
Foreword

Although ”mathematics” in general is one of the oldest form of scientific
reasoning human race has been exercising, from the formal point of view
modern mathematics based on the abstract set-theoretical approach is quite
a modern science. It has started to take shape in 19th century, when likes of
Cauchy, Riemann, Cantor, to name only a few, started to develop foundations
for mathematics.

Partly this development was motivated by the fact that at that point re-
searchers of mathematics started to stumble upon important mathematical
questions, which seemed to be very difficult, or even impossible, to answer
using traditional ”intuitive” approach, that seemed to suffice before.

As an example, consider Euclidean vector spaces Rn. One cannot under-
estimate the importance of the set of real numbers R, and, as a consequence,
the importance of finite-dimensional Euclidean spaces, in mathematics and
its real-life applications. We stumble upon real numbers and vectors (finite
strings of real numbers) continuously - along with more basic concept of nat-
ural number, real numbers seem to be one of the fundamental concepts of
mathematical science. Hence it is extremely important to understand Eu-
clidean spaces and their relationships as well as we can. It seems somehow
”intuitively clear”, that different spaces R

n and R
m, m 6= n should not be

homeomorphic as topological spaces, but it took many years of research and
the development of advanced mathematical tools and techniques to actually
prove this result, known as ” The invariance of domain ” principle, precisely.

Perhaps one of the reason this claim seems obvious is our intuition re-
garding the notion of ” dimension ”. For example, it seems clear that the
plane R2 has ”more space” as the real line R and the 3-dimensional ” space ”
R

3 has even more ”filling” than the plane, so it should be impossible to even
fill bigger dimensional space with smaller dimensional, let alone for them
to be geometrically ”similar” (which is what homeomorphic means). How-
ever, this stronger claim, which is supported by our intuition, is not true at
all. Around 20 years before the invariance of domain was actually proven by
L.E.J. Brouwer, italian mathematician Giuseppe Peano managed to constuct
a surjective continuous mapping f : I → I2 (also known as ” the space-filling
curve ”), thus showing that you can actually ” fill ” bigger dimensional object
with smaller dimensional. Here I = [0, 1] is a closed interval. Before that
the inventor of the set theory (which today is recognised as the theory that
provides foundations for the formal mathematics) Georg Cantor has shown
that there is a bijection mapping F : R → R

2, which means that the real line
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has ”the same amount of points ” as the plain. Such a bijection is, luckily,
could never be continuous, but nevertheless all these result are considered
”counter-intuitive” from the naive point of view, so before the invariance of
domain was actually proved, one could even suspected if it was actually false.

Another interesting aspect of the invariance of domain is that it is a
very elementary, basic question. It is very easy to formulate and a freshman
studying mathematics would easily understand the problem completely. So
it seems like the proof of it should also be not very difficult, but surprisingly
it turned out that it is. Many false or incomplete attempts to solve this prob-
lem and similar problems were made by quite famous mathematicians before
the flawless proof finally emerged. One of the reasons for that is the fact that
this claim is actually very general - it asserts that among the set of all the
continuous mappings f : Rn → R

m one cannot find a single homeomorphism.
It is quite easy to prove the claim that one cannot find a homeomorphism
among differentiable mapping, or otherwise mappings having ”regular geo-
metrical behaviour”. Unfortunately this is nearly not enough, because there
are plenty of continuous mappings f : Rn → R

m that are not ”regular” and,
as Piano’s space-filling curve has shown, even a plenty of surjective contin-
uous mappings f : Rn → R

m. It turns out extremely difficult to classify all
these mappings and, as mentioned before, most of them turn out not to have
regular behaviour - meaning to be for instance differentiable or otherwise
possible to ”visualise” somehow. For instance it is possible to show that
”most” continuous mappings f : Rn → R

m are not differentiable anywhere.
So, how can one show precisely that there could not be some weird patho-
logically looking homeomorphism, say, R4 → R

7? The fact that geometrical
intuition cannot be used directly in spaces with dimension ≥ 4 makes the
claim feel even less obvious. It is easy for humans to see distinction between
R

2 and R
3, but how do we really know that R

25 should be different from
R

26? Is there really such a big difference and how do we find it? Where do
we even search for it?

Pretty soon the mathematicians that had tried to solve such difficult
topological problems, realized that the right strategy lies in the construction
of invariants i.e. ”objects” that are associated to spaces and mappings of
spaces and somehow reflect their properties. If these invariants are somehow
” simpler ” than the studied space i.e. reflect only some of its properties,
they are easier to handle, so the difficult problem might turn into a simpler
problem, concerning these invariants, which is possible to solve. Today most
of such invariants are algebraic in nature, that is why the field in now known
as algebraic topology. In the beginning, for instance in Brouwer’s days,
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many invariants were merely discrete objects, for example integer numbers,
that is why then the approach was known as the combinatorial topology.

So, in a nutshell, the idea of algebraic topology is as follows. In topology
we study geometrical objects which are formalized to be so-called topolog-
ical spaces and we also study mappings between them, which preserve the
topological structure. Such mappings are what is known to be continuous
mappings. To every topological space X , which we wish to study, we attach a
corresponding algebraic object, let us denote it by F (X). It can be a group,
a ring, a field, a vector space, or anything else from the world of algebra.
The functional notation F (X) serve to remind us that the invariant F (X)
depends on the space.

But these are not enough. As the mappings between spaces are equally
important1, we also attach an algebraic mapping F (f) : F (X) → F (Y ) to
any continuous mapping f : X → Y (or, more generally, to any continuous
mapping which we consider important enough to study). That is, for exam-
ple, if all F (X) are groups, then F (f) would be a homomorphism of groups.
If F (X)’s are vector spaces, F (f) would be linear mappings, and so on.
We also require the following natural properties (known as the functorial

properties)2.

(1) If f : X → Y and g : Y → Z are continuous mapping between spaces,
we have that

F (g ◦ f) = F (g) ◦ F (f).

That is, our invariants commute with the composition of mappings.

(2) Consider the identity mapping id : X → X . Then F (id) : F (X) →
F (X) is also an identity mapping.

How would this properties help us? Suppose we have two spaces X and
Y and we wish to study if they are homeomorphic or not. In the special case
X = R

n, Y = R
m this is precisely invariance of domain problem. Suppose

they are, and let f : X → Y be a homeomorphism. By definition, this means
that there exists continuous mapping g : Y → X (inverse of f) such that
g ◦ f = idX and f ◦ g = idY . If we apply invariant F to these equations, we
obtain (using functorial properties (1) ad (2) above) similar equations

F (g) ◦ F (f) = F (g ◦ f) = F (idX) = idF (X),

1From the point of view of categorically wired mathematician even more important.
2To be precise these are what are known to be covariant functorial properties. There

are also many contravariant invariants in algebraic topology, which means that instead of
F (f) : F (X) → F (Y ) we have a mapping F (f) : F (Y ) → F (X) in another direction, but
let us not concern ourselves with such technical details at this point.
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F (f) ◦ F (g) = F (f ◦ g) = F (idY ) = idF (Y ) .

In particular this would imply that F (f) : F (X) → F (Y ) is an isomorphism
between algebraic objects F (X) and F (Y ). Now, turn this upside down.
Suppose we do not know if X and Y are homeomorphic, but we are able
to construct an algebraic invariant F such that F (X) and F (Y ) are not

isomorphic. Then, by above reasoning, we see immediately that X and Y

are not homeomorphic, so our problem is solved.
Hence algebraic topology provides us with tools which enables us to translate
topological problems into algebraic problems.

Of course this sounds simple only in theory. In practise the development
of such tools is a hard work. First of all, this translation process should be
able to translate our difficult problem (which we cannot solve directly) into
a much simpler algebraic problem - which we can solve. Otherwise, our tool
is useless. So it means that invariant F must simplify spaces and maps it is
applied to, hence it must lose a lot of information, but still preserve enough
of it, so that the problems could be solved. For instance, if using invari-
ant in a manner explained in a previous paragraph, we obtain isomorphic
algebraic objects F (X) and F (Y ), this does not tell us anything about our
original problem, since in theory non-homeomorphic objects could also pro-
duce isomorphic invariants. Actually, since a useful invariant must lose some
information, such situations are actually even expected. So, this also implies
that one invariant could not suffice. But if we are able to construct many
different invariants, then there is a hope that whenever we have a topological
problem, one of the invariants available would ”lock in” on our problem, just
like a suitable size wrench key would lock on a pipe we wish to turn around.
And the more different invariants we have, the more problems we can solve
using them.

Hence a much accurate explanation of what algebraic topology does and
what is for is the following. Algebraic topology is concerned with the con-
struction of different useful algebraic invariants for the purpose of study
of topological problems. The main objective of this introductory course is
to provide an important and widely used example of such a construction.
Precisely put, we shall go through the classical singular homology theory,
which give us a useful family of algebraic invariants, called singular homol-
ogy groups. We will also show how singular homology theory is applied in
order to prove the classical topological problems such as the invariance of
domain. Other similar problems we will investigate include the following:

(1) Invariance of domain, general version - if U and V are homeomorphic
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subsets of Rn and U is open, also V is open.

(2) Brouwer-Jordan separation theorem - if S ⊂ R
n is homeomorphic to

the sphere Sn−1, then R
n \ S has exactly two path components and S

is a boundary of both.

(3) Brouwer fixed point theorem - any continuous mapping f : B
n

→ B
n

has a fixed point i.e. f(x) = x for some x ∈ B
n

.

(4) The sphere Sn is not contractible to a point.

(5) The sphere Sn is not a retract of the disk B
n+1

.

(6) Hairy Ball Theorem - if n is even, the sphere Sn has no non-zero tangent
vector field.

The singular homology theory itself is a relatively modern construction, it
was invented in 1940’s. All the claims listed above very already proved at that
point, using earlier versions of the similar ideas, such as Betti’s numbers and
various simplicial methods. The latter has not only historical value - simpli-
cial methods are still very usable and important in the modern mathematics,
both in theory as well as in the concrete calculations and applications. The
singular homology theory itself is actually based on the usage of simplices.
Simplices have also given rise to a number of abstract generalizations, such as
simplicial objects and related abstract combinatorical notions. That is why
we start the course with the brief journey to the more geometrical and less
abstract world of simplices and simplicial methods. This part of the course
does not contain any algebra and is intended to give a reader the chance
to see some concrete and more down-to-earth mathematics related to our
main subjects, before diving into abstract algebra of homology theory. On
the other hand geometric notions of this introduction will make it easier to
understand and motivate the more abstract homological algebra which con-
stitutes the main content of the course.

After some necessary technical algebraic tools, such as the theory of chain
complexes, are developed, we define and study the properties of the singular
homology theory. After this machinery is complete, we apply it to topologi-
cal problems such as the ones listed above. The end of that part is dedicated
to the study of a very important notion, which is the degree of a mapping
f : Sn → Sn. Historically this notion and simplicial approximation were pre-
cisely the tools Brouwer used to prove his fixed point theorem and invariance
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of domain theorem in the beginning of the 20th century. We define the con-
cept of the degree using the singular homology theory. Of course Brouwer
did not know anything about homology groups, so his definition was more
complicated and geometrical in nature. However, it was one of the first ex-
amples of the combinatorial invariants defined for topological objects.

The last part of the course will be a journey into the world of CW-
complexes and cellular homology. We will also go through the classification
of compact 2-manifolds. The special case of this classification theorem gives
a two-dimensional version of the famous ”Poincare conjecture”. Roughly
speaking, ”Poincare conjecture” says that any compact 3-mainfold which is
homotopy equivalent to the sphere S3, is actually homeomorphic to. This
problem has remained unsolved for approximately 100 years, until it was re-
cently proved by Russian mathematician G. Perelman. Of course, we won’t
be going through the proof of the ”Poincare conjecture”, but through much
more modest and simple 2-dimensional version of it, which is a classical result.

It goes without saying that in this course we only have opportunity to
scratch the very surface of the subject known as ” algebraic topology ”, that
is why it is called ”introduction to the algebraic topology”. Perhaps the
more precise name would be ” introduction to homological methods”, since
it is mainly homology we introduce ourselves to. Another big branches of
algebraic topology include cohomology theory, homotopy theory, K-theory,
theory of obstructions and many others. Even the homology theory itself
has much more into it then what we will see in this course. The interested
reader is advised to continue the studies of algebraic topology by consulting
the books that are listed below. These books are also recommended as the
additional reading throughout the course.

References

[1] Eilenberg, S., Steenrod, N.: Foundations of Algebraic Topology - Prince-
ton University Press, 1952.

[2] Hatcher, A.: Algebraic Topology -
http://www.math.cornell.edu/ hatcher/AT/AT.pdf, 2002.

[3] Maunder, C.R.F: Algebraic topology - Van Nostrand Reinhold Company,
1970.

[4] Spanier, E.H: Algebraic Topology - McGraw-Hill, 1966.

6


