
Singular homology

Definition

Let X be a topological space. A singular n-simplex in X is, by definition,
a continuous mapping σ : ∆n → X, where ∆n is a standard n-simplex. For
every i = 0, . . . , n we define the i-th face dinσ of σ to be the singular (n− 1)-
simplex σ◦εin : ∆n−1 → X. Here εin : ∆n−1 → ∆n is the unique affine mapping
that maps vertices (en−1

0 , en−1
1 , . . . , en−1

n−1) to the vertices (en0 , . . . , ê
n
i , . . . , e

n
n),

in that order. Less formally diσ is a restriction of f to be ithe face of the
simplex ∆n.

For a topological space X and n ∈ Z we define Cn(X) to be the free
abelian group based on the set of all singular n-simplices inX. Thus elements
of Cn(X), called singular n-chains in X, are of the form

n∑
i=1

niσi,

where ni ∈ Z and σi are singular n-simplices in X.
Since they are no n-simplices in X for n < 0, Cn(X) = 0 for n < 0.

Boundary operator dn : Cn(X) → Cn−1(X) is defined as the unique ho-
momorphism such that for every singular n-simplex

dn(σ) =
n∑

i=0

(−1)idinσ.

Then dn−1 ◦ dn = 0 for all n ∈ Z (Theorem 9.1), so groups Cn(X) equipped
with boundary operators dn form a chain complex C(X), singular chain
complex of X.

The homology groups of complex C(X) are denoted Hn(X) and called
singular homology groups of the space X.

When X ̸= ∅ the singular complex C(X) has a natural augmentation
ε : C0(X) → Z defined by ε(f) = 1 for all singular 1-simplices of X. The
reduced groups of C(X) are denote H̃n(X) and called reduced homology
groups of X. As usual

H̃n(X) = Hn(X) if n ̸= 0,

1



H0(X) = H̃0(X)⊕ Z and

H̃0(X) = Ker ε∗.

When X = ∅ the complex C(X) is trivial in all dimensions and do not
have augmentation.

Relative case

Suppose A is a subspace of X. Then we say that (X,A) is a topological
pair. Let i : A → X be inclusion. By identifying any singular n-simplex
σ : ∆n → A in A with a singular n-simplex i ◦ σ : ∆n → X in X we em-
bed the complex C(A) into the complex C(X) as a chain subcomplex. The
quotient complex C(X)/C(A) is denoted C(X,A) and called the singular
chain complex of the pair (X,A). Homology groups of this complex are
denoted Hn(X,A) and called relative singular homology groups of the
pair (X,A).

The complex C(X,A) in general do not have any augmentation.

Since C(X) = C(X, ∅), we can always consider any space X a topological
pair (X, ∅). Because of that it is enough to consider relative case only.

Mappings induced by continuous mappings

Suppose f : X → Y is a continuous mapping. The induced homomorphism
f♯ : Cn(X) → Cn(Y ) is defined on basis elements σ : ∆n → X by f♯(σ) = f ◦σ
and then extended as a unique homomorphism, as usual, on the whole group
Cn(X). The collection of all mappings f♯ : Cn(X) → Cn(Y ) form a chain
mapping f♯ : C(X) → C(Y ). Hence there exist induced homomorphisms in
homology f∗ : Hn(X) → Hn(Y ).

Mapping f♯ commutes with natural augmentations complexes Cn(X) and
Cn(Y ) have. Hence, by the general theory f∗ restricts also to the mapping
f∗ : H̃n(X) → H̃n(Y ) between reduced groups.

Suppose f : (X,A) → (Y,B) is a continuous mapping between topological
pairs (X,A) and (Y,B). This means that f : X → Y is a continuous mapping
and f(A) ⊂ B. Regarding C(A) a subgroup of C(X) and C(B) a subgroup
of C(Y ), we see that f♯ maps C(A) to C(B). Standard application of fac-
torization theorem then gives us a chain mapping f♯ : C(X,A) → C(Y,B)
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in the relative case. Hence there exist induced homomorphisms in homology
f∗ : Hn(X,A) → Hn(Y,B). This general construction includes as a special
case the absolute case f∗ : Hn(X) → Hn(Y ) covered above.

Constructions ♯ and ”star” commute with compositions. To be precise
if f : (X,A) → (Y,B) and g : (Y,B) → (Z,C) are continuous mappings, we
have that

(g ◦ f)♯ = g♯ ◦ f♯,

(g ◦ f)∗ = g∗ ◦ f∗.

Similar statements hold in absolute or reduced case. Also mappings induced
by identity mapping id : (X,A) → (X,A) are identity mappings. The impor-
tant corollary of this is that mapping f∗ induced by a homeomorphism is an
isomorphism in every dimension.

One of the consequences of the homotopy axiom (see below) is that the
same is true for mappings which are merely homotopy equivalences.

Path components

The homology group Hn(X) of the space X is essentially a direct sum

⊕α∈AHn(Xα)

of the homology groups of its path-components. This is proved, in slightly
more general relative settings, in Corollary 12.3.
It follows that it is enough to know homology of path-connected spaces.

The zeroth homology group H0(X) is a free abelian group generated on
the set of all path components of X. In particular X ̸= ∅ is path-connected
if and only if H0(X) ∼= Z. Slightly more generally X has n components
(n natural number) if and only if H0(X) ∼= Zn (Corollary 12.5). This result
later proved to be essential in the course of our proof of Jordan-Brouwer’s
separation Theorem 17.5. - there we showed that a certain space has zeroth
homology group isomorphic to Z⊕Z, so we concluded that it has exactly two
path components (which is one of the conclusions of this celebrated result).

In terms of reduced groups path-connectedness of X is equivalent to
H̃0(X) = 0.
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In the course of the proof that H0(X) ∼= Z when X ̸= ∅ is path-connected
we have shown that as an isomorphism H0(X) → Z we can take the mapping
ε∗ : H0(X) → Z induced by the natural augmentation ε of C(X).

Long exact homology sequences for singular homology

Suppose (X,A) is a topological pair. Then there is a short exact sequence

0 // C(A)
i♯ // C(X)

j♯ // C(X,A) // 0

of chain complexes and chain mappings. Here i : A → X and j : X → (X,A)
are inclusions. Also, j♯ is nothing but projection p : C(X) → C(X)/C(A) to
the quotient complex.

By homological algebra there exists long exact homology sequence
of the pair (X,A)

. . . // Hn+1(X,A) ∆ // Hn(A)
i∗ // Hn(X)

j∗ // Hn(X,A) ∆ // Hn−1(A) // . . .

Since i♯ preserves augmentations of complexes C(A) and C(X), there also
exists long exact reduced homology sequence of the pair (X,A)

. . . // Hn+1(X,A) ∆ // H̃n(A)
i∗ // H̃n(X)

j∗ // Hn(X,A) ∆ // H̃n−1(A) // . . .

which is often must more convenient to use in applications and calculations.

Both regular and reduced long exact homology sequences of a topological
pair are natural with respect to continuous mappings of pairs. Precisely put
suppose f : (X,A) → (Y,B) is a continuous mapping of the topological pairs.
Then the diagram

. . . // Hn+1(X,A) ∆ //

f∗
��

Hn(A)
i∗ //

f |∗
��

Hn(X)
j∗ //

f∗
��

Hn(X,A) ∆ //

f∗
��

Hn−1(A) //

f |∗
��

. . .

. . . // Hn+1(Y,B) ∆ // Hn(B)
i∗ // Hn(Y )

j∗ // Hn(Y,B) ∆ // Hn−1(B) // . . .

is commutative. The similar statement is true for reduced sequence.

Finally, there is a generalization for topological triples (X,A,B), where
B is a subspace of A and A is a subspace of X. In this case there exists short
exact sequence

0 // C(A,B)
i♯ // C(X,B)

j♯ // C(X,A) // 0,
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where i : (A,B) → (X,B) and j : (X,B) → (X,A) are inclusions, so there is
the long exact homology sequence of the triple (X,A,B).

. . . // Hn+1(X,A) ∆′
// Hn(A,B)

i∗ // Hn(X,B)
j∗ // Hn(X,A) ∆′

// Hn−1(A,B) // . . .

We have applied this sequence in the course only once, in Proposition 14.11.
The existence of the long exact homology sequence of the triple and one
special relation of its boundary homomorphism with the boundary homo-
morphism from the long exact homology sequence of the pair (X,A) are
formulated in Lemma 11.12.

Homotopy property

Chapter 13 is considered with this topic. The main result is the Proposition
13.1:
Suppose that the mappings f, g : (X,A) → (Y,B) of pairs are homotopic as
mappings of pairs i.e. there exists a mapping
F : (X × I, A× I) → (Y,B) of pairs for which

F (x, 0) = f(x),

F (x, 1) = g(x)

for all x ∈ X. Then

f∗ = g∗ : Hn(X,A) → Hn(Y,B), n ∈ Z.

In the absolute case the same is true for reduced groups.

In the proof we first construct a chain homotopy P̄ (prism operator)
between f♯ and g♯. The claim then follows by homological algebra - chain
homotopic mappings induce the same mappings in homology.

Important consequence is Corollary 13.11., that asserts that homotopy
equivalences induce isomorphisms in homology, and, even more important is
its generalization Proposition 13.12, which says that any mapping of pairs
f : (X,A) → (Y,B) which is a homotopy equivalence as a mapping f : X →
Y and as a mapping f | : A → B induces isomorphisms in relative homol-
ogy i.e. f∗ : Hn(X,A) → Hn(Y,B) is an isomorphism n ∈ Z. The proof
(Exercise 10.4.) is a typical example of the application of Five Lemma
in algebraic topology. The result is also extremely important to us for
theoretical reasons. Namely if K is a (finite) ∆-complex, then inclusion

5



j : (|K|n, |Kn−1|) → (|K|n, U) satisfies Proposition 13.12 (but not Corollary
13.11), so induces isomorphisms in homology. We have used this fact as part
of the proof of the equivalence of singular and simplicial homologies (Theo-
rem 15.1.).

Another consequence of the homotopy property is that it allows us to
calculate homology groups of any contractible space X. Namely when X
is contractible, for example convex subset of Rn, then

Hn(X) = 0 for n > 0,

H0(X) ∼= Z,

H̃0(X) = 0.

Homology and coverings

Probably the most powerful property of singular homology is expressed in
Theorem 14.6.
Suppose U is a covering of the space X with the property that the collection

{intU | U ∈ U}

of topological interiors of all the elements of U (with respect to X) is also
a covering of X. Then the inclusion mapping i : CU(X) → C(X) induces
isomorphisms

i∗ : H
U
n (X) ∼= Hn(X)

in homology for every n ∈ Z. Here CU(X) is a subcomplex of C(X) generated
only by those singular n-simplices σ : ∆n → X of X with image σ(∆n) ⊂ U
for some U ∈ U .

The proof of this theorem is long and difficult. First of all the goal is to
show that i is a chain homotopy equivalence, since then the claim follows
easily by homological algebra. The real difficulty is the actual construction
of the homotopy inverse j : C(X) → CU(X) of i. The idea is simple though -
we take a generator of C(X) i.e. a singular n-simplex σ : ∆n → X and sub-
divide its domain ∆n into smaller simplices until they are so small that the
restriction of σ on all those pieces is an element of CU(X). The construction
of j is not enough - we also need to show that it is a homotopy inverse of
i, hence we need to define homotopies in both direction. The other direc-
tion we deal with simply by putting j to be identity on subcomplex CU(X)
(which is natural - if a singular simplex is already in CU(X) we do not need
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to subdivide its further). For the chain homotopy from i ◦ j to id we need to
do the real work.
First we define so-called subdivision operator S and the homotopy H from S
to id in the simpler settings where C(X) is substituted with a smaller com-
plex LC(D) generated by only affine singular simplices in a convex set D.
This allows us to define S and H ”geometrically” (technically by induction
though). After it is done we ”extend” S and H to the arbitrary settings
using clever trick (see page 214).

Excision

The first application of Theorem 14.6. is excision Theorem 14.1. Its exact
formulation is as following:
Suppose A ⊂ U ⊂ X, where X is a topological space. Suppose A ⊂ intU .
Then the inclusion mapping i : (X \ A,U \ A) → (X,U) of pairs induces
isomorphism

i∗ : Hn(X \ A,U \ A) → Hn(X,U)

in homology for all n ∈ Z.

A good and typical example of how excision is applied in practise and
gives us useful results is presented immediately after formulation, on page
205, where we apply excision to calculate the homology groups Hn(S

n) of
the sphere. Notice how we combine different properties and techniques as-
sociated with singular homology - long exact homology sequence, homotopy
axioms and ,of course, excision. Notice also that reduced groups are used
instead of standard groups - that makes calculations easy and symmetrical.
Applying all these tools we manage to show that H̃n(S

n) ∼= H̃n−1(S
n−1).

This allows us to slide down by induction to case S0, which can be easily
calculated directly by definition. Let’s how we obtain homology groups of all
spheres:

Hm(S
n) =


Z, if m = n ̸= 0 or n ̸= 0,m = 0,

Z⊕ Z, if m = n = 0,

0, otherwise

.

The reduced groups are

H̃m(S
n) =

{
Z, if m = n

0, if m ̸= n
.

7



This implies immediately the following results (Corollaries 14.3., 14,4,
14.5.):

• A sphere Sn is not contractible for any n ∈ N.

• If n ̸= m spheres Sn and Sm don’t have the same homotopy type. In
particular they are not homeomorphic.

• Euclidean spaces Rn and Rm are not homeomorphic if n ̸= m.

• Sn−1 is not a retract of B
n
.

Since Brouwer’s fixed point theorem 17.1. essentially only relies on the
last mentioned fact, it could also be mentioned here as an immediate corol-
lary, although we prove it much later, in Chapter 17.

The proof of excision property from Theorem 14.6. is a sequence of al-
gebraic manipulations, involving, among other things, an application of the
second isomorphism theorem for abelian groups and an application of Five
Lemma (pages 208-209).

Chapter 14 concludes with another application of excision theorem -
Proposition 14.11 that tells us that the homology class of id : ∆n → ∆n

is a basis element of Hn(∆n,Bd∆n) ∼= Z. This result is one of the pieces we
need in the next chapter, in order to prove the equivalence of singular and
simplicial homologies.

Mayer-Vietoris

Another application of Theorem 14.6. is a Mayer-Vietoris sequence

. . . // Hn+1(X) ∆ // Hn(U ∩ V )
((i1)∗,−(i2)∗)// Hn(U)⊕Hn(V )

(l1)∗+(l2)∗// Hn(X) ∆ // . . . ,

that holds for proper triads (X;U, V ). This means that U, V are both
subspaces of X (do not confuse this with topological triple, here we do not
assume that V ⊂ U !) such that i : C(U) + C(V ) → C(X) induces isomor-
phisms in homology.

In this course we mention two types of proper triads (and all applications
of Mayer-Vietoris are done with either one of this types):

• intU∪intV = X. This case is a straightforward application of Theorem
14.6.
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• (X;U, V ) = (|K|; |L1|, |L2|) where L1, L2 are subcomplexes of ∆-complex
K and L1 ∪ L2 = K. This case is dealt with in Proposition 16.12.

When in proper triad (X;U, V ) the intersection U ∩ V is not empty we
can also construct reduced Mayer-Vietoris sequence

. . . // H̃n+1(X) // H̃n(U ∩ V ) // H̃n(U)⊕ H̃n(V ) // H̃n(X) // . . . ,

which is usually more convenient to apply then the non-reduced version.
Examples 16.7 and 16.9 actually demonstrate this quite well - the messy
technical details in example 16.7., where we used ordinary groups, disappear
in example 16.9., where reduced Mayer-Vietoris is used.

In fact in the chapter 17, which is considered with important topological
applications, such as Jordan-Brouwer Separation theorem and Invariance of
Domain Theorem, the main theoretical difficulties are dealt with precisely
by reduced Mayer-Vietoris sequence (see Lemma 17.3 an Lemma 17.4).

The degree of a mapping

Suppose f : Sn → Sn, n ≥ 1. Since Hn(S
n) ∼= Z the induced mapping

f∗ : S
n → Sn ”looks like” a homomorphism f∗ : Z → Z, hence is of the form

x 7→ nx for some fixed unique n ∈ Z. This n is defined to be the degree of
f , notated deg f . More precise definition - n is such that f∗(α) = nα, where
α is a generator of Hn(S

n).

Properties of degree:

• deg id = 1.

• deg(g ◦ f) = deg g · deg f .

• If f ≃ g are homotopic, then deg f∗ = deg g∗.

• If f is not surjective, then deg f∗ = 0.

• If f is a homotopy equivalence, then deg f∗ = ±1.

• Suppose h : Sn → Sn is antipodal mapping h(x) = −x. Then deg h =
(−1)n+1
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• For every n ≥ 1 and every m ∈ Z there exists f : Sn → Sn s.t. deg f =
m. This is proved by induction on n. For n = 1 we have shown that
deg pm = m, where pm(z) = zm, in complex number notation. The
inductive step is done using ”suspension”-construction.

Applications - Corollary 18.4., Hairy Ball Theorem 18.5., Corollary 18.8.,
Fundamental Theorem of Algebra 18.9.

Compact carriers

Another important property of singular homology, which is mentioned only
briefly, but should not be overlooked is ”compact carrier property”. Intu-
itively it says that everything that happens in singular homology happens
already in some compact subset. Precise formal formulation can be found in
Lemma 17.2. Compact carries property is used in the proof of the technical
result Lemma 17.3. which is essential both in the proof of Jordan-Brouwer
Separation Theorem and in the proof of Invariance of Domain.
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