|A~ej〉. Thus tr A is

equal to the trace of the matrix.

Now, let D(α)(g) be an unitary representation of a finite group G in V .

Definition. The character of the representation D(α) is the map

χ(α) : G→ C, χ(α)(g) = tr D(α)(g) .

Note. Equivalent representations have the same characters: tr (AD(α)A−1) = tr (A−1AD(α)) =

tr D(α), where we used cyclicity of the trace: tr ABC = tr CAB = tr BCA etc.

Recall that conjugation Lg(g0) = gg0g
−1 is one way to define how G acts on itself,

the orbits {gg0g
−1| g ∈ G} were called conjugacy classes. Since tr D(gg0g

−1) =

tr (D(g)D(g0)D−1(g)) = tr D(g0), group elements related by conjugation have the

same character (again, use cyclicity of trace). So characters can be interpreted as

mappings

χ(α) : {conjugacy classes of G} → C

Note also that the character of the unit element is the same as the dimension of the

representation: χ(α)(e) = tr D(α)(e) = tr idV = dimV = dimD(α).

Recall then the fundamental orthogonality theorem, in its basis-dependent form,

Theorem 3.7. Now we are going to set i = j, k = l in 3.7 and sum over i and k. The

left hand side becomes∑
g∈G

∑
i

D(α)
ii(g)

∑
k

D
(β)
kk (g) =

∑
g∈G

χ(α)(g)χ(β)(g) .

The right hand side becomes

|G|
dimD(α)

δαβ
∑
ik

δikδik =
|G|

dimD(α)
δαβ
∑
i

δii = |G| δαβ .
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We have derived an orthogonality theorem for characters:∑
g∈G

χ(α)(g)χ(β)(g) = |G| δαβ . (9)

It can be used to analyze the reduction of a representation. In the reduction of

a representation D, it may happen that an irreducible representation D(α) appears

multiple times in the the direct sum:

D = D(1) ⊕D(1) ⊕D(1) ⊕D(2) ⊕D(3) ⊕ · · ·

Then we shorten the notation and multiply each irreducible representation by an

integer nα to account for how many times D(α) appears:

D = 3D(1) ⊕D(2) ⊕D(3) ⊕ · · · =
⊕
α

nαD
(α) .

nα is called the multiplicity of the representation D(α) in the decomposition. Since

tr is a linear operation, obviously the characters of the representation satisfy

χ =
∑
α

nαχ
(α)

with the same coefficients nα. If we know the character χ of the reducible representa-

tion D, and all the characters χ(α) of the irreducible representations, we can calculate

the multiplicities of each irreducible representation in the decomposition by using the

orthogonality theorem of characters:

nα =
1

|G|
∑
g

χ(α)(g)χ(g) .

Then, once we know all the multiplities, we know what is the decomposition of the

representation D. In practise, characters of finite groups can be looked up from

character tables. You can find them e.g. in Atoms and Molecules, by M. Weissbluth,

pages 115-125. For more explanation of construction of character tables, see Jones,

section 4.4. You will work out some character tables in a problem set.

Again, the orthogonality of characters can be interpreted as an orthogonality

relation for vectors, with useful consequences. Let C1, C2, . . . , Ck be the conjugacy

classes of G, denote the number of elements of Ci by |Ci|. Then (9) implies∑
{Ci}

|Ci|χ(α)(Ci)χ
(β)(Ci) = |G| δαβ . (10)

Consider then the vectors ~vα = (
√
|C1|χ(α)(C1), . . . ,

√
|Ck|χ(α)(Ck)). The number of

such vectors is the same as the number of irreducible representations. On the other

hand, (10) tells that the vectors are mutually orthogonal, so the can be no more of

them than the dimension of the vector space k, the number of conjugacy classes.
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Theorem 3.8 The number of nonequivalent unitary irreducible representations of a

finite group is less or equal to the number of its conjugacy classes.

If the group is Abelian, the conjugacy class of each element contains only the

element itself: gg0g
−1 = g0gg

−1 = g0. So the number of conjugacy classes is the same

as the order of the group |G|, this is then also the upper bound of the number of

unitary irreducible representations.

Theorem 3.9 All unitary irreducible representations of an Abelian group are one

dimensional.

Proof. In a representation D of an abelian group D(g) commutes with any other

element D(g′), so by Schur’s Lemma D(g) = λg · 1 for some constant λg ∈ C. But

now any 1-dimensional subspace of the representation space is invariant, so the whole

representation must be 1-dimensional by the irreducibility.

We introduce now an important algebraic tool in the representation theory of finite

groups, namely the group algebra. LetG be any finite group and consider formal linear

combinations
∑

g∈G ag ·g where ag ∈ C. Note that here a sum g1 +g2 does NOT mean

a group multiplication even when G is abelian. Formal linear combinations can be

added as
∑

g ag · g +
∑

g bg · g =
∑

g(ag + bg) · g and multiplied naturally by complex

numbers. In addtion, we define a multiplication as

(
∑
g

ag · g) · (
∑
g′

bg′ · g′) =
∑
g,g′

agbg′ · gg′ =
∑
h

(
∑
g

agbg−1h) · h

which by a direct computation is associative. We denote by A(G) the group algebra

of G. As a vector space, its dimension is equal to |G|.
Given a representation D of G we can extend it to a representation of the algebra

A(G) by setting

D(
∑
g

ag · g) =
∑
g

agD(g)

where the sum on the right-hand-side is simply interpreted as a sum of matrices. In

this way representations of G and representations of A(G) are in 1-1 correspondence.

The regular representation of G is defined as the representation in A(G) (viewed as a

vector space!) defined by

D(g)x = D(g)
∑
h

ah · h = gx =
∑
h

ah · gh =
∑
h

ag−1h · h.

The dimension of D is |G|. This representation is faithful: For example, D(g)e =

ge = g = D(g′)e if and only if g = g′. In general, it is reducible,

D = ⊕iqiD(i)
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where the D(i)’s are nonequivalent irreducible representations and qi = 0, 1, 2, . . . . By

the orthogonality of characters we know that

qi =
1

|G|
∑
g

χ(g)χ(i)(g)

where χ is the character of D and χ(i) is the character of D(i). Since χ(g) = 0 when

g 6= e and χ(e) = |G| we find

qi =
1

|G|
|G|χ(i)(e) = trD(i)(e)

and thus qi is equal to mi = dimD(i).

Theorem 3.10 (Burnside’s Theorem) Let mi be the dimensions of the nonequivalent

irreducible representations of a finite group G. Then∑
i

m2
i = |G|.

Proof. Using the decomposition

χ =
∑

qiχ
(i)

for the character of the regular representation we get

|G| = 1

|G|
∑
g

χ(g)χ(g) =
1

|G|
∑
g

∑
i,j

qiqjχ(i)(g)χ(j)(g) =
∑
i,j

qiqjδi,j =
∑
i

q2
i =

∑
i

m2
i

according to the orthogonality relations of the characters.

Denote by Gi ⊂ G the different conjugacy classes in G, with i = 1, 2, . . . , r. By

abuse of notation, we also denote Gi =
∑

g∈Gi g ∈ A(G) the corresponding element

in the group algebra. Since aGiGja
−1 = aGia

−1aGia
−1 = GiGj the product (in A(G)

!) of two conjugacy classes can be written as

GiGj =
∑
k

hkijGk

where the hkij’s are nonnegative integers. We define G−1
i =

∑
g∈Gi g

−1 and so G−1
i

is an element in A(G) corresponding to another conjugacy class Gi′ . Denote by ni
the number of elements in the conjugacy class Gi; clearly ni = ni′ . Denote by G1 the

conjugacy class containing only the neutral element e. Now GiGi′ contains the element

e exactly ni times, so h1
ii′ = ni. On the other hand, when j 6= i′ then GiGj does not

contain the element e and so h1
ij = 0 for j 6= i′. For an irreducible representation D(i)

we set

T
(i)
j =

∑
g∈Gj

D(i)(g) = D(i)(Gj).
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By the representation property T
(i)
j D(i)(g) = D(i)(g)T

(i)
j for all g ∈ G and thus by

irreducibility

T
(i)
j = λj · 1

for some complex number λj. Since χi)(g) = χ(i)(h) when g, h are in the same conju-

gacy class, we have

trT
(i)
j = mi · λj = tr

∑
g∈Gi

D(i)(g) = njχ
(i)
j

where mi is the dimension of D(i) and χ
(i)
j = χ(i)(g) for any g ∈ Gj. Thus

λj =
nj
mi

χ
(i)
j = nj

χ
(i)
j

χ
(i)
1

.

Using

T
(i)
j T

(i)
k =

∑
a∈Gj ,b∈Gk D

(i)(a)D(i)(b) =
∑
D(i)(ab) =

= D(i)(GjGk) =
∑r

s=1 h
s
jkD

(i)
s (Gs) =

∑r
s=1 h

s
jkT

(i)
s

we get λjλk =
∑

s h
s
jkλs, that is,

njnkχ
(i)
j χ

(i)
k =

r∑
s=1

hsjkχ
(i)
s nsχ

(i)
1

and so

njnk

p∑
i=1

χ
(i)
j χ

(i)
k =

r∑
s=1

hsjk

p∑
i=1

χ(i)
s χ

(i)
1 ns

where D(i) are all nonequivalent irreducible representations of G, with i = 1, 2, . . . , p.

Using the formula

χ =

p∑
i=1

miχ
(i),

where mi is the dimension of D(i), and the fact that χ(e) = |G| and χ(g) = 0 for

g /∈ G1 we have
∑

imiχ
(i)
j = χj, which is equal to |G| for j = 1 and zero for j 6= 1.

This implies

nknl
∑
i

χ
(i)
k χ

(i)
l =

r∑
s=1

p∑
i=1

hsklnsmiχ
(i)
s =

∑
s

hsklns|G|δs,1 = h1
kln1|G| = nk|G|δkl′ ,

where ni = |Gi| and χ
(i)
j = χ(i)(g) for g ∈ Gj. Thus we have proven

Theorem 3.11 The characters of the inequivalent irreducible representations of a

finite group G satisfy the orthogonality relations∑
i

χ
(i)
k χ

(i)
l =

[G|
nl
· δkl′ ,

where the index j′ corresponds to the conjugacy class G−1
j .
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Theorem 3.12 The number of irreducible inequivalent representations of a finite

group G is equal to the number of conjugacy classes in G.

Proof. Define the vectors χi = (χ
(1)
i , . . . , χ

(p)
i ) ∈ Cp. From the previous Theorem

follows that the vectors χ1, . . . , χr are linearly independent, so r ≤ p. On the other

hand, we already know that the number r of inequivalent representations is less or

equal to the number p of conjugacy classes, Theorem 3.8.

Theorem 3.13 The matrix elements {D(i)
jk (g)} of inequivalent irreducible (unitary)

representations of a finite group G form a complete set of functions on G. If f : G→ C
is any function on G then we can write

f(g) =
∑
i,j;α

a(i, j;α)D
(α)
ij (g)

where

a(i, j;α) =
dimD(α)

|G|
∑
g

f(g)D(α)
ij(g).

Proof. From Theorem 3.7 follows that the matrix elements of the different irre-

ducible representation form an orthogonal system. On the other hand, on G there

are exactly |G| linearly independent functions; but we know that the number of matrix

elements =
∑
m2
i = |G|.

This theorem can be extended to much wider class of groups than the finite groups,

namely the compact groups. The class of compact groups includes many important

groups in the applications like the groups U(n), SU(n), SO(n), Sp(2n,C)∩U(2n), .....

We state the Theorem without proofs.

As a tool we need the Haar measure on a compact group G. We need a volume

measure on G in order to define integration of functions, which is in turn necessary

since for infinite groups we cannot use the usual summation over group elements, like

in the previous theorems for finite groups; instead, we have to use integration over

the group, ∑
g∈G

f(g) 7→
∫
G

f(g)dµG.

There is a general theorem which guarantees the existence of a left (or right) invariant

measure for all locally compact groups. A locally compact group is a topological group

(the multiplication and taking the inverse are continuous operations) such the the

neutral element has a compact neighborhood. Nonlocally compact groups turn up

usually only in infinite-dimensional situations. All the matrix groups which we have

met before are locally compact. A measure is left invariant if∫
G

f(g)dµG =

∫
G

f(g0g)dµG
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for all g0 ∈ G and for all integrable functions f. One defines a right invariant measure

in a similar way.

Example 1 In the case of the matrix group GL(n,R) the integration is simply

defined as ∫
G

f(g)dµG =

∫
f(g)

|det(g)|n
∏
i,j

dgij,

as the usual (Lebesgue, or in the case of a continuous function, Riemann) integration

over the matrix entries gij ∈ R.
Example 2 The group U(1) = S1 is compact and the measure is the standard

(normalized) measure dφ
2π

on the circle.

Example 3 The group SU(2) can be identified as the 3-dimensional unit sphere

S3 and the Haar measure is the (normalized) volume element, evaluated using the

standard rotation invariant metric coming from S3 ⊂ R4.

In the case of a compact group there is a measure which is at the same time left and

right invariant, and it is uniquely defined up to positive scaling factor dµG 7→ λ ·dµG.
We can then normalize the measure such that the volume of G is equal to one.

Theorem 3.14 The matrix elements of the different irreducible unitary representa-

tions of a compact group G satisfy∫
G

D(α)
ij(g)D

(β)
kl (g)dµG =

1

dimD(α)
δα,βδi,kδj,l

where dµG is the (normalized) Haar measure on G. In addition, any square-integrable

complex function f on G can be uniquely written as a linear combination of the matrix

elements, where the coefficients in the expansion of f are given as

a(i, j;α) = dimD(α) ·
∫
G

f(g)D(α)
ij(g)dµG.

As in the case of a finite group we can define the regular representation of a

compact group as the representation in the Hilbert space H = L2(G, dµ) of complex

valued square-integrable functions given by [D(g0)f ](g) = f(g−1
0 g). By the above

theorem, the regular representation is a direct sum of the irreps D(α), each appearing

with the multiplicity = dim D(α) in the decomposition.

Note that in the case of G = U(1) = S1 the above theorem gives just the

Fourier decomposition of a square-integrable function! All the representations are

1-dimensional and are given as g 7→ D(g) = gn = e2πinφ for n ∈ Z. The generalization

to other (Lie) groups leads to a branch of mathematics called harmonic analysis on

Lie groups.
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4 Representations of the symmetric group

4.1 Conjugacy classes in Sn

Recall the notation for elements in the symmetric group Sn :

f =

(
1 2 . . . n

f1 f2 . . . fn

)
denotes the map k 7→ fk in the set {1 2 3 . . . n}. The p-cycles in Sn are denoted by

(i1 i2 . . . ip) are permutations where i1 7→ i2, i2 7→ i3 .... and ip 7→ i1. We have shown

that any permutation is a product of disjoint cycles. Furthermore, a cycle (i1 . . . ip)

is a product of transpositions,

(i1 . . . ip) = (i1i2)(i2i3) . . . (ip−1ip).

If f ∈ Sn is an arbitrary permutation then

f(i1i2 · · · ip)f−1 = (fi1fi2 · · · fip)

as can be seen directly from the definitions.

We denote by [n1, n2, . . . , np] the set of elements in Sn which can be written as

products of disjoint cycles of lengths n1, n2, . . . , np.

Theorem 4.1 The conjugacy classes in Sn are subsets of the type [n1, n2, . . . , np]

where we can choose n1 ≥ n2 ≥ · · · ≥ np with n1 + n2 + · · ·+ np = n.

Proof. We have seen above that the sets [n1, n2, . . . , np] are conjugacy classes. On

the other hand, given an element g in a conjugacy class, we can write it as a a

product of cycles in some [n1, n2, . . . , np]. . Any other element in the same conjugacy

class is then of the form fgf−1 for f ∈ Sn and these are all included in the same

[n1, n2, . . . , np].

It follows now from the Theorem 3.12 that the number of nonequivalent irreducible

representations of Sn is equal to the number of partitions n = n1 + n2 + · · · + np to

positive integers with n1 ≥ n2 ≥ · · · ≥ np. In particular, for n = 2 we have two irreps

and for n = 3 the number is 3.

4.2 A List of irreducible representations of Sn

We give the description of all nonequivalent irreducible representations of Sn without

proof. For proofs, see for example the monograph D.E. Robinson: Representation

Theory of the Symmetric Group.

Let n1 ≥ n2 ≥ · · · ≥ np be a partition of n to positive integers. We first form

the Young pattern with p rows as given in the Figure 1, with row lengths ni. The
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Young tableau is then formed by filling the rows with integers 12 · · ·n. According to

the following rules:

(1) In each row the numbers appear in increasing order from left to right

(2) In each column the numbers appear in increasing order from top to bottom

(3) Each number appears exactly once.

See the Figure (2).
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Theorem 4.2 The number of different Young tableau corresponding to a partition

[n1, n2, . . . , np] is equal to
n!

l1!l2! · · · lp!
∏
i<k

(li − lk)

where li = ni + p− i with i = 1, 2, . . . , p.

Label the rows by 1, 2, 3, . . . from to to bottom. Denote by si the label of that row

which contains the integer i. We denote this set by |s1, s2, . . . , sm >, the Yamanouchi

symbol of the Young tableau. By the ordering principle of the integers in the rows of

a Young tableau, the Yamanouchi symbol completely characterizes a Young tableau.

Next we define a complex vector space V = V [n1, n2, . . . , np] corresponding to a

given Young pattern. The basis is labelled by the Young tableaux corresponding to

the Young pattern. We can as well label the basis vectors in V by the Yamanouchi

symbols |s1, s2, . . . , sn > .

A representation of Sn in V is now defined as follows. A transposition (k − 1, k)

acts in V as a linear operator D(k − 1, k) such that

D(k − 1, k)|s1, s2, . . . , sn >=
+|s1, s2, . . . , sn > if k − 1, k appear in the same row

−|s1, s2, . . . , sn > if k − 1, k are located in the same column
1
h
|s1, s2, . . . , sn > +

√
1− h−2|s1, . . . , sk, sk−1, . . . , sn > otherwise ,

where the hook h is the distance between the numbers k, k − 1 in the given Young

tableau; that is, it is ± the number of steps in the horizontal direction + the number

of steps in the vertical direction needed to reach k from the location of k − 1; we

choose the positive sign if if sk < sk−1 and the negative sign for sk > sk−1. See the

Figure 3.

Since every element in Sn can be written as a product of transpositions we get an

action for every permutation as a linear operator in V.

Theorem 4.3 The above construction defines an irreducible representation of Sn in

V = V [n1, n2, . . . , np] for every partition of n as a sum of decreasing sequence of

positive integers. Furthermore, these representations are nonequivalent and they form

a complete set of nonequivalent irreducible representations of Sn.

We can define an inner product in the vector space V be declaring that the basis

vectors |s1, s2, . . . , sn > corresponding to the different Yamanouchi symbols form an

orthonormal basis. This representation is unitary (Exercise: Check this from the

defining relations!)

Given any group G and a subgroup H, a representation D of G can be restricted

to the subgroup giving naturally a representation of H. In a typical case, even when
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D is irreducible, its restriction D|H is not irreducible. In the case of the symmetric

group we have

Theorem 4.4 When an irreducible representation of Sn corresponding to a Young

pattern [n1, n2, . . . , np] is restricted to the subgroup Sn−1 ⊂ Sn (those elements which

leave n fixed) it is a direct sum of irreducible representations of Sn−1 corresponding

to Young tableaux [m1,m2, . . . ,mq] such that there exists 1 ≤ i ≤ p with mj = nj for

j 6= i and mi = ni − 1. Each of these representations occur with multiplicity = 1 in

the decomposition.

5 Some tensor analysis and representation theory

5.1 Tensor products of representations and the symmetric

group

We shall explain some constructions of representations of classical Lie groups without

proofs. By classical groups one means the matrix groupsGL(n,R), GL(n,C) and their

compact subgroups SO(n), U(n), SU(n) and the symplectic group Sp(2n) (both the

real and the complex form). There is a close relation between representations and

the corresponding Lie algebras (see the Exercises to the Section 2). The Lie algebra

of a matrix group G consists of matrices X such that etX ∈ G for all t ∈ R. So given

a representation D of a G in a vector space V we can define the matrices

d(X) =
d

dt
D(etX)|t=0

and then

[d(X), d(Y )] = d[[X, Y ]).

This relation follows from the equation

D(etX)D(esY )D(e−tX)D(e−sY ) = D(etXesY e−tXe−sY )

after a differentiation with respect to both t, s at t = s = 0. Starting from a repre-

sentation d(X) of a Lie algebra one could try to form a representation of the corre-

sponding group using the exponential map g = eX 7→ D(g) = ed(X). However, there

might be a problem with this construction since the exponential map is 1-1 only in

some neighborhood of the point X = 0. We state without a proof:

Theorem 5.1 Let G be a simply connected Lie group (i.e., a Lie group where any

continuous loop can be continuously deformed to a point) and g its Lie algebra. Then

any finite-dimensional representation of g can be exponentiated to a representation of

the group G.
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Tensor analysis provides some very simple constructions of representations. It is

somewhat harder to see that we get all irreducible representations this way. The

reader is recommended to look at the classical text H. Weyl: Classical Groups and

their Invariants and Representations.

A useful tool in the tensor analysis comes from physics: The use of the algebra of

bosonic or fermionic creation and annihilation operators. We shall briefly discuss this

method, through examples, in the end of the section. The linear groups SU(n) and

SO(n) appear in physics often as symmetries of many particle systems. This could be

for example a nucleus exhibiting various kinds of particle interchange and combined

rotational symmetries. If the symmetry is exact, that is, the group commutes with

the hamiltonian, then one can classify eigenvectors of the hamiltonian belonging to

the same eigenvalue using the representation theory of the symmetry group G. Even

in the case when the symmetry is only approximate it might still be of advantage to

classify the physical states according to representations of G (’supermultiplets’).

Let V,W be a pair of finite-dimensional vector spaces (over real or complex num-

bers). The tensor product V ⊗ W is then a vector space of dimension nm, where

n = dimV and m = dimW. All vector spaces of the same dimension are isomorphic,

so the construction of V ⊗ W is not critical. It suffices to say that given a basis

{v1, . . . , vn} in V and a basis {w1, . . . , wm} in W then a basis in V ⊗ W is given

by the symbols vi ⊗ wj. By linearity of the tensor product, if v =
∑
aivi ∈ V and

w =
∑

j bjwj then the product v⊗w ∈ V ⊗W is defined as v⊗w =
∑

i,j aibjvi⊗wj.
For those readers who are more familiar with linear algebra, the tensor product can

be defined in a basis independent way as the vector space Hom(V ∗,W ) of linear maps

from the dual vector space V ∗ to W. Given linear maps A : V → V and B : W → W

one can define a linear map A⊗B : V ⊗W → V ⊗W by

(A⊗B)(v ⊗ w) = A(v)⊗B(w).

To see how the symmetry operates on many particle systems let us assume first

that G is represented in a vector space V (’single particle space’) with basis vectors

v1 . . . vn. A 2-particle system is then described using the tensor product space V ⊗ V
carrying the tensor product representation of G. Tensors can be split two antisym-

metric and symmetric tensors. Writing a general element of V ⊗V as t =
∑
tijvi⊗vj

we can split

t = a+ s, aij =
1

2
(tij − tji), sij =

1

2
(tij + tij),

where s is symmetric and a is antisymmetric in the indices.

Writing a group element g ∈ G as a matrix gij acting on the coordinates in

the vi basis we observe that in the tensor product representation the G action is

t′ij = giagjbtab (sum over repeated indices) and therefore by linearity

a′ij = giagjbaab, s′ij = giagjbsab,
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i.e. the antisymmetric and symmetric parts transform separately. We have therefore

two subrepresentations, one in the space of antisymmetric tensors and one in the

space of symmetric tensors.

In general, the antisymmetric and symmetric parts can be further reduced to

irreducible components. There are some exceptions, most notably the case when

G = SU(n) or G = GL(n) acting in V through the defining representation. In these

cases one can prove that the representations A and S are already irreducible.

One can go on and consider 3-, 4-,...n-particle systems. For example, in quan-

tum mechanics a system of indistinguishable half-integer spin particles (fermions, e.g.

electrons) obeys the Pauli exclusion principle: no two particles should be in the same

state. Mathematically, this means that the system is described by elements in the

completely antisymmetric tensor product space ΛkV. Here k is the number of parti-

cles. The number of particles cannot exceed the number of one-particle levels n for

combinatorial reasons; there are no completely antisymmetric tensors of rank k > n.

For k ≤ n the number of independent antisymmetric tensors is

N(k, n) =
n!

k!(n− k)!

This is the number of ways how one can select k different numbers from the sequence

1, 2, . . . , n. Each such selection defines a basis vector in ΛkV by

(i1, . . . , ik) 7→
∑
σ

ε(σ)vi1 ⊗ · · · ⊗ vik

where the sum is over all permutations of k letters and ε(σ) = ±1 depending whether

the permutation is a product of even or odd number of transpositions. It is clear that

any antisymmetric tensor can be written uniquely as a linear combination of these

elementary tensors.

In the case of integral spin particles (bosons) there is no Pauli exclusion principle;

instead, the multiparticle wave function should be completely symmetric with respect

to the interchange of arguments (Bose statistics). That is, the k particle states should

be elements in the completely symmetrized tensor product SkV. A complete basis in

SkV is obtained by symmetrizing the vectors vi1 ⊗ · · · ⊗ vik with i1 ≤ i2 ≤ · · · ≤ ik.

Now i1 < i2 + 1 < i3 + 2 · · · < ik + k − 1 are different positive integers in the set

1, 2, . . . , n+ k − 1 and therefore the dimension

dim(SkV ) =
(n+ k − 1)!

k!(n− 1)!
.

In situations where not all of the particles are indistinguishable one has to deal

with tensors of mixed symmetry type. For example, we could consider third rank

tensors obtained from arbitrary tensors by an application of the mixed symmetry

operator

R = (1− (13))(1 + (12)),
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where (ij) means the transposition of the i:th and of the j:th index; thus

(Rt)i1i2i3 = ti1i2i3 + ti2i1i3 − ti3i2i1 − ti2i3i1 .

Note that the order of permutations is important. We denote tensors Rt symbolically

by the Young diagram
i1 i2
i3

The completely symmetric tensors are denoted by i1 i2 . . . ik and the completely

antisymmetric ones by
i1
i2
.

.

ik

As another example of tensors of mixed symmetry type consider the Young diagram

i1 i2
i3 i4

The corresponding Young symmetrizer is R = QP where

P = (1 + (12))(1 + (34)) and Q = (1− (13))(1− (24)).

The general principle is the following: To each row in the Young diagram one as-

sociates a symmmetrizer in the corresponding tensor indices. Then one forms the

product of all row symmetrizers; here the order is unimportant because the different

rows do not mix. To each column one associates an antisymmerizer in the indices

included in the column. Finally one multiplies by the product of antisymmetrizers

from the left. So in the case of the above diagram one has

(Rt)i1i2i3i4 = ti1i2i3i4 − ti3i2i1i4 − ti1i4i3i2 + ti3i4i1i2

+ti2i1i3i4 − ti2i3i1i4 − ti4i1i3i2 + ti4i3i1i2

+ti1i2i4i3 − ti3i2i4i1 − ti1i4i2i3 + ti3i4i2i1

+ti2i1i4i3 − ti2i3i4i1 − ti4i1i2i3 + ti4i3i2i1

All the permutation operators R commute with the linear group transformations

g ∈ G. For this reason a tensor of the type Rt is transformed into a similar tensor

Rt′. Thus the space RV k of tensors of type R carries a representation of the group

G. In fact, one can show that in the case of G = SU(n) or GL(n) in the defining

representation this is irreducible. Not so in the case of SO(n). The reason is simple:

For the orthogonal group there are geometric invariants formed by the partial traces
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tjji1i2... of the tensors. For example, all the tensors for which this partial trace van-

ishes form an invariant subspace (the orthogonal transformations preserve the real

euclidean inner product).

The operators R are idempotents modulo a normalization factor. This means

that R2 = nR · R for some integer nR. Exercise: Prove this in the case of the 3-

box Young diagram above. The idempotent property means that (the normalized)

symmetrization operators R act as projectors in the space of all tensors, projecting

to the various irreducible representations of SU(n) (or GL(n)).

Let g 7→ D(i)(g) be representations of a matrix group G in vector spaces Vi,

i = 1, 2. When g = g(t) = etX for some X ∈ g then in the tensor product we have

d
dt
|t=0(D(1) ⊗D(2))(etX)(v1 ⊗ v2) =

d
dt
|t=0D

(1)(g)v1 ⊗D(2)(g)v2 = d(1)(X)v1 ⊗ v2 + v1 ⊗ d(2)(X)v2

so

d(X) = d(1)(X)⊗ 1 + 1⊗ d(2)(X)

where d denotes the representation of g in V1 ⊗ V2 corresponding to the group repre-

sentation D = D(1) ⊗D(2).

Example G = SU(3), defining representation in V = C3. Consider representa-

tions of SU(3) also as representations of its Lie algebra su(3), and also as its complexi-

fication A2 (by taking complex linear combinations of the elements in the Lie algebra).

The Young diagram
i1 i2
i3

gives the adjoint representation. The adjoint representa-

tion of any Lie algebra g is defined as the natural representation in the vector space

g, as adx(y) = [x, y] with x ∈ g and also y ∈ g, but with y considered as an element in

the representation space. To see this consider the tensor u = R(e1⊗e1⊗e2), where ei
is the standard basis in C3. The eigenvalues of diagonal matrices for a tensor product

Lie algebra representation add up, so u is an eigenvector of h1 (here hi = eii − 1
3
· 1)

with eigenvalue 2
3

+ 2
3
− 1

3
= 1 and the eigenvalue for h2 is −1

3
− 1

3
+ 2

3
= 0 giving

the highest weight (more about weights later) (1, 0) of the adjoint representation of

su(3). Furthermore, u is annihilated by e12 and e23. For example,

e12(e1 ⊗ e1 ⊗ e2) = e1 ⊗ e1 ⊗ e1

which is mapped to zero by R because of the antisymmetrization Q. Thus e12u = 0.

Similarly,

e23(e1 ⊗ e1 ⊗ e2) = 0

(since e23e1 = 0 = e23e2) and therefore also e23u = 0. It follows that u is a highest

weight vector. Finally, one checks that R(e1 ⊗ e1 ⊗ e2) 6= 0. This agrees with the

action of the Lie algebra su(3), in the adjoint representation, on the vector v = e13.

This is in agreement of the classification of irreducible representations of Lie algebras

like su(n) in terms of highest weights and highest weight vectors to be discussed in

more detail later.
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5.2 Creation and annihilation operator formalism

In the case of completely symmetric wave functions (bosons) there is a simple for-

malism to describe the many particle states. To each bases vector vi for one-particle

states one associates a creation operator a∗i with the commutation relations

[a∗i , a
∗
j ] = 0.

A vacuum (zero particle state) is denoted by |0 > . Multiparticle states are then

obtained as polynomials

|k1, k2, . . . , kn >= (a∗1)k1 . . . (a∗n)kn|0 >

acting on the vacuum; here the ki’s are arbitrary nonnegative integers. The bosonic

structure of the indistinguishable particles is encoded in the commutation relations:

the order of factors is unimportant and therefore the states |k1 . . . kn > can be put

to correspond vectors in the completely symmetric tensor product SkV, where k =

k1 + · · ·+ kn,

|k1 . . . kn >7→ S(v1 ⊗ . . . v1 ⊗ v2 ⊗ . . . v2 ⊗ · · · ⊗ vn ⊗ · · · ⊗ vn)

where S is the complete symmetrization opeator (sum over all permutations of k

factors), the number of v1’s is k1, ...., the number of vn’s is kn.

To describe the inner product in the Hilbert space of multiparticle states (called

the bosonic Fock space F) it is convenient to introduce also the annihilation oper-

ators ai with the commutation relations

[ai, aj] = 0, but [ai, a
∗
j ] = δij.

The inner product is now fixed uniquely by the requirement that 1) the annihilation

operator ai is the adjoint of a∗i , 2) the vacuum is annihilated by all annihilation

operators, ai|0 >= 0, and 3) the normalization < 0|0 >= 1. For example,

< 1, 1|1, 1 > =< 0|(a∗1a∗2)∗(a∗1a
∗
2)|0 >=< 0|a2a1a

∗
1a
∗
2|0 >

=< 0|a2[a1, a
∗
1]a∗2|0 >=< 0|a2a

∗
2|0 >=< 0|[a2, a

∗
2]|0 >=< 0|0 >= 1

We define the operators

eij = a∗i aj.

It is easy to check the commutation relations

[eij, ekl] = δjkeil − δilekj.
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We have thus constructed the Lie algebra of the general linear group GL(n,C) acting

in the bosonic Fock space. This representation is reducible. Define the particle number

operator

N =
∑
i

a∗i ai.

This commutes with all the operators eij and it follows that the different eigenspaces

of N are invariant under the Lie algebra gl(n). This corresponds to the fact that the

Fock space consists of completely symmetric tensors of arbitrary rank; the symmetric

tensors of fixed rank form an irreducible representation space. Let |m >= (a∗1)m|0 > .

This vector is of rank m and is annihilated by all eij with i < j. It is also an eigen-

vector of all elements eii (the Cartan subalgebra, to be discussed later). The property

eij|m >= 0 for i < j means that |m > is a highest weight vector corresponding to the

weight λ(eii) = m · δ1i.

As already noted before, the group GL(n) acts irreducibly in the space of com-

pletely symmetric tensors; therefore a complete set of vectors in the subspace Fm =

{ψ ∈ F|Nψ = mψ} is obtained by acting with the operators eij on the highest weight

vector ψm ∈ Fm. We can write

F = F0 ⊕F1 ⊕F2 . . .

and each Fm carries an irreducible representation of GL(n).

In order to construct more general representations using the Fock space methods

one has to increase the number of independent bosonic oscillator modes. We can

prove that all finite-dimensional highest weight representations of GL(n) or SU(n)

can be constructed using a set aij, a
∗
ij of creation and annihilation operators with

1 ≤ i, j ≤ n, commutation relations

[aij, a
∗
kl] = δikδjl,

all other commutators being zero. The Lie algebra is constructed as

eij =
∑
k

a∗ikajk.

For each sequence m = (m1,m2, . . . ,mn) of nonnegative integers we construct the

vector

ψ(m) =
∏
k

(det(a∗ij)i,j≤k)
mk |0 > .

Using the antisymmetry of a determinant as a function of the row vectors we first

observe that eijψ(m) = 0 for all i < j. The vector ψ(m) is also an eigenvector of each

eii; eii acts like a number operator for the oscillator modes with first index equal to

i. The determinants are homogenenous functions of order 1 in each of the rows and

columns and it follows that the action of eii on ψ(m) is just a multiplication by the
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total degree mn +mn−1 + · · ·+mi. Thus we get for the components λi = λ(eii) of the

highest weight, λi = mi +mi+1 · · ·+mn. In particular

λ1 ≥ λ2 ≥ . . . λn ≥ 0

and all the components are integers. Conversely, for each such a sequence λ there is

a unique set of nonnegative integers m with the above relation to λ.

Remark In the next Section we shall discuss the representation theory of simple

Lie algebras like A`, the complexification of su(` + 1). (Here ` = n − 1.)The rep-

resentations are labelled by highest weights; here the weight is given by the set of

eigenvalues λi of the diagonal elements in su(`+ 1). There is a natural inner product

in the set of weights and a bracket < λ, µ >= 2(λ, µ)/(µ, µ). One can then show

that < λ, α >= 2 (λ,α)
(α,α)

= 0, 1, 2, . . . for each so-called simple root α = αi,i+1 of A`
are essentially the conditions on the components λi derived above. All the finite-

dimensional representations of An−1 are generated by the different highest weight

vectors ψ(m) in the bosonic Fock space for n2 independent oscillators. In the Young

diagram notation, the representation λ corresponds to the diagram with row lengths

λ1 ≥ λ2 · · · ≥ λn, read from top to bottom.

The completely antisymmetric representations (only one column in the Young

diagram) are best constructed using the fermionic oscillators b∗i , bi, i = 1, 2, . . . , n.

The defining relations are described by anticommutators [A,B]+ = AB+BA instead

of commutators,

[b∗i , bj]+ = δij

and all other anticommutators are zero. The Lie algebra of GL(n) is now constructed

as

eij = b∗i bj.

The commutation relations can be checked using the identity

[AB,CD] = A[B,C]+D − [A,C]+BD + CA[B,D]+ − C[A,D]+B.

The fermionic Fock space consists of all creation operator polynomials acting on the

vacuum |0 > . As in the bosonic case the vacuum is defined by the relations bi|0 >= 0.

The vacuum is again normalized, < 0|0 >= 1 and b∗i is supposed to be the adjoint of

bi. These requirements fix the inner product uniquely.

The bosonic Fock space was infinite-dimensional. In the fermionic case the di-

mension is finite. The reason is that, because of the anticommutation relations, all

the powers (b∗i )
k vanish identically for k > 1. The only nonzero vectors in the Fock

space are of the type

b∗i1b
∗
i2
. . . b∗ik |0 >,

where all the indices iµ are distinct. By the anticommutation relations we can assume

that i1 > i2 · · · > ik (a change in the ordering corresponds just a multiplicative factor
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±1.) Thus the number of independent vectors of length k is

(
n

k

)
, which is equal

to the number of independent components of a fully antisymmetric tensor of rank

k in dimension n. We can again introduce a number operator N =
∑

k b
∗
kbk. The

eigenvalue of N is now the rank of the antisymmetric tensor, or in other words, the

number of boxes in the one-column Young diagram.

6 Semisimple Lie algebras

6.1 Lie algebras

Let F be the field of real or complex numbers. A Lie algebra is a vector space g over

F with a Lie product (or commutator ) [·, ·] : g× g→ g such that

1. x 7→ [x, y] is linear for any y ∈ g,

2. [x, y] = −[y, x],

3. [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

The last condition is called the Jacobi identity . From (1) and (2) it follows that

also y 7→ [x, y] is linear for any x ∈ g. In this chapter we shall consider only finite-

dimensional Lie algebras. In any vector space g one can always define a trivial Lie

product [x, y] ≡ 0. A Lie algebra with this commutator is Abelian. The space gl(n,R)

of all real n × n matrices is naturally a Lie algebra with respect to the matrix com-

mutator [X, Y ] = XY − Y X, and correspondingly the complex algebra gl(n,C).

Some other nontrivial examples follow:

Example 1 Let o(n) denote the space of all real antisymmetric n × n matrices.

The commutator of a pair of matrices is defined by

[x, y] = xy − yx

(ordinary matrix multiplication in xy). Since (xy)t = ytxt, where xt denotes the

transpose of the matrix x, the commutator of two antisymmetric matrices is again

antisymmetric. The commutator clearly satisfies (1) and (2); (3) is checked by a

simple computation. The dimension of the real vector space o(n) is 1
2
n(n− 1).

The matrix Lie algebras, like o(n) above, are closely related to groups of matrices.

Let O(n) denote the group of all orthogonal n×n matrices A, AtA = 1. Then the Lie

algebra o(n) consists precisely of those matrices x for which A(s) = exp sx ∈ O(n)

for all s ∈ R. Namely, taking the derivative of A(s)tA(s) = 1 at s = 0 one gets

xt + x = 0. So A(s) ∈ O(n) implies x ∈ o(n). On the other hand if x ∈ o(n) then

(exp sx)t = exp sxt = exp(−sx) = (exp sx)−1, so A(s) ∈ O(n).
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Example 2 The real vector space u(n) consisting of anti- Hermitian n×nmatrices

x, x∗ = −x, where x∗ = xt and the bar means complex conjugation, is a Lie algebra

with respect to the matrix commutator. Its dimension is n2. Denoting by U(n) the

group of unitary matrices A, A∗A = 1, one can prove as in the case of orthogonal

matrices that exp sx ∈ U(n)∀s ∈ R iff x ∈ u(n).

Example 3 The traceless anti-Hermitian n×n matrices form a Lie algebra to be

denoted by su(n) and it corresponds to the group SU(n) = {A ∈ U(n) | detA = 1}.
The dimension of su(n) is n2 − 1.

Example 4 Let J be the antisymmetric 2n× 2n matrix

0 0 . . . 0 −1 0 . . . 0

0 0 . . . 0 0 −1 . . . 0
...

...
. . .

...
...

...
. . .

...

0 0 . . . 0 0 0 . . . −1

1 0 . . . 0 0 0 . . . 0

0 1 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...

0 0 . . . 1 0 0 . . . 0


.

Since det J = (−1)n+1 6= 0 the form 〈x, y〉 = xtJy is nondegenerate (the vectors

x, y are written as column matrices). Define sp(2n,R) to consist of all real 2n × 2n

matrices x such that xtJ + Jx = 0. This is a Lie algebra and one can associate to

sp(2n,R) the group Sp(2n,R) consisting of real matrices A such that AtJA = J , or

equivalently such that A preserves the form 〈u, v〉 = utJv, 〈Au,Av〉 = 〈u, v〉 for all

u, v ∈ R2n. Sp(2n,R) is the symplectic group defined by J .

One can analogously define the complex orthogonal Lie algebra

o(n,C) and the complex symplectic Lie algebra sp(2n,C).

We have also the Lie algebra sl(n,C) of complex traceless n × n matrices and

correspondingly the real Lie algebra sl(n,R).

Let {X1, X2, . . . , Xn} be a vector space basis of a Lie algebra g. We define the

structure constants ckij by

[Xi, Xj] = ckijXk

(sum over the repeated index k; we shall use the same summation convention also

later). From the defining properties (1) and (2) follows that the commutator [X, Y ]

for arbitrary X, Y ∈ g is determined by the structure constants. The Jacobi identity

can be written as

clijc
m
lk + cljkc

m
li + clkic

m
lj = 0

∀i, j, k,m. By the antisymmetry of the Lie product we have ckij = −ckji.
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Example Let g be a two dimensional Lie algebra with a basis {X1, X2}. If g is

not commutative we can define a nonzero element

e1 = [X1, X2] = αX1 + βX2.

Choose a pair of numbers γ, δ such that αδ − βγ = 1 and set

e2 = γX1 + δX2.

Then [e1, e2] = e1. Thus we have found the general structure of a noncommutative

two dimensional Lie algebra.

Let g and g′ be Lie algebras. A linear map φ : g→ g′ is a homomorphism if

φ([x, y]) = [φ(x), φ(y)]

∀x, y ∈ g. An invertible homomorphism is an isomorphism . The inverse of an iso-

morphism is also an isomorphism. An isomorphism of g into itself is an automorphism

of the Lie algebra g.

A linear subspace k ⊂ g is a subalgebra of g if [x, y] ∈ k ∀x, y ∈ k. A subalgebra

is a Lie algebra in its own right.

A subspace k ⊂ g is an ideal if [x, y] ∈ k ∀x ∈ g and y ∈ k. In particular, an ideal

is always a subalgebra. If k ⊂ g is an ideal then the quotient space g/k is naturally a

Lie algebra: The commutator of the cosets x+ k and y + k is by definition the coset

[x, y] + k. If x′ + k = x + k and y′ + k = y + k (i.e., x′ − x ∈ k and y′ − y ∈ k)

then [x′, y′] = [x + (x′ − x), y + (y′ − y)] ≡ [x, y] mod k by the ideal property of k;

thus [x′, y′] represents the same element in g/k as [x, y] and so the commutator is

well-defined in g/k.

Theorem 6.1 Let φ : g → g′ be a homomorphism which is onto (i.e., g′ = imφ).

Then the Lie algebras g′ and g/kerφ are isomorphic.

Proof. Define ψ : g/kerφ → g′ by ψ(x+kerφ) = φ(x). Obviously φ is one-to-one

and it is a homomorphism by ψ([x+kerφ, y+kerφ]) = ψ([x, y]+kerφ) = φ([x, y]) =

[ψ(x+kerφ), ψ(y+kerφ)].

A linear map δ : A → A in an algebra is a derivation if

δ(a ∗ b) = δ(a) ∗ b+ a ∗ δ(b)

for all a, b ∈ A.
Let Der(A) be the set of all derivations of A. Then Der(A) is a Lie subalgebra of

the Lie algebra of all endomorphisms of A.
In the special case when A = g is a Lie algebra we can define a derivation adX of

g for any X ∈ g by

adX : g→ g, adX(Y ) = [X, Y ].

This defines a homomorphism ad: g→ Der(g); this is called the adjoint representation

of g. The derivations adX are called inner derivations, the rest are outer derivations.
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6.2 Ideals in Lie algebras

A left (right) ideal in an algebra A is a linear subspace I ⊂ A such that x ∗ y ∈ I
(y ∗ x ∈ I) for all x ∈ A and y ∈ I. An (two sided) ideal is both left and right ideal.

If A is a Lie algebra, there is no difference between left and right ideals since

x ∗ y = [x, y] = −[y, x].

The center of a Lie algebra g is the subspace Z(g) = {x ∈ g|[x, y] = 0∀y ∈ g}.
Clearly the center is an ideal. Another ideal is the subspace [g, g] consisting of all

linear combinations of commutators in the Lie algebra.

Lemma The vector space sum of two ideals in g is again an ideal in g. The

commutator [I, J ] of a pair of ideals is also an ideal.

Proof. The first claim follows directly from the definition. The second is a simple

consequence of the Jacobi identity.

A Lie algebra g is simple if its only ideals are the trivial ideals 0 and g itself and

if g is not the commutative one dimensional Lie algebra. If g is simple then g = [g, g]

and Z(g) = 0.

The basic example. Let g = sl(2,C). We choose a bases h =

(
1 0

0 −1

)
, x =(

0 1

0 0

)
, y =

(
0 0

1 0

)
. Then

[h, x] = 2x, [h, y] = −2y, [x, y] = h.

Let I ⊂ g be a nonzero ideal. We choose 0 6= z = ax+ by + ch ∈ I. Then

[x, z] = bh− 2cx and [x, bh− 2cx] = −2bx.

Thus bx ∈ I and [y, [y, z]] = −2ay ∈ I.
1) If a 6= 0 then y ∈ I and so [x, y] = h ∈ I and −1

2
[x, h] = x ∈ I and so I = g.

Likewise the case b 6= 0.

2) If a = b = 0 then c 6= 0 and z = ch ∈ I, so h ∈ I, y = 1
2
[y, h] ∈ I. and

x = −1
2
[x, h] ∈ I. It follows that I = g.

Thus sl(2,C) is simple. Actually, the above proof holds for sl(2,F) when F is an

arbitrary field of characteristic not equal to 2.

Theorem 6.2 1. Let φ : g → g′ be a Lie algebra homomorphism and I ⊂ g an

ideal such that I ⊂ kerφ. Then there exists a unique homorphism ψ : g/I → g′

such that φ = ψ ◦ π, where π : g→ g/I is the canonical homomorphism.

2. If I, J ⊂ g is a pair of ideals with I ⊂ J then J/I is an ideal in g/I and

(g/I)/(J/I) ' g/J.

3. If I, J ⊂ g is any pair of ideals then (I + J)/J ' I/(I ∩ J).
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Proof. (1) Define the map ψ : g/I → g′ by ψ(x + I) = φ(x). It is easy to see

that this is a homomorphism which satisfies the requirement. If ψ′ is another such a

homomorphism, then (ψ′ − ψ) ◦ π = 0 and so ψ′ − ψ = 0 since π is onto.

(2) The first statement follows directly from definitions. For the second, define

a map : (g/I)/(J/I) → g/I by f((x + I) + J/I) = x + J. This map is the required

isomorphism.

(3) Define f : I/(I ∩ J)→ (I + J)/J by f(x+ I ∩ J) = x+ J and check that this

is an isomorphism.

A representation of a Lie algebra g in a vector space V is a Lie algebra homo-

morphism φ : g → End(V ). As an example, any Lie algebra has the natural adjoint

representation in the vector space V = g, adx(y) = [x, y].

A representation is irreducible if the representation space V does not have any

invariant subspaces except of course 0 and V ; a subspace W ⊂ V is invariant if

φ(x)v ∈ W for all x ∈ g and v ∈ W.
If g is a simple Lie algebra then the adjoint representation is necessarily irreducible.

Conversely, if g is noncommutative and the adjoint representation is irreducible then

g is simple.

If g is simple then Z(g) = 0 and it follows that the kernel of the adjoint repre-

sentation ad: g → End(g) is zero. Thus g is isomorphic to a subalgebra of End(g).

Choosing a basis in g we see that any simple Lie algebra is isomorphic to a Lie algebra

of matrices.

Let δ ∈ Der(g), g any finite-dimensional Lie algebra. Since δ is a linear operator

in a finite-dimensional vector space we may form the exponential

eδ = 1 + δ +
1

2!
δ2 +

1

3!
δ3 + . . .

to define a linear operator exp(δ) : g→ g.

Theorem 6.3 The map exp(δ) is an automorphism of g.

Proof. First, exp(δ) is a linear isomorphism since it has the inverse exp(−δ). But

exp(δ)[x, y] =
∑
n

1

n!
δn[x, y]

=
∑
n

1

n!

n∑
k=0

(
n

k

)
[δk(x), δn−k(y)]

=
∞∑
k=0

∞∑
i=0

[
1

k!
δk(x),

1

i!
δi(y)] = [eδ(x), eδ(y)]

and so exp(δ) is a Lie algebra homomorphism. Here

(
n

k

)
= n!

k! (n−k)!
are the binomial

coefficients.
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The automorphisms of the type exp(δ) when δ = adx are called inner automor-

phisms. They generate a group (upon multiplication), to be denoted by Int(g); this

is a subgroup of the group Aut(g) of all automorphims of g.

Theorem 6.4 The group Int(g) is a normal subgroup of Aut(g).

Proof. Let φ ∈ Aut(g) and x, y ∈ g. Then

φ ◦ adx ◦ φ−1(y) = φ([x, φ−1(y)]) = [φ(x), y] = adφ(x)(y)

and thus φ ◦ adx ◦ φ−1 = adφ(x) which proves the statement.

6.3 The structure of semisimple Lie algebras

A Lie algebra L is semisimple if the canonical symmetric bilinear form, the Killing

form , defined by

(X, Y ) = tr adXadY ,

is nondegenerate; we denote adX : L → L is the linear map adX(Y ) = [X, Y ], the

adjoint representation of L. Nondegenerate means that (X, Y ) = 0 for all Y if and

only if X = 0. In the case of the Lie algebra of SU(2) or of SO(3) a basis is given

by vectors Lk such that [L1, L2] = L3, and cyclic permutations of this relation (the

angular momentum algebra in physics!) and it is easy to compute that

(Lj, Lk) = −2δjk

which clearly shows that the Killing form is nondegenerate. From the definition it

follows that the Killing form is invariant in the sense that

([X, Y ], Z) = −(Y, [X,Z])

for all elements X, Y, Z. Now an exponential of an antisymmetric matrix is an or-

thogonal matrix (exercise!) and therefore the transformations exp(adX) : L→ L are

orthogonal with respect to the Killing form, that is, the Killing form is preserved

under these transformations.

One can show that a semisimple Lie algebra is a direct sum of simple Lie algebras.

The angular momentum Lie algebra is simple. Other simple Lie algebras are the Lie

algebras associated to the rotation groups SO(n) when n 6= 2, 4, the Lie algebras

of the special unitary groups SU(n), and the Lie algebras of the symplectic groups

Sp(2n). In fact, this list is almost exhaustive. Any complex simple Lie algebra is

either isomorphic to a complexification of one of the Lie algebras in this list or it

is one of the so-called exceptional Lie algebras G2, F4, E6, E7, E8. These latter Lie

algebras are associated also to some groups, but they cannot be described so easily

as the other classical Lie algebras.
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We list now some basic properties of the semisimple Lie algebras. It is useful to

think about some specific example, like the complexified Lie algebra A` of the group

SU(` + 1). In a semisimple Lie algebra L there is a Cartan subalgebra which is a

maximal abelian subalgebra h such that the maps adh : L→ L can be simultaneously

diagonalized for all h ∈ h. In the case of A` the Cartan subalgebra can be chosen as

the algebra of diagonal traceless matrices. A basis for h is given by

hn = enn −
1

`+ 1

∑
eii,

where eij is the (`+ 1)× (`+ 1) matrix such that the matrix element at the position

(ij) is 1 and all other matrix elements are equal to 0. The commutation relations for

the eij’s are

[eij, emn] = δjmein − δinemj.

It follows that

adhneij = (δni − δnj)eij.

From these relations one can then check that

(hi, hj) = 2(`+ 1)δij − 2.

In general, we call the eigenvalues of the Cartan subalgebra in the adjoint action

roots for the pair (L, h). The Lie algebra L decomposes to eigenspaces which are

called the root subspaces,

L = h⊕ Lα ⊕ Lβ ⊕ . . .

The labels α, β, . . . of the root subspace are some linear functions from h to C; the

root subspace Lα is characterized by the property

[h, x] = α(h)x for x ∈ Lα and h ∈ h .

Thus in the above example (A`, h) the one-dimensional root subspaces are spanned

by the vectors eij with i 6= j. The zero root subspace is the Cartan subalgebra itself.

One can prove that the root subspaces (for nonzero roots) are all one-dimensional

for any semisimple Lie algebra and the subspaces corresponding to different roots are

orthogonal with respect to the Killing form.

In the set Φ of nonzero roots one can select a set ∆ of simple roots. All other

roots are either linear combinations of roots in ∆ with positive integral coefficients

(these are the positive roots Φ+) or linear combinations with negative integral coef-

ficients (these are the negative roots Φ−). We have Φ = Φ+ ∪ Φ− and ∆ ⊂ Φ+. In

the case of A` we can take ∆ as the set of roots corresponding to the root subspaces

en,n+1 for n = 1, 2, . . . , `. Let us denote these roots by α1, . . . , α`. The positive roots

are generated as follows. First, e13 = [e12, e23] which implies, using the Jacobi identity,

[h, e13] = [[h, e12], e23] + [e12, [h, e23]] = (α1(h) + α2(h))e13.
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So α13 = α1 + α2. By induction we obtain αij = αi + · · ·+ αj−1 for i < j. So the set

of positive roots contains all αij for i < j. Similarly, the set of negative roots consists

of the roots αij with j < i.

One can introduce a scalar product in the real vector space R` spanned by the

root vectors. The simple roots form a basis of this vector space. First one proves

that the restriction of the Killing form to the Cartan subalgebra h is nondegenerate.

It follows that there is a natural linear isomorphism from the dual vector space h∗ to

h, λ 7→ hλ,

(h, hλ) = λ(h) for all h ∈ h.

We can define an inner product in h by setting (λ, µ) = (hλ, hµ).

Example Consider the algebra A` (notation as before). For each root αij ∈ h∗

we construct the vector hij = hαij . We can write

hij =
`+1∑
k=1

akhk , ak ∈ C, with
∑
k

ak = 0.

Using (hi, hj) = 2(`+ 1)δij − 2 we obtain

(hij, hk) = αij(hk) = δik − δjk

= (Σanhn, hk) =
l∑

n=1

2an[(`+ 1)δnk − 1]

= 2(`+ 1)ak − 2
`+1∑
n=1

an = 2(`+ 1)ak.

We have a linear system of equations for the unknowns ak. The solution is easily

found to be ai = 1/2(`+ 1), aj = −1/2(`+ 1) and ak = 0 for k 6= i, j. Thus

hij =
1

2(`+ 1)
(hi − hj).

From this we can compute the inner products

(αij, αmn) =
1

4(`+ 1)2
(hi − hj, hm − hn)

=
1

2(`+ 1)
(δim + δjn − δjm − δin).

Usually it is sufficient to know the root space structure of a semisimple Lie algebra

in terms of the inner products of the roots and an explicit knowledge of a matrix

realization of the algebra in question is not needed.

The rank of a semisimple Lie algebra is the dimension of its Cartan subalgebra.
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Theorem 6.5 Let g be a semisimple Lie algebra of rank l, h ⊂ g a Cartan subalgebra,

and ∆ a system of simple roots for (g, h). Then ∆ forms a basis of h∗. Let E denote

the real vector space spanned by ∆. Then the dual (·, ·) : h∗ × h∗ → C of the Killing

form is a positive definite inner product in E.

An important tool in the study of semisimple Lie algebras is the Weyl group of the

root system. The Weyl group W of a root system Φ is generated by the reflections

σα with α ∈ Φ. The reflection is defined as the linear map in R`

σα(β) = β− < β, α > α

for β ∈ R`; we have inrtoduced the notation

< α, β >= 2
(α, β)

(β, β)

for vectors such that β 6= 0. Note that σα(α) = −α and σα(β) = β if the vector β

is orthogonal to α. Thus σα is indeed a reflection in the plane orthogonal to α. The

basic property of the reflection is that it preserves inner products and thus also the

brackets < ·, · > . Also one can prove

Theorem 6.6 The reflections σα and therefore also any element of the Weyl group

maps the system Φ onto itself. Furthermore, if ∆,∆′ ⊂ Φ are systems of simple roots

then there exists σ ∈ W such that σ(∆) = ∆′.

Example In the case of A` a simple root αi is orthogonal with respect to αj
except when j = i or j = i ± 1 and in that latter case < αj, αi >= −1 and so the

the fundamental reflections σi = σαi act on the basis vectors αj as σi(αj) = αj when

j 6= i, i± 1, σi(αi) = −αi and σi(αi±1) = αi±1 + αi.

We can now check the following properties of the root system Φ of A`. Since the

dimension of h and thus of h∗ is `, we can view Φ as a subset of vectors in E = R`.

(1) The system Φ spans E and 0 /∈ Φ

(2) If α ∈ Φ then kα ∈ Φ if and only if k = ±1

(3) for any α ∈ Φ also σα(Φ) ⊂ Φ

(4) the numbers < α, β > are integers for α, β ∈ Φ

Actually, one can take these properties as axioms for root systems. Namely, one

can prove that the root system of any semisimple Lie algebra satisfies the conditions

(1) - (4) above.

Let ∆ = {α1, . . . , α`} be a system of simple roots. Denote

Mij =< αi, αj >= 2 · (αi, αj)

(αj, αj)
.
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The numbers Mij form a ` × ` integral matrix, called the Cartan matrix of the root

system. In the 2-dimensional cases we have the matrices

A1 × A1 =

(
2 0

0 2

)
;A2 =

(
2 −1

−1 2

)
; B2 =

(
2 −2

−1 2

)
; G2 =

(
2 −1

−3 2

)
.

When ∆′ is another basis then σ(∆) = ∆′ for some σ ∈ W. The brackets < α, β >

are invariant under the Weyl group. It follows that the Cartan matrix does not

depend on the choice of ∆, modulo reordering of the basis.

Theorem 6.7 Let (E,Φ) and (E ′,Φ′) be a pair of root systems with ∆ ⊂ Φ and

∆′ ⊂ Φ′ systems of simple roots. If the Cartan matrices M and M ′ are equal (with

some choice of ordering of basis) then the root systems are isomorphic.

Proof. Set ∆ = {α1, . . . , α`} and ∆′ = {α′1, . . . , α′`}. We can define a linear isomor-

phism φ : E → E ′ by φ(αi) = α′i since the simple roots form a basis. Then for any

α, β ∈ ∆,

σφ(α)(φ(β)) = φ(β)− < φ(β), φ(α) > φ(α)

= φ(β)− < β, α > φ(α) = φ(β− < β, α > α) = φ(σα(β)).

The second equality follows from the asssumption that the Cartan matrices are equal.

Since ∆ is a basis, we obtain σφ(α) ◦ φ = φ ◦ σα, that is, φ ◦ σα ◦ φ−1 = σφ(α) for all

α ∈ ∆. Since the simple reflections generate the Weyl group, we reduce that the map

σ → φ ◦ σ ◦ φ−1 from W to W ′ is an isomorphims of Weyl groups.

Let next β ∈ Φ and choose σ ∈ W such that σ(β) ∈ ∆. Then

φ(β) = (φ ◦ σ−1 ◦ φ−1)φ(σ(β)) ∈ Φ′

and so φ(Φ) ⊂ Φ′. In the same way one shows that φ−1(Φ′) ⊂ Φ and thus φ(Φ) = Φ′.

If γ is another element of Φ then, by the linearity of < ·, · > in the first argument

and by the equality of Cartan matrices,

< γ, β > = < σ(γ), σ(β) >=< φ ◦ σ(γ), φ ◦ σ(β) >

= < (φ ◦ σ−1 ◦ φ−1)(φ ◦ σ(γ)), (φ ◦ σ−1 ◦ φ−1)(φ ◦ σ(β)) >=< φ(γ), φ(β) > .

We have used the fact that the Weyl groups W,W ′ preserve the brackets. We have

shown that φ is an isomorphism of the root systems.

If α 6= β is a pair of positive roots then < α, β >< β, α > is one of the integers

0, 1, 2, 3. We determine the Coxeter graph of the root system Φ from its Cartan matrix.

The graph consists of ` nodes corresponding to the number of simple roots and lines

connecting the nodes. The number of lines connecting the nodes αi, αj (for i 6= j) is

equal to < αi, αj >< αj, αi > .
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In the case when all simple roots have equal lengths the Dynkin diagram is equal

to the Coxeter graph. In the case when a pair αi, αj of simple roots have unequal

lengths we set an arrow to point towards the shorter root. On the enclosed sheet B

we list all the Dynkin diagrams of simple Lie algebras.

The Dynkin diagram determines completely the Cartan matrix and therefore also

the root system of a semisimple Lie algebra. In the case when the simple root lengths

are equal, we have < αi, αj >= −(< αi, αj >< αj, αi >)1/2, for i 6= j. This gives all

the matrix elements of the Cartan matrix. Suppose then that (αi, αi) 6= (αj, αj) but

we know that αi is shorter, for example. Then from the table of of root lengths and

angles (EXERCISE!) we see that < αi, αj >< αj, αi > is either 2 or 3. In the former

case < αi, αj >= −1 and < αj, αi >= −2. In the latter case < αi, αj >= −1 and

< αj, αi >= −3.

For example, from the Dynkin diagram of F4 we can read its Cartan matrix

F4 :


2 −1 0 0

−1 2 −2 0

0 −1 2 −1

0 0 −1 2

 .

A root system Φ is irreducible when its Dynkin diagram is connected. Let ∆ =

∆1∪∆2 · · ·∪∆t be a decomposition of the simple roots corresponding to the connected

components of the Dynkin diagram. Then ∆i⊥∆j for i 6= j and let Ei be the subspace

of E spanned by the roots ∆i, E = E1⊕· · ·⊕Et. Denote Φi the subset of roots which

are linear combinations of the roots ∆i.

Now the Weyl group W maps Φi onto itself: To see this it is sufficient to show

that σα(Φi) ⊂ Φi for any simple root α. If α /∈ ∆i then σα(β) = β− < β, α > α = β

for any β ∈ Φi. But if α ∈ ∆i then σα(β) = β− < β, α > α ∈ Φi by the definition of

Φi.

If β ∈ Φ is an arbitrary root we may choose σ ∈ W such that σ(β) ∈ ∆. But then

σ(β) belongs to some ∆i and by the observation above β ∈ Φi. Thus we have

Φ = Φ1 ∪ Φ2 · · · ∪ Φt.

We have proven:

Theorem 6.8 Any root system Φ ⊂ E is a union of irreducible root systems Φi ⊂ Ei
with E = E1 ⊕ · · · ⊕ Et, as an orthogonal direct sum.

Now we list all irreducible root systems. We denote the standard basis vectors in

R` by e1, . . . , e`.

Theorem 6.9 Let E be the subspace of the euclidean space R`+1 with ` ≥ 1 consisting

of vectors α such that (α,
∑

ei) = 0. Let L be the integral lattice in E and set Φ =

{α ∈ L|(α, α) = 2}. Then (E,Φ) is an irreducible root system and its Dynkin diagram

is the Dynkin diagram of the Lie algebra A`.
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Proof. Clearly

Φ = {ei − ej|i 6= j}.

Let ∆ consist of the vectors αi = ei − ei+1 with i = 1, 2, . . . , `. These vectors form

a basis of E. Furthermore, each element in Φ is an integral linear combination of

vectors in ∆ with only nonnegative or only nonpositive coefficients, so it satisfies the

requirements of a system of simple roots; we also observe that clearly the first two

axioms of a root system are satisfied. Next < β, α >= 2(β, α)/(α, α) = (β, α) ∈
{0,±1, 2} so that also the fourth axiom holds.

Since < αi, αi+1 >= (αi, αi+1) = −1 but < αi, αj >= 0 for j 6= i±1 we see that the

Dynkin diagram is really the diagram A` listed in the appendix B; one can then check

by direct computation that the root system corresponding to the Cartan subalgebra

of diagonal matrices in sl(` + 1,F), with the choice of simple roots corresponding to

the root vectors ei,i+1 ∈ sl(`+ 1,F), leads to the system (E,Φ,∆).

Theorem 6.10 Let E = R` with ` ≥ 2 and Φ the set of vectors α in its integral lattice

L such that (α, α) = 1 or (α, α) = 2. Then (E,Φ) is an irreducible system of roots

with a Dynkin diagram corresponding to the Lie algebra B` of complex antisymmetric

(2`+ 1)× (2`+ 1) matrices.

Proof. Now Φ = {±ei|1 ≤ i ≤ `} ∪ {±(ei ± ej)|i 6= j}. The subset ∆ of vectors

αi = ei − ei+1, i ≤ ` − 1, and α` = e` is linearly independent and the number of

vectors is equal to the dimension of E, thus it is a basis of E. Furthermore,

±ei = ±(αi + . . . α`)

±(ei − ej) = ±(αi + · · ·+ αj) for i < j

±(ei + ej) = ±(αi + · · ·+ αj−1 + 2αj + 2αj+1 + . . . 2α`) for i < j.

So ∆ has the properties of a system of simple roots. When i, j ≤ `−1 the length of the

roots αi, αj is equal to
√

2 and < αi, αj >= 0 for i 6= j±1, i 6= j. For j = i+1 we have

< αi, αi+1 >< αi+1, αi >= 1. The length of α` is 1 and < α`−1, α` >< α`, α`−1 >= 2.

It follows that the Dynkin diagram is the diagram B` in the appendix. One can then

check (a useful exercise!) that with a choice of a Cartan subalgebra this system indeed

comes from the Lie algebra so(2` + 1,C), the complexification of the Lie algebra of

the group SO(2`+ 1).

Theorem 6.11 Let E = R` with ` ≥ 3 and Φ = {±2ei|1 ≤ i ≤ `} ∪ {±(ei ± ej)|i 6=
j}. Then (E,Φ) is an irreducible root system corresponding to the Dynkin diagram

C`.

Remark We could have defined also C2 but then C2 = B2. This root system

corresponds to the Lie algebra of the complex symplectic group Sp(2`). This group

plays a central role in the formulation of classical Hamiltonian mechanics.
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Theorem 6.12 Let E = R` for ` ≥ 4 and define Φ as the set of vectors α in the

integral lattice with (α, α) = 2. Then Φ{±(ei± ej)|i 6= j} and it is an irreducible root

system with Dynkin diagram D` corresponding to the Lie algebra of antisymmetric

2`× 2` matrices, the complexified Lie algebra of the rotation group SO(2`).

Proof. This is actually a subalgebra of B`, by leaving out the short roots ±ei. The

simple roots are αi = ei − ei+1 for i = 1, 2, . . . , `− 1 and α` = e`−1 + e`.

We shall now describe the exceptional Lie algebras in terms of their root systems.

G2 Let {v1, v2, v3} be the standard basis of R3 and let E be the plane orthogonal

to v1 + v2 + v3. A basis of E is given by {v1 − v2,−2v1 + v2 + v3} = ∆. This is a

system of simple roots for G2. The positive roots are Φ+ = {v1 − v2,−v1 + v3,−v2 +

v3,−2v1 + v2 + v3, v1 − 2v2 + v3,−v1 − v2 + 2v3}.
F4 Let E = R4 and ∆ = {v2 − v3, v3 − v4, v4,

1
2
(v1 − v2 − v3 − v4)}. The root

system of F4 consists of all integral linear combinations α of elements in ∆ such

that ‖α‖2 = 1 or ‖α‖2 = 2. One can show that Φ = {±vi}4
i=1 ∪ {±(vi ± vj) | i 6=

j} ∪ {±1
2
(v1 ± v2 ± v3 ± v4) | all signs}. Thus the number of elements in Φ is 48.

Exercise What is the system of positive roots for F4?

E8 Let E = R8 and ∆ = {1
2
(v1 + v8)− 1

2
(v2 + . . .+ v7), v1 + v2, v2− v1, v3− v2, v4−

v3, v5 − v4, v6 − v5, v7 − v6}. The root system Φ(E8) consists of all integral linear

combinations α of elements in ∆ such that ‖α‖2 = 2. One can show that

Φ = {±(vi ± vj) | i 6= j} ∪ {1

2

8∑
i=1

(−1)ε(i)vi | ε(i) = 0, 1;
∑

ε(i) ∈ 2Z}.

There are 240 elements in Φ.

E7 ∆ and Φ are defined here in a similar way as in the case of E8 except that the

last vector v7 − v6 in ∆ is left out. There are 126 roots.

E6 Same as above, but now the two last vectors v6 − v5 and

v7 − v6 are dropped. The number of roots is 72.

7 Representations of semisimple Lie algebras

A representation φ of a Lie algebra g in a vector space V is fully reducible if V can

be written as a direct sum V = V1 ⊕ V2 ⊕ · · · ⊕ Vn of invariant subspaces such that

the restriction of φ to each Vi is an irreducible representation of g.

From known representations one can build new ones by taking direct sums. If φi
is a representation of g in Vi (i ∈ λ), then a representation φ of g in ⊕

∑
i∈λ Vi is

defined by

φ(x)(vi)i∈λ = (φ(x)vi)i∈λ,
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where vi ∈ Vi. If φ is a representation of g in a vector space V such that there is

an invariant subspace W , then one can construct a representation ψ in the quotient

space V/W by setting ψ(x)(v +W ) = φ(x)v +W , for any v ∈ V .

Theorem 7.1 Any finite-dimensional representation of a semisimple Lie algebra is

fully reducible.

Thus for the purpose of classification of finite-dimensional representations of a semisim-

ple Lie algebra it is sufficient to know the irreducible representations.

Let us denote by {x, y, h} a basis of A1, with the commutation relations

[x, y] = h, [h, x] = 2x, [h, y] = −2y.

A representation φ : g → EndV of g = A1 is a highest weight representation if there

is a vector 0 6= v ∈ V (the highest weight vector) such that

(1) φ(x)v = 0

(2) φ(h)v = λv for some λ ∈ C
(3) V = {φ(u)v | u ∈ U(g)}.

Here U(g), called the universal enveloping algebra of g, is just the associative algebra

formed from all polynomials in x, y, h, subject to the commutation relations above.

The content of (3) is that any vector in V can be reached from v by repeated action

of φ(x), φ(y), and φ(h).

The number λ is the highest weight of the representation.

Two representations φ : g→ EndV, φ′ : g→ EndV ′ of a Lie algebra g are said to

be equivalent if there is a linear isomorphism α : V → V ′ such that

αφ(x)α−1 = φ′(x) ∀x ∈ g.

An irreducible highest weight representation (ψ, V ) of A1 is uniquely determined, up

to an equivalence, by the highest weight λ.

1) Let λ /∈ N. By (1) - (3) the space V is spanned by the vectors {ψ(y)nv | n =

0, 1, 2, . . . }. Using the commutation relations above we get

ψ(x)nψ(y)nv = αnv , αn 6= 0.

Thus ψ(y)nv 6= 0 for n = 0, 1, 2, . . . . The system {ψ(y)n | n ∈ N} is linearly

independent since different vectors correspond to different eigenvalues of the operator

ψ(h),

ψ(h)ψ(y)nv = (λ− 2n)ψ(y)nv.

A little more abstractly, we may think of V as a quotient space U(g)/Iλ, where Iλ
is the left-ideal generated by the elements h − λ(h) and x, that is, they consist of
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linear combibations u1(h − λ(h)) + u2x, where u1, u2 are arbitrary polynomials of

the generators x, y, h. A representation φ of g in the quotient space is defined by

φ(z)(u + Iλ) = zu + Iλ for z = x, y, h and u ∈ U(g). This is often (also for other Lie

algebras) a powerful method to construct representations; one needs only specify a

left-ideal which should kill a fixed vector in the representation. The method does not

give any guarantee of the irreducibility.

We can define a linear isomorphism α : U(g)/Iλ → V by α(vn) = ψ(y)nv, where

vn = yn + Iλ. We can check that αφ(z)α−1 = ψ(z) ∀z ∈ g. For example,

αφ(y)α−1[ψ(y)nv] = αφ(y)vn = αvn+1

= ψ(y)n+1v = ψ(y)[ψ(y)nv].

2) The case λ ∈ N. Using the commutation relations we have

ψ(x)nψ(y)nv = αnv 6= 0 n = 0, 1, 2, . . . , λ

ψ(x)ψ(y)λ+1v = 0 .

It follows that {ψ(y)nv | n = 0, 1, 2, . . . , λ} is a basis of V . The rest of the proof goes

like in the case 1.

Remark An irreducible finite-dimensional representation

(ψ, V ) of A1 is always a highest weight representation. Let 0 6= w ∈ V be any

eigenvector of ψ(h) in V (which exists because of dimV <∞). If ψ(x)w = 0 then w

is a highest weight vector; otherwise set v = ψ(x)nw, where n is the largest integer

such that ψ(x)nw 6= 0. Then w is a highest weight vector. [Because of the irreducibil-

ity of the representation, the invariant subspace {ψ(u)w | u ∈ U(g)} must be the

whole space V , and so also the condition (3) is satisfied.]

We shall now generalize the results obtained earlier for A1, to the case of an

arbitrary semisimple Lie algebra g over C. Note first that a semisimple Lie algebra

is always spanned by subalgebras of the type A1. Namely, let h ⊂ g be a Cartan

subalgebra and Φ the system of nonzero roots. If α ∈ Φ then also −α ∈ Φ (just look

at the various root systems listed earlier). Choose 0 6= xα ∈ gα and 0 6= yα ∈ g−α,

remembering that dim gα = 1∀α ∈ Φ. Set kα = [xα, yα]. If h ∈ h then

[h, kα] = [h, [xα, yα]] = [xα, [yα, h]]− [yα, [h, xα]]

= −[xα, α(h)yα]− [yα, α(h)xα] = 0.

Since the Cartan subalgebra is a maximal commutative subalgebra of g, we have

kα ∈ h. Since

[kα, xα] = λxα [kα, yα] = −λyα

with λ = α(kα), the subspace spanned by {yα, kα, xα} is a subalgebra of g. We want

to show that λ 6= 0.
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Theorem 7.2 (1) If α, β ∈ Φ ∪ {0} and α + β 6= 0 then gα⊥gβ with respect to the

Killing form.

(2) [xα, yα] = (xα, yα)hα ∀α ∈ Φ.

Proof. (1) Let h ∈ h such that (α+β)(h) 6= 0. Choose 0 6= xα ∈ gα and 0 6= xβ ∈ gβ.

Now

α(h)(xα, xβ) = ([h, xα], xβ) = (xα, [xβ, h])

= −β(h)(xα, xβ)

and so (α + β)(h)(xα, xβ) = 0 and (xα, xβ) = 0.

(2) Let h ∈ h. Then

(h, [xα, yα]− (xα, yα)hα) = (h, [xα, yα])− (xα, yα)(h, hα)

= ([yα, h], xα)− (xα, yα)α(h)

= α(h)(yα, xα)− α(h)(xα, yα) = 0.

Thus h⊥[xα, yα]− (xα, yα)hα. Since the restriction of the Killing form to h is nonde-

generate, the assertion follows.

Renormalizing the basis by x =
√
axα, y =

√
ayα, h = akα, where a = 2/λ (and

λ = (xα, yα)α(hα) = (xα, yα)(α, α) 6= 0) we get the familiar commutation relations

[x, y] = h, [h, x] = 2x, [h, y] = −2y of A1. We have now proven:

Theorem 7.3 If α ∈ Φ and 0 6= xα ∈ gα, 0 6= yα ∈ g−α then {yα, hα, xα} spans a

subalgebra isomorphic to A1.

A representation φ :→ EndV is a highest weight representation if there is 0 6= v ∈ V
such that

1. φ(xα)v = 0∀α ∈ Φ+

2. φ(h)v = λ(h)v ∀h ∈ h

3. V = {φ(u)v | u ∈ U(g)}

where λ : h→ C is some linear form, the highest weight of the representation. From

now on, when there is no danger of confusion, we shall write shortly zv instead of

φ(z)v, when v ∈ V and z ∈ g. Consider a finite-dimensional highest weight rep-

resentation of g in V , with highest weight vector v. Then for each α ∈ Φ+ there

has to be nα ∈ N such that ynα+1
α v = 0; otherwise {yiαv | i ∈ N} would span an

infinite-dimensional subspace because these vectors are linearly independent by the

eigenvector property

hαy
i
αv = [λ(hα)− iα(hα)]yiαv.
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On the other hand, by a similar calculation as was done for A1,

xαy
k
αv = k(xα, yα)

[
λ(hα)− 1

2
(k − 1)α(hα)

]
yk−1
α v.

It follows that in the finite-dimensional case (denoting by nα the smallest number

n for which yn+1
α v = 0) we must have λ(hα) = 1

2
nα · α(hα). Using the notation

〈λ, α〉 = 2 (λ,α)
(λ,α)

(where the inner product in the dual h∗ is defined using the Killing

form as (λ, λ′) = (hλ, hλ′), see section 6) this relation can be written as

nα = 〈λ, α〉.

In fact, one can prove a stronger result:

Theorem 7.4 An irreducible highest weight representation of a semi-

simple Lie algebra is finite-dimensional if and only if the highest weight satisfies

〈λ, α〉 ∈ N for all α ∈ ∆, where ∆ ⊂ Φ+ is a system of simple roots; these weights

form the set Λ+ of positive integral weights. For any linear form λ : h → C
which satisfies the above condition there is a unique, up to an equivalence, irreducible

finite-dimensional representation with highest weight λ.

One can define the fundamental weights for a system (Φ,∆) as the weights λi

with the property that < λi, αj >= δij where both i, j = 1, 2, . . . , `. By defition, the

fundamental weights are positive integral weights, they form a basis in Λ+ so that any

positive integral weight is a linear combination, with nonnegative integer coefficients,

of the fundamental weights.

Example Let us consider the case of g = A2. This is important in particle physics

for at least two reasons. First, it is an approximate internal symmetry of strongly

interacting particles (’eightfold way’ of Gell-Mann and Ne’eman). Second, it is a gauge

symmetry , in a similar way as in ordinary electrodynamics one can replace a vector

potential Aµ by the equivalent potential Aµ +∂µχ, where the gauge transformation χ

is a smooth function in space-time. In the case of A2 (or SU(3) in the group language)

gauge symmetry the transformation is somewhat more complicated and instead of one

potential there is a multiplet of eight potentials.

In this case the bases of the Cartan subalgebra is h1 = e11 − c, h2 = e22 − c,

where c = 1
3
(e11 + e22 + e33) commutes with everything. The simple roots are α12, α23

corresponding to the root vectors e12, e23. The integrality conditions read

λ(hα12), λ(hα23) ∈
1

6
N.

The factor 1/6 comes from our normalization (α12, α12) = 1/3 = (α23, α23) (note that

the normalization of the inner product is completely arbitrary, the only things which

really matters are the ratios < α, β >= 2(α, β)/(β, β)) and from

〈λ, α〉 = 2
(λ, α)

(α, α)
.
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Since hα12 = 1
6
(h1 − h2) and hα23 = 1

6
(h2 − h3) = 1

6
(h1 + 2h2) the condition for

λ being dominant integral are that the highest weight vector is an eigenvector of

h1, h2 with eigenvalues λ1, λ2 satisfying λ1 − λ2 ∈ N and λ1 + 2λ2 ∈ N. The case

λ1 = λ2 = 0 corresponds to the trivial one-dimensional representation. The lowest

nontrivial case is λ1 = 2/3, λ2 = −1/3 corresponds to the defining representation of

A2 as complex 3 × 3 matrices. This weight is also the fundamental weight λ1 for

A2. One can check from the definitions that the second fundamental weight λ2 has

the property λ2(h1) = 1
3

= λ2(h2), and this corresponds to the complex conjugate of

the defining representation. That representation is actually also the antisymmetrized

tensor product of the defining representation with itself. Another important low di-

mensional example is λ1 = 1, λ2 = 0. This is the adjoint 8 dimensional representation.

The highest weight vector is the root vector e13 and the weight is equal to λ1 + λ2.

In the case of A1 a complete set of vectors in an irreducible representation was

obtained by applying the shift operator L− = y step by step, starting from the

highest weight vector. The relation of the angular momentum operators L1, L2, L3 to

the standard basis x, y, h in A1 is h = 2iL3, x = L1 + iL2, y = −L1 + iL2. In the case

of A2 one needs 3 independent shift operators (because there are 3 negative roots).

These can be taken to be S32 = e32, S31 = e32e21 + e31(e11 − e22), and S21 = e21. The

first two connect vectors which are of highest weight with respect to a A1 subalgebra.

The last one decreases the A1 weight inside of a representation of A1.

The linear groups SU(n) and SO(n) appear in physics often as symmetries of

many particle systems. This could be for example a nucleus exhibiting various kinds

of particle interchange and combined rotational symmetries. If the symmetry is exact,

that is, the group commutes with the hamiltonian, then one can classify eigenvectors

of the hamiltonian belonging to the same eigenvalue using the representation theory

of the symmetry group G. Even in the case when the symmetry is only approximate it

might still be of advantage to classify the physical states according to representations

of G (’supermultiplets’).

8 Reduction of tensor products of representions

Let D(i) be a complete set of inequivalent representations of a compact group G. The

in general the representation D(i) ⊗D(j) is reducible and we can write

D(i) ⊗D(j) = ⊕kcijkD(k)

where the nonnegative integer cijk is the multiplicity of the representation D(k) in the

tensor product.

Let us start by analyzing in detail the example G = SU(2). We have seen that

the irreducible representations are labelled by the highest weight λ = 0, 1, 2, . . . , the

highest eigenvalue of the element h in the Cartan subalgebra h. (In physics, λ/2
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is interpreted as the angular momentum of a quantum mechanical system.) So in

this case we can take the index i equal to λ, the representations are labelled by

0, 1, 2, . . . . Since the element h is represented as h⊗ 1 + 1⊗ h in the tensor product,

the weights of D(i) ⊗ D(j) are the sums mi + mj where mi = −i,−i + 2, . . . ,+i

and mj = −j,−j + 2, . . . ,+j. The weight spaces in any irreducible representation

of SU(2) have dimension equal to 1, so in the tensor product the highest weight

is i + j with multiplicity 1, the next highest is i + j − 2 with multiplicity 2 (since

i+ j − 2 = (i− 2) + j = i+ (j − 2),) the next is i+ j − 4 with multiplicity 3 and so

on.

It follows that in the tensor product D(i) ⊗D(j) the representation D(i+j) occurs

with multiplicity 1. But since that representation contains a weight vector with weight

i+j−2, we have only one remaining linearly independent vector with weight i+j−2.

Thus the multiplicity of D(i+j−2) is also equal to 1! By induction, one can prove that

this is the case up to the weight |i − j| and after that we exhausted the possible

highest weights. Thus

D(i) ⊗D(j) = ⊕
i+j∑

k=|i−j|

D(k).

With the aid of Young tableaux, we can give an algorithm for the Clebsch-Gordan

decomposition of a tensor product of representations of SU(n) for any n. The method

is a bit complicated to explain, but stick with it. We’ll do lots of examples later.

Suppose we want to decompose the tensor product of irreducible representations α

and β corresponding to tableaux A and B. Put a’s in the top row of B, b’s in the

second row, c’s in the third row, and so on. Take the boxes from the top row of B

and add them to A, each in different column, to form new tableaux. Then, take the

second row and add them to form tableaux, again each box in a different column,

then go to third row and so on until all rows in B have been exhausted. There is one

additional restriction. Reading from right to left and from the top down, the number

of a’s must be greater than or equal to the number of b’s, greater or equal to the

number of c’s ..... This avoids double counting of tensors. The tableaux formed in

this way correspond to the irreducible representations in α⊗ β.

We take some examples in the case of SU(3). Here 3 denotes the defining 3-

dimensional representation, 3 the complex conjugate of the defining representation

(which is the same as the representation on completely antisymmetric tensors of rank

2); the adjoint representation 8 corresponds to the Young tableau with row lengths

(2,1).
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Examples:

⊗ a = a ⊕
a

3⊗ 3 = 6⊕ 3

⊗ a =
a ⊕

a

3⊗ 3 = 8⊕ 1

A less trivial example:

⊗ a

b
= a

a

↓ ↓(
a b

)
⊕ a

b
⊕

(
b

a

)
⊕ a

b

3⊗ 3 = 8 ⊕ 1

The first and third tableau do not satisfy the constraint that the number of a’s is

greater than the number of b’s. Note that we did this one in a stupid way (on purpose

to illustrate the constraint). A sensible person would work out 3 ⊗ 3 and not move

so many boxes around.

Example: Finally, let us work out 8⊗ 8:

⊗ a a

b
=

a a

b
⊕

a a

b

⊕ a

a b

⊕
a

a

b

⊕
a

b

a

⊕ a

a b

8⊗ 8 = 27⊕ 10⊕ 10⊕ 8⊕ 8⊕ 1

The two 8’s are different because they have a different pattern of a’s and b’s.

9 Differentiable Manifolds

9.1 Topological Spaces

The topology of a space X is defined via its open sets.
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Let X= set, τ = {Xα}α∈I a (finite or infinite) collection of subsets of X. (X, τ) is a

topological space, if

T1 ∅ ∈ τ, X ∈ τ

T2 all possible unions of Xα’s belong to τ
(⋃

α∈I′ Xα ∈ τ, I ′ ⊆ I
)

T3 all intersections of a finite number of Xα’s belong to τ . (
⋂n
i=1Xαi ∈ τ)

The Xα are called the open sets of X in topology τ , and τ is said to give a topology

to X.

So: topology =̂ specify which subsets of X are open.

The same set X has several possible definitions of topologies (see examples).

Examples

(i) τ = {∅, X} ”trivial topology”

(ii) τ = {all subsets of X} ”discrete topology”

(iii) Let X = R, τ = {open intervals ]a, b[ and their unions} ”usual topology”

(iv) X = Rn, τ = { ]a1, b1[× . . .× ]an, bn[ and unions of these.}

Definition: A metric on X is a function d : X ×X → R such that

M1 d(x, y) = d(y, x)

M2 d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y.

M3 d(x, y) + d(y, z) ≥ d(x, z) ”triangle inequality”

Example:

X = Rn, dp(x, y) =

(
n∑
i=1

|xi − yi|p
) 1

p

, p > 0

If p = 2 we call it the Euclidean metric.

If X has a metric, then the metric topology is defined by choosing all the ”open

disks”

Uε(x) = { y ∈ X| d(x, y) < ε }

and all their unions as open sets.

The metric topology of Rn with metric dp is equivalent with the usual topology (for

all p > 0 !)
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Let (X, τ) be a topological space, A ⊂ X a subset. The topology τ induces the

relative topology τ ′ in A,

τ ′ = { Ui ∩ A | Ui ∈ τ }

This is how we obtain a topology for all subsets of Rn (like Sn).

9.1.1 Continuous Maps

Let (X, τ) and (Y, σ) be topological spaces. A map f : X → Y is continuous if and

only if the inverse image of every open set V ∈ σ, f−1(V ) = { x ∈ X | f(x) ∈ V }, is

an open set in X: f−1(V ) ∈ τ .

A function f : X → Y is a homeomorphism if f is continuous, and has an inverse

f−1 : Y → X which is also continuous.

If there exists a homeomorphism f : X → Y , then we say that X is homeomorphic

to Y and vice versa. Denote X ' Y .

This (') is an equivalence relation.

Intuitively : X and Y are homeomorphic if we can continuously deform X to Y

(without cutting or pasting).

Example: coffee cup ' donut.[
The fundamental question of topology : classify all homeomorphic spaces.

]

One method of classification: topological invariants i.e. quantities which are in-

variant under homeomorphisms.

If a topological invariant for X1 6= for X2 then X1 '/ X2.

The neighbourhood N of a point x ∈ X is a subset N ⊂ X such that there exists

an open set U ∈ τ, x ∈ U and U ⊂ N .

(N does not have to be an open set).

(X, τ) is a Hausdorff space if for an arbitrary pair x, x′ ∈ X, x 6= x′, there always

exists neighbourhoods N 3 x, N ′ 3 x′ such that N ∩N ′ = ∅.
We’ll assume from now on that all topological spaces (that we’ll consider) are Haus-

dorff.

Example: Rn with the usual topology is Hausdorff.

All spaces X with metric topology are Hausdorff.
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A subset A ⊂ X is closed if its complement X − A = {x ∈ X | x /∈ A } is open.

N.B. X and ∅ are both open and closed.

A collection {Ai} of subsets Ai ⊂ X is called a covering of X if
⋃
iAi = X.

If all Ai are open sets in the topology τ of X, {Ai} is an open covering.

A topological space (X, τ) is compact if, for every open covering { Ui | i ∈ I} there

exists a finite subset J ⊂ I such that { Ui | i ∈ J} is also a covering of X, i.e. every

open covering has a finite subcovering.

Basic example According to the Heine-Borel theorem a subset A ⊂ Rn is com-

pact (in the standard Euclidean metric topology) if and only if it is closed and

bounded. Bounded means that |x| < R for some R > 0 and for all x ∈ A.
X is connected if it cannot be written as X = X1

⋃
X2, with X1, X2 both open,

nonempty and disjoint, i.e. X1

⋂
X2 = ∅.

A loop in topological space X is a continuous map f : [0, 1]→ X such that

f(0) = f(1). If any loop in X can be continuously shrunk to a point, X is called

simply connected.

Examples: R2 is simply connected.

Torus T 2 is not simply connected.

Examples of topological invariants = quantities or properties invariant under home-

omorphisms:

1. Connectedness

2. Simply connectedness

3. Compactness

4. Hausdorff

5. Euler characteristic (see below)

Let X ⊂ R3, X ' polyhedron K. (monitahokas)

Euler characteristic:

χ(X) = χ(K) = (# vertices in K)− (# edges in K) + (# faces in K)

( = K:n kärkien lkm.−K:n sivujen lkm. +K:n tahkojen lkm.)

Example: χ(T 2) = 16− 32 + 16 = 0.

χ(S2) = χ(cube) = 8− 12 + 6 = 2.
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9.2 Homotopy Groups

9.2.1 Paths and Loops

Let X be a topological space, I = [0, 1] ⊂ R.

A continuous map α : I → X is a path in X. The path α starts at α0 = α(0) and

ends at α1 = α(1).

If α0 = α1 ≡ x0, then α is a loop with base point x0. We will focus on loops.

Definition: A product of two loops α, β with the same base point x0, denoted by

α ? β, is the loop

(α ? β)(t) =

{
α(2t) for 0 ≤ t ≤ 1

2

β(2t− 1) for 1
2
≤ t ≤ 1

9.2.2 Homotopy

Let α, β be two loops in X with base point x0. α and β are homotopic, α ∼ β, if

there exists a continuous map F : I × I → X such that

F (s, 0) = α(s) ∀s ∈ I
F (s, 1) = β(s) ∀s ∈ I
F (0, t) = F (1, t) = x0 ∀t ∈ I.

F is called a homotopy between α and β.

Homotopy is an equivalence relation:

1. α ∼ α: choose F (s, t) = α(s) ∀t ∈ I

2. α ∼ β, homotopy F (s, t)⇒ β ∼ α, homotopy F (s, 1− t)

3. α ∼ β, homotopy F (s, t); β ∼ γ, homotopy G(s, t). Then choose

H(s, t) =

{
F (s, 2t) 0 ≤ t ≤ 1

2

G(s, 2t− 1) 1
2
≤ t ≤ 1

⇒ H(s, t) is a homotopy between α and γ, so α ∼ γ.

The equivalence class [α] is called the homotopy class of α.

([α] = { all paths homotopic with α }).

Lemma: If α ∼ α′ and β ∼ β′, then α ? β ∼ α′ ? β′.

Proof: Let F (s, t) be a homotopy between α and α′ and let G(s, t) be a homotopy

between β and β′. Then

H(s, t) =

{
F (2s, t) 0 ≤ s ≤ 1

2

G(2s− 1, t) 1
2
≤ s ≤ 1
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is a homotopy between α ? β and α′ ? β′. �

By the lemma, we can define a product of homotopy classes: [α] ? [β] ≡ [α ? β].

Theorem: The set of homotopy classes of loops at x0 ∈ X, with the product defined

as above, is a group called the fundamental group (or first homotopy group) of

X at x0. It is denoted by Π1(X, x0)

Proof:

(0) Closure under multiplication: For all [α], [β] ∈ Π1(X, x0) we have [α] ? [β] =

[α ? β] ∈ Π1(X, x0), since α ? β is also a loop at x0.

(1) Associativity: We need to show (α ? β) ? γ ∼ α ? (β ? γ).

Homotopy F (s, t) =


α
(

4s
1+t

)
0 ≤ s ≤ 1+t

4

β(4s− t− 1) 1+t
4
≤ s ≤ 2+t

4

γ
(

4s−t−2
2−t

)
2+t

4
≤ s ≤ 1

⇒ [(α ? β) ? γ] = [α ? (β ? γ)] ≡ [α ? β ? γ].

(2) Unit element: Let us show that the unit element is e = [Cx0 ], where Cx0 is the

constant path Cx0(s) = x0 ∀s ∈ I. This follows since we have the homotopies:

α ? Cx0 ∼ α : F (s, t) =

{
α
(

2s
1+t

)
0 ≤ s ≤ 1+t

2

x0
1+t

2
≤ s ≤ 1

Cx0 ? α ∼ α : F (s, t) =

{
x0 0 ≤ s ≤ 1−t

2

α
(

2s−1+t
1+t

)
1−t

2
≤ s ≤ 1

.

⇒ [α ? Cx0 ] = [Cx0 ? α] = [α].

(3) Inverse: Define α−1(s) = α(1 − s). We need to show that α−1 is really the

inverse of α: [α ? α−1] = [Cx0 ]. Define:

F (s, t) =

{
α(2s(1− t)) 0 ≤ s ≤ 1

2

α(2(1− s)(1− t)) 1
2
≤ s ≤ 1

Now we have F (s, 0) = α ? α−1 and F (s, 1) = Cx0 so α ? α−1 ∼ Cx0 . Similarly

α−1 ? α ∼ Cx0 so we have proven the claim: [α−1 ? α] = [α ? α−1] = [Cx0 ]. �

In general, a homotopy between two maps f, g : X → Y is defined as a map

F : X × [0, 1] such that F (x, 0) = f(x) and F (x, 1) = g(x). The topological spaces

X, Y are said to be homotopy equivalent if there is a pair of maps f : X → Y and

g : Y → X such that f ◦ g is homotopic to idY and g ◦ f id homotopic to idX .

Many topological notions are invariant under a homotopy equivalence; for example,

the fundamental groups of X and Y are isomorphic if X, Y are homotopy equivalent.
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9.2.3 Properties of the Fundamental Group

1. If x0 and x1 can be connected by a path, then Π1(X, x0) ∼= Π1(X, x1). If X is

arcwise connected, then the fundamental group is independent of the choice of

x0 up to an isomorphism: Π1(X, x0) ∼= Π1(X).

(A space X is arcwise connected if any two points x0, x1 ∈ X can be

connected with a path. It can be shown that an arcwise connected space

is always connected, but the converse is not true. However a connected

metric space is also arcwise connected.)

2. Π1(X) is a topological invariant: X ' Y ⇒ Π1(X) ∼= Π1(Y ).

3. Examples:

• Π1(R2) = 0 (= the trivial group)

• Π1(T 2) = Π1(S1 × S1) = Z⊕ Z.

(One can show that Π1(X × Y ) = Π1(X)⊕Π1(Y ) for arcwise connected spaces

X and Y .)

The real projective space is defined as RP n = { lines through the origin in Rn+1}. If

x = (x0, x1, . . . , xn) 6= 0, then x defines a line. All y = λx for some nonzero λ ∈ R
are on the same line and thus we have an equivalence relation: y ∼ x↔ y = λx, λ ∈
R− {0} ↔ (x and y are on the same line.)

So RP n = {[x]| x ∈ Rn+1 − 0} with the above equivalence relation.

Example: RP 2 ' (S2 with opposite points identified)

Π1(RP 2) = Z2.

9.2.4 Higher Homotopy Groups

Define: In = {(s1, . . . , sn)| 0 ≤ si ≤ 1, 1 ≤ i ≤ n}
∂In = boundary of In = {(s1, . . . , sn)| some si = 0 or 1}

A map α : In → X which maps every point on ∂In to the same point x0 ∈ X

is called an n-loop at x0 ∈ X. Let α and β be n-loops at x0. We say that α is

homeotopic to β, α ∼ β, if there exists a continuous map F : In × I → X such that

F (s1, . . . , sn, 0) = α(s1, . . . , sn)

F (s1, . . . , sn, 1) = β(s1, . . . , sn)

F (s1, . . . , sn, t) = x0 ∀t ∈ I when (s1, . . . , sn) ∈ ∂In.
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Homotopy α ∼ β is again an equivalence relation with respect to homotopy classes

[α].

Define: α ? β : α ? β(s1, . . . , sn) =

{
α(2s1, s2, . . . , sn) 0 ≤ s1 ≤ 1

2

β(2s1 − 1, s2, . . . , sn) 1
2
≤ s1 ≤ 1.

α−1 : α−1(s1, . . . , sn) = α(1− s1, . . . , sn)

[α] ? [β] = [α ? β]

⇒ Πn(X, x0), the nth homotopy group of X at x0. (This classifies continuous maps

Sn → X.)

Example: Πn(Sn) = Z for all n ≥ 1 whereas Πk(S
n) = 0 for k < n.

One of the classic problems in algebraic topology is to compute the homotopy

groups πk(S
n) of spheres. This is still unsolved for general values of n, k; partial

answers are known when k is not too large compared to n. For example, Π4(S3) =

Π5(S3) = Z2.

For more information on homotopy groups and algebraic topology in general, see

M. Greenberg and J.R. Harper: Algebraic Topology, A First Course.

One can prove (and you might be able to provide the proof) that the higher

homotopy groups Πn(X), for n ≥ 2, are all commutative.

9.3 Differentiable manifolds

9.3.1 The definition of a differentiable manifold

Let M be a topological space. We normally assume also the Hausdorff property: For

any pair x, y of distinct points there is a pair of nonoverlapping open sets U, V such

that x ∈ U and y ∈ V.
Actually, all the spaces we study in (finite dimensional) differential geometry are

locally homeomorphic to Rn.

Definition A topological space M is called a smooth manifold of dimension n if

• there is a family of open sets Uα (with α ∈ Λ) such that the union of all Uα’s is

equal to M

• for each α there is a homeomorphism φα : Uα → Vα ⊂ Rn such that

• the coordinate transformations φα◦φ−1
β on their domains of definition are smooth

functions in Rn.

Example 1 Rn is a smooth manifold. We need only one coordinate chart U = M

with φ : U → Rn the identity mapping.

Example 2 The same as above, but take M ⊂ Rn any open set.

Example 3 Take M = S1, the unit circle. Set U equal to the subset parametrized

by the polar angle −0.1 < φ < π+0.1 and V equal to the set π < φ < 2π. Then U∩V
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consists of two intervals π < φ < π + 0.1 and −0.1 < φ < 0 ∼ 2π − 0.1 < φ < 2π.

The coordinate transformation is the identity map φ 7→ φ on the former and the

translation φ 7→ φ+ 2π on the latter interval.

Example 4 The unit sphere Sn in n dimensions. Let’s realize Sn as a subset of

Rn+1: Sn = {x ∈ Rn+1|
∑n

i=0(xi)2 = 1}.
One possible atlas:

• coordinate neighbourhoods:

Ui+ ≡ {x ∈ Sn|xi > 0}
Ui− ≡ {x ∈ Sn|xi < 0}

• coordinates:

ϕi+(x0, . . . , xn) = (x0, . . . , xi−1, xi+1, . . . , xn) ∈ Rn

ϕi−(x0, . . . , xn) = (x0, . . . , xi−1, xi+1, . . . , xn) ∈ Rn

(so these are projections on the plane xi = 0.)

The transition functions (i 6= j, α = ±, β = ±),

ψiαjβ =ϕiα ◦ ϕ−1
jβ ,

(x0, . . . ,xi, . . . , xj−1, xj+1, . . . , xn)

7→ (x0, . . . , xi−1, xi+1, . . . , xj−1, β

√
1−

∑
k 6=j

(xk)2, xj+1, . . . , xn)

are C∞.

There are other compatible atlases, e.g. the stereographic projection.

Example 5 The group GL(n,R) of invertible real n × n matrices is a smooth

manifold as an open subset of Rn2
. It is an open subset since it is a complement of

the closed surface determined by the polynomial equation detA = 0.

9.3.2 Differentiable maps

Let M,N be a pair of smooth manifolds (of dimensions m,n) and f : M → N a

continuous map. If (U, φ) is a local coordinate chart on M and (V, ψ) a coordinate

chart on N then we have a map ψ ◦ f ◦ φ−1 from some open subset of Rm to an open

subset of Rn. If the composite map is smooth for any pair of coordinate charts we say

that f is smooth. The reader should convince himself that the condition of smoothness

for f does not depend on the choice of coordinate charts. From elementary results

in differential calculus it follows that if g : N → P is another smooth map then also

g ◦ f : M → P is smooth.
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Note that we can write the map ψ ◦ f ◦ φ−1 as

y = (y1, . . . , yn) = (y1(x1, . . . , xm), . . . , yn(x1, . . . , xm))

in terms of the Cartesian coordinates. Smoothness of f simply means that the coor-

dinate functions yi(x1, x2, . . . , xm) are smooth functions.

Remark In a given topological space M one can often construct different inequiv-

alent smooth structures. That is, one might be able to construct atlases {(Uα, φα)}
and {(Vα, ψα)} such that both define a structure of smooth manifold, say MU and

MV , but the manifolds MU ,MV are not diffeomorphic (see the definition below). A

famous example of this phenomen are the spheres S7, S11 (John Milnor, 1956). On the

sphere S7 there are exactly 28 and on S11 992 inequivalent differentiable structures!

On the Euclidean space R4 there is an infinite number of differentiable structures

(S.K. Donaldson, 1983). In dimensions n = 1, 2, 3, 5, 6 there is exactly one sphere (up

to a diffeomorphism) whereas the case n = 4 is still open.

A diffeomorphism is a one-to-one smooth map f : M → N such that its inverse

f−1 : N → M is also smooth. The set of diffeomorphisms M → M forms a group

Diff(M). A smooth map f : M → N is an immersion if at each point p ∈ M the

rank of the derivative dh
dx

is equal to the dimension of M. Here h = ψ ◦ f ◦ φ−1 with

the notation as before. Finally f : M → N is an embedding if f is injective and it is

an immersion; in that case f(M) ⊂ N is an embedded submanifold.

A smooth curve on a manifold M is a smooth map γ from an open interval of the

real axes to M. Let p ∈ M and (U, φ) a coordinate chart with p ∈ U. Assume that

curves γ1, γ2 go through p, let us say p = γi(0). We say that the curves are equivalent

at p, γ1 ∼ γ2, if
d

dt
φ(γ1(t))|t=0 =

d

dt
φ(γ2(t))|t=0.

This relation does not depend on the choice of (U, φ) as is easily seen by the help of

the chain rule:

d

dt
ψ(γ1(t))− d

dt
ψ(γ2(t)) = (ψ ◦ φ−1)′ ·

(
d

dt
φ(γ1(t))− d

dt
φ(γ2(t))

)
= 0

at the point t = 0. Clearly if γ1 ∼ γ2 and γ2 ∼ γ3 at the point p then also γ1 ∼ γ3 and

γ2 ∼ γ1. Trivially γ ∼ γ for any curve γ through p so that ” ∼ ” is an equivalence

relation.

A tangent vector v at a point p is an equivalence class of smooth curves [γ] through

p. For a given chart (U, φ) at p the equivalence classes are parametrized by the vector

d

dt
φ(γ(t))|t=0 ∈ Rn.

Thus the space TpM of tangent vectors v = [γ] inherits the natural linear structure of

Rn. Again, it is a simple exercise using the chain rule that the linear structure does

not depend on the choice of the coordinate chart.
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We denote by TM the disjoint union of all the tangent spaces TpM. This is called

the tangent bundle of M. We shall define a smooth structure on TM. Let p ∈M and

(U, φ) a coordinate chart at p. Let π : TM → M the natural projection, (p, v) 7→ p.

Define φ̃ : π−1(U)→ Rn × Rn as

φ̃(p, [γ]) = (φ(p),
d

dt
φ(γ(t))|t=0).

If now (V, ψ) is another coordinate chart at p then

(φ̃ ◦ ψ̃−1)(x, v) = (φ(ψ−1(x)), (φ ◦ ψ−1)′(x)v),

by the chain rule. It follows that φ̃ ◦ ψ̃−1 is smooth in its domain of definition and

thus the pairs (π−1(U), φ̃) form an atlas on TM , giving TM a smooth structure.

Example 1 If M is an open set in Rn then TM = M × Rn.

Example 2 Let M = S1. Writing z ∈ S1 as a complex number of unit modulus,

consider curves through z written as γ(t) = zeivt with v ∈ R. This gives in fact a

parametrization for the equivalence classes [γ] as vectors in R. The tangent spaces at

different points z1, z2 are related by the phase shift z1z
−1
2 and it follows that TM is

simply the product S1 × R.
Example 3 In general, TM 6= M ×Rn. The simplest example for this is the unit

sphere M = S2. Using the spherical coordinates, for example, one can identify the

tangent space at a given point (θ, φ) as the plane R2. However, there is no natural

way to identify the tangent spaces at different points on the sphere; the sphere is not

parallelizable. This is the content of the famous hairy ball theorem. Any smooth

vector field on the sphere has zeros. (If there were a globally nonzero vector field

on S2 we would obtain a basis in all the tangent spaces by taking a (oriented) unit

normal vector field to the given vector field. Together they would form a basis in the

tangent spaces and could be used for identifying the tangent spaces as a standard

R2.)

Exercise The unit 3-sphere S3 can be thought of complex unitary 2× 2 matrices

with determinant =1. Use this fact to show that the tangent bundle is trivial, TS3 =

S3 × R3.

Let f : M → N be a smooth map. We define a linear map

Tpf : TpM → Tf(p)N, as Tpf · [γ] = [f ◦ γ],

where γ is a curve through the point p. This map is expressed in terms of local

coordinates as follows. Let (U, φ) be a coordinate chart at p and (V, ψ) a chart

at f(p) ∈ N. Then the coordinates for [γ] ∈ TpM are v = d
dt
φ(γ(t))|t=0 and the

coordinates for [f ◦ γ] ∈ Tf(p)N are w = d
dt
ψ(f(γ(t)))|t=0. But by the chain rule,

w = (ψ ◦ f ◦ φ−1)′(x) · d
dt
φ(γ(t))|t=0 = (ψ ◦ f ◦ φ−1)′(x) · v
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with x = φ(p). Thus in local coordinates the linear map Tpf is the derivative of

ψ ◦ f ◦ φ−1 at the point x. Putting together all the maps Tpf we obtain a map

Tf : TM → TN.

Theorem 9.1 The map Tf : TM → TN is smooth.

Proof. Recall that the coordinate charts (U, φ), (V, ψ) on M,N, respectivly, lead to

coordinate charts (π−1(U), φ̃) and (π−1(V ), ψ̃) on TM, TN. Now

(ψ̃ ◦ Tf ◦ φ̃−1)(x, v) = ((ψ ◦ f ◦ φ−1)(x), (ψ ◦ f ◦ φ−1)′(x)v)

for (x, v) ∈ φ̃(π−1(U)) ∈ Rm × Rm. Both component functions are smooth and thus

Tf is smooth by definition.

If f : M → N and g : N → P are smooth maps then g ◦ f : M → P is smooth

and

T (g ◦ f) = Tg ◦ Tf.

To see this, the curve γ through p ∈ M is first mapped to f ◦ γ through f(p) ∈ N
and further, by Tg, to the curve g ◦ f ◦ γ through g(f(p)) ∈ P.

In terms of local coordinates xi at p, yi at f(p) and zi at g(f(p)) the chain rule

becomes the standard formula,

∂zi

∂xj
=
∑
k

∂zi

∂yk
∂yk

∂xj
.

9.3.3 Manifold with a Boundary

Let H be the ”upper” half-space: Hm = {(x1, . . . , xm) ∈ Rm | xm ≥ 0}.
Now require for the coordinate functions: ϕi : Ui → U ′i ⊂ Hm, where U ′i is open in

Hm. (The topology on Hm is the relative topology induced from Rm.)

Points with coordinate xm = 0 belong to the boundary of M (denoted by ∂M). The

transition functions must now satisfy: ψij : ϕj(Ui ∩ Uj) → ϕi(Ui ∩ Uj) are C∞ in an

open set of Rm which contains ϕj(Ui ∩ Uj). .

9.3.4 Vector fields

We denote by C∞(M) the algebra of smooth real valued functions on M. A derivation

of the algebra C∞(M) is a linear map d : C∞(M)→ C∞(M) such that

d(fg) = d(f)g + fd(g)

for all f, g. Let v ∈ TpM and f ∈ C∞(M). Choose a curve γ through p representing

v. Set

v · f =
d

dt
f(γ(t))|t=0.
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Clearly v : C∞(M)→ R is linear. Furthermore,

v · (fg) =
d

dt
f(γ(t))|t=0g(γ(0)) + f(γ(0))

d

dt
g(γ(t))|t=0 = (v · f)g(p) + f(p)(v · g).

A vector field on a manifold M is a smooth distribution of tangent vectors on

M, that is, a smooth map X : M → TM such that X(p) ∈ TpM. From the previous

formula follows that a vector field defines a derivation of C∞(M); take above v = X(p)

at each point p ∈ M and the right- hand-side defines a smooth function on M and

the operation satisfies the Leibnitz’ rule.

We denote by D1(M) the space of vector fields on M. As we have seen, a vector

field gives a linear mapX : C∞(M)→ C∞(M) obeying the Leibnitz’ rule. Conversely,

one can prove that any derivation of the algebra C∞(M) is represented by a vector

field.

One can develop an algebraic approach to manifold theory. In that the commu-

tative algebra A = C∞(M) plays a central role. Points in M correspond to maximal

ideals in the algebra A. Namely, any point p defines the ideal Ip ⊂ A consisting of all

functions which vanish at the point p.

The action of a vector field on functions is given in terms of local coordinates

x1, . . . , xn as follows. If v = X(p) is represented by a curve γ then

(X · f)(p) =
d

dt
f(γ(t))t=0 =

∑
k

∂f

∂xk
dxk

dt
(t = 0) ≡

∑
k

Xk(x)
∂f

∂xk
.

Thus a vector field is locally represented by the vector valued function (X1(x), . . . , Xn(x)).

In addition of being a real vector space, D1(M) is a left module for the algebra

C∞(M). This means that we have a linear left multiplication (f,X) 7→ fX. The value

of fX at a point p is simply the vector f(p)X(p) ∈ TpM.

As we have seen, in a coordinate system xi a vector field defines a derivation with

local representation X =
∑

kX
k ∂
∂xk

. In a second coordinate system x′k we have a

representation X =
∑
X ′k ∂

∂x′k
. Using the chain rule for differentiation we obtain the

coordinate transformation rule

X ′
k
(x′) =

∑
j

∂x′k

∂xj
Xj(x),

for x′k = x′k(x1, . . . , xn).

We shall denote ∂k = ∂
∂xk

and we use Einstein’s summation convention over re-

peated indices,

Let X, Y ∈ D1(M). We define a new derivation of C∞(M), the commutator

[X, Y ] ∈ D1(M), by

[X, Y ]f = X(Y f)− Y (Xf).
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We prove that this is indeed a derivation of C∞(M).

[X, Y ](fg) = X(Y (fg))− Y (X(fg)) = X(fY g + gY f)− Y (fXg + gXf)

= (Xf)(Y g) + fX(Y g) + (Xg)(Y f) + gX(Y f)− (Y f)(Xg)− fY (Xg)

−(Y g)(Xf)− gY (Xf) = f [X, Y ]g + g[X, Y ]f.

Writing X = Xk∂k and Y = Y k∂k we obtain the coordinate expression

[X, Y ]k = Xj∂jY
k − Y j∂jX

k.

Thus we may view D1(M) simply as the space of first order linear partial differ-

ential operators on M with the ordinary commutator of differential operators. The

commutator [X, Y ] is also called the Lie bracket on D1(M). It has the basic properties

of a Lie algebra:

• [X, Y ] is linear in both arguments

• [X, Y ] = −[Y,X]

• [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

Exercise Check the relations

[X, fY ] = f [X, Y ] + (Xf)Y, and [fX, Y ] = f [X, Y ]− (Y f)X

for X, Y ∈ D1(M) and f ∈ C∞(M).

Let f : M → N be a diffeomorphism and X ∈ D1(M). We can define a vector

field Y = f∗X on N by setting Y (q) = Tpf · X(p) for q = f(p). In terms of local

coordinates,

Y = Y k ∂

∂yk
= Xj ∂y

k

∂xj
∂

∂yk
.

In the case M = N this gives back the coordinate transformation rule for vector

fields.

9.3.5 The flow generated by a vector field

Let X ∈ D1(M). Consider the differential equation

X(γ(t)) =
d

dt
γ(t)

for a smooth curve γ. In terms of local coordinates this equation is written as

Xk(x(t)) =
d

dt
xk(t), k = 1, 2, . . . , n. (1)

By the theory of ordinary differential equations this system has locally, at a neighbor-

hood of an initial point p = γ(0), a unique solution. However, in general the solution
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does not need to extend to −∞ < t < +∞ except in the case when M is a compact

manifold. The (local) solution γ is called an integral curve of X through the point p.

The integral curves for a vector field X define a (local) flow on the manifold M.

This is a (local) map

f : R×M →M

given by f(t, p) = γ(t) where γ is the integral curve through p. We have the identity

f(t+ s, p) = f(t, f(s, p)),

which follows from the uniqueness of the local solution to the first order ordinary

differential equation. In coordinates,

d

dt
fk(t, f(s, x)) = Xk(f(t, f(s, x)))

and
d

dt
fk(t+ s, x) = Xk(f(t+ s, x)).

Thus both sides of (1) obey the same differential equation. Since the initial conditions

are the same, at t = 0 both sides are equal to f(0, f(s, x)) = f(s, x), the solutions

must agree.

Denoting ft(p) = f(t, p), observe that the map R → Diffloc(M), t 7→ ft, is a

homomorphism,

ft ◦ fs = ft+s.

Thus we have a one parameter group of (local) transformations ft on M. In the case

when M is compact we actually have globally globally defined transformations on M.

The vector field X is called the infinitesimal generator of the flow (t, p) 7→ ft(p).

Example Let X(r, φ) = (−r sinφ, r cosφ) be a vector field on M = R2. The

integral curves are solutions of the equations

x′(t) = −r(t) sinφ(t)

y′(t) = r(t) cosφ(t)

and the solutions are easily seen to be given by (x(t), y(t)) = (r0 cos(φ+φ0), r0 sin(φ+

φ0)), where the initial condition is specified by the constants φ0, r0. The one parameter

group of tranformations generated by the vector field X is then the group of rotations

in the plane.

Given a vector field X, the corresponding flow in local coordinates is often denoted

by

σµt (x) = σµ(t, x) = exp(tX)xµ = (etX)xµ
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and called the exponentiation of X. This is because

σµt (x) = xµ + t
dσµ(s, x)

ds

∣∣∣∣
s=0

+
1

2!
t2
d2σµ(s, x)

ds2

∣∣∣∣
s=0

+ · · ·

=

(
1 + t

d

ds
+

1

2!
t2
d2

ds2
+ · · ·

)
σµ(s, x)

∣∣∣∣
s=0

= et
d
dsσµ(s, x)

∣∣∣
s=0

= etXxµ .

Further reading: M. Nakahara: Geometry, Topology and Physics, Institute of

Physics Publ. (1990), sections 5.1 - 5.3 . S. S. Chern, W.H. Chen, K.S. Lam: Lectures

on Differential Geometry, World Scientific Publ. (1999), Chapter 1.

9.3.6 Dual Vector Space

Let V be a complex vector space and f a linear function V → C. Now V ∗ =

{f |f is a linear function V → C} is also a complex vector space, the dual vector

space to V :

• (f1 + f2)(~v) = f1(~v) + f2(~v)

• (af)(~v) = a(f(~v))

• ~0V ∗(~v) = 0 ∀~v ∈ V

The elements of V ∗ are called the dual vectors.

Let {~e1, . . . , ~en} be a basis of V . Then any vector ~v ∈ V can be written as ~v = vi~ei.

We define a dual basis in V ∗ such that e∗i(~ej) = δij. From this it follows that

dim V = dim V ∗ = n (dual basis = {e∗1, . . . , e∗n}). We can then expand any f ∈ V ∗
as f = fie

∗i for some coefficients fi ∈ C. Now we have

f(~v) = fie
∗i(vj~ej) = fiv

je∗i(~ej) = fiv
i.

This can be interpreted as an inner product:

< , > : V ∗ × V → C
< f,~v > = fiv

i.

(Note that this is not the same inner product < | > which we discussed before:

< ,> : V ∗ × V → C but < | > : V × V → C.)
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Pullback: Let f : V → W and g : W → C be linear maps (g ∈ W ∗). It follows

that g ◦ f : V → C is a linear map, i.e. g ◦ f ∈ V ∗.

V
f→ W

↘ ↓ g
g ◦ f C

Now f induces a map f ∗ : W ∗ → V ∗, g 7→ g ◦ f i.e. f ∗(g) = g ◦ f ∈ V ∗. f ∗(g) is

called the pullback (takaisinveto) of g.

Dual of a Dual: Let ω : V ∗ → C be a linear function (ω ∈ (V ∗)∗). Every ~v ∈ V
induces via inner product ω~v ∈ (V ∗)∗ defined by ω~v(f) =< f,~v > . On the other

hand, it can be shown this gives all ω ∈ (V ∗)∗. So we can identify (V ∗)∗ with V .

Tensors: A tensor of type (p, q) is a function of p dual vectors and q vectors, and

is linear in its every argument1

T :

p︷ ︸︸ ︷
V ∗ × . . .× V ∗×

q︷ ︸︸ ︷
V × . . .× V → C.

Examples: (0,1) tensor = dual vector : V → C
(1,0) tensor = (dual of a dual) vector

(1,2) tensor: T : V ∗ × V × V → C. Choose basis {~ei} in V and {e∗i} in V ∗:

T (f,~v, ~w) = T (fie
∗i, vj~ej, w

k~ek) = fiv
jwk

≡T ijk︷ ︸︸ ︷
T (e∗i, ~ej, ~ek) = T ijkfiv

jwk,

where T ijk are the components of the tensor and they uniquely determine the tensor.

Note the positioning of the indices.

In general, (p, q) tensor components have p upper and q lower indices.

Tensor product: Let R be a (p, q) tensor and S be a (p′, q′) tensor. Then T = R⊗S
is defined as the (p+ p′, q + q′) tensor:

T (f1, . . . , fp; fp+1, . . . , fp+p′ ;~v1, . . . , ~vq;~vq+1, . . . , ~vq+q′)

= R(f1, . . . , fp;~v1, . . . , ~vq)S(fp+1, . . . , fp+p′ ;~vq+1, . . . , ~vq+q′).

In terms of components:

T
i1...ipip+1...ip+p′
j1...jqjq+1...jq+q′

= R
i1...ip
j1...jq

S
ip+1...ip+p′
jq+1...jq+q′

1So T is a multilinear object.
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Contraction: This is an operation that produces a (p−1, q−1) tensor from a (p, q)

tensor:

T︸︷︷︸
(p,q)

7→ Tc(ij)︸︷︷︸
(p−1,q−1)

,

where the (p− 1, q − 1) tensor Tc(ij) is

Tc(ij)(f1, . . . , fp−1;~v1, . . . , ~vq−1) = T (f1, . . . ,

ith︷︸︸︷
e∗k , . . . , fp−1;~v1, . . . ,

jth︷︸︸︷
~ek , . . . , ~vq−1).

Note the sum over k in the formula above. In component form this is

T
l1...lp−1

c(ij) m1...mq−1
= T

l1...li−1kli...lp−1

m1...mj−1kmj ...mq−1

Now we can return to calculus on manifolds.

9.3.7 1-forms (i.e. cotangent vectors)

Tangent vectors of a differentiable manifold M at point p were elements of the vector

space TpM . Cotangent vectors or 1-forms are their dual vectors, i.e. linear

functions TpM → R. In other words, they are elements of the dual vector space

T ∗pM. Let w ∈ T ∗pM and v ∈ TpM , then the inner product < , >: T ∗pM × TpM → R
is

< w, v >= w(v) ∈ R.

The inner product is bilinear:

< w,α1v1 + α2v2 > = w(α1v1 + α2v2) = α1 < w, v1 > +α2 < w, v2 >

< α1w1 + α2w2, v > = (α1w1 + α2w2)(v) = α1 < w1, v > +α2 < w2, v > .

Let {eµ} = { ∂
∂xµ
} be a coordinate basis of TpM . (Note that the correct notation would

be {
(

∂
∂xµ

)
p
}, but this is somewhat cumbersome so we use the shorter notation.) The

dual basis is denoted by {dxµ} and it satisfies by definition

< dxµ,
∂

∂xν
>= dxµ(

∂

∂xν
) = δµν .

Now we can expand w = wµdx
µ and v = vν ∂

∂xν
. Then

w(v) =< w, v >= wµv
νdxµ(

∂

∂xν
) = wµv

µ.

Consider now a function f ∈ F(M) (i.e. f is a smooth map M → R). Its differential

df ∈ T ∗pM is the map

df(v) =< df, v >≡ v(f) = vµ
∂f

∂xµ
.
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Thus the components of df are ∂f
∂xµ

and

df =
∂f

∂xµ
dxµ.

Consider two coordinate patches Ui and Uj with p ∈ Ui ∩ Uj. Let x = ϕi(p) and

y = ϕj(p) be the coordinates in Ui and Uj respectively. We can derive how the

components of a 1-form transform under the change of coordinates:

Let w = wµdx
µ = w̃νdy

ν ∈ T ∗pM and v = vρ ∂
∂xρ

= ṽσ ∂
∂yσ
∈ TpM be a 1-form and a

vector. We already know that ṽν = ∂yν

∂xµ
vµ, so we get

w(v) = wµv
µ = w̃ν ṽ

ν = w̃ν
∂yν

∂xµ
vµ,

so we find the transformed components

wµ = w̃ν
∂yν

∂xµ
or w̃µ = wν

∂xν

∂yµ
.

The dual basis vectors transform as

dyν =
∂yν

∂xµ
dxµ.

9.3.8 Tensors

A tensor of type (q, r) is a multilinear map

T :

q︷ ︸︸ ︷
T ∗pM × . . .× T ∗pM ×

r︷ ︸︸ ︷
TpM × . . .× TpM → R.

Denote the set of type (q, r) tensors at p ∈M by T qr,p(M). Note that T 1
0,p = (T ∗pM)∗ =

TpM and T 0
1,p(M) = T ∗pM .

The basis of T qr,p is {
∂

∂xµ1
⊗ · · · ⊗ ∂

∂xµq
⊗ dxν1 ⊗ · · · ⊗ dxνr

}
.

The basis vectors satisfy (as a mapping T ∗pM × . . .×T ∗pM ×TpM × . . .×TpM → R):(
∂

∂xµ1
⊗ · · · ⊗ ∂

∂xµq
⊗ dxν1 ⊗ · · · ⊗ dxνr

)(
dxα1 , . . . , dxαq ,

∂

∂xβ1
, . . . ,

∂

∂xβr

)
= δα1

µ1
. . . δαqµqδ

ν1
β1
. . . δνrβr .

(Note that ∂
∂xµ

(dxα) ≡< dxα, ∂
∂xµ

>= δαµ. On the left ∂
∂xµ

is interpreted as an element

of (T ∗pM)∗.)

We can expand as T = T
µ1...µq

ν1...νr

{
∂

∂xµ1
⊗ · · · ⊗ ∂

∂xµq
⊗ dxν1 ⊗ · · · ⊗ dxνr

}
so

T (w1, . . . , wq; v1, . . . , vr) = T µ1...µq
ν1...νr

w1µ1 . . . wqµqv
ν1
1 . . . vνrr .
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The tensor product of tensors T ∈ T qr,p(M) and U ∈ T st,p(M) is the tensor T ⊗U ∈
T q+sr+t,p(M) with

(T ⊗ U)(w1, . . . , wq, wq+1, . . . , wq+s; v1, . . . , vr, vr+1, . . . , vr+t)

= T (w1, . . . , wq; v1, . . . , vr)U(wq+1, . . . , wq+s; vr+1, . . . , vr+t).

= T µ1...µq
ν1...νr

w1µ1 . . . wqµqv
ν1
1 . . . vνrr ·

Uα1...αs
β1...βt

w(q+1)α1 . . . w(q+s)αsv
β1

r+1 . . . v
βt
r+t.

Contraction maps a tensor T ∈ T qr,p(M) to a tensor T ′ ∈ T q−1
r−1,p(M) with components

T ′µ1...µq−1
ν1...νr−1

= T µ1...µi−1ρµi...µq−1
ν1...νj−1ρνj ...νr−1

Under a coordinate transformation, a tensor of type (q, r) transforms like a product

of q vectors and r one-forms (note that v1 ⊗ · · · ⊗ vq ⊗ w1 ⊗ . . .⊗ wr is one example

of a (q, r) tensor). For example T ∈ T 1
2,p(M) tensor of type (1, 2):

T = Tαβ1β2

∂

∂xα
⊗ dxβ1 ⊗ dxβ2 = T̃ µν1ν2

∂

∂yµ
⊗ dyν1 ⊗ dyν2

gives us the transformation rule for the components

T̃ µν1ν2 =
∂yµ

∂xα
∂xβ1

∂yν1
∂xβ2

∂yν2
Tαβ1β2

9.3.9 Tensor Fields

Suppose that a vector v(p) has been assigned to every point p in M . This is a

(smooth) vector field, if for every C∞ function f ∈ F the function v(p)(f) : M →
R is also a smooth function. We denote v(p)(f) by v[f ]. The set of smooth vector

fields on M is denoted by χ(M).

Smooth cotangent vector field : For every p ∈ M there is w(p) ∈ T ∗pM such

that if V ∈ χ(M), then the function

w[V ] : M → R
p 7→ w[V ](p) = w(p)(V (p))

is smooth. The set of cotangent vector fields is denoted by Ω1(M).

Smooth (q, r)-tensor field : If for all p ∈ M there is T (p) ∈ T qr,p(M) such that

if w1, . . . , wq are smooth cotangent vector fields and v1, . . . , vr are smooth tangent

vector fields, then the map

p 7→ T [w1, . . . , wq; v1, . . . , vr](p) = T (p)(w1(p), . . . , wq(p); v1(p), . . . , vr(p))

is smooth on M .
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9.3.10 Differential Map and Pullback

Let M and N be differentiable manifolds and f : M → N smooth.

f induces a map called the differential map (työntökuvaus) f∗ : TpM → TpN . It is

defined as follows:

If g ∈ F(N) (i.e. g : N → R smooth), and v ∈ TpM , then

(f∗v)[g] = v[g ◦ f ].

In other words, if v characterizes the rate of change of a function along a curve c(t),

then f∗v characterizes the rate of change of a function along the curve f(c(t)).

Let x be local coordinates on M and y be local coordinates on N , ”y = f(x)”. Also

let v = vµ ∂
∂xµ

and (f∗v)ν ∂
∂yν

. Then

v[g ◦ f ] = vµ
∂(g(f(x)))

∂xµ
= vµ

∂g

∂yν
∂yν

∂xµ
≡ (f∗v)ν

∂g

∂yν

and we get

(f∗v)ν = vµ
∂yν

∂xµ
, where y = f(x).

[More precisely xµ = ϕµ(p), yν = ψν(f(p)) and ∂yν

∂xµ
= ∂(ψ◦f◦ϕ−1)ν

∂xµ
.]

Example. Let (x1, x2) and (y1, y2, y3) be the coordinates in M and N , respectively,

and let V = a ∂
∂x1 + b ∂

∂x2 be a tangent vector at (x1, x2). Let f : M → N be a map

whose coordinate presentation is y = (x1, x2,
√

1− (x1)2 − (x2)2). Then

f∗V = V µ∂y
α

∂xµ
∂

∂yα
= a

∂

∂y1
+ b

∂

∂y2
− (a

y1

y3
+ b

y2

y3
)
∂

∂y3
.

The function f also induces the map

f ∗ : T ∗f(p)N → T ∗pM, (f ∗w)(v) = w(f∗v),

where v ∈ TpM and w ∈ T ∗f(p)N are arbitrary. f ∗ is called the pullback.

In local coordinates, w = wνdy
ν ,

w(f∗v) = wνdy
ν

(
vµ
∂yα

∂xµ
∂

∂yα

)
= wνv

µ ∂y
ν

∂xµ
= (f ∗w)µv

µ = (f ∗w)(v),

from which we get

(f ∗w)µ = wν
∂yν

∂xµ
.

The pullback f ∗ can also be generalized to (0, r) tensors and similarly the differential

map f∗ can be generalized to (q, 0) tensors.
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9.3.11 Lie Derivative

Let σt(x) be a flow on M generated by vector field X:
dσµt (x)

dt
= Xµ(σt(x)). Let Y be

another vector field on M . We want to calculate the rate of change of Y along the

curve xµ(t) = σµt (x).

The Lie derivative of a vector field Y is defined by

LXY =ε→0
1

ε

(
(σ−ε)∗Y |σε(x) − Y |x

)
.

Let’s rewrite this in a more user-friendly form: First

Y |x = Y µ(x)
∂

∂xµ

Y |x̄ = Y µ(x̄)
∂

∂x̄µ
,

where we have for the coordinates

x̄µ ≡σµε (x) = xµ + εXµ(x) +O(ε2)

⇒ xµ = x̄µ − εXµ(x̄µ) +O(ε2).

Thus

Y |x̄ = (Y µ(x+ εX))
∂

∂x̄µ
=

(
Y µ(x) + εXν ∂Y

µ(x)

∂xν

)
∂

∂xµ
.

Differential map from x̄ to x:

((σ−ε)∗Y |x̄)α = Y µ|x̄
∂xα

∂x̄µ
=

(
Y µ(x) + εXν(x)

∂Y µ(x)

∂xν

)(
δαµ − ε

∂Xα

∂xµ
+O(ε)︷ ︸︸ ︷

∂Xα(x̄)

∂x̄µ

)
= Y α(x) + ε

(
Xν(x)

∂Y α

∂xν
− Y µ(x)

∂Xα

∂xµ

)
+O(ε2)

⇒ LXY =

(
Xν ∂Y

µ

∂xν
− Y ν ∂X

µ

∂xν

)
∂

∂xµ
.

So we got

LXY =

(
Xν ∂Y

µ

∂xν
− Y ν ∂X

µ

∂xν

)
∂

∂xµ
= [X, Y ] ,

where the commutator (”Lie bracket”) acts on functions by

[X, Y ] f = X[Y [f ]]− Y [X[f ]].

Note that XY is not a vector field but [X, Y ] is:

XY f = X[Y [f ]] = Xµ∂µ[Y ν∂νf ] = Xµ(∂µY
ν)∂ν︸ ︷︷ ︸

vector field

f + XµY ν∂µ∂ν︸ ︷︷ ︸
not a vector field

f.
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Lie derivative of a one-form: Let w ∈ Ω1(M) be a one-form (cotangent vector).

Define the Lie derivative of w along X as

LXw =ε→0
1

ε

(
σ∗εw|σε(x) − w|x

)
.

Let’s simplify this. The coordinates at σε(x) : yµ ≡ σµε (x) ' xµ + εXµ(x).

(σ∗εw)α = wβ(y)
∂yβ

∂xα
= wβ(x+ εX)

∂

∂xα
(xβ + εXβ)

= (wβ(x) + εXµ∂µwβ(x))(δβ α + ε∂αX
β)

= wα + ε(Xµ∂µwα + wµ∂αX
µ)

Thus we find

LXw = (Xµ∂µwα + wµ∂αx
µ) dxα.

Lie derivative of a function: A natural guess would be LXf = X[f ]. Let’s check

if this works:

Lxf =ε→0
1

ε
(f(σε(x))− f(x)) =ε→0

1

ε
(f(x+ εX)− f(x)) = Xµ∂µf = Xf = X[f ].

Thus the definition works.

Lie derivative of a tensor field: We define these using the Leibnitz rule: we

require that

LX(t1 ⊗ t2) = (LXt1)⊗ t2 + t1 ⊗ (LXt2).

This is true if t1 is a function ((0,0) tensor) and t2 is a one form or a vector field, or

vice versa. (exercise)

Example: Let’s find the Lie derivative of a (1,1) tensor: t = t ν
µ dx

µ ⊗ eν ; eν = ∂
∂xν

.

LXt = (LXt ν
µ )dxµ ⊗ eν + t ν

µ (LXdxµ)⊗ eν + t ν
µ dx

µ ⊗ (LXeν)
= (Xα∂αt

ν
µ )dxµ ⊗ eν + t ν

µ (∂αX
µ)dxα ⊗ eν − t ν

µ dx
µ ⊗ (∂νX

α)eα

= (Xα∂αt
ν
µ + t ν

α ∂µX
α − t α

µ ∂αX
ν)dxµ ⊗ eν .

[We used here eν = ∂
∂xν

, (eν)
α = δ α

ν , (dxµ)α = δµα, (LXeν)α = Xµ∂µ(eν)
α −

(eν)
µ∂µX

α = −∂νXα and also (LXdxµ)α = Xν∂ν(dx
µ)α + (dxµ)ν∂αX

ν = ∂αX
µ.]

9.3.12 Differential Forms

A differential form of order r (or r-form) is a totally antisymmetric (0, r)-tensor:

p ∈ Sr : w(vp(1), . . . , vp(r)) = sgn(p) w(v1, . . . , vr),
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where sgn(p) is the sign of the permutation p:

sgn(p) = (−1)number of exchanges =

{
+1 for an even permutation

−1 for an odd permutation.

Example: p : (123)→ (231) : Two exchanges [(231)→ (213)→ (123)] to (123), thus

p is an even permutation.

p̃ : (123) → (321) : One exchange to (231) and then two exchanges to (123), thus p̃

is an odd permutation.

The r-forms at point p ∈M form a vector space Ωr
p(M). What is its basis?

We define the wedge product of 1-forms:

dxµ1 ∧ dxµ2 ∧ . . . ∧ dxµr =
∑
p∈Sr

sgn(p) dxµp(1) ⊗ . . .⊗ dxµp(r)

Then { dxµ1 ∧ . . . ∧ dxµr | µ1 < µ2 < . . . < µr } forms the basis of Ωr
p(M).

Examples: dxµ ∧ dxν = dxµ ⊗ dxν − dxν ⊗ dxµ
dx1 ∧ dx2 ∧ dx3 = dx1 ⊗ dx2 ⊗ dx3 + dx2 ⊗ dx3 ⊗ dx1 + dx3 ⊗ dx1 ⊗ dx2

−dx2 ⊗ dx1 ⊗ dx3 − dx3 ⊗ dx2 ⊗ dx1 − dx1 ⊗ dx3 ⊗ dx2.

Note:

• dxµ1 ∧ . . . ∧ dxµr = 0 if the same index appears twice (or more times).

• dxµ1 ∧ . . . ∧ dxµr = sgn(p)dxµp(1) ∧ . . . ∧ dxµp(r) . (reshuffling of terms.)

In the above basis, an r-form w ∈ Ωr
p(M) is expanded

w =
1

r!
wµ1...µrdx

µ1 ∧ . . . ∧ dxµr .

Note: the components wµ1...µr are totally antisymmetric in the indices

(e.g. wµ1µ2µ3...µr = −wµ2µ1µ3...µr).

One can show that dim Ωr
p(M) = m!

r!(m−r)! =
(
m
r

)
, where m = dimM .

Note also: Ω1
p(M) = T ∗p (M) cotangent space

Ω0
p(M) = R by convention

Now we generalize the wedge product for the products of a q-form and an r-form

and call it exterior product:
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Definition: The exterior product of a q-form ω and an r-form η is a (q + r)-form

ω ∧ η:

(ω ∧ η)(v1, . . . , vq+r) =
1

q!r!

∑
p∈Sq+r

sgn(p)ω(vp(1), . . . , vp(q)) · η(vp(q+1), . . . , vp(q+r)).

If q+ r > m = dim(M), then ω∧η = 0. The exterior product satisfies the properties:

(i) ω ∧ ω = 0, if q is odd.

(ii) ω ∧ η = (−1)qrη ∧ ω.

(iii) (ω ∧ η) ∧ ξ = ω ∧ (η ∧ ξ).

[Proof: exercise]

Example. Take the Cartesian coordinates (x, y) in R2. The two-form dxdy is the

oriented area element (the vector product in elementary vector algebra). In polar

coordinates this becomes

dxdy = (cos θdr − r sin θdθ)(sin θdr + r cos θdθ)

= cos θ sin θdrdr + r(cos θ)2drdθ − r(sin θ)2dθdr − r2 sin θ cos θdθdθ

= rdrdθ.

We may assign an r-form smoothly at each point p on a manifold M , to obtain an

r-form field. The r-form field will also be called an r-form for short.

The corresponding vector spaces of r-forms (r-form fields) are called Ωr(M):

Ω0(M) = F(M) smooth functions on M

Ω1(M) = T ∗(M) cotangent vector fields on M

Ω2(M) = sp{dxµ ∧ dxν | µ < ν}
...

9.3.13 Exterior derivative

The exterior derivative d is a map Ωr(M)→ Ωr+1(M),

ω =
1

r!
ωµ1...µrdx

µ1 ∧ . . . ∧ dxµr 7→ dω =
1

r!

∂ωµ1...µr

dxν
dxν ∧ dxµ1 ∧ . . . ∧ dxµr .

Example: dim M = m = 3. We have the following r-forms:

• r = 0 : ω0 = f(x, y, z),
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• r = 1 : ω1 = ωx(x, y, z)dx+ ωy(x, y, z)dy + ωz(x, y, z)dz,

• r = 2 : ω2 = ωxy(x, y, z)dx ∧ dy + ωyzdy ∧ dz + ωzxdz ∧ dx,

• r = 3 : ω3 = ωxyzdx ∧ dy ∧ dz.

The exterior derivatives are:

• dω0 = ∂f
∂x
dx+ ∂f

∂y
dy + ∂f

∂z
dz. Thus the components are the components of ∇f .

• dω1 = ∂ωx
∂y
dy∧dx+ ∂ωx

∂z
dz∧dx+ ∂ωy

∂x
dx∧dy+ ∂ωy

∂z
dz∧dy+ ∂ωz

∂x
dx∧dz+ ∂ωz

∂y
dy∧dz

=
(
∂ωy
∂x
− ∂ωx

∂y

)
dx ∧ dy +

(
∂ωz
∂y
− ∂ωy

∂z

)
dy ∧ dz +

(
∂ωx
∂z
− ∂ωz

∂x

)
dz ∧ dx

These are the components of ∇× ~ω (~ω = (ωx, ωy, ωz))

• dω2 = ∂ωxy
∂dz

dz ∧ dx ∧ dy + ∂ωyz
∂x

dx ∧ dy ∧ dz + ∂ωzx
∂y

dy ∧ dz ∧ dx

=
(
∂ωyz
∂x

+ ∂ωzx
∂y

+ ∂ωxy
∂z

)
dx ∧ dy ∧ dz

The component is a divergence: ∇ · ~ω′ (where ~ω′ = (ωyz, ωzx, ωxy))

• Thus the exterior derivatives correspond to the gradient, curl and divergence!

[dω3 = 0]

What is d(dω)?

d(dω) =
1

r!

 ∂2

∂xα∂xβ︸ ︷︷ ︸
symmetric in α and β

wµ1...µr

antisymmetric in α and β︷ ︸︸ ︷
dxα ∧ dxβ ∧ dxµ1 ∧ . . . ∧ dxµr

 = 0.

So d2 = 0. Note that (for dim M = 3)

d(df) = d(∂xfdx+ ∂yfdy + ∂zfdz) =

(
∂2

∂x∂y
− ∂2

∂y∂x

)
dx ∧ dy + . . . = 0,

so we recover ∇×∇f = 0. Similarly d(dω1) = 0↔ ∇ · ∇× ~ω = 0.

If dω = 0, we say that ω is a closed r-form. If there exists an (r-1)-form ωr−1 such

that ωr = dωr−1, then we say that ωr is an exact r-form.

The exterior derivative induces the sequence of maps

0
i→ Ω0 d0→ Ω1 d1→ Ω2 d2→ . . .

dm−2→ Ωm−1 dm−1→ Ωm dm→ 0,

where Ωr = Ωr(M), i is the inclusion map 0 ↪→ Ω0(M) and dr denotes the map

dr : Ωr−1 → Ωr, ω 7→ dω. Since d2 = 0, we have Im dr︸ ︷︷ ︸
exact r-forms

⊂ ker dr+1︸ ︷︷ ︸
closed r+1 forms

. Such

a sequence is called an exact sequence. This particular sequence is called the de
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Rham complex. The quotient space Ker dr+1/Im dr is called the rth de Rham

cohomology group.

A differential form ω of degree k can be thought of as a totally antisymmetric mul-

tilinear function of k vector fields, with values in C∞(M). To evaluate ω(X1, X2, . . . , Xk)

one simply evaluates the form ω at an arbitrary point x on the manifold M and feeds

into the form ω the tangent vectors Xi(x) at the same point. The result is a smooth

function of the argument x. Using this point of view one can prove (Exercise!) that

the exterior derivative is given in a coordinate independent form as

dω(X1, . . . , Xk+1) =
k+1∑
i=1

(−1)i−1Xi · ω(X1, . . . , X̂i, . . . , Xk+1)

+
∑
i<j

(−1)i+jω([Xi, Xj], X1, . . . , X̂i, . . . , X̂j, . . . , Xk+1)

where the hat means that the corresponding argument is removed. For example,

when k = 1

dω(X, Y ) = X · ω(Y )− Y · ω(X)− ω([X, Y ]).

Again, X · ω(Y ) is the derivative of the smooth function ω(Y ) in the direction of X.

There is one more basic operation on differential forms, the interior product by

a vector field X. In the coordinate free notation above this is given by

(iXω)(X1, . . . , Xk−1) = ω(X,X1, . . . , Xk−1).

This iX maps linearly k forms to k−1 forms. One can prove a basic identity (Exercise!)

LX = d ◦ iX + iX ◦ d

where LX is the Lie derivative acting on forms.

9.3.14 Lie Groups and Algebras

A Lie group G is a differentiable manifold with a group structure,

(i) product G×G→ G, (g1, g2) 7→ g1g2, such that g1(g2g3) = (g1g2)g3,

(ii) unit element: point e ∈ G such that eg = ge = g ∀g ∈ G,

(iii) inverse element: ∀g ∈ G ∃g−1 ∈ G such that gg−1 = g−1g = e,

in such a way that the map G×G→ G, (g1, g2) 7→ g1g2 is differentiable. We already

know some examples: GL, SL, O, U, SU and SO.

Example: Coordinates on GL(n,R) : xij(g) = gij (and thus xij(e) = δij.) One chart

is sufficient : U = GL(n,R). (thus U is open in any topology.)
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• To be exact we don’t yet have a topology on GL(n,R). We can define the

topology in several (inequivalent) ways. One way would be to choose a topology

manually, for instance choose the discrete or trivial topology. This is rarely a

useful method. A better way of defining the topology is to choose a map f from

GL(n,R) to some known topological space N and then choose the topology on

GL(n,R) so that the map f is continuous, i.e. define

V ⊂ GL(n,R) is open↔ V = f−1W for some W open in N .

(check that this defines a topology). Here are two possible topologies:

1. Choose f : GL(n,R) → R, g 7→ det(g). (So we choose N = R). The

induced topology is:

V ⊂GL(n,R) is open ↔ V = f−1(W ) for some W open in R.

Note that GL(n,R) is not Hausdorff with respect to this topology, since

if g1, g2 ∈ GL(n,R), g1 6= g2, and det g1 = det g2, then any open set

containing g1 also contains g2.

2. Choose N = Rn2
, f : GL(n,R)→ Rn2

defined by x11 · · · x1n

...
. . .

...

xn1 · · · xnn

 7→ (x11, x12, . . . , x1n, x21, . . . , xnn) ∈ Rn2

.

This is clearly injective, and when we define topology as above, we see that

f is a homeomorphism from GL(n,R) to an open subset of Rn2
. Since Rn2

is Hausdorff, so is GL(n,R) with this topology. Thus this topology is

not equivalent to the one defined in the first example. This is the usual

topology one has on GL(n,R).

Let a ∈ G be a given element. We can define the left-translation

La : G→ G, La(g) = ag (group action on itself from the left).

This is a diffeomorphism G→ G.

A vector field X on G is left-invariant, if the push satisfies

(La)?X|g = X|ag

Using coordinates, this means

(La)?X|g = Xµ(g)
∂xα(ag)

∂xµ(g)

∂

∂xα

∣∣∣∣
ag

= X|ag = Xα(ag)
∂

∂xα

∣∣∣∣
ag

,

and thus

Xα(ag) = Xµ(g)
∂xα(ag)

∂xµ(g)
.
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A left-invariant vector field is uniquely defined by its value at a point, for example at

e ∈ G, because

X|g = (Lg)?Xe ≡ Lg?V,

where V = X|e ∈ TeG. Let’s denote the set of left-invariant vector fields by G. It is

a vector space (since Lg? is a linear map); it is isomorphic with TeG. Thus we have

dim G = dim G.

Example: The left-invariant fields of GL(n,R):

V = V ij ∂

∂xij

∣∣∣∣
e

∈ TeGL(n,R),

X|g = Lg?V = V ij ∂(

=xkm(g)︷ ︸︸ ︷
xkl(g)xlm(e))

∂xij(e)

∂

∂xkm(e)
= V ijxkl(g)δliδ

m
j

∂

∂xkm(g)

V ijxki(g)
∂

∂xkj(g)
= xki(g)V ij︸ ︷︷ ︸

(gV )kj

∂

∂xkj(g)
= (gV )kj

∂

∂xkj(g)
,

where V ij is an arbitrary n× n real matrix.

Since G is a collection of vector fields, we can compute their commutators. The result

is again left-invariant!

La? [X, Y ]|g = [La?X|g, La?Y |g]
l. inv.
= [X|ag, Y |ag] ≡ [X, Y ]|ag.

So if X, Y ∈ G, also [X, Y ] ∈ G.

Definition: The set of left-invariant vector fields G with the commutator (Lie

bracket) [ , ] : G × G → G is called the Lie algebra of a Lie group G.

Examples:

1. gl(n,R) = n×n real matrices (Lie algebras are written with lower case letters).

2. sl(n,R) : Take a curve c(t) that passes through e ∈ SL(n,R) and compute its

tangent vector (c(0) = e = 1n). For small t: c(t) = 1n + tA, dc
dt

∣∣
t=0

= A ∈
TeSL(n,R). Now det c(t) = det (1n + tA) = 1 + t tr A+ . . . = 1. Thus tr A = 0

and sl(n,R) = {A| A is a n× n real matrix, tr A = 0}.

3. so(n) : c(t) = 1n + tA. We need c(t) to be orthogonal:

c(t)c(t)T = (1 + tA)(1 + tAT ) = 1 + t(A + AT ) + O(t2) = 1. Thus we need to

have A = −AT and so so(n) = {A| A is an antisymmetric n× n matrix }.
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For complex matrices, the coordinates are taken to be the real and imaginary parts

of the matrix

4. u(n) : c(t) = 1n+tA. Thus c(t)c(t)† = (1+tA)(1+tA†) = 1+t(A+A†)+O(t2) =

1. So A = −A† and u(n) = {A|A is an antihermitean n× n complex matrix }.

Note: In physics, we usually use the convention c(t) = 1 + itA⇒ A† = A

⇒u(n) = {Hermitean n× n matrices }.

5. su(n) = {n× n antihermitean traceless matrices }.

9.3.15 Structure Constants of the Lie Algebra

Let {V1, . . . , Vn} be a basis of TeG (assume dim G = n < ∞). Then Xµ|g =

Lg?Vµ, µ = 1, . . . , n is a basis of TgG (usually it is not a coordinate basis). Since

the vectors {V1, . . . , Vn} are linearly independent, {X1|g, . . . , Xn|g} are also linearly

independent. (Lg? is an isomorphism between TeG and TgG; (Lg?)
−1 = Lg−1?). Since

Vµ are basis vectors of TeG, we can expand

[Vµ, Vν ] = c λ
µν Vλ.

Let’s then push this to TgG:

Lg?[Vµ, Vν ] = [Lg?Vµ, Lg?Vν ] = [Xµ|g, Xν |g]
Lg?(c

λ
µν Vλ) = c λ

µν Xλ|g
⇒ [Xµ|g, Xν |g] = c λ

µν Xλ|g.

Letting g vary over all G, we get the same equation everywhere on G with the same

numbers c λ
µν . Thus we can write

[Xµ, Xν ] = c λ
µν Xλ.

The c λ
µν are called the structure constants of the Lie algebra. Evidently we have

c λ
µν = −c λ

νµ . We also have the Jacobi identity (of commutators)

c τ
µν c

σ
τρ + c τ

νρ c
σ

τµ + c τ
ρµ c σ

τν = 0.

9.3.16 The adjoint representation of G

Let b be some element of G, b ∈ G. Let us define the map

adb : G→ G, adb(g) ≡ adbg = bgb−1.

This is a homomorphism: adbg1 · adbg2 = adb(g1g2), and at the same time defines an

action of G on itself (conjugation): adb · adc = adbc, ade = idG. (Note that this

101



is really a combined map: adb · adc ≡ adb ◦ adc). The differential map adb? pushes

vectors from TgG to TadbgG. If g = e, adbe = beb−1 = e, so adb? maps TeG to itself.

Lets denote this map by Adb:

Adb : TeG→ TeG, Adb = adb?|TeG

One can easily show that (f ◦ g)? = f? ◦ g?, thus adb?adc? = adbc?. It then follows

that Adb is a representation of G in the vector space G ∼= TeG, the so-called adjoint

representation:

Ad : G→ Aut(G), b 7→ Adb.

If G is a matrix group (O, SO,...), then V ∈ TeG ∼= G is a matrix and

AdgV = gV g−1.

(This follows from adg(e+ tV ) = e+ tgV g−1.) So, if {Vµ} is a basis of G,

gVµg
−1 = VνD

(adj)ν
µ(g).

9.4 de Rham cohomology

Recall the definition of the de Rham cohomology groups: First, d : Ωk(M) →
Ωk+1(M) is a linear map with d2 = 0. We set Bk(M) = d(Ωk−1(M)) ⊂ Ωk(M)

and Zk(M) = ker d = {ω ∈ Ωk|dω = 0} ⊂ Ωk(M). These are linear subspaces with

the property Bk(M) ⊂ Zk(M), because of d2 = 0. Elements of Zk are called closed

forms and elements of Bk are exact forms. We set

Hk(M) = Zk(M)/Bk(M), with k = 0, 1, 2, . . .

where H0(M) ≡ Z0(M). Note that Hk(M) = 0 for k > n since Ωk(M) = 0 for k > n.

The vector spaces Hk(M) are called the de Rham cohomology groups of M. In case

when M is compact, one can prove that dimHk(M) <∞ for all k.

Example M = R3. Since df = 0 for f ∈ C∞(M) = Ω0(M) means that f

is a constant function, we get H0(R3) = R. If ω = ωidx
i satisfies dω = 0 then

the vector field (ω1, ω2, ω3) has zero curl, and we know vector analysis that there

is a scalar potential f such that ∇f = ω, in other words, df = ω. Thus B1 = Z1

and so H1(R) = 0. If ω = 1
2
ωijdx

i ∧ dxj is a 2-form with dω = 0 then divω = 0

with ω = (ω23, ω31, ω12). This implies that there is a vector potential A such that

∇×A = ω, or in other words, dA = ω,A = Aidx
i. Again, Z2 = B2 and H2(R3) = 0.

In the same vein one can show that H3(R3) = 0.

Theorem 9.2 (Poincare’s lemma) Let M ⊂ Rn be a star shaped open set. This

means that there is a point z ∈M such that the line tx+ (1− t)z, 0 ≤ t ≤ 1, belongs

to M for any x ∈ M. Let ω be a closed k−form on M, k > 0. Then there exists a

(k − 1)-form θ such that dθ = ω.
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Proof. Write

ω =
1

k!
ωi1···ik(x)dxi1 ∧ · ∧ dxik

and define

θi1...ik−1
(x) =

1

(k − 1)!

∫ 1

0

tk−1(xj − zj)ωji1i2...ik−1
(tx+ (1− t)z)dt.

We claim that dθ = ω. Now

dθ =
1

(k − 1)!

∫ 1

0

tk−1ωji1...ik−1
(tx+ (1− t)z)dxj ∧ dxi1 ∧ . . . dxik−1dt (11)

+
1

(k − 1)!

∫
tk(xj − zj)∂lωji1...ik−1

(tx+ (1− t)z)dxl ∧ dxi1 ∧ . . . dxik−1dt.(12)

The equation dω = 0 gives

∂lωji1...ik−1
± cyclic permutations of lji1 . . . ik−1 = 0,

where the signs are given by the parity of the cyclic permutation. From this equation

one can reduce, by setting the contraction i∂jdω equal to zero,

k · ∂lωji1...ik−1
dxl ∧ dxi1 ∧ · · · ∧ dxik−1 = ∂jωli1...ik−1

dxl ∧ · · · ∧ dxik−1 .

Note that in local coordinates

i∂jdω... + di∂jω... = L∂jω... = ∂jω.....

Inserting this to the second term I2 in (12) we obtain

I2 =
1

k!

∫ 1

0

(xj − zj)tk∂jωli1...ik−1
(tx+ (1− t)z)dxl ∧ dxi1 · · · ∧ dxik−1dt

=
1

k!

∫ 1

0

tk
d

dt
ωli1...ik−1

(tx+ (1− t)z)dxl ∧ dxi1 . . . dxik−1dt

= − 1

(k − 1)!

∫ 1

0

tk−1ωli1...ik−1
(tx+ (1− t)z)dxl ∧ dxi1 ∧ . . . dxik−1dt

+
1

k!
ωli1...ik−1

dxl ∧ dxi1 · · · ∧ dxik−1 .

Insertion to (12) completes the proof of dθ = ω.

The above result extends (by a use of coordinates) to the case when M is a

contractible subset of a smooth manifold: contractibility means that the identity map

on M can be smoothly deformed to a constant map x 7→ X0 on M. Let ft : M →M

be such a contraction, f0(x) = x0 and f1(x) = x, 0 ≤ t ≤ 1. Then one can repeat the

proof but with the straight lines t 7→ tx+ (1− t)z replaced by t 7→ ft(x), z = x0, see

Nakahara, section 6.3, for details.
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Example 1 Let M = S1. The 1-form dφ is closed but dφ 6= df for any smooth

function f on S1. Note that the polar angle φ is not a function on S1 since it is

nonperiodic. Any 1-form on S1 is given as f(φ)dφ for some periodic function f of φ.

The integral of f over the interval [0, 2π] gives a real number λf . If λf = λg for any

two functions f, g then we can write f − g = h′ for a periodic function h, that is,

fdφ−gdφ = dh. It follows that the cohomology classes [f ] ∈ H1(S1) are parametrized

by the integral λf and so H1(S1) = R.
Example 2 On the unit sphere S2 the area form is given as ω = sin θdθ ∧ dφ in

spherical coordinates. Locally, ω = d(− cos θdφ) = d(−φ sin θdθ). Note that the first

expression becomes singular at the poles θ = 0, π whereas the second is nonperiodic

in the coordinate φ. One can prove that H2(S2) = R and that the cohomology classes

are parametrized by the integral of the 2-form over S2. In general, it is known that

Hk(Sn) = 0 for 1 ≤ k ≤ n− 1 and that H0(Sn) = R = Hn(Sn).

Example 3 H1(S1 × S1) = R2 (basis of 1-forms dφ1, dφ2) and H2(S1 × S1) = R,
basis dφ1 ∧ dφ2.

9.5 Integration of differential forms

We define an orientation on a manifold M of dimension n. The manifold is oriented

if we have a complete system of local coordinates such that all coordinate transfor-

mations x′i = x′i(x1, . . . , xn) satisfy the condition det(∂x
′i

∂xj
) > 0.

Not every manifold can be oriented. The standard spheres Sn inherit an orien-

tation from Rn+1. The orientation on Rn is given by the ordered set of Cartesian

coordinates (x1, x2, . . . , xn). A coordinate system (y1, . . . , yn) on the embedded unit

sphere in Rn+1 is then oriented if the vectors (v, ∂1, . . . , ∂n) (in y coordinates) are

compatible with the orientation of Rn+1. Here v is the outward unit normal vector

field on the sphere and compatibility means that the matrix relating the given tan-

gent vectors to the standard basis has positive determinant. On the other hand, the

real projective plane PR2 = S2/Z2 = (R3 − {0})/R+, consisting of lines through the

origin in R3, has no orientation.

Let M be a smooth oriented manifold of dimension n. We fix an atlas of coor-

dinate neighborhoods compatible with the given orientation. Let x1, . . . , xn be local

coordinates on an open set U ⊂M. Asssume that f ∈ C∞(M) is such that f(x) = 0

when x is outside of a compact subset K of U. Then ω = f(x)dx1 ∧ dx2 · · · ∧ dxn is a

n− form on M. We define the integral∫
ω =

∫
f(x)dx1dx2 . . . dx

n,

as the ordinary Riemann integral in Rn.

Let us assume that we have a locally finite atlas (Uα, φα). This means that for

any x ∈ M there is an open neighborhood V of x such that V intersects only a
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finite number of the sets Uα. A space which has a locally finite cover is said to

be paracompact. In fact, finite-dimensional manifolds are normally defined to be

paracompact. A locally finite atlas has a subordinate partition of unity. That is,

there is a family of smooth nonnegative functions ρα : M → R such that

• suppρα ⊂ Uα

•
∑

α ρα(x) = 1 for all x ∈M.

The support suppf of a function f is defined as a closure of the set of points x for

which f(x) 6= 0.

Let ω ∈ Ωn(M). we define ∫
M

ω =
∑
α

∫
ραω,

and we apply the previous definition to each term on the right-hand-side. The integral

converges always when M is compact.

Exercise Show that the above definition does not depend on the choice of the par-

tition of unity or of the locally finite atlas.

Example Let M = S1, U1 = S1−{(1, 0)}, U2 = S1−{(−1, 0)}. Choose the (inverse)

coordinate functions as

ϕ−1
1 : (0, 2π)→ U1, θ1 7→ (cos θ1, sin θ1)

ϕ−1
2 : (−π, π)→ U2, θ2 7→ (cos θ2, sin θ2)

Partition of unity: ρ1(θ1) = sin2 θ1
2
, ρ2(θ2) = cos2 θ2

2
. (Note that this satisfies (i)

- (iii)). Choose f : S1 → R as f(θ) = sin2 θ and ω = f · dθ1 on U1 and ω =

f · d(θ2 + 2π) = 1 · dθ2 on U2. Now∫
S1

ω =
2∑
i=1

∫
Ui

ρiω =

∫ 2π

0

dθ1 sin2 θ1

2
sin2 θ1 +

∫ π

−π
dθ2 cos2 θ2

2
sin2 θ2 =

π

2
+
π

2
= π,

as expected.

Next we want to define the integral of a form ω ∈ Ωk(M) over a parametrized k−
surface for arbitrary 0 ≤ k ≤ n.

A standard k-simplex in Rk is the subset

σk = {(x1, . . . , xk) ∈ Rk|
∑

xi ≤ 1, xj ≥ 0}.

So σ0 is just a point, σ1 is the unit interval, σ2 is a triangle, etc.

A singular k-simplex is any smooth map sk : σk →M. A k-chain is a formal linear

combination
∑
aαsk,α, with aα ∈ R and each sk,α is a singular k− simplex.

We define an affine map F i
k : σk−1 → σk where i = 0, 1, . . . , k. Note that the subset

of points in σk with the coordinate xi = 0 can be naturally identified as a k−1 simplex
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σk−1 for 1 ≤ i ≤ k. This defines the map (as an identity map) for i = 1, 2 . . . , k. The

remaining map F 0
k sends the (k−1)-simplex σk−1 to the face of the k-simplex which is

not parallel to any of the coordinate axes. The map is completely fixed by requiring

it to be affine and compatible with the orientations, and such that the origin of σk−1

is mapped to the vertex of σk lying on the first coordinate axes, and the vertex of

σk−1 lying on the i :th coordinate axes is mapped to the vertex of σk on the (i+ 1):th

coordinate axes, for i = 1, 2, . . . , k − 1. So

F 0
k (x1, . . . , xk−1) = (1−

k−1∑
i=1

xi, x1, . . . , xk−1)

F i
k(x

1, . . . , xk−1) = (x1, . . . , xi−1, 0, xi, . . . , xk−1) with i = 1, 2, . . . , k.

The boundary of a singular k-simplex sk : σk →M is the singular k-chain defined

as

∂sk =
k∑
i=0

(−1)isk ◦ F i
k.

we extend the definition, by linearity, to the space Ck of singular k-chains, ∂ : Ck →
Ck−1.

Theorem 9.3 ∂2 = 0.

Proof. We first observe that

F i
k ◦ F

j
k−1 = F j

k ◦ F
i−1
k−1, for j < i.

Let s =
∑

α aαsk,α ∈ Ck. Then

∂2s = ∂
∑
α

aα

k∑
i=0

(−1)isk,α ◦ F i
k

=
∑
α

aα

k∑
i=0

(−1)i
k∑
j=0

sk,α ◦ F i
k ◦ F

j
k−1(−1)j

=
∑
α

aα

( ∑
0≤i≤j≤k−1

(−1)i+jsk,αF
i
k ◦ F

j
k−1

+
∑

0≤j<i≤k

(−1)i+jsk,αF
i
k ◦ F

j
k−1

)

=
∑
α

aα

( ∑
0≤i≤j≤k−1

(−1)i+jsk,αF
i
k ◦ F

j
k−1

+
∑

0≤j<i≤k

(−1)i+jsk,αF
j
k ◦ F

i−1
k−1

)
.
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Relabel i 7→ j, j 7→ i− 1 in the first term of right-hand-side of the last equality; then

the terms cancel.

A cycle is a singular chain s such that ∂s = 0. A boundary is a singular chain b

such that b = ∂s for some singular chain s. Denote by Zk the space of k-cycles and

by Bk the space of k-boundaries. Finally, the singular k-homology group is the space

Hk(M) = Hk(M,R) = Zk(M)/Bk(M).

Sometimes one considers also the homology group Hk(M,Z) which is defined as the

real homology group but one restricts to integral linear combinations of the singular

k-simplexes.

Exercise Show that H0(M) is isomorphic with Rk, where k is the number of path

connected components of M.

The homology groups Hk of contractible manifolds vanish for k > 0, so in par-

ticular Hk(Rn) = 0 for k > 0. On the other hand, Hn(Sn) = R but Hk(S
n) = 0 for

0 < k < n.

We define the integral of a k-form over a singular k-chain s =
∑

α aαsk,α,∫
s

ω =
∑
α

aα

∫
σk

s∗k,αω.

Each of the integral on the right is an ordinary Riemann integral of a smooth function

defined in the standard simplex σk ⊂ Rk, after writing each of the pull-back forms as

f(x)dx1 ∧ . . . dxk.

Theorem 9.4 (Stokes’ theorem) ∫
s

dω =

∫
∂s

ω

for any ω ∈ Ωk−1(M) and for any singular k-chain s.

Proof. By linearity, it is sufficient to give the proof for a single singular k-simplex

sk. But in this case a typical term in s∗kω can be written as

s∗kω =
k∑
j=1

bj(x)dx1 ∧ . . . ˆdxj ∧ . . . dxk(−1)j−1

for some smooth functions bj. Then

d(s∗kω) = s∗k(dω) =
∑

(∂jb
j)dx1 ∧ · · · ∧ dxk = f(x)dx1 ∧ · · · ∧ dxk.

We can now apply the familiar Gauss’ theorem for vector fields in Rk,∫
σk

∂jb
jdx1 . . . dxk =

∫
∂σk

b · ndS,
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where n is the outward normal vector field on σk and dS is the Euclidean area measure

on the surface ∂σk of the k-simplex. But the right-hand-side of the equation is equal

to the integral
∫
∂σk

s∗kω, which proves the theorem.

We have a pairing Hk(M)×Hk(M)→ R which is given as

< [s], [ω] >=

∫
s

ω.

Because of Stokes’ theorem the right-hand-side does not depend on particular repre-

sentatives of the (co)homology classes, i.e., if s − s′ is a boundary and ω − ω′ is a

coboundary then ∫
s

ω =

∫
s′
ω′.

For compact oriented manifolds one can prove that the pairing is nondegenerate, i.e.,

if < [s], [ω] >= 0 for all [ω] (resp. for all [s]) then [s] = 0 (resp. [ω] = 0).

There is a more refined version of Stokes’ theorem (which we are not going to

prove). This uses the idea of a closed submanifold with boundary. A manifold M

with boundary is defined using the half space Rn
+ = {x ∈ Rn|xn ≥ 0} as a model

instead of the vector space Rn. That is, M should be equipped with a cover by open

sets U and coordinate maps φ : U → Rn
+ which are homeomorphism to open subsets

of the half space. The coordinate transformations φ ◦ ψ−1 are again required to be

smooth in their domain of definition. Note that the derivative in the xn direction at

the boundary points xn = 0 is only defined to the positive direction.

Example The closed unit ball Bn = {x ∈ Rn|||x|| ≤ 1} is a manifold with

boundary. The set of boundary points is the manifold Sn−1.

Let N ⊂ M be an oriented manifold with boundary (dimension n) embedded in

M. Its boundary ∂N is a manifold of dimension n− 1. Let ω ∈ Ωn−1(M). Then one

can prove ∫
N

dω =

∫
∂N

ω.

Note that the integral on the left is an integral of a n-form over a manifold of dimension

n (and this we have already defined) and on the right we have an integral of a (n−1)-

form over a manifold of dimension n− 1.

Additional reading: Nakahara: 5.4, 5.5, and Chapter 6

Chern, Chen, and Lam: Chapters 2 and 3

10 Riemannian Geometry (Metric Manifolds)

(Chapter 7 of Nakahara’s book)
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10.1 The Metric Tensor

Let M be a differentiable manifold. The Riemannian metric on M is a (0, 2)-

tensorfield, which satisfies

(i) gp(U, V ) = gp(V, U) ∀p ∈M, U, V ∈ TpM (i.e. g is symmetric)

(ii) gp(U,U) ≥ 0, and gp(U,U) = 0↔ U = 0 (g is positive definite).

If instead of (ii) g satisfies

(ii’) If gp(U, V ) = 0 for all U ∈ TpM , then V = 0,

we say that g is a pseudo-Riemannian metric (symmetric and non-degenerate).

(M, g) with a (pseudo-) Riemannian metric is called a (pseudo-) Riemannian manifold.

The spacetime in general relativity is an example of a pseudo-Rimannian manifold.

In local coordinates g = gµνdx
µ ⊗ dxν . (The Euclidean metric: gµν = δµν . Then

g(U, V ) =
∑n

i=1 U
iV i.)

10.2 The Induced Metric

Let (N, gN) be a Riemannian manifold, dim N = n. We define an m dimensional

submanifold M of N :

Let f : M → N be a smooth map such that f is an injection and the push

f? : TpM → Tf(p)N is also an injection. Then f is an embedding of M in N

and the image f(M) is a submanifold of N . However, it follows that M and f(M)

are diffeomorphic, so we can call M a submanifold of N .

Now the pullback f ∗ of f induces the natural metric gM on M :

gM = f ∗gN .

The components of gM are given by

gMµν(x) = gNαβ(f(x))
∂fα

∂xµ
∂fβ

∂xν
.

[By the chain rule: gMµνdx
µ ⊗ dxν = gNαβ

∂fα

∂xµ
∂fβ

∂xν
dxµ ⊗ dxν ]

Example: Let (θ, ϕ) be the polar coordinates on S2 and f : S2 → R3 the usual

embedding: f(θ, ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ). On R3 we have the Euclidean

metric δµν . We denote y1 = θ, y2 = ϕ. We obtain the induced metric on S2:

gµνdy
µ ⊗ dyν = δαβ

∂fα

∂yµ
∂fβ

∂yν
dyµ ⊗ dyν = dθ ⊗ dθ + sin2 θdϕ⊗ dϕ.

Thus the components of the metric are g11(θ, ϕ) = 1, g22(θ, ϕ) = sin2 θ, g12(θ, ϕ) =

g21(θ, ϕ) = 0.
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Why the notation ds2 is often used for the metric?

Often the metric is denoted ds2 = gµνdx
µ⊗dxν . The reason for this is as follows. Let

c(t) be a curve on manifold M with the metric g. The tangent vector of the curve is

ċ(t), which in local coordinates is ċ(t) = (dx
µ(t)
dt

). [c(t) = (xµ(t))]

If M = R3 with the Euclidean metric gµν = δµν , the length of the curve between t0
and t1 would be

LR3 =

∫ t1

t0

dt
√

(ẋ1)2 + (ẋ2)2 + (ẋ3)2 =

∫ t1

t0

dt
√
δµν ẋµẋν .

In general case the length of the part of the curve between t0 and t1 is then

lengthL =

∫ t1

t0

dt
√
gµν ẋµẋν . (13)

If t0 and t1 are infinitesimally close : t1 = t0 + ∆t, then

∆s ≡ L ' ∆t
√
gµν ẋµẋν ' ∆t

√
gµν

∆xµ

∆t

∆xν

∆t
=
√
gµν∆xµ∆xν .

Thus ds2 = gµνdx
µdxν is the square of an ”infinitesimal length element” ds. We will

have more to say about the formula for the length later.

10.3 An application to Maxwell’s equations

We arrange the Cartesian coordinates of the electric field E and the magnetic field B

as an antisymmetric 4× 4 matrix,

(Fµν) =


0 −Ex −Ey −Ez
Ex 0 −cBz +cBy

Ey cBz 0 −cBx

Ez −cBy cBx 0

 .

We label the rows and columns by µ, ν = 0, 1, 2, 3 and we set F = 1
2
F µνdxµ ∧ dxν .

Let φ be an electric scalar potential and A a magnetic vector potential. Then

E = −∇φ− ∂0A and B = ∇×A,

where ∂0 = 1
c
∂
∂t

but we shall work in units with speed of light c = 1. Define the 1-form

A = Aµdx
µ with A0 = φ and Ai = cAi. Thus we may write

Fµν = ∂µAν − ∂νAµ,

that is, F = dA.
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Since d2 = 0 we have automatically dF = 0. Written in electric and magnetic field

components this gives the second set of Maxwell’s equations,

∇ ·B = 0

∇× E = −∂B

∂t
.

In order to obtain a differential form expression for the first set of Maxwell’s equations,

∇ · E = ρ/ε0

∇×B = µ0

(
ε0
∂E

∂t
+ j

)
,

with µ0ε0 = 1/c2, we must first fix a metric tensor (gµν) in space-time; this could

be just the Minkowski metric diag(1,−1,−1,−1) but we may take any (pseudo)

Riemannian metric. Note that the second set of Maxwell’s equations is intrinsic to

any smooth manifold, it does not depend on the choice of metric.

We shall denote gij = g(∂i, ∂j) for a (pseudo) Riemannian metric gx : TxM ×
TxM → R. A metric tensor is pseudo-Riemannian if it has the properties of a

metric tensor except that we do not require that it is positive definite; for example,

in relativity theory (in four space-time dimensions) the metric tensor has one positive

eigenvalue and three negative eigenvalues. We assume that the manifold is oriented.

A metric defines also a duality operation ∗ : Ωk(M)→ Ωn−k(M) on differential

forms. In local coordinates,

∗ω = θi1i2...in−kdx
i1 ∧ dxi2 . . . dxin−k with

θi1...in−k = |det(gij)|1/2
1

k!
εi1...in−k

j1...jk ωj1...jk ,

where εi1...in is the totally antisymmetric tensor with ε12...n = +1 and the raising

of indices is done with the help of the metric tensor as in general relativity, i.e.,

Aα1...αk = gα1β1 · · · gαkβkAβ1...βk where (gij) is the inverse of the matrix (gij).

Example Let M = R4 and gij the Minkowski metric. Then volM = dx0 ∧ dx1 ∧
dx2 ∧ dx3. The dual of the Maxwell 2-form F = 1

2
Fµνdx

µ ∧ dxν is given by

(∗F )µν =
1

2
εµν

αβFαβ,

so (∗F )12 = −F03, and cyclic permutations of 123, and (∗F )01 = F23, and cyclic

permutations of 123. That is, the magnetic components of the dual are equal to

(−1)× the electric components of the original and the electric components of the

dual are equal to the magnetic components of the original field.

The complete set of Maxwell’s equations can now be written as

d ∗ F = J

dF = 0,

where the 3-form J is defined as 1
3!
εµαβγJ

µdxα ∧ dxβ ∧ dxγ with J0 = ρ/ε0 and

Jk = cµ0j
k. Here ρ is the charge density and j is the electric current density.
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10.4 Affine Connection

Recall that χ(M) = { vector fields on M}. An (affine) connection ∇ is a map

χ(M)× χ(M)→ χ(M), (X, Y ) 7→ ∇XY such that

1. ∇X(Y + Z) = ∇XY +∇XZ (linear in the 2nd argument)

2. ∇(X+Y )Z = ∇XZ +∇YZ (linear in the 1st argument)

3. f is a function on M (f ∈ F(M)) ⇒ ∇fXY = f∇XY

4. ∇X(fY ) = X[f ]Y + f∇XY .

Now take a chart (U,ϕ) with coordinates x = ϕ(p). Let {eν = ∂
∂xν
} be the coordinate

basis of TpM . We define (dim M)3 connection coefficients Γλµν by

∇eµeν = Γλµνeλ.

We can express the connection in the coordinate basis with the help of connection

coefficients: Let X = Xµeµ and Y = Y νeν be two vector fields. Denote ∇µ ≡ ∇eµ .

Now

∇XY
2,3
= Xµ∇µ(Y νeν)

4
= Xµeµ[Y ν ]eν +XµY ν∇µeν = Xµ∂Y

ν

∂xµ
eν +XµY νΓλµνeλ

= Xµ(
∂Y λ

∂xµ
+ ΓλµνY

ν)eλ ≡ Xµ(∇µY )λeλ,

where we have

(∇µY )λ =
∂Y λ

∂xµ
+ ΓλµνY

ν .

Note that ∇XY contains no derivatives of X unlike LXY .

10.5 Parallel Transport and Geodesics

Let c : (a, b) → M be a curve on M with coordinate representation xµ = xµ(t). Its

tangent vector is

V = V µeµ|c(t) =
dxµ(c(t))

dt
eµ

∣∣∣∣
c(t)

.

If a vector field X satisfies

∇VX = 0 (along c(t)),

then we say that X is parallel transported along the curve c(t). In component

form this is
dXµ

dt
+ Γµνλ

dxν(t)

dt
Xλ = 0.
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If the tangent vector V itself is parallel transported along the curve c(t),

geodesic1∇V V = 0, (14)

then the curve c(t) is called a geodesic. The above equation is the geodesic equa-

tion and in component form it is

d2xµ

dt2
+ Γµνλ

dxν

dt

dxλ

dt
= 0

Geodesics can be interpreted as the straightest possible curves in a Riemannian man-

ifold. If M = Rn and g = δ (the Euclidean metric), then the geodesics are straight

lines.

10.6 The Covariant Derivative of Tensor Fields

Connection was a term that we used for the map ∇ : (X, Y ) 7→ ∇XY . The map

∇X : χ(M) → χ(M), Y 7→ ∇XY is called the covariant derivative. It is a proper

generalization of the directional derivative of functions to vector fields, and as we’ll

discuss next, to tensor fields.

For a function, we define ∇Xf to be the same as the directional derivative:

∇Xf = X[f ].

Thus the condition number 4 in the definition of ∇ is the Leibnitz rule:

∇X(fY ) = (∇Xf)Y + f(∇XY ).

Let’s require that this should be true for any product of tensors:

∇X(T1 ⊗ T2) = (∇XT1)⊗ T2 + T1 ⊗ (∇XT2),

where T1 and T2 are tensor fields of arbitrary types. The formula must also be true

when some of the indices are contracted. Thus we can define the covariant derivative

of a one-form as follows. Let ω ∈ Ω1(M) be a one-form ((0,1) tensor field), Y ∈ χ(M)

be a vector field ((1,0) tensor field). Then < ω, Y >∈ F(M) is a smooth function on

M . Recall that < ω, Y >≡ ω[Y ] = ωµY
µ. (Here µ is the contracted index.) Then

∇X < ω, Y > = X(ω[Y ]) = Xµ ∂

∂xµ
(ωνY

ν) = Xµ∂ων
∂xµ

Y ν +Xµων
∂Y ν

∂xµ
.

On the other hand because of the Leibnitz rule we must have

∇X < ω, Y > =< ∇Xω, Y > + < ω,∇XY >= (∇Xω)νY
ν + ων(∇XY )ν

= (∇Xω)νY
ν + ωνX

µ∂Y
ν

∂xµ
+ ωνΓ

ν
µαX

µY α

113



¿From these two formulas we find (∇Xω)ν . (Note that the two Xµων
∂Y ν

∂xµ
terms

cancel.)

⇒ (∇Xω)ν = Xµ

(
∂ων
∂xµ
− Γαµνωα

)
.

When X = ∂
∂xµ

, this reduces to

(∇µω)ν =
∂ων
∂xµ
− Γαµνωα.

Further when ω = dxσ: ∇µdx
σ = −Γσµνdx

ν .

For a generic tensor, the result turns out to be

∇νt
λ1...λp
µ1...µq

= ∂νt
λ1...λp
µ1...µq

+ Γλ1
νρt

ρλ2...λp
µ1...µq

+ . . .+ Γλpνρt
λ1...λp−1ρ
µ1...µq

− Γρ νµ1
tλ1...λp
ρµ2...µq

− . . .− Γρ νµqt
λ1...λp
µ1...µq−1ρ

.

(Note that we should really have written t
λ1...λp

µ1...µq , but this was not done for typo-

graphical reasons.)

10.7 The Transformation Properties of Connection Coeffi-

cients

Let U and V be two overlapping charts with coordinates:

on U : x eµ =
∂

∂xµ
,

on V : y ẽν =
∂

∂yν
=
∂xµ

∂yν
eµ.

Let p ∈ U ∩ V 6= ∅. The connection coefficients on V are

∇ẽα ẽβ = Γ̃γαβ ẽγ = Γ̃γαβ
∂xν

∂yγ
eν

On the other hand

∇ẽα ẽβ = ∇ẽα(
∂xµ

∂yβ
eµ) =

(
∂2xν

∂yαyβ
+
∂xλ

∂yα
∂xµ

∂yβ
Γνλµ

)
eν

Thus

Γ̃γαβ
∂xν

∂yγ
=

(
∂2xν

∂yαyβ
+
∂xλ

∂yα
∂xµ

∂yβ
Γνλµ

)
.

¿From this we find the transformation rule for the connection coefficients:

Γ̃γαβ =
∂yγ

∂xν
∂xλ

∂yα
∂xµ

∂yβ
Γνλµ +

∂2xν

∂yαyβ
∂yγ

∂xν
.
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We notice that the first term is just the transformation rule for the components of a

(1,2)-tensor. But we also have an additional second term, which is symmetric in α

and β. Thus Γ is almost like a (1,2)-tensor, but not quite. To construct a (1,2)-tensor

out of Γ, define

T γαβ = Γγαβ − Γγβα ≡ 2Γγ [αβ] = the torsion tensor

(note: t[αβ] = 1
2
(tαβ − tβα) is the antisymmetrization of indices.)

10.8 The Metric Connection

Let c be an arbitrary curve and V its tangent vector. If a connection ∇ satisfies2

∇V (g(X, Y )) = 0 when ∇VX = 0 and ∇V Y = 0,

then we say that ∇ is a metric connection. Since

∇ν(g(X, Y )) = (∇V g)(X, Y ) + g(

=0︷ ︸︸ ︷
∇VX,Y ) + g(X,

=0︷ ︸︸ ︷
∇V Y ) = 0,

the metric connection satisfies

∇V g = 0.

In component form:

1. (∇µg)αβ = ∂µgαβ − Γλµαgλβ − Γλµβgαλ = 0.

And by cyclic permutation of µ, α and β we get:

2. (∇αg)βµ = ∂αgβµ − Γλαβgλµ − Γλαµgβλ = 0

3. (∇βg)µα = ∂βgµα − Γλβµgλα − Γλβαgµλ = 0

Let us denote the symmetrization of indices: Γγ(αβ) ≡
1
2
(Γγαβ + Γγβα). Then adding

-(1)+(2)+(3) gives

−∂µgαβ + ∂αgβµ + ∂βgµα + T λµαgλβ + T λµβgλα − 2Γλ(αβ)gλµ = 0

In other words

Γλ(αβ)gλµ =
1

2

{
(∂αgβµ + ∂βgµα − ∂µgαβ) + T λµαgλβ + T λµβgλα

}
Thus

Γκ(αβ) = {καβ}+
1

2
(T κ

α β + T κ
β α),

2This condition means that the angle between vectors is preserved under parallel transport.
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where {καβ} = 1
2
gκµ(∂αgβµ + ∂βgµα − ∂µgαβ) are the Christoffel symbols and

T κ
α β = gαλg

κµT λµβ.

The coefficients of a metric connection thus satisfy

Γκαβ = Γκ(αβ) + Γκ[αβ] = {καβ}+
1

2

(
T κ
α β + T κ

β α + T καβ
)︸ ︷︷ ︸

≡Kκ
αβ= contorsion

.

If the torsion tensor vanishes, T καβ = 0, the metric connection is called the Levi-

Civita connection:

Γκαβ = {καβ} .

10.9 Curvature And Torsion

We define two new tensors:

(Riemann) curvature tensor: R : χ(M)× χ(M)× χ(M)→ χ(M)

R(X, Y, Z) ≡ R(X, Y )Z ≡ ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.

Torsion tensor: T : χ(M)× χ(M)→ χ(M)

T (X, Y ) ≡ ∇XY −∇YX − [X, Y ].

Let’s check that these definitions really define tensors, i.e. multilinear maps. Obvi-

ously R(X +X ′, Y, Z) = R(X, Y, Z) +R(X ′, Y, Z) etc. are true, but it is less obvious

that R(fX, hY, gZ) = fghR(X, Y, Z) where f, g, h ∈ F(M). Let’s calculate:

[fX, gY ] = fX[g]Y − gY [f ]X + fg[X, Y ] (15)

Using this we obtain

R(fX, gY )(hZ) = f∇X(g∇Y (hZ))− g∇Y (f∇X(hZ))

− fX[g]∇Y (hZ) + gY [f ]∇X(hZ)− fg∇[X,Y ](hZ).

Here the first term is

f∇X(g∇Y (hZ)) = f∇X(gY [h]Z + gh∇YZ) = fX[g]Y [h]Z + fg(X[Y [h]])Z

+ fgY [h]∇XZ + fgX[h]∇YZ + fhX[g]∇YZ + fgh∇X∇YZ,

and the second term is obtained by changing X ↔ Y and f ↔ g. Continuing

R(fX, gY )(hZ) = fX[g]Y [h]Z + fg(X[Y [h]])Z + fgY [h]∇XZ + fgX[h]∇YZ

+ fhX[g]∇YZ + fgh∇X∇YZ − gY [f ]X[h]Z − fg(Y [X[h]])Z

− fgX[h]∇YZ − fgY [h]∇XZ − ghY [f ]∇XZ − fgh∇Y∇XZ

− fX[g]Y [h]Z − fhX[g]∇YZ + gY [f ]X[h]Z + ghY [f ]∇XZ

− fg([X, Y ][h])Z − fgh∇[X,Y ]Z = fgh(∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z)

= fghR(X, Y )Z.
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Thus R is a linear map. In other words, when X = Xµ∂µ, Y = Y ν∂ν and Z = Zλ∂λ,

we have

R(X, Y )Z = XµY νZλR(∂µ, ∂ν)∂λ.

R maps three vector fields to a vector field, so it is a (1,3)-tensor. A similar (but

shorter) calculation shows that T (fX, gY ) = fgT (X, Y ), so T (X, Y ) = XµY νT (∂µ, ∂ν).

T is a (1,2) tensor.

The operations of R and T on vectors are obtained by knowing their actions on the

basis vectors ∂µ
∂
∂xµ

. Denote

R(eµ, ∂ν)∂λ = a vector,( expand in basis ∂κ) = Rκ
λµν∂κ.

Note the placement of indices. We can derive a formula for obtaining the components

Rκ
λµν . Recall that [∂µ, ∂ν ] = 0 and dxκ(∂σ) = δκσ. Thus we get

Rκ
λµν = dxκ(R(∂µ, ∂ν)∂λ) = dxκ(∇µ∇ν∂λ −∇ν∇µ∂λ) = dxκ(∇µ(Γηνλ∂η)−∇ν(Γ

η
µλ∂η))

= dxκ((∂µΓηνλ)∂η) + ΓηνλΓ
ρ
µη∂ρ − (∂νΓ

η
µλ)∂η − ΓηµλΓ

ρ
νη∂ρ)

(16)

Therefore

Rκ
λµν = ∂µΓκνλ − ∂νΓκµλ + ΓηνλΓ

κ
µη − ΓηµλΓ

κ
νη

Similarly if we denote T (∂µ, ∂ν) = T λµν∂λ and derive the components T λµν :

T λµν = dxλ(T (∂µ, ∂ν)) = dxλ(∇µ∂ν −∇ν∂µ) = dxλ(Γηµν∂η − Γηνµ∂η),

and therefore

T λµν = Γλµν − Γλνµ.

Thus this is the same torsion tensor as the one we had defined earlier.

Geometric interpretation:

SEE THE FIGURES IN SECTION 7.3.2. OF NAKAHARA

Let us also define:

The Ricci tensor: Ric(X, Y ) = dxλ(R(eλ, Y )X). Thus the components are:

(Ric)µν = Ric(eµ, eν) = Rλ
µλν . (Usual notation (Ric)µν ≡ Rµν .)

The scalar curvature: R = gµν(Ric)µν = Rλν
λν .

The Einstein tensor: Gµν = (Ric)µν − 1
2
Rgµν .
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10.10 Geodesics of Levi-Civita Connections

The length of a curve c(s) = (xµ(s)) is defined by

I(c) =

∫
c

ds =

∫
c

√
gµν

dxµ

ds′
dxν

ds′
ds′ ≡

∫
c

Lds′

Thus along a curve L is constant. One can normalize s′ such that L = 1 so s′ = s.

Curves with extremal (minimum or maximum) length satisfy δI = 0 about the curve.

(Variational principle.) They satisfy the Euler-Lagrange equations (familiar from

calculus of variations (FYMM II)):

EL
d

ds

(
∂L

dx′µ

)
− ∂L

dxµ
= 0, where x′µ =

dxµ

ds
(17)

L = Lagrange function or Lagrangian. Instead of L, which contains a square root,

we can equivalently use a simpler Lagrange function

F =
1

2
gµν

dxµ

ds

dxν

ds
=

1

2
L2,

because

d

ds

(
∂F

dx′µ

)
− ∂F

dxµ
= L

(
d

ds

(
∂L

dx′µ

)
− ∂L

dxµ

)
︸ ︷︷ ︸

=0

+
∂L

∂x′µ
dL

ds︸︷︷︸
=0

= 0,

when xµ(s) satisfies the Euler-Lagrange equation. Then δ(
∫
Fds) = 0 gives

d

ds

(
gλµ

dxµ

ds

)
− 1

2

∂gµν
∂xλ

dxµ

ds

dxν

ds
= 0

⇒ ∂gλµ
∂xν

dxµ

ds

dxν

ds
+ gλµ

d2xµ

ds2
− 1

2

∂gµν
∂xλ

dxµ

ds

dxν

ds
= 0

⇒ gλµ
d2xµ

ds2
+

1

2

(
∂gλµ
∂xν

+
∂gλν
∂xµ

− ∂gµν
∂xλ

)
dxµ

ds

dxν

ds
= 0.

Multiply this by gκλ and sum over λ:

geodesic d2xκ

ds2
+ {κµν} dxµ

ds
dxν

ds
= 0. (18)

This is the geodesic equation with a Levi-Civita connection! The action I =
∫
Fds

sometimes provides a convenient starting point for computing the Christoffel symbols

{κµν}: plug in the metric to I, derive the Euler- Lagrange equations and read off

the Christoffel symbols comparing the Euler-Lagrange equations with the general

geodesic equations.

Note: previously when we discussed the geodesic equation in the context of general

connection, we said that geodesics are the ”straightest” possible curves. Now, in the
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context of the Levi-Civita connection which is only based on the metric, we that the

geodesics are also the shortest possible curves.

Note also that we can explicitly restore a parameter m and write the action of

the length of the curve as I = m
∫ √

gµν
dxµ

ds′
dxν

ds′
ds′. This is the relativistic action of

a free massive point particle (with mass m) moving on a curved spacetime. Thus

the free point particles move along geodesics. If m2 > 0 (usual particles), we say

that the corresponding geodesics (on a pseudo-Riemannian manifold) are timelike,

if m2 < 0 (tachyonic particles) the geodesics are spacelike. Massless particles (such

as the photon) move along null geodesics. The invariant length vanishes along a null

geodesic, ds2 = 0. This equation can be used to determine the null geodesics.

10.11 Lie Derivative And the Covariant Derivative

Let Γµνλ be an arbitrary symmetric (Γµνλ = Γµλν) connection. We can then re-express

the Lie derivative with the help of the covariant derivative as follows:

(LXY )µ = Xν∂νY
µ − Y ν∂νX

µ = Xν∇νY
µ − (∇νX

µ)Y ν

This is true because of the symmetry of the connection:

Xν∇νY
µ−(∇νX

µ)Y ν = Xν(∂νY
µ + ΓµνλY

λ)− (∂νX
µ + ΓµνλX

λ)Y ν

Xν∂νY
µ − Y ν∂νX

µ + (Γµνλ − Γµλν︸ ︷︷ ︸
=0

)XνY λ

For a generic (p,q)-tensor:

LXT µ1...µp
ν1...νq

= (Xλ∇λ)T
µ1...µp
ν1...νq

− (∇λX
µ1)T λµ2...µp

ν1...νq
− . . .− (∇λX

µp)T µ1...µp−1λ
ν1...νq

+ (∇ν1X
λ)T

µ1...µp
λν2...νq

+ . . .+ (∇νqX
λ)T

µ1...µp
ν1...νq−1λ

.

10.12 Isometries

Isometries are a very important concept. They are symmetries of a Riemannian

manifold. If the manifold is a spacetime, we usually require a physical theory to be

invariant under isometries.

Definition. Let (M, g) be a (pseudo)-Riemannian manifold. A diffemorphism f :

M →M is an isometry if it preserves the metric,

f ∗gf(p) = gp ,

for all p ∈M .

If we interpret the metric as a map on vector fields, the above requirement means
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gf(p)(f∗X, f∗Y ) = gp(X, Y )

for all tangent vectors X, Y ∈ TpM . In component form the above equation is

∂yα

∂xµ
∂yβ

∂xν
gαβ(f(p)) = gµν(p) (19)

where x, y are coordinates of the points p, f(p) respectively. This means that an

isometry must preserve the angles between all tangent vectors and their lengths.

The identity map is trivially an isometry, also the composite map f ◦ g of two

isometries f, g is an isometry. Further, if f is an isometry, so is its inverse f−1. This

means that isometries form a group with composition of maps as the product, called

the isometry group. The isometry group is a group of symmetries of a (pseudo)-

Riemannian manifold.

Examples.

• (M, g) = the Euclidean space (Rn, δ) with the Euclidean metric. All translations

xµ 7→ xµ + aµ in some direction a = (aµ) are isometries, and so are rotations.

The isometry group {translations, rotations, and their combinations} is called

the Euclidean group or Galilean group and denoted by En.

• (M, g) = the (d+1)-dimensional Minkowski space(time) (R1,d, η) with the Min-

kowski metric η. Again, spacetime translations xµ 7→ xµ + aµ are isometries,

additional isometries are (combinations of these and) space rotations and boosts.

The isometry group {translations, rotations, boosts, and their combinations}
is called the Poincaré group.

In typical laboratory scales, our spacetime is approximately flat (a Minkowski

space) so its approximate isometry group is the Poincaré group. That’s the reason

for special relativity and the requirement that physics in the laboratory be relativistic,

i.e. Poincaré invariant. More precisely, that requirement is necessary for experiments

which involve scales where relativistic effects become important. For lower scales,

time ”decouples” and we can make a further approximation where only the Euclidean

isometries of the spacelike directions are relevant. Recall also that symmetries such

as the time translations and space translations lead into conservation laws, like the

conservation of energy and momentum. As you can see, important physical principles

are a reflection of the isometries of the spacetime.

10.13 Killing Vector Fields

Let us now consider the limit of ”small” isometries, i.e. infinitesimal displacements

x = p 7→ f(p) = y ' x + εX. Here ε is an infinitesimal parameter and X is a vector
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field indicating the direction of the infinitesimal displacement. If the above map is an

isometry, the vector field X is called a Killing vector field. Since the infinitesimal

displacement is an isometry, eqn. must be satisfied and it now takes the form

∂(xα + εXα)

∂xµ
∂(xβ + εXβ)

∂xν
gαβ(x+ εX) = gµν(x) (20)

By Taylor expanding the left hand side, and requiring that the leading infinitesimal

term of order ε vanishes (there’s no ε-dependence on the right hand side), we obtain

the equation

Xξ∂ξgµν + ∂µX
αgαν + ∂νX

βgµβ = 0 . (21)

We can recognize the left hand side as a Lie derivative, so (21) can be rewritten as

LXgµν = 0 .

Expressing LXgµν with the help of the covariant derivative,

LXgµν = Xλ

=0︷ ︸︸ ︷
∇λgµν +(∇µX

λ)gλν + (∇νX
λ)gµλ = 0.

(∇λgµν = 0) for a metric connection). Thus Killing vector field satisfies

∇µXν +∇νXµ = 0 Killing equation.

Let X and Y be two Killing vector fields. We can easily verify that

a) all linear combinations aX + bY with a, b ∈ R are also Killing vector fields

b) the Lie bracket [X, Y ] is a Killing vector field

It then follows that the Killing vector fields form an algebra, the Lie algebra of the

isometry group. (The isometry group is usually a Lie group.)

Now let xµ(t) be a geodesic, its tangent vector Uµ = dxµ

dt
, and let V µ be a Killing

vector. Then,

(Uν∇ν)(U
µVµ) = UµUν∇νVµ︸ ︷︷ ︸

= 1
2
UµUν(∇µVν+∇νVµ)

+Vµ Uν∇νU
µ︸ ︷︷ ︸

=0 (geodesic)

= 0.

Thus UµVµ = U · V is a constant on a geodesic.

An m-dimensional manifold M can have at most 1
2
m(m+ 1) linearly independent

Killing vector fields. Manifold with the maximum number of Killing vector fields are

called maximally symmetric. E.g. Rm is maximally symmetric (gµν = δµν ⇒ Γ =

0). The Killing equation ∂µVν + ∂νVµ = 0 has solutions:

V µ
(i) = δµi (m of these)

Vµ = aµνx
ν with aµν = −aνµ︸ ︷︷ ︸

1
2
m(m−1) components

= constant 6= 0 (22)

Thus in total we have m+ 1
2
m(m− 1) = 1

2
m(m+ 1). Ok.
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10.14 APPENDIX: Einstein’s Field Equations

The Einstein tensor is defined as

Gµν = Rµν −
1

2
gµνR, (23)

where R = gµνRµν is the Ricci scalar. We assume that the metric gµν is pseudo-

Riemannian of signature (1, 3) (one positive direction and three negative directions).

The connection is the Levi-Civita connection computed from the metric and Rµν =

Rλ
µλν is the Ricci tensor.

Exercise 1 Writing Rαβµν = gαλR
λ
βµν , show that

Rαβµν = −Rβαµν = −Rαβνµ = Rµναβ.

Show that this implies that Rµν is symmetric.

The Einstein tensor is symmetric. Furthermore, its covariant divergence vanishes,

∇µG
µν = ∂µG

µν + ΓµµαG
αν + ΓνµαG

µα = 0. (24)

This is seen as follows. First, taking Z = ∂α, X = ∂µ, Y = ∂ν and using the defining

properties of a metric connection, we obtain

∂αgµν = Γβαµgβν + Γβανgµβ = Γανµ + Γαµν . (25)

This can be also written as

(∇αg)µν = 0. (26)

For the inverse tensor gµν = (g−1)µν , one gets

∂αg
µν + Γναβg

µβ + Γµαβg
βν = 0. (27)

Note the difference in sign for the covariant derivative of the metric tensor and its

inverse.

Exercise 2 For any vector field X = Xµ∂µ the components of the covariant

derivatives are (∇νX)µ = ∂νX
µ + ΓµναX

α. Show that the covariant divergence is

given by

(∇µX)µ = (− det g)−1/2∂µ((− det g)1/2Xµ).

In relativity theory literature, it is a custom to use the abbreviation Xµ;ν =

(∇νX)µ for the covariant differentiation of vector (and higher order tensor) indices.

With this notation, we can write the second Bianchi identity as

Rαβµν;λ +Rαβνλ;µ +Rαβλµ;ν = 0. (28)

Contracting the α and µ indices in this identity with the metric tensor, we get

gαµ(Rαβµν;λ +Rαβνλ;µ +Rαβλµ;ν) = 0. (29)
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By the definition of the Ricci tensor, this can be written as

Rβν;λ +Rµ
βνλ;µ −Rβλ;ν = 0, (30)

where we have taken into account that the covariant derivative of gµν vanishes, im-

plying that the multiplication with the components of the metric tensor commutes

with covariant differentiation; in particular, index raising and lowering commutes

with covariant derivatives. Using the results of Exercise 1, we get

gαµRαβλµ;ν = −gαµRαβµλ;ν = −Rβλ;ν . (31)

Contracting Eq. (30) once again with gβν , we get

gβν(Rβν;λ +Rµ
βνλ;µ −Rβλ;ν) = 0, (32)

or in other words,

R ;λ −Rµ
λ;µ −R

ν
λ;ν = 0. (33)

Note that since R is a scalar, R;µ = ∂µR. An equivalent form of the previous equation

is

(2Rµ
λ − δ

µ
λR);µ = 0. (34)

Raising the index λ and dividing by 2 finally leads to(
Rµν − 1

2
gµνR

)
;µ

= 0. (35)

Einstein’s gravitational field equations are written simply as

Gµν = 8π
G

c4
T µν , (36)

where G on the right-hand side (not to be confused with Einstein’s tensor!) is

Newton’s gravitational constant and T µν is the stress-energy (energy-momentum)

tensor. It describes the distribution of matter and energy in space-time. For ex-

ample, the electromagnetic field gives a contribution to Tµν defined by TEMµν =

ε0F
λ
µ Fλν + ε0

4
gµνF

λωFλω.

Another example is the energy-momentum tensor of a perfect fluid .A perfect fluid

is characterized by a 4-velocity field u, a scalar density field ρ0 and a scalar pressure

field p. The energy-momentum tensor is defines as

Tµν = (ρ0 + p)uµuν − pgµν .

A special case of this is p = 0 which can be viewed as the energy momentum tensor

of a flow of noninteracting dust particles. Normally p and ρ0 are not independent

but they are related by the equation of state of the form p = p(ρ0, T ), where T
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is the temperature. The requirement that the covariant divergence of the energy-

momentum tensor vanishes leads to equations of motion for the perfect fluid. In

fact, in case of Minkowski space-time and in a certain limit one gets the classical

Navier-Stokes equations (from ∂µTµk = 0 for k = 1, 2, 3),

ρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇p

and the continuity equation (from ∂µTµ0 = 0),

∂ρ

∂t
+∇ · (ρu) = 0.

Here ρ = ρ0(1− u2).

Let S be some space-like surface with a time-like unit normal vector field nµ,

n0 > 0. Then, ∫
S

(− det g)1/2T µνnν d
3x

gives the energy and momentum contained in S. Equation (24) leads to the following

conservation law of energy and momentum. Suppose that the metric gαβ does not

depend on a particular coordinate xµ. Then,

0 = ∂µgαβ = Γµβα + Γµαβ = Γαβµ + Γβαµ. (37)

Thus, Γαβµ is antisymmetric in the first two indices. Now,

(∇νT )νµ = ∂νT
ν
µ + ΓννλT

λ
µ − ΓλνµT

ν
λ. (38)

The third term on the right-hand side is equal to −ΓνλµT
νλ and it vanishes because

the second factor is symmetric in its indices, whereas the first factor is antisymmetric

in λ and ν by the remark above. On the other hand, the sum of the first two terms

is (−g)−1/2∂ν [(−g)1/2T νµ], according to the result of Exercise 2. Thus, for fixed µ,

jν = (−g)1/2T νµ is conserved in the usual sense,

∂νj
ν = 0. (39)

In order to avoid convergence problems with the infinite integrals, we assume that

all energy and momentum are contained in a compact region K in space-time. Con-

sider a surface S, consisting of two space-like components S1 and S2 and some surface

S3 ‘far away’ such that T vanishes on S3. Using Gauss’ law and the current conser-

vation, we conclude that the surface integral of (− det g)1/2T νµnν over S vanishes. In

other words, ∫
S1

(− det g)1/2T νµnν d
3x =

∫
S2

(− det g)1/2T νµnν d
3x. (40)
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We have taken into account that, since n is future pointing, one of the normal vector

fields on S1 and S2 is outward directed and the second inward directed. Equation (40)

tells us that the stress-energy, in the µ-direction, on S1 is the same as the correspond-

ing quantity on S2; one could think of Si as a fixed time slice at time ti and one

obtains the usual law of conservation of energy or momentum.

Often one uses units in which G = 1 and c = 1 so that one does not need to write

explicitly the coefficient G/c4 in Einstein’s equations.

10.14.1 The Newtonian Limit

It is known that the Newtonian gravitational theory is valid for fields, which can

produce only velocities much smaller than the velocity of light. Since the components

T 0i and T ij are related to spatial momenta and T 00 is related to energy, this condition

says that |T 00| is much larger than the other components. Because of Einstein’s

equations, the same is true for the components of the Einstein tensor. Furthermore,

we expect that for weak gravitational fields the metric gµν differs slightly from the

Minkowski metric ηµν ,

gµν = ηµν + hµν (41)

for a small perturbation hµν . Next, we compute the connection, curvature, and finally

the Ricci tensor to first order in the perturbation hµν . A straight-forward computa-

tion, starting from the definitions of the various tensors, gives Gµν = −1
2
�(hµν −

1
2
ηµνh), where h = ηµνh

µν . Thus, Einstein’s equations, in this approximation, are

linear,

−1

2
�

(
hµν − 1

2
ηµνh

)
= 8π

G

c4
T µν . (42)

Taking into account the remark in the beginning of this section, only the 00-component

is relevant,

�

(
h00 − 1

2
h

)
= −16π

G

c2
ρ, (43)

where ρ = T 00/c2 is the matter density in the rest system of the source. We can also

drop the time derivatives (in the system of coordinates, where the source is slowly

moving, because ∂0 = 1
c
∂t) and so the only relevant equation becomes

∇2

(
h00 − 1

2
h

)
= 16π

G

c2
ρ. (44)

This means that,

h00 − 1

2
h =

4

c2
φ, (45)

where φ is the gravitational potential for the matter distribution ρ. (Compare Eq.

(62) with the Newtonian equation ∇2φ = 4πGρ, where φ = −GM/r!)
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Since all the other components of hµν−1
2
ηµνh vanish at this order of approximation,

we finally get

hµµ =
2

c2
φ = −2GM

c2r
(no summation!) (46)

for all µ = 0, 1, 2, 3.

Next, we shall compute the geodesics for the metric gµν = ηµν + hµν in the linear

approximation (we neglect higher order terms in hµν). For small velocities, the time

component ẋ0(s) of the 4-velocity is much larger than the spatial components. For

this reason, we can approximate the geodesic equations of motion as

d2xµ

ds2
+ Γµ00

(
dx0

ds

)2

= 0. (47)

In the linear approximation,

Γ0
00 = ∂0φ, Γi00 = ∂iφ. (48)

Thus, the geodesic equations become

ẍ0 + ∂0φ(ẋ0)2 = 0, ẍi + ∂iφ(ẋ0)2 = 0. (49)

In the coordinate system, where the source is at rest, the first equation says that we

can choose the time t as the geodesic parameter, x0(s) = s = ct, and then the second

equation becomes

ẍi = −∂iφ. (50)

The right-hand side (after multiplication by the mass m of the test particle) is the

gravitational force of the source on m, so this equation is just Newton’s second law,

ma = F, where F = −∇Φ and Φ = mφ.

10.14.2 The Schwarzschild Metric

The basic problem in Newtonian celestial mechanics is to solve the equations of mo-

tions outside of a spherically symmetric mass distribution (orbits of the planets around

the Sun, orbits of satellites around the Earth). In general relativity the first natural

problem is to search for spherically symmetric solutions of Einstein’s equations.

Actually, there is a unique 1-parameter family of spherically symmetric solutions,

which are asymptotically flat, meaning that at large distances from the source the

metric tends to the flat Minkowski metric ds2 = dx2
0 − dx2

1 − dx2
2 − dx2

3. This is the

content of Birkhoff’s theorem (which we are not going to prove). The line element of

the metric is given as

ds2 =

(
1− 2GM

c2r

)
dx2

0 −
(

1− 2GM

c2r

)−1

dr2 − r2dΩ2, (51)
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where dΩ2 is the angular part of the Euclidean metric in R3, dΩ2 = dθ2 +sin2 θ dφ2. It

is clear from Eq. (51) that for large distances r the metric approaches the Minkowski

metric. The line element (51) is called the Schwarzschild metric.

When r > 2GM/c2 the Schwarzschild metric is supposed to describe the grav-

itational field outside of a spherically symmetric star. The other disconnect region

r < 2GM/c2 is the Schwarzschild black hole. The singularity at r = 2GM/c2 is actu-

ally due to a bad choice of coordinates. There is a way to glue the inside solution in a

smooth way to the outside solution by a suitable choice of coordinates; the complete

discussion of this was first given by Kruskal and Szekeres in 1960. The Kruskal–

Szekeres metric is given as follows. The coordinates are denoted by (u, v, θ, φ). The

latter two are the ordinary spherical coordinates on a unit sphere. The coordinates

(u, v) are restricted to the region L ⊂ R2 defined by

uv <
2GM

c2e
.

The metric is then

ds2 =
16µ2

r
e(2µ−r)/2µdudv − r2dΩ2, (52)

where µ = MG/c2 and r is a function of u, v defined by

uv = (2µ− r)e(r−2µ)/2µ. (53)

Note that f(x) = xex/a is monotonically increasing when x > −a (and f(x) > −a/e)
and therefore y = f(x) has a unique solution x for any y > −a/e. We treat u as a

kind of universal time; a time-like vector is future directed if its projection to ∂u is

positive. The orientation (needed in integration!) is defined by the ordering (v, u, θ, φ)

of coordinates. Note that the radial null lines (radial light rays) are given by du = 0

or dv = 0.

The Kruskal–Szekeres space-time can be divided into four regions: K1 consists of

points v > 0, u < 0, region K2 of points u, v > 0, in region K4 we have u, v < 0,

and finally region K3 is characterized by u > 0, v < 0. The boundaries between

these regions are non-singular points for the metric. The only singularities are at the

boundary uv = 2µ/e.

The region K1 is equivalent with the outer region of a Schwarzschild space-time.

This is seen by performing the coordinate transformation (v, u, θ, φ) 7→ (t, r, θ, φ),

where r = r(u, v) as above and the Schwarzschild time is t = 2µ ln(−v/u). With a

similar coordinate transformation the region K3 is seen to be equivalent with the outer

Schwarzschild solution. The region K2 is equivalent with the Schwarzschild black

hole. The equivalence is obtained through the coordinate transformation (v, u, θ, φ) 7→
(t, r, θ, φ), where r = r(u, v) is the same as before but now t = 2µ ln(v/u).

It is easy to construct smooth time-like curves which go from either K1 or K3 to

the black hole K2. However, we shall prove that once an observer falls to the black

hole there is no way to go back to the ‘normal’ regions K1 and K3.
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Let x(t) be the time-like path of the observer. Then along the path

dr

dt
=
∂r

∂u

du

dt
+
∂r

∂v

dv

dt
=

r

8µ2
e(r−2µ)/2µ

[
∂r

∂u
g(∂v, x

′(t)) +
∂r

∂v
g(∂u, x

′(t))

]
< 0,

since x(t) is time-like and in K2 holds r ∂r
∂u

= −2µve(2µ−r)/2µ < 0 and similarly for the

v-coordinate.

The boundary between K2 and the normal regions is r = 2µ (i.e., u = 0 or v = 0).

The function r(x(t)) was seen to be decreasing, and therefore the path x(t) can never

hit the boundary r = 2µ. But the observer entering K2 has a deplorable future, since

it will eventually hit the true singularity r = 0, again using the monotonicity of the

function r(x(t)).

There is also another singularity, the outer boundary of region K3. But this is of

no great concern because it is in the past; no future directed time-like curve can enter

that singularity.

11 Principal bundles and Yang-Mills systems

11.1 Cartan’s structural equations

Let X1, . . . , Xn be a basis of Lie(G). Then

[Xi, Xj] = ckijXk

where the ckij are the structural constants. Since the Lie bracket is antisymmetric we

have ckij = −ckji and by the Jacobi identity we have

ckijc
m
kl + cklic

m
kj + ckjlc

m
ki = 0

for all i, j, l,m. In terms of the left invariant vector fields Xi, any tangent vector v at

g ∈ G can be written as v = viXi(g). Let us define θi ∈ Ω1(G) as θi(g)v = vi. We

compute the exterior derivative dθi :

dθi(g)(Xj, Xk) = Xjθ
i(Xk)−Xkθ

i(Xj)− θi([Xj, Xk])

= Xjδik −Xkδij − θi(cljkXl) = −cijk.

On the other hand,

(θi ∧ θj)(Xk, Xl) = θi(Xk)θ
j(Xl)− θi(Xl)θ

j(Xk) = δikδjl − δilδjk.

Thus we obtain Cartan’s structural equations,

dθi = −1

2
ciklθ

k ∧ θl.
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Denote Xiθ
i = g−1dg. This is a Lie(G)-valued 1-form on G. It is tautological at the

identity: (g−1dg)(v) = v for v ∈ T1G. For θ = g−1dg the structural equations can be

written as

dθ +
1

2
[θ ∧ θ] = 0,

where [θ ∧ θ] = [Xi, Xj]θ
i ∧ θj.

11.2 Principal bundles

Let G be a Lie group and M a smooth manifold. A principal G bundle over M is a

manifold which locally looks like M ×G.

Definition A smooth manifold P is a principal G bundle over the manifold M,

if a smooth right action of G on P is given, i. e., a map P × G → P , (p, g) 7→ pg,

such that p(gg′) = (pg)g′∀p ∈ P and g, g′ in G, and if there is given a smooth map

π : P →M such that

• π(pg) = π(p) for all g in G.

• ∀x ∈ M there exists an open neighborhood U of x and a diffeomorphism (local

trivialization) f : π−1(U) → U × G of the form f(p) = (π(p), φ(p)) such that

φ(pg) = φ(p)g ∀p ∈ π−1(U), g ∈ G.

The manifold P is the total space of the bundle, M is the the base space, and π

is the bundle projection. The trivial bundle P = M ×G is defined by the projection

π(x, g) = x and by the natural right action of G on itself.

Consider two bundles Pi = (Pi, πi,Mi;G) with the same structure group G. A

smooth map φ : P1 → P2 is a G bundle map , if φ(pg) = φ(p)g for all p and g. Two

bundles P1 and P2 are isomorphic if there is a bijective bundle map P1 → P2. An

isomorphism of a bundle onto itself is an automorphism .

If H ⊂ G is a closed subgroup then G is a principal H bundle over the homoge-

neous space G/H. The right action of H on G is just the right multiplication in G

and the projection is the canonical projection on the quotient.

Example Take G = SU(2) and H = U(1)

H :

(
eiϕ 0

0 e−iϕ

)
, ϕ ∈ R.

A general element g of G is

g =

(
z1 −z2

z2 z1

)
,

with |z1|2 + |z2|2 = 1. Writing z1 and z2 in terms of their real and imaginary parts we

see that the group G can be identified with the unit sphere S3 in R4. We can define

a map π : G → S2 by π(g) = gσ3g
−1, where σ3 is the matrix diag(1,−1); elements
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of R3 are represented by Hermitian traceless 2× 2 matrices. The Euclidean metric is

given by ‖x‖2 = −detx. The kernel of the map π is precisely U(1); thus we have a

U(1) fibration over S2 = SU(2)/U(1) in S3.

Exercise Let S+ = {x ∈ S2|x3 6= −1} and S− = {x ∈ S2|x3 6= +1}. Construct

local trivializations f± : π−1(S±)→ S± × U(1).

The bundle S3 → S2 is nontrivial; it is not isomorphic to S2 × S1 for topological

reasons. Namely, S3 is a simply connected manifold whereas the fundamental group

of S2 × S1 is equal to π1(S1) = Z [M. Greenberg: Lectures on Algebraic Topology].

Let {Uα}α∈Λ be an open cover of the base space M of a principal bundle P and

let p 7→ (π(p), φα(p)) ∈ Uα ×G be a set of local trivializations. If p ∈ π−1(Uα ∩ Uβ),

we can write

φα(p) = ξαβ(p)φβ(p),

where ξαβ(p) ∈ G. Now φα(pg) = φα(p)g and φβ(pg) = φβ(p)g from which follows

that ξαβ(pg) = ξαβ(p) and thus ξαβ can be thought of as a function on the base

space Uα ∩ Uβ. If p ∈ π−1(Uα ∩ Uβ ∩ Uγ) and x = π(p), then φα(p) = ξαβ(x)φβ(p) =

ξαβ(x)ξβγ(x)φγ(p) so that

ξαβ(x)ξβγ(x) = ξαγ(x).

In general, a collection of G-valued functions {ξαβ} for the covering {Uα} is a one-

cocycle (with values in G) if the above equation holds for all x in Uα ∩ Uβ ∩ Uγ and

for all triples of indices.

If we make the transformations φ′α = ηαφα for some functions ηα : Uα → G, then

ξαβ 7→ ξ′αβ = η−1
α ξαβηβ.

If we can find the maps ηα such that ξ′αβ = 1∀α, β, then ξαβ = ηαη
−1
β and we say that

the one-cocycle ξ is a coboundary.

Let (P, π,M), (P ′, π′,M ′) be a pair of principal G bundles and let f : P → P ′ be

a bundle map. We define the induced map f̂ : M →M ′ by f̂(x) = π′(f(p)), where p

is an arbitrary element in the fiber π−1(x).

Theorem 11.1 Let P and P ′ be a pair of principal G bundles over M. Let {Uα, φα}α∈Λ

(respectively, {Uα, φ′α}α∈Λ) be a system of local trivializations for P (respectively, for

P ′). Let ξαβ and ξ′αβ be the corresponding transition functions. Then there exists an

isomorphism f : P → P ′ such that f̂ = idM if and only if the transition functions

differ by a coboundary, that is, ξ′αβ(x) = ηα(x)−1ξαβ(x)ηβ(x) in Uα ∩ Uβ for some

functions ηα : Uα → G.

Proof. 1) Suppose first that ξ′αβ = η−1
α ξαβηβ for all α, β ∈ Λ. Define f : P → P ′

as follows. Let p ∈ P and x = π(p). Choose α ∈ Λ such that x ∈ Uα. Using a local

trivialization (Uα, φ
′
α at x we set f(p) = (x, fα(p)), where fα(p) = ηα(x)−1φα(p). We
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have to show that the map is well-defined: If x ∈ Uα ∩ Uβ then φβ(p) = ξβα(x)φα(p)

and thus

fβ(p) = ηβ(x)−1φβ(p) = ηβ(x)−1ξβα(x)φα(p)

= ξ′βα(x)[ηα(x)−1φα(p)] = ξ′βαr(x)fα(p).

We conclude that (x, fα(p)) and (x, fβ(p)) represent the same element in P ′. The

equation f(pg) = f(p)g follows from φα(pg) = φα(p)g.

2) Let f : P → P ′ be an isomorphism. We can define

ηα(x) = φα(p)φ′α(f(p))−1,

where p ∈ π−1(x) is arbitrary. It follows at once from the definition of the transition

functions that the collection {ηα}α∈Λ satisfies the requirements.

Let {ξαβ}α,β∈Λ be a one-cocycle with values in G, subordinate to an open cover

{Uα} on a manifold M . We can construct a principal G bundle P from this data. Let

C = q(α, Uα×G) be the disjoint union of all the sets Uα×G. Define an equivalence

relation in C by (α, x, g) ∼ (α′, x′, g′) if and only if x = x′ and g′ = ξα′α(x)g. Set

P = C/ ∼. The action of G in P is given by (α, x, g)g0 = (α, x, gg0). The smooth

structure on P is defined such that the sets Uα×G are smooth coordinate charts for

P .

Exercise Complete the construction of P above.

Let (P, π,M) be a principal G bundle. A (global) section of P is a map ψ : M → P

such that π ◦ ψ = idM .

Exercise Show that a principal bundle is trivial if and only if it has a global

section.

A local section consists of an open set U ⊂ M and a map ψ : U → P such that

π ◦ ψ = idU . If f : π−1(U) → U × G is a local trivialization we can define a local

section by ψ(x) = f−1(x, h(x)), where h : U → G is an arbitrary (smooth) function.

Let H ⊂ G be a closed subgroup. We say that the bundle P has been reduced

to a principal H subbundle Q, if Q ⊂ P is a submanifold such that qh ∈ Q for all

q ∈ Q, h ∈ H, π(Q) = M and H acts transitively in each fiber Qx = π−1(x) ∩Q.

Any manifold M of dimension n carries a natural principal GL(n,R) bundle,

namely, the bundle FM of linear frames. The fiber FxM at a point x ∈ M consists

of all frames (ordered basis) of the tangent space TxM . The group GL(n,R) acts in

FxM by (f1, f2, ..., fn)A = (
∑n

i=1Ai1fi,
∑n

i=1Ai2fi, ...,
∑n

i=1Ainfi), where the fi’s are

tangent

vectors at x and A = (Aij) ∈ GL(n,R). One can construct a local trivialization

by choosing a local coordinate system (x1, x2, ..., xn) in M . In local coordinates the

vectors of a frame f can be written as fi =
∑
fij∂j. This defines a mapping f 7→

(fij) ∈ GL(n,R). The collection (∂1, ..., ∂n) of vector fields defines a local section of

FM .
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If the manifold M has some additional structure the bundle FM can generally be

reduced to a subbundle. For example, if M is a Riemannian manifold with metric

g, then we can define the subbundle OFM ⊂ FM consisting of orthonormal frames

with respect to the metric g. If in addition M is oriented, then it makes sense to speak

of the bundle SOFM of oriented orthonormal frames: A frame (f1, . . . , fn) at a point

x is oriented if ø(x; f1, . . . , fn) is positive, where ø is a n form defining the orientation.

The structure group of OFM is the orthogonal group O(n) and of SOFM the special

orthogonal group SO(n) consisting of orthogonal matrices with determinant=1.

Let g be the Lie algebra of the Lie group G. To any A ∈ g there corresponds

canonically a one-parameter subgroup hA(t) = exp tA. We define a vector field Â on

the G bundle P such that the tangent vector Â(p) at p ∈ P is equal to d
dt

[p·hA(t)]|t=0.

Let g ∈ G be any fixed element. The right translation rg(p) = pg on P determines

canonically a transformation X 7→ (rg)∗X on vector fields: The tangent vector of the

transformed field at a point p is simply obtained by applying the derivative of the

mapping rg to the tangent vector X(pg−1).

Theorem 11.2 For any A ∈ g the vector field Â is equivariant, that is, (rg)∗Â =

âd−1
g A∀g ∈ G.

Proof. Using a local trivialization,

Â(p) =
d

dt
(π(p), φ(petA))

∣∣∣∣
t=0

and therefore

((rg)∗Â)(p) = Tpg−1rg ·
d

dt
(π(pg−1), φ(pg−1etA))|t=0

=
d

dt
(π(pg−1), φ(pg−1etAg))|t=0

=
d

dt
(0, φ(petad

−1
g A))|t=0

= âd−1
g A(p).

11.3 Connection and curvature in a principal bundle

Let E and M be a pair of manifolds, V a vector space and π : E → M a smooth

surjective map.

Definition The manifold E is a vector bundle over M with fiber V , if

• Ex = π−1(x) is isomorphic with the vector space V for each x ∈M

• π : E → M is locally trivial: Any x ∈ M has an open neighborhood U with a

diffeomorphism φ : π−1(U)→ U × V , φ(z) = (π(z), ξ(z)), where the restriction

of ξ to a fiber Ex is a linear isomorphism onto V .
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The product M ×V is the trivial vector bundle over M , with fiber V . In this case

the projection map M × V →M is simply the projection onto the first factor.

A direct sum of two vector bundles E and F over the same manifold M is the

bundle E⊕F with fiber Ex⊕Fx at a point x ∈M. The tensor product bundle E⊗F
is the vector bundle with fiber Ex ⊗ Fx at x ∈M.

Example The tangent bundle TM of a manifold M is a vector bundle over M

with fiber TxM ' Rn, where n = dimM . The local trivializations are given by local

coordinates: If (x1, x2, ..., xn) are local coordinates on U ⊂M , then the value of ξ for

a tangent vector w ∈ TxM , x ∈ M , is obtained by expanding w in the basis defined

by the vector fields (∂1, ..., ∂n).

A section of a vector bundle E is a map ψ : M → E such that π ◦ ψ = idM . The

space Γ(E) of sections of E is a linear vector space; the addition and multiplication by

scalars is defined pointwise. A principal bundle may or may not have global sections

but a vector bundle always has nonzero sections. A section can be multiplied by a

smooth function f ∈ C∞(M) pointwise, (fψ)(x) = f(x)ψ(x).

Let (P, π,M) be a principal G bundle. The space V of vertical vectors in the

tangent bundle TP is the subbundle of TP with fiber {v ∈ TpP |π(v) = 0} at p ∈ P .

If P is trivial, P = M ×G, then the vertical subspace at p = (x, g) consists of vectors

tangential to G at g. In general, the dimension of the fiber Vp is equal to dimG.

Definition A connection in the principal bundle P is a smooth distribution p 7→
Hp of subspaces of Tp such that

• The tangent space Tp is a direct sum of Vp and Hp ∀p ∈ P

• The distribution is equivariant, i.e., rgHp = Hpg ∀p ∈ P, g ∈ G.

Smoothness means that the distribution can be locally spanned by smooth vector

fields. We shall denote by prh (respectively, prv) the projection in Tp to the horizontal

subspace Hp (respectively, vertical subspace Vp).

Let A ∈ g and let Â be the corresponding equivariant vector field on P . The field

Â is vertical at each point. Since the group G acts freely and transitively on P , the

mapping A 7→ Â(p) is a linear isomorphism onto Vp for all p ∈ P . Thus for each

X ∈ TpP there is a uniquely defined element øp(X) ∈ g such that

ω̂p(X) = prvX

at p. The mapping ωp : TpP → g is linear, thus defining a differential form of degree

one on P , with values in the Lie algebra g. The form ω is the connection form of the

connection H.

Theorem 11.3 The connection form satisfies

• ωp(Â(p)) = A ∀A ∈ g,
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• r∗aω = adaω ∀a ∈ G.

Furthermore, each g-valued differential form on P which satisfies the above conditions

is a connection form of a uniquely defined connection in P .

Proof. The first equation follows immediately from the definition of ω. To prove

the second, we first note that

̂(ad−1
a A)(p) =

d

dt
petad

−1
a A|t=0 =

d

dt
pa−1etAa|t=0 = raÂ(pa−1).

By the equivariantness property of the distribution Hp, the right translations ra com-

mute with the horizontal and vertical projection operators. Thus

(adaωp(X))̂ (p) = r−1
a · ω̂p(X)(pa)

= r−1
a (prvX)(pa) = prv(r

−1
a X)(pa)

= (ωp(r
−1
a X))̂ (pa).

Taking account that (r∗aω)p(X) = ωpa(raX) we get the second relation.

Let then ω be any form satisfying both equations. We define the horizontal sub-

spaces Hp = {X ∈ Tp|ωp(X) = 0}. If X ∈ Hp ∩ Vp, then X = Â(p) for some A ∈ g

and øp(Â(p)) = A = ωp(X) = 0, from which follows Hp∩Vp = 0. By (1) and a simple

dimensional argument we get Tp = Hp + Vp. For X ∈ Hp and a ∈ G we obtain

ωpa(raX) = (r∗aω)p(X) = adaωp(X) = 0,

and therefore raX ∈ Hpa, which shows that the distribution Hp is equivariant and

indeed defines a connection in P .

Let ω be a connection form in (P, π,M). Let U ⊂ M be open and ψ : U → P

a local section. The pull-back A = ψ∗ω is a one-form on U . Consider another

local section φ : V → P and set A′ = φ∗ω. We can write ψ(x) = φ(x)g(x) for

g : U ∩ V → G, where g(x) is a smooth G valued function. We want to relate A to

A′. Noting that

Txψ = rg(x)Txφ+ (g−1Txg)̂ (φ(x))

by the Leibnitz rule, we get

Ax(u) = ωψ(x)(Txψ · u) = ωψ(x)(rg(x)Txφ · u+ (g−1Txg · u)̂ (φ(x)))

= ad−1
g(x)ωφ(x)(Txφ · u) + g−1Txg · u.

For a matrix group G we can simply write

A = g−1A′g + g−1dg.
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The transformation relating A to A′ is called a gauge transformation . Next we define

the two-form

F = dA+
1

2
[A,A]

on U . The commutator of Lie algebra valued one-forms is defined by

[A,B](u, v) = [A(u), B(v)]− [A(v), B(u)]

for a pair u, v of tangent vectors. We shall compute the effect of a gauge transforma-

tion (U, ψ)→ (V, φ) on F :

F = dA+ 1
2
[A,A]

= g−1dA′g − [g−1dg, g−1A′g]− 1
2
[g−1dg, g−1dg]

+1
2
[g−1A′g + g−1dg, g−1A′g + g−1dg]

= g−1(dA′ + 1
2
[A′, A′])g = g−1F ′g.

The curvature form F is a pull-back under ψ of a gobally defined two-form Ω on P .

The latter is defined by

Ωp(u, v) = a−1Fx(πu, πv)a,

where p ∈ π−1(x), u, v tangent vectors at p and a ∈ G is an element such that

p = ψ(x)a. The left-hand side does not depend on the local section. Writing p =

φ(x)a′ = ψ(x)g(x)a′ we get

a′−1F ′x(πu, πv)a′ = a′−1g(x)−1Fx(πu, πv)g(x)a′ = a−1Fx(πu, πv)a.

Since A is the pull-back of ω and F is the pull-back of Ω we obtain from 4.3.5

Ω = dω +
1

2
[ω, ω]

Exercise Prove the Bianchi identity dF+[A,F ] = 0. (The 3-form [A,F ] is defined

by an antisymmetrization of [A(u), F (v, w)] with respect to the triplet (u, v, w) of

tangent vectors.)

Let (P, π,M) be a principal G bundle and ρ : G→ AutV a linear representation

of G in a vector space V . We define the manifold P ×G V to be the set of equivalence

classes P × V/ ∼, where the equivalence relation is defined by (p, v) ∼ (pg−1, ρ(g)v),

for g ∈ G. There is a natural projection θ : P×GV →M , [(p, v)] 7→ π(p). The inverse

image θ−1(x) ∼= V , since G acts freely and transitively in the fibers of P . The linear

structure in a fiber θ−1(x) is defined by [(p, v)] + [(p, w)] = [(p, v + w)], l[(p, v)] =

[(p, lv)]. Local trivializations of P ×G V are obtained from local trivializations p 7→
(π(p), φ(p)) ∈ M × G of P by [(p, v)] 7→ (π(p), ρ(φ(p))v). Thus P ×G V is a vector

bundle over M , the vector bundle associated to P via the representation ρ of G.

Example Let P = SU(2),M = S2 = SU(2)/U(1), G = U(1), V = C and ρ(λ) =

λ2 for λ ∈ U(1). The associated vector bundle E = SU(2) ×U(1) C is in fact the
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tangent bundle of the sphere S2. The isomorphism is obtained as follows. Fix a

linear isomorphism of C ∼= R2 with the tangent space of S2 at the point x, which has

as its isotropy group the given U(1). The map E → TS2 is defined by (g, v) 7→ D(g)v,

where D(g) is the 2-1 representation of SU(2) in R3. The tangent vectors of S2 are

represented by vectors in R3 by the natural embedding S2 ⊂ R3.

11.4 Parallel transport

Let H be a connection in a principal G bundle (P, π,M). A horizontal lift of a smooth

curve γ(t) on the base manifold M is a smooth curve γ∗(t) on P such that the tangent

vector γ̇∗(t) is horizontal at each point on the curve and π(γ∗(t)) = γ(t).

Lemma Let X(t) be a smooth curve on the Lie algebra g of G, defined on an interval

[t0, t1]. Then there exists a unique smooth curve a(t) on G such that ȧ(t)a(t)−1 =

X(t)∀t ∈ [t0, t1] and such that a(t0) = e.

Proof. See Kobayashi and Nomizu, vol. I, p. 69.

Theorem 11.4 Let γ(t) be a smooth curve on M and p an element in the fiber over

γ(t0). Then there exists a unique horizontal lift γ∗(t) of γ(t) such that γ∗(t0) = p.

Proof. Choose first any (smooth) curve φ(t) on P such that π(φ) = γ and φ(t0) = p.

We are looking for the solution in the form γ∗(t) = φ(t)g(t), where g(t) is a curve on

G such that g(t0) = e. Now γ∗(t) is a solution if

γ̇∗(t) = rg(t) · φ̇(t) + (g(t)−1ġ(t))̂ [φ(t)g(t)]

is horizontal. Let ø be the connection form of the connection H. A tangent vector on

P is horizontal if and only if it is in the kernel of ω. We get the differential equation

0 = ø(γ̇∗(t)) = ø(rg(t)φ̇(t)) + ω([g(t)−1ġ(t)]̂ [φ(t)g(t)])

= ad−1
g(t)ω(φ̇(t)) + g(t)−1ġ(t).

Applying adg to this equation we get

ġ(t)g(t)−1 = −ω(φ̇(t)).

The solution g(t) exists and is unique by the previous lemma.

Example Let P = M × U(1), M simply connected. A connection form ø can be

written as ω(x,g)(u, a) = Ax(u) + g−1 · a, where u is a tangent vector at x ∈ M and

a is a tangent vector at g ∈ U(1); the Lie algebra of U(1) is identified by the set of

purely imaginary complex numbers. Let γ(t) be a curve on M . The horizontal lift of

γ(t) which goes through (γ(t), g) at time t = 0 is γ∗(t) = (γ(t), g(t)) with

g(t) = g · exp

(∫ t

0

−Aγ(s)(γ̇(s))ds

)
.
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In particular, for a closed contractible curve, γ(0) = γ(1), we get by Stokes’s theorem

g(1) = g · exp(−
∫
S

F ),

where F = dA is the curvature two-form and the integration is taken over any surface

on M bounded by the closed curve γ.

We define the parallel transport along a curve γ(t) on M as a mapping τ :

π−1(x0) → π−1(x1) (x0 = γ(t0), x1 = γ(t1) points on the curve). The value τ(p0)

for p0 ∈ π−1(x0) is given as follows: Let γ∗(t) be a horizontal lift of γ(t) such that

γ∗(t0) = p0. Then τ(p0) = γ∗(t1).

Exercise Prove the following properties of the parallel transport.

• τ ◦ rg = rg ◦ τ∀g ∈ G

• If γ1 is a path from x0 to x1 and γ2 is a path from x1 to x2 then the parallel

transport along the composed path γ2 ∗ γ1 is equal to the product of parallel

transport along γ1 followed by a parallel transport along γ2.

• The parallel transport is a one-to-one mapping between the fibers π−1(x0) and

π−1(x1).

11.5 Covariant differentiation in vector bundles

Let E be a vector bundle over a manifold M with fiber V , dim V = n. The vector

space V is defined over the field K = R or K = C. A vector bundle can always be

thought of as an associated bundle to a principal bundle. Namely, let Px denote the

space of all linear frames in the fiber Ex for x ∈M. Using the local trivializations of

E it is not difficult to see that the spaces Px fit together and form naturally a smooth

manifold P . Fix a basis w = {w1, . . . , wn} in Ex. Then any other basis of Ex can

be obtained from w by a linear tranformation w′i =
∑
Ajiwj and therefore Px can

be identified with the group GL(n,K) of all linear transformations in Kn; it should

be stressed that this identification depends on the choice of w. However, we have a

well-defined mapping P ×GL(n,K)→ P given by the basis transformations and this

shows that P can be thought of as a principal GL(n,K) bundle over M.

The vector bundle E is now isomorphic with the associated bundle P ×ρ Kn,

where ρ is the natural representation of GL(n,K) in Kn. The isomorphism is defined

as follows. Let w ∈ Px and a ∈ Kn. We set φ(w, a) =
∑
aiwi. This gives a mapping

from P×Kn to E which is obviously linear in a. For a fixed w the mapping a 7→ φ(w, a)

gives an isomorphism between Kn and Ex. Let w′ = w · g and a′ = ρ(g−1)a for some

g ∈ GL(n,K). We have to show that φ(w′, a′) = φ(w, a); but this follows immediately

from the definitions.

Often the bundle E can be thought of as an associated bundle to a principal

bundle with a smaller structure group than the group GL(n,K). This happens when
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there is some extra structure in E. For example, assume there is a fiber metric

in E: This means that there is an inner product < ·, · >x in each fiber Ex such

that x 7→< ψ(x), ψ(x) >x is a smooth function for any (local) section ψ. We can

then define the bundle of orthonormal frames in E with structure group U(n) in the

complex case and O(n) in the real case. The vector bundle E is now an associated

bundle to the bundle of orthonormal frames.

We shall now assume that E is given as an associated vector bundle P ×ρ V to

some principal bundle P , with a connection H, over M. Let G be the structure group

of P. For each vector field X on M we can define a linear map ∇X of the space Γ(E)

of sections into itself such that

• ∇X+Y = ∇X +∇Y

• ∇fX = f∇X

• ∇X(fψ) = (Xf)ψ + f∇Xψ

for all vector fields X, Y , smooth functions f and sections ψ. We shall give the defi-

nition in terms of a local trivialization ξ : U → P , where U ⊂ M is open. Locally, a

section ψ : M → E can be written as

ψ(x) = (ξ(x), φ(x)),

where φ : U → V is some smooth function. Let A denote the pull-back ξ∗ø of the

connection form ω in P . The representation ρ of G in V defines also an action of the

Lie algebra g in V . We set

∇Xψ = (ξ,Xφ+ A(X)φ),

where A(X) is the Lie algebra valued function giving the value of the one-form A in

the direction of the vector field X.

We have to check that our definition does not depend on the choice of the local

trivialization. So let ξ′(x) = ξ(x) · g(x) be another local trivialization, where g : U →
G is a smooth function. The vector potential with respect to the trivialization ξ′ is

A′ = g−1Ag+g−1dg. Now (ξ, φ) ∼ (ξ′, φ′), where φ′ = g−1φ (we simplify the notation

by dropping ρ) and therefore (ξ′, Xφ′ + A′(X)φ′) is equal to

(ξ′,−g−1(Xg)g−1φ+ g−1Xφ+ (g−1Ag + g−1Xg)g−1φ)

= (ξ′, g−1(Xφ+ A(X)φ)) ∼ (ξ,Xφ+ A(X)φ)

which shows that ∇X is well-defined.

Exercise Prove that ∇X defined above satisfies (1)-(3).
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The commutator of the covariant derivatives ∇X is related to the curvature of the

connection in the following way:

[∇X ,∇Y ]ψ = (ξ, [X + A(X), Y + A(Y )]φ)

= (ξ, ([X, Y ] +X · A(Y )− Y · A(X) + [A(X), A(Y )])φ)

= (ξ, (F (X, Y ) + [X, Y ] + A([X, Y ]))φ)

where F = dA+ 1
2
[A,A]. Thus we can write

[∇X ,∇Y ]−∇[X,Y ] = F (X, Y )

when acting on the functions φ.

A section ψ is covariantly constant if ∇Xψ = 0 for all vector fields. From the

above commutator formula we conclude that one can find at each point in the base

space a local basis of covariantly constant sections of the vector bundle if and only if

the curvature vanishes.

11.6 An example: The monopole line bundle

Let G be a Lie group and g its Lie algebra. Let us denote by `g the left translation

`g(a) = ga in G. The left invariant Maurer-Cartan form θL = g−1dg is the g-valued

one form on G which sends a tangent vector X at g ∈ G to the element `−1
g X ∈ TeG

in the Lie algebra. Similarly, we can define the right invariant Maurer-Cartan form

θR = dgg−1, θR(g;X) = r−1
g X. By taking commutators, we can define higher order

forms. For example, the form [g−1dg, g−1dg] sends the pair (X, Y ) of tangent vectors

at g to 2[`−1
g X, `−1

g Y ] ∈ g.

Taking projections to one dimensional subspaces of g we get real valued one-forms

on G.

Let < ·, · > be a bilinear form on g and σ ∈ g. Then α =< σ, g−1dg > is a

well-defined one form. Let us compute the exterior derivative of α. Let X, Y be a

pair of left invariant vector fields on G. Now

dα(g;X, Y ) = X · α(Y )− Y · α(X)− α([X, Y ])

= −α([X, Y ])

since α(Y )(g) =< σ, `−1
g Y > is a constant function on G and similarly for α(X).

Since the left invariant vector fields on a Lie group span the tangent space at each

point, we conclude

dα = − < σ, 1
2
[g−1dg, g−1dg] > .

We have not yet defined the exterior derivative of a Lie algebra valued differential

form, but motivated by the computation above we set

d(g−1dg) = −1

2
[g−1dg, g−1dg].
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A bilinear form < ·, · > on g is invariant if

< [X, Y ], Z >= − < Y, [X,Z] >

for all X, Y, and Z. Given an invariant bilinear form, the group G has a natural

closed three-form c3 which is defined by

c3(g;X, Y, Z) =< `−1
g X, [`−1

g Y, `−1
g Z] > .

Thus

c3 =< g−1dg, 1
2
[g−1dg, g−1dg] > .

Theorem 11.5 dc3 = 0.

Proof. Recall the definition of the exterior differentiation d: If ω is a n-form and

V1, ..., Vn+1 are vector fields, then

dω(V1, ..., Vn+1) =
n+1∑
i=1

(−1)i+1Vi · ω(V1, ..., V̂i, ..., Vn+1)

+
∑
i<j

(−1)i+jω([Vi, Vj], V1, ..., V̂i, ..., V̂j, ..., Vn+1),

where the caret means that the corresponding variable has been dropped. Let us com-

pute dc3 for left invariant vector fields X1, ..., X4. Taking account that c3(Xi, Xj, Xk)

is a constant function we get

dc3(X1, ...X4) = −2 < [X1, X2], [X3, X4] > +2 < [X1, X3], [X2, X4] >

−2 < [X1, X4], [X2, X3] >

= 2 < X1, [[X3, X4], X2]− [[X2, X4], X3] + [[X2, X3], X4] >

= 0

by Jacobi’s identity.

If G is a group of matrices we can define an invariant form on g by < X, Y >=

trXY. Then the form c3 can be written as

c3 = tr (g−1dg)3.

As an example we shall consider in detail the case G = SU(2). Let σ3 =

(
i 0

0 −i

)
and define the one-form α = −1

2
trσ3g

−1dg. Remember that SU(2)→ SU(2)/U(1) =

S2 is a principal U(1) bundle. The form α is invariant with respect to right trans-

lations g 7→ gh by h ∈ U(1). Thus α is a connection form in the bundle SU(2) [the

Lie algebra of the structure group U(1) can be identified with iR]. Let us compute
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the curvature. The exterior derivative of α is 1
4
trσ3[g−1dg, g−1dg]. A tangent vector

at x ∈ S2 can be represented by a tangent vector `gX at g ∈ π−1(x) , X ∈ g, such

that X is orthogonal to the U(1) direction, trσ3X = 0. The curvature in the base

space S2 is then Ω(X, Y ) = 1
2
trσ3[X, Y ]. The form Ω is 1

2
× the volume form on S2:

If {X,Y} is an orthonormal system at x ∈ S2, then [X, Y ] = ± i
2
σ3 (exercise), the sign

depending on the orientation. We obtain Ω(X, Y ) = ± i
4
trσ2

3 = ± i
2
.

The basic monopole line bundle is defined as the associated bundle to the bundle

SU(2) → S2, constructed using the natural one dimensional representation of U(1)

in C.
Embedding S2 ⊂ R3 and using Cartesian coordinates {x1, x2, x3} we can write the

curvature form as

Ω =
1

4r3
εijkxidxj ∧ dxk,

where r2 = x2
1 + x2

2 + x2
3 is equal to 1 on S2. However, we can extend Ω to the space

R3 \ {0} using the above formula. The coefficients of the linearly independent forms

dx2 ∧ dx3, dx3 ∧ dx1 and dx1 ∧ dx2 form a vector ~B = 1
2r3

(x1, x2, x3) = ~x
r3

. The field
~B satisfies

~∇ · ~B = 0

~∇× ~B = 0,

i.e., it satisfies Maxwell’s equations in vacuum. On the other hand,∫
S2

~B · d~S = 2π

for any sphere containing the origin. Because of these properties, the field ~B can be

interpreted as the magnetic field of a magnetic monopole located at the origin. The

integral (3) multiplied by the dimensional constant 1/e (e is the unit electric charge)

is called the monopole strength.

11.7 Yang-Mills equations

Let M be a Riemann manifold with Riemann metric g. In local coordinates the metric

is represented as a symmetric nondegenerate tensor field gij(x) with i, j = 1, 2, . . . , n,

where n = dimM. Let π : P → M be a principal G bundle over M. Let ρ : G →
Aut(V ) be a unitary finite-dimensional representation of G in V. This defines an

associated vector bundle E = P ×ρ V and the curvature tensor F of a connection in

P is represented (locally) by matrix functions Fij(x) = ∂iAj − ∂jAi + [Ai, Aj] acting

on vectors in V.

We shall define raising and lowering of space-time indices (i.e., coordinate indices

in M) as usual, Ai = gijAj, Bi = gijB
j, where the matrix (gij) is the inverse of (gij).
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Recall also that the metric g defines a volume form on M, d(volM) =
√

det(g)dx1 ∧
dx2 · · · ∧ dxn. We define the Yang-Mills functional

Y (A) =
1

4

∫
M

tr FµνF
µνd(volM).

The Yang-Mills action is invariant under gauge transformations F ′ = g−1Fg. There

is an alternative way to write the YM action as

Y (A) = −1

2

∫
M

tr F ∧ ∗F.

The action leads to field equations through Euler-Lagrange variational priciple. Let

A+ tB be a 1-parameter family of vector potentials:

d

dt
Y (A+ tB)|t=0 =

1

2

∫
M

tr F µν(∂µBν − ∂νBµ + [Aµ, Bν ] + [Bµ, Aν ])d(volM).

When M is a manifold without boundary, we can integrate by parts and we get

δY (A) = −
∫
M

tr Bν(∂µF
µν + [Aµ, F

µν ])d(volM).

If A is an extremal the YM action then we obtain the Yang-Mills equations

DµF
µν = ∂µF

µν + [Aµ, F
µν ] = 0.

When G is abelian this gives the Maxwell’s equations ∂µF
µν = 0 in vacuum. In

addition, we have the Bianchi identities

DµFνλ +DλFµν +DνFλµ = 0

for all indices λ, µ, ν. If there are external sources we have instead

DµF
µν = jν

for some Lie algebra valued current jν .

The Yang-Mills equations is a complicated nonlinear system of second order partial

differential equations. Not much is known about the general solutions. However, there

is a class of solutions which is well understood. These so-called (anti) instantons are

characterized by the (anti) self-duality property F = ∗F (F = − ∗ F ) in the case of

a Riemannian 4-manifold M. Recall that

∗ : Ωk(M)→ Ωn−k(M)

is a linear map and ∗∗ = ±1. When n = 4 and k = 2 the sign is + (exeercise) For

this reason the eigenvalues of ∗ are ±1, when restricted to 2-forms on a 4-manifold.
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In the case of Lorentzian metric ∗∗ = −1 on 2-forms and therefore in this case there

are no real eigenvalues (and no real (anti) instantons).

In the case of an instanton we have

Y (A) = −1

2

∫
M

tr F ∧ F

and so the value of the YM functional is given by the second Chern class. In particular,

when M = S4 we get

Y (A) ∼
∫
S3

tr (g−1dg)3,

where g : S3 → G is the transition function on the equator. Thus for self-dual

solutions the YM functional is quantized in units (2π)2k with k ∈ Z.
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