
Simplicial homology

Definition

Suppose K is a ∆-complex. For every n ∈ Z we define Cn(K) to be the free
abelian group based on the set of all geometrical n-dimensional simplices
σ = [v0, . . . ,vn] of K. Thus elements of Cn(X), called singular n-chains in
X, are of the form

n∑
i=1

niσi,

where ni ∈ Z and σi are geometrical n-dimensional simplices of K.
Since they are no n-dimensional simplices in K for n < 0, Cn(K) = 0 for
n < 0.

Boundary operator dn : Cn(K) → Cn−1(K) is defined as the unique ho-
momorphism such that for every geometrical n-dimensional simplex

dn(σ) =
n∑

i=0

(−1)i[v0, . . . , v̂i, . . .vn].

Then dn−1 ◦ dn = 0 for all n ∈ Z, so groups Cn(K) equipped with boundary
operators dn form a chain complex C(K), simplicial chain complex of K.

The homology groups of complex C(K) are denoted Hn(K) and called
simplicial homology groups of the complex K.

Relative case

Suppose L is a subcomplex of X. Then we say that (K,L) is a pair of ∆-
complexes. Then C(L) is a subcomplex of C(K). The quotient complex
C(K)/C(L) is denoted C(K,L) and called the simplial chain complex of
the pair (K,L). Homology groups of this complex are denoted Hn(K,L) and
called relative simplicial homology groups of the pair (K,L).

Since C(K) = C(K, ∅), we can always consider any complex K a pair
(K, ∅). Because of that it is enough to consider relative case only.

There exist long exact homology sequence of the pair (K,L)

. . . // Hn+1(K,L) ∆ // Hn(L)
i∗ // Hn(K)

j∗ // Hn(K,L) ∆ // Hn−1(L) // . . .
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Equivalence of singular and simplicial homology

Suppose (K,L) is a pair of ∆-complexes. Since the pair of their polyhe-
dron (|K|, |L|) is then a topological pair, there exists singular chain complex
C(|K|, |L|) and singular homology groups Hn(|K|, |L|).

For every n ∈ Z we define a homomorphism ι : Cn(K) → Cn(|K|) by
ι(σ) = fσ on basis elements n-dimensional geometrical simplices σ of K.
Here fσ : ∆n → |K| is the characteristic mapping of σ (defined in the end
of Chapter 8). Mapping ι : C(K) → C(|K|) defined in this way is chain
mapping and injection in all dimensions. Hence we can regard C(K) a sub-
complex of C(|K|).

Relative case: ι map subcomplex C(L) into C(|L|), so induces chain map-
ping ι : C(K,L) → C(|K|, |L|).

Main result about simplicial homology is Theorem 15.1. It asserts that
ι : C(K,L) → C(|K|, |L|) induces isomorphisms in homology ι∗ : Hn(K,L) →
Hn(|K|, |L|) for all n ∈ Z.

We have proved the Theorem 15.1. only in case K is a finite simpli-
cial complex (although it is true for arbitrary pairs (K,L) of ∆-complex).
First using Five Lemma we show that it is enough to consider absolute case
ι : C(K) → C(|K|). Then, applying Five Lemma again, we reduce the proof
of this to the special case (K,L) = (Kn, Kn−1) and show that this would be
give us Theorem by induction on n.
The simplicial homology Hn(K

n, Kn−1) is extremely easy to calculate - it is
homology of the complex with only one non- trivial group and all bound-
ary operators trivial. It then follows that it would be enough to show that
Hm(|Kn|, |Kn−1|) = 0 when m ̸= n and that Hn(|Kn|, |Kn−1|) is a free
abelian group with basis

{fσ | σ ∈ Kn/ ∼}.

This is done combining excision, homotopy axiom and Proposition 14.11.
First we ”enlarge” pair (|Kn|, |Kn−1|) to the pair (|Kn|, U) where U is ob-
tained from |Kn| by taking away one point from the interior of every n-
simplex. This enlargement do not affect homology, which follows from Propo-
sition 13.12 (which itself is a corollary of homotopy property). In the next
step we apply excision by cutting away |Kn−1| from the pair (|Kn|, U). After
that we are left with the disjoint topological union of pairs that are all copies
of (Bn, Bn \ {0}). Using excision in another direction we put back boundary
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on every pair, obtaining disjoint union of copies of (∆n,Bd∆n). Since by
Proposition 14.11. (which itself used excision and homotopy property) we
know how homology groups of this pair work, this gives us what we wanted.

Applications of simplicial homology

The equivalence of singular and simplicial homologies is a powerful result
we have used many times. First of all it allows us to calculate singular
homology groups by calculating corresponding simplicial homology groups
instead. Later can sometimes be calculated directly from definition, which is
impossible for singular homology. Examples of such calculations can be found
in Examples 9.4.-9.7. When calculating simplicial homologies by definition
one often needs to ”switch basis”, a technique which is based on the iteration
of the following simple algebraic result (proved in Exercise 7.2.):
Suppose {a1, a2, . . . , an} is a basis of a free abelian group G. Then

{a1 ± a2, a2, . . . , an}

is also a basis of G.

Simplicial homology can also be used to calculate concrete generators for
singular homology groups. Examples of this can be seen in Examples 15.3.
and 15.5. Both turn out to be essential later in Chapter 18 on the degree of
mappings Sn → Sn. The results of example 15.5. is used to show that the
mapping z → zn defined on S1 has degree precisely n.
Example 15.3., on the other hand, provides us with a way to showing that
antipodal mapping h : Sn → Sn, h(x) = −x has degree (−1)n+1. This in-
formation was essential in Corollary 18.4. and its application - Hairy Ball
Theorem 18.5.
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