
Homological algebra

Chain complexes

Chain complex (C, d) consists of

• An abelian group Cn for every n ∈ Z

• A homomorphism dn : Cn → Cn−1 for every n ∈ Z.

The only thing that is required is that dn−1 ◦ dn = 0 for every n ∈ Z.

Complex is non-negative if Cn = 0 for n < 0 and free if Cn is free abelian
group for all n ∈ Z. All important chain complexes we use in this course,
such as C(K,L) and C(X,A) are free and non-negative.

• Group of n-cycles in chain complex C is

Zn(C) = Ker dn ⊂ Cn

• Group of n-boundaries in chain complex C is

Bn(C) = Im dn+1 ⊂ Cn

• Because of dn ◦ dn+1 = 0, Bn(C) ⊂ Zn(C), so we can form homology
groups

Hn(C) = Zn(C)/Bn(C).

A homology class of a cycle z ∈ Zn(C) is its equivalence class z̄ in the
quotient group Hn(C). Two cycles z, z′ define the same homology class if
z − z′ is a boundary i.e. z − z′ = dn+1(u) for some u ∈ Cn+1.

Chain complex C is acyclic if Hn(C) = 0 for all n ∈ Z.

Chain mappings

Suppose (C, d) and (C ′, d′) are chain complexes. A collection f of homo-
morphisms fn : Cn → C ′

n is a chain mapping if it commutes with boundary
operators i.e. if d′n ◦ fn = fn−1 ◦ dn for all n ∈ Z.

Chain mapping maps cycles to cycles and boundaries to boundaries, so
induces homomorphisms f∗ : Hn(C) → Hn(C

′) for all n ∈ Z, defined by
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f∗(z̄) = ¯f(z).

Chain mappings can be composed - if f : C → C ′ and g : C ′ → C ′′ are
chain mappings, there exist chain mapping g ◦ f defined as an ordinary com-
position ”componentwise”. There exists identity chain mapping id : C → C.
A chain mapping f : C → D is an isomorphism if an only if fn : Cn → Dn is
an isomorphism for all n ∈ Z.

”Star”-operator f 7→ f∗ respects identity mapping and composition of
chain mappings, i.e. id∗ = id, (g ◦ f)∗ = g∗ ◦ f∗.

A subcomplex C ′ of a chain complex C is defined in a natural way.
Then there exists an inclusion chain mapping i : C ′ → C, quotient com-
plex C/C ′ and chain projection mapping p : C → C/C ′. Kernel and image of
a chain mapping are chain subcomplexes of corresponding chain complexes.
There exists analogue of Factorization Theorem as well as the Isomorphism
Theorem for chain complexes and chain mappings (Proposition 10.8. and
Corollary 10.9).

Direct sum C = ⊕α∈ACα of chain complexes Cα is defined in a natural
way ”componentwise”. The homology groups of C are isomorphic to the
direct sum of corresponding homology groups of Cα,

Hn(⊕α∈ACα) ∼= ⊕α∈AHn(Cα).

Exact sequences of abelian groups

Suppose we have a sequence

. . . // An+1
fn+1 // An

fn // An−1
// . . .

of abelian groups and homomorphisms. It can be unlimited in both direction,
i.e. indexed on the set of integers Z, or stop somewhere on the left or/and
on the right. We say that this sequence is exact at An if

Ker fn = Im fn+1

provided, that the mappings fn and fn+1 are defined. If the sequence is exact
at every group An that appears in it, we say that the sequence is an exact
sequence of abelian groups and homomorphisms.
An exact sequence of abelian groups and homomorphisms is the same thing
as acyclic chain complex.
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The exact sequence is short exact if it is of the form

0 // A
f // C

g // B // 0

This is equivalent to

• f is injection,

• g is surjection,

• Im f = Ker f .

This implies that every short exact sequence is essentially of the form

0 // A
i // B

p // B/A // 0

where i is inclusion of the subgroup and p is canonical projection to a quo-
tient group (Lemma 11.4).

Short exact sequence

0 // A
f // C

g // B // 0

splits if it is essentially isomorphic to the sequence of the form

0 // A i // A⊕B
p // B // 0,

where i(a) = (a, 0) and p(a, b) = b. Precise definition in 11.15. Lemma 11.16
gives important equivalent characterizations which are usually easier to ap-
ply in practise.

Five Lemma 11.4. is an important tool with a lot of applications.

Short exact sequences of chain complexes and induced
long exact homology sequence

The sequence

(0.1) 0 // C ′ f // C
g // C // 0
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of chain complexes and chain mappings is short exact if it is short
exact sequence of abelian groups and homomorphisms ”in every dimension”,
more precisely if the sequence

0 // C ′
n

fn // Cn
gn // Cn

// 0

is short exact sequence of abelian groups and homomorphisms for all n ∈ Z.

One of the main results of homological algebra is the existence of long
exact homology sequence

. . . // Hn+1(C)
∆n+1 // Hn(C

′)
f∗ // Hn(C)

g∗ // Hn(C)
∆n // Hn−1(C

′) // . . .

induced by the short exact sequence (0.1). The boundary operator ∆: Hn(C) →
Hn−1(C) is defined by the following algorithm. Let z̄ ∈ Hn(C) be a homology
class of a cycle z ∈ Zn(C). Then ∆(z̄) = x̄ ∈ Hn−1(C) for the cycle x such
that fn−1(x) = dny, where y ∈ Cn is such that gn(y) = z.

The long exact homology sequence is ”natural”. Precisely put it means
that if we have a commutative diagram

0 // C ′ f //

α
��

C
g //

β

��

C //

γ
��

0

0 // D′ f ′
// D

g′ // D // 0

of chain complexes and chain mappings with short exact rows. Then the
induced diagram between induced long exact homology sequences

. . . // Hn+1(C)
∆n+1 //

γ∗
��

Hn(C
′)

f∗ //

α∗

��

Hn(C)
g∗ //

β∗
��

Hn(C)
∆n //

γ∗
��

Hn−1(C
′) //

α∗

��

. . .

. . . // Hn+1(D)
∆n+1 // Hn(D

′)
f ′
∗ // Hn(D)

g′∗ // Hn(D)
∆n // Hn−1(D

′) // . . .

is also commutative.

An important algebraic application of long exact homology sequence can
be found in Proposition 11.11. It has been applied a lot when switching from
special absolute case to reduced or relative cases. For a typical application
of Proposition 11.11 see the proof of existence of long exact reduced homol-
ogy sequence (pages 191-192) or the proof that there exists relative/reduced
version of Mayer-Vietoris for proper triads (Exercise 12.1).
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Augmentation and reduced homology

Augmentation in a non-negative chain complex C is a surjective homomor-
phism ε0 : C0 → Z such that ε◦d1 = 0. An equivalent definition augmentation
is a chain mapping ε : C → ZC , where ZC is a chain complex with (ZC)0 = Z
and other groups trivial. Reduced chain complex C̃ is defined as a kernel
of augmentation. Reduced homology groups H̃n(C) are homology groups
of this complex C̃.

Reduced groups have the following relation with ordinary homology groups,

H̃n(C) = Hn(C) if n ̸= 0,

H0(C) ∼= H̃0(C)⊕ Z and

H̃0(C) = Ker ε∗.

In particular H̃n(C) is a subgroup of Hn(C).

A complex C equipped with its augmentation is called augmented chain
complex. A chain mapping f : C → C ′ between two augmented chain com-
plexes C,C ′ preserves augmentation if ε′ ◦ f = ε. Such a mapping induce
homomorphisms f∗ : H̃n(C) → H̃n(C

′) for all n ∈ Z, which are just restric-
tions of f∗ : Hn(C) → Hn(C

′).

Suppose

0 // C ′ f // C
g // C // 0

is a short exact sequence of chain complexes such that C,C ′ are augmented
and f preserves augmentation. Then there exists long exact reduced ho-
mology sequence
(0.2)

. . . // Hn+1(C) ∆ // Hn(C
′)

f∗ // Hn(C)
g∗ // Hn(C) ∆ // Hn−1(C

′) // . . .

. . . // H1(C) ∆ // H0(C̃ ′)
f∗ // H0(C̃)

g∗ // H0(C) // 0 .

Reduced homology groups are usually easier to work with, compared to
ordinary homplogy groups
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Chain homotopy

Suppose α, β : C → C ′ are chain mappings between chain complexes. The
collection H = (Hn)n∈N of homomorphisms Hn : Cn → C ′

n+1 is called a chain
homotopy between α and β if

d′n+1Hn +Hn−1dn = αn − βn,

for all n ∈ Z.
If for chain mappings α, β : C → C ′ there exists a chain homotopy H

between them, we say that α and β are chain homotopic.

The main reason chain homotopy is interesting is the fact that chain
homotopic mappings induce the same mappings in homology i.e.
α∗ = β∗ : Hn(C) → Hn(C

′). The same is true for reduced groups, if com-
plexes are augmented and both α, β preserve augmentation.

Mayer-Vietoris sequence

Suppose C,C ′ are subcomplexes of a chain complex D. Then there exist
short exact sequence

0 // C ∩ C ′ h // C ⊕ C ′ q // C + C ′ // 0,

hn(x) = (x,−x),

qn(x, y) = x+ y.

The induced long exact homology sequence

. . . // Hn+1(C + C ′) Γ // Hn(C ∩ C ′)
h∗ // Hn(C ⊕ C ′)

q∗ // Hn(C + C ′) // . . .

is called Mayer-Vietoris sequence of the pair (C,C ′). It can be used to
calculate the homology of C +C ′, whenever homologies of C, C ′ and C ∩C ′

are known. In general C + C ′ is not necessarily interesting but if inclusion
C +C ′ → D induces isomorphisms in homology, Mayer-Vietoris gives a way
to calculate Hn(D).
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