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Exam 2 FR 13.12.2013 Solutions

1. Suppose

(0.1) 0 // C ′
f

// C
g

// C // 0

is a short exact sequence of chain complexes and chain mappings.
a) Explain how the boundary operator ∆: Hn(C) → Hn−1(C

′) induced by (0.1) is
constructed and show that it is well-defined.
b) Prove that the sequence

Hn(C
′)

f∗
// Hn(C)

g∗
// Hn(C)

is exact at Hn(C).

Solution: We denote boundary operators of C ′ by d′, boundary operators of C
by d and boundary operators of C by d.

a) The algorithm for the definition of ∆ is the following. Suppose z ∈ Hn(C) is a
homology class of a cycle z ∈ Zn(C). First, using the fact that gn : Cn → Cn is a
surjection (this follows by exactness of 0.1), we pick y ∈ Cn such that gn(y) = z.
Since g is a chain mapping we then have that

gn−1dn(y) = dn(gn(y)) = dn(z) = 0,

since z is a cycle in C. Hence dn(y) ∈ Ker gn = Im fn−1 (the last equation is true
by exactness of 0.1), so there exists x ∈ C ′

n−1 such that fn−1(x) = dn(y). Moreover,
since fn−1 is injective, such an element x is unique. Next we show that such an
element x is always a cycle element in C ′

n. Using the fact that f is a chain mapping,
we obtain

fn−2d
′

n−1(x) = dn−1fn−1(x) = dn−1dn(y) = 0,

since C is a chain complex. Since fn−2 is injective (by exactness of 0.1), d′n−1(x) = 0,
so x ∈ Zn−1(C

′). In particular the homology class x ∈ Hn−1(C
′) exists.

Next step is to show that the rule that assigns to z ∈ Zn(C) an element x ∈
Hn−1(C

′) obtained by the algorithm explained above is a well-defined function
δ : Zn(C) → x ∈ Hn−1(C

′). So far we have shown that for every z ∈ Zn(C) an
element x constructed by the procedure above is always a cycle, so the homology
class x ∈ Hn−1(C

′) exists. However the procedure involved the choice of y ∈ Cn,
which is, in general, not unique (unless g is also injective, in which case C ′ must be
zero complex). Hence, we need to show that x does not depend on the choice of y
above. Suppose y′ ∈ Cn is another choice i.e. gn(y

′) = z. Then

gn(y − y′) = gn(y)− gn(y
′) = z − z = 0,
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so, by exactness, there exists u ∈ C ′

n such that y − y′ = fn(u). Suppose x′ ∈ C ′

n−1

is such that fn−1(x
′) = dn(y

′). Then, choosing y′, the definition of δ would lead to
x′. We have that

fn−1(d
′

n(u)) = dn(fn(u)) = dn(y−y′) = dn(y)−dn(y
′) = fn−1(x)−fn−1(x

′) = fn−1(x−x′).

Since fn−1 is an injection, this implies that x − x′ = d′n(u). This means that in
homology group Hn−1(C

′) the classes x and x′ are the same class. This concludes
the proof of the fact that δ : Zn(C) → x ∈ Hn−1(C

′) is a well-defined mapping.

However, this is yet not the mapping we need. We have to show that δ ”factors
through” Bn(C) i.e. that

δ(z) = δ(z′)

if z = z′ in Hn(C). This can be done in two ways. Classical way is to show that
(i) δ is a homomorphism of abelian groups,
(ii) Bn(C) ⊂ Ker δ.
Then the standard application of Factorization Theorem of abelian groups (Propo-
sition 7.8.) gives us what we need. Since in general theory development we need
the fact that both δ and the induced mapping ∆ are homomorphisms anyway, this
is how this is done usually.
But since we are not asked to proof that ∆ is a homomorphism, only that is well-
defined, another, perhaps faster way is to show directly that

δ(z) = δ(z′)

whenever z = z′ in Hn(C). We’ll show both ways.

Classical Way: We start by showing that δ is a homomorphism of abelian groups
i.e. that

δ(z + z′) = δ(z) + δ(z′)

for all z, z′ ∈ Zn(C). We choose y, y′ ∈ Cn such that gn(y) = z and gn(y
′) =

z′. Then, by definition, δ(z) = x and δ(z) = x′, where x, x′ ∈ Zn−1(C
′) are

chosen so that fn−1(x) = dn(y) and fn−1(x
′) = dn(y

′). Since fn−1, dn and gn are
homomorphisms we have that

gn(y + y′) = z + z′,

fn−1(x+ x′) = dn(y + y′).

Hence x+ x′ qualifies as an element of Zn−1(C
′) such that

δ(z + z′) = x+ x′ = x+ x′ = δ(z) + δ(z′).

This proves that δ is a homomorphism of groups.
Next we show that Bn(C) ⊂ Ker δ. Suppose z = dn+1(w) for some w ∈ Cn+1. Since
gn+1 is a surjection there exists v ∈ Cn+1 such that gn+1(v) = w. Then, since g is a
chain mapping, we have that

gn(dn+1(v)) = dn(g(v)) = dn(w) = z.
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Thus we can choose y = dn+1v to be the element of Cn with the property gn(y) = x.
Now dn(y) = dndn+1v = 0, so δ(x) = 0, by constuction.

By Factorization theorem of abelian groups (Proposition 7.8.) there exists unique
mapping ∆: Hn(C) → Hn−1(C

′) such that ∆(z) = δ(z) for all z ∈ Zn(C).

Direct way: We need to show that

δ(z) = δ(z′)

whenever z = z′ in Hn(C). If z = z′, then there exists w ∈ Cn+1 such that
w = z − z′. Since gn+1 is a surjection there exists v ∈ Cn+1 such that gn+1(v) = w.
Then, since g is a chain mapping, we have that

gn(dn+1(v)) = dn(g(v)) = dn(w) = z − z′.

Choose y ∈ Cn such that gn(y) = z. Then for y′ = y + dn+1(v) we have that
gn(y

′) = z′. Let x ∈ C ′

n−1 be such that

fn−1(x) = dn(y).

Since dn(y
′) = dn(y) + dndn+1(v) = dn(y), we also have that fn−1(x) = dn(y

′).
Hence

δ(z) = x = δ(z′)

and we are done. Indeed, it also seems like this proof is faster.

b) We need to show that Im f∗ = Ker g∗. One direction is easy. Since the sequence
(0.1) is exact, we have that Im f = Ker g, so in particular Im f ⊂ Ker g, which is
the same thing as g ◦ f = 0. Applying ”star”-operator and its properties (Lemma
10.3.) (you can certainly assume those in exam situation) we get

g∗ ◦ f∗ = (g ◦ f)∗ = 0∗ = 0,

so Im f∗ ⊂ Ker g∗. For another direction suppose y ∈ Hn(C) is such that g∗(y) = 0.
Here y ∈ Zn(C). Assumption means that gn(y) = dn+1(w) for some w ∈ Cn+1.
Let v ∈ Cn+1 be such that gn+1(v) = w. Such an element exists, since gn+1 is a
surjection. Since g is a chain mapping we have that

gn(dn+1v) = dn+1(gn+1(v)) = dn+1(w) = gn(y).

Hence y − dn+1v ∈ Ker g = Im f , by exactness. Consequently, there exists x ∈ C ′

n

such that
y − dn+1v = fn(x).

Since fn−1 is an injection, it follows easily that x is a cycle. Indeed

fn−1(d
′

n(x)) = dnfn(x) = dn(y − dn+1v) = 0,
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so d′n(x) = 0 by injectivity of fn−1.

Thus there exists an equivalence class x ∈ Hn(C
′) and

f∗(x) = f(x) = y − dn+1v = y,

since the boundary element dn+1v becomes zero in homology.
We have shown that Ker g∗ ⊂ Im f∗. This concludes the proof of the exactness at
Hn(C).

Grading :
a) 0, 5 points - for explaining the sheer algorithm that defines ∆, without proofs
that is it is well defined,
1, 5 points - for showing that δ is well-defined.
1, 5 points - for showing that δ quotients through boundaries, hence produces well-
defined ∆.
b) 1 point - for the proof of Im f∗ ⊂ Ker g∗,
1, 5-points - for the proof of Ker g∗ ⊂ Im f∗.

2. a) Prove that H̃m(S
n) ∼= H̃m−1(S

n−1) for all n ≥ 1 and all m ∈ Z on the follow-
ing conditions - you are allowed to use all properties of singular homology such as
excision, homotopy axiom, long exact (reduced?) homology sequence of the pair,
except you are not allowed to use Mayer-Vietoris sequence.
b) Now prove the claim of a) by using Mayer-Vietoris sequence (applying it in any
situation we know it can be applied).

Solution: a) One way to do this is how we did it on pages 205-206 of the lecture
material. First we take A ⊂ U ⊂ Sn such that
(i) A ⊂ intU ,
(ii) U is contractible,
(iii) The pair (Sn\A,U \A) has the same homotopy type as the pair (B

n
, B

n
\{0}).

In the lecture notes we choose

A = {x = (x1, . . . , xn+1) ∈ Sn | xn+1 < 0},

U = Sn \ {en+1}.

but, for example, any choice of the type

A = {x = (x1, . . . , xn+1) ∈ Sn | xn+1 < t1},

U = {x = (x1, . . . , xn+1) ∈ Sn | xn+1 < t2},

where −1 < t1 < t2 would do (and there also other possibilities). It is enough is
that the properties (i)-(iii) above hold.
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Suppose properties (i)-(iii) are true for A and U . From the long exact reduced
homology sequence

H̃m(U) = 0 // H̃m(S
n)

j∗
// Hm(S

n, U) // H̃m−1(U) = 0

we see that the homomorphism j∗ : H̃m(S
n) ∼= Hm(S

n, U) is an isomorphism, by
exactness. Here H̃m(U) = 0, because U is assumed contractible. This is a simple
consequence (Corollary 13.17) of homotopy axiom (Proposition 13.1), which can be
assumed known. Hence

H̃m(S
n) ∼= Hm(S

n, U),

for all m ∈ Z, n ≥ 1. Next we use excision (Theorem 14.1.) to excise the set A
from the pair (Sn, U). Since the property (i) holds, by excision property we have
that

Hm(S
n, U) ∼= Hm(S

n \ A,U \ A).

By property (iii) and homotopy axiom (Proposition 13.1) we have that

Hm(S
n \ A,U \ A) ∼= Hm(B

n
, Sn−1).

For example for the sets A and U chose above (and in lecture material) we have
that the set Sn \ A is a closed upper hemisphere

{x ∈ Sn|xn+1 ≥ 0}

of the sphere Sn, which is homeomorphic to the closed ball B
n
, this fact was proved

in the course and used a lot, so one can assume it known. Moreover, under this
homeomorphism the subset U \A corresponds to the punctured ball B

n
\{0}. Hence

Hm(S
n \ A,U \ A) ∼= Hm(B

n
, B

n
\ {0}).

For this choice the pairs (Sn \A,U \A) and (B
n
, B

n
\{0}) are even homeomorphic,

but it would be enough that they have the same homotopy type, by homotopy
axiom.
Now, the space B

n
is contractible, so its reduced homology groups are trivial. The

part of the long exact reduced homology sequence of the pair (B
n
, B

n
\ {0}) is the

sequence

H̃m(B
n
) = 0 // Hm(B

n
, B

n
\ {0}) ∆

// H̃m−1(B
n
\ {0}) // H̃m−1(B

n
) = 0.

By exactness ∆ is an isomorphism, hence

Hm(B
n
, B

n
\ {0}) ∼= H̃m−1(B

n
\ {0})

for all m ∈ Z.

Finally we use homotopy axiom. It is well-known (i.e. can be assumed known) that
B

n
\ {0} has the same homotopy type as the sphere Sn−1. Hence

H̃m−1(B
n
\ {0}) ∼= H̃m−1(S

n−1).
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Putting all the isomorphisms together we have proved that for all m ∈ Z and all
n ≥ 1 the claim

H̃m(S
n) ∼= H̃m−1(S

n−1)

holds.

Remarks: 1) Of course this is not the only way to do the claim right. For example
in Exercise 11.4. we have proved the following claim using excision and homotopy
axiom, but not Mayer-Vietoris:
The inclusions of pairs (B+, S

n−1) → (Sn, B−) and (B−, S
n−1) → (Sn, B+) induce

isomorphisms in homology for all dimensions. Here

B+ = {x ∈ Sn | xn+1 ≥ 0}

and
B− = {x ∈ Sn | xn+1 ≤ 0}.

Since both B− and B+ are contractible (being homeomorphic to B
n
), using long

exact reduced homology sequences we obtain

H̃m(S
n) ∼= Hm(S

n, B−) ∼= Hm((B+, S
n−1) ∼= H̃m−1(S

n−1).

For the details see the official Solutions of Exercise 11.4.

2) Since the claim is for reduced groups, it is wise to use reduced long exact se-
quence, not ordinary one. In fact, it is almost always wise to use reduced long exact
sequence. With ordinary long exact sequence we have to deal with exceptional cases
separately and the calculations become long, difficult and tedious.

b) Using Mayer-Vietoris it is enough to come up with the proper triad (Sn;U, V )
such that
(i) U and V are both contractible,
(ii) U ∩ V has the homotopy type of Sn−1.

Then we have reduced Mayer-Vietoris sequence

. . . // H̃m(U)⊕ H̃m(V ) // H̃m(S
n)

∆
// H̃m−1(U ∩ V ) // H̃m−1(U)⊕ H̃m−1(V ) // . . . ,

in which H̃m(U)⊕ H̃m(V ) = 0 for all m ∈ Z and H̃m−1(U ∩V ) = H̃m−1(S
n−1). The

claim then follows by exactness. The only thing that is missing from this extremely
simple solution is an example of the proper triad (Sn;U, V ) that satisfies (i) and
(ii). One possibility is to take

U = Sn \ {en+1},

V = Sn \ {−en+1}
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Then intU ∪ int V = Sn, so the triad is proper by Lemma 16.6.
Even simpler alternative is to use ∆-complex-approach. Indeed by Proposition 16.12
if K is a ∆-complex and L1 and L2 are subcomplexes of K such that K = L1 ∪L2,
then (|K|; |L1|, |L2|) is a proper triad. There exist triangulation K of Sn such that
(|K|; |L1|, |L2|), where L1 and L2 are subcomplexes of K such that K = L1 ∪ L2,
is homeomorphic to (Sn;U, V ). For instance it can be achieved simply by taking
two ordered n-simplices σ1 and σ2 and identify all their corresponding faces. Then
|L|1∩|L2| is even homeomorphic to Sn−1. This is the way it is done in the Example
16.13.

It is also possible to use ordinary Mayer-Vietoris instead of reduced, but, as usual,
it leads to much more complicated calculations. This way is illustrated in Example
16.7.

Grading:

a) 3 points, b) 3 points.

3. Suppose K is a 2-dimensional ∆-complex represented by the schematic picture
below and let L be the subcomplex consisting of the 1-simplices a and b and their
vertices.

U

V

a

a

bb c

a) Calculate simplicial homology groups Hn(K), Hn(L) and Hn(K,L) for all n ∈ Z,
by definition.
b) Investigate how the mappings ∆2, i∗ and j∗ from the following portion of the
long exact homology sequence

. . . // H2(K,L)
∆2

// H1(L)
i∗

// H1(K)
j∗

// H1(K,L) // . . .

of the pair (K,L) are defined (in terms of elements of groups).

Solution: Notice that the polyhedron of K is the projective plane RP 2. We start
by ordering the complex, i.e. putting the order on the vertices of both triangles.
Here is one way:
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U

V

a

a

bb

v0

u0v1/u1

v2/u2

c

The complexK has two geometrical 2-simplices, U = [u0,u1,u2] and V = [v0,v1,v2],
three 1-dimensional simplices a, b, c. This forces the following identifications on
vertices:

v0 = u0 = x,v1 = v2 = u1 = u2 = y.

Hence there are two 0-simplices.

The complex L, thus, has two 1-simplices a and b and two 0-simplices x, y.

a) Homology of K.

Since K has no simplices in dimensions other than 0, 1, 2, we automatically have
that Hn(K) = 0 for k 6= 0, 1, 2. Now C2(K) = Z[U ]⊕ Z[V ] and

d2(nU +mV ) = n(c− b+ a) +m(c− a+ b) = (n−m)a+ (m− n)b+ (n+m)c = 0

if and only if n+m = n−m = 0 i.e. if and only if n = m = 0. Hence d2 is injective,
so its kernel is trivial, and consequently the group H2(K) is trivial.
The very same calculation shows that B1(K) = Im d2 is a group generated by the
elements c− b+ a and c− a + b, which form the free basis of B1(K).
Next we calculate d1. Since C1(K) = Z[a]⊕ Z[b]⊕ Z[c], we have that

d1(na +mb+ lc) = n(y − x) +m(y − x) = (n+m)(y − x) = 0

if and only if n = −m. Thus

Z1(K) = Ker d1 = {n(a− b) + lc|n, l ∈ Z},

so Z1(K) is a free group generated by the elements a−b and c. Obviously {a−b, c}
is a free set, hence is a basis of Z1(K).

In what follows we need the standard ”switching of basis ”-trick, which is bases on
the following fact (proved in Exercise 7.2.). Suppose {α1, α2, . . . , αn} is a basis of
a free abelian group G. Then also {α1 ± α2, α2, . . . , αn} is a basis of the group G.
This fact can certainly be assumed known.

We apply this fact first to the basis {c − b + a, c − a + b} of B1(K) to obtain the
new basis

{2c = (c− b+ a) + (c− a+ b), c− (a− b)}
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for B1(K). On the other hand, the same fact applied to the basis {c, a − b} of
Z1(K) gives the basis {c, c− (a− b)} for Z1(K). Hence

H1(K) = (Z[c]⊕ Z[c− (a− b)])/(Z[2c]⊕ Z[c− (a− b)] ∼= Z[c]/Z[2c] ∼= Z/2Z = Z2.

Precisely put H1(K) = {0, [c]}.

For 0-homology we have that H0(K) = (Z[x]⊕ Z[y])/B0(K). Since

d1(na +mb+ lc) = (n +m)(y − x),

we see that B0(K) = Z[y − x]. Since {y − x, y} is a basis for C0(K) (by change of
basis again), we see that

H0(K)(Z[y − x]⊕ Z[y])/Z[y − x] ∼= Z[y] ∼= Z.

Homology of L.

Since K has no simplices in dimensions other than 0, 1, we automatically have that
Hn(K) = 0 for k 6= 0, 1. We have that

d1(na +mb) = (n+m)(y − x),

so H1(L) ∼= Z1(L) = Z[a− b] ∼= Z. Also this shows that B0(L) = Z[y − x], while

Z0(L) = C0(L) = Z[x]⊕ Z[y] = Z[x− y]⊕ Z[y]

(switching of basis!). Hence

H0(L) = (Z[x− y]⊕ Z[y])/Z[x− y] ∼= Z[y] ∼= Z.

Homology of (K,L).

We have that
C2(K,L) = Z[U ] ⊕ Z[V ],

C1(K,L) = (Z[a]⊕ Z[b]⊕ Z[c])/(Z[a]⊕ Z[b] = Z[c],

C0(K,L) = (Z[x] ⊕ Z[y])/(Z[x]⊕ Z[y]) = 0,

and all other groups Cn(K) are trivially zero. Hence only H2(K,L) and H1(K,L)
require actual calculation.
Notice that for convenience we notate the equivalence classes as the elements, for
example the class of c is denoted simply by c. In the complex C(K,L) we have that
d2(U) = c = d1(V ), so

d2(nU +mV ) = (n+m)c.

This shows that H2(K,L) ∼= Z2(K,L) = Z[U − V ] ∼= Z and B1(K,L) = Z[c] =
C1(K,L). This can only mean that Z1(K,L) = B1(K,L) = C1(K,L), soH1(K,L) =
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0. In the end, the only non-trivial homology group of (K,L) is H2(K,L) ∼= Z.

b) By the result of a) the sequence

. . . // H2(K,L)
∆2

// H1(L)
i∗

// H1(K)
j∗

// H1(K,L) // . . .

up to isomorpisms looks like the sequence

0 // Z
α

// Z
β

// Z2
// 0 // . . .

In particular j∗ = 0, since H1(K,L) = 0.
By exactness β : Z → Z2 is surjective. Since Z2 = {0̄, 1̄}, this means that β(1) = 1̄,
since otherwise β(1) = 0, which implies that β(n) = nβ(1) = 0 for all n ∈ Z

and β cannot be surjective. Hence β = pr is nothing but a projection to the
quotient group. For the groups of original sequence we had H1(K) = Z[a− b] and
H1(K,L) = {0, [c]}, so i∗([a− b]) = c, more generally i∗(n[a− b]) = n[c]. This can
also be proved directly by calculating. All we need to show is that in H1(K) we
have

[a− b] = [c].

This follows from the fact in C(K) we have

d1(V ) = c− a + b = c− (a− b),

so c− (a− b) is a boundary element.

It remains to calculate ∆2. Again, its isomorphic version is the mapping α : Z → Z

which, by exactness, is injective and Imα = Kerβ = 2Z. There are exactly two
homomorphisms that satisfy this condition - the mapping given by α(n) = 2n or
by α(n) = 2n. In terms of original groups we have that H2(K,L) = Z[U − V ] and
H1(L) = Z[a− b], so this means that either ∆([U − V ]) = 2[a− b] or ∆([U − V ]) =
−2[a − b] = 2[b − a]. In order to decide which one it is, this time we actually
need to calculate it directly. We take a cycle U − V ∈ C2(K,L). Then obviously
U − V ∈ C2(K) is an element with j2(U − V ) = U − V . We have that

d2(U − V ) = (c− b+ a)− (c− a+ b) = 2a− 2b = 2(a− b).

Hence, by definition of ∆, ∆([U − V ]) = 2[a− b]. This concludes the proof.

Grading:

1 point for groups Hn(K),
1 point for groups Hn(L),
1 point for groups Hn(K,L),
0, 5 point for j∗,
1 point for i∗,
1, 5 points for ∆.
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4. Suppose C ⊂ Sn is homeomorphic to Sk, for 0 ≤ k ≤ n− 1. Prove that

H̃m(S
n \ C) =

{
0, for m 6= n− k − 1,

Z, for m = n− k − 1.

You can assume and freely use the following fact: Suppose B ⊂ Sn is homeomor-

phic to B
k
, for 0 ≤ k ≤ n. Then H̃m(S

n \B) = 0 for all m ∈ Z.

Where in your proof you use the assumption k ≤ n−1? Do we need that restriction,
for instance would the claim still be true for k = n? Explain.

Solution: Except for the extra question in the end this is just the proof of Lemma
17.4. Here is straightforward copypasted proof of this Lemma from the lecture ma-
terial:

Proof by induction on k.

If k = 0, then C = {a, b} is space consisting of two isolated points. Since Sn minus
a point is homeomorphic to R

n, Sn minus two points is homeomorphic to R
n minus

a point, i.e. essentially homeomorphic to the space R
n \ {0}. This space, on the

other hand, has a homotopy type of the sphere Sn−1. Hence in this case

H̃m(S
n \ C) =

{
0, for m 6= n− 1,

Z, for m = n− 1,

which is exactly the claim for k = 0.

Suppose claim is true for k − 1 ≥ 0 and let us show it for k. Let f : Sk → C
be a homeomorphism. Denote C1 = f(S+) and C2 = f(S−), where S+, S− are
upper and lower hemisphere of Sk, as usual. Since hemispheres are compact, the
sets C1, C2 are compact, hence closed in Hausdorff space Sn. It follows that their
complements are open. Hence {Sn \ C1, S

n \ C2} is an open covering of the space
Sn \ (C1 ∩ C2) = Sn \D, where D = C1 ∩ C2 is homeomorphic to the sphere Sk−1.
Also

(Sn \ C1) ∩ (Sn \ C2) = Sn \ C.

Since S+ and S− are both homeomorphic to the closed ball B
k
, the same is true

for subsets C1 and C2. Hence, by the result we are allowed to use, both spaces
Sn \ C1 and Sn \ C2 have trivial reduced groups in all dimensions. The reduced
Mayer-Vietoris sequence of the proper triad (Sn\C;Sn\C1, S

n\C2), implies, in the

usual way, that ∆: H̃m+1(S
n \D) → H̃m(S

n \C) is an isomorphism for all m ∈ N.
Since, by inductive assumption,

H̃m(S
n \ C) =

{
0, for m 6= n− k,

Z, for m = n− k,

it follows that

H̃m(S
n \B) =

{
0, for m 6= n− k − 1,

Z, for m = n− k − 1.
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Now, that us also comment on the extra question. Where exactly the assumption
k ≤ n− 1 is used above? First of all, the proof claims to be the proof by induc-

tion on k. Now, isn’t induction usually something that should work for all natural
numbers? If the initial step and inductive steps are universally true, the claim also
should be true for all n ∈ N.
But let us take a look at the claim for k = n. Then C is a subset of Sn homeo-
morphic to Sn. But this is possible only when C = Sn. We actually know it from
the theory of manifolds - any embedding f : C → N between compact n-manifold
C and connected n-manifold N must be bijective (Corollary 17.10). Hence when
k = n we have that C = Sn and hence Sn \ C is an empty space. For an empty
space we did not define reduced groups, so the claim do not even make sense for
case k = n.
Notice that in order to prove Corollary 17.10 we need invariance of domain which
we proved using the claim of Lemma 17.4, so we cannot use it before it is proved!

The observation about reduced groups not being defined for empty space is actually
the key to the extra question. We used reduced groups throughout the proof, but
when one uses reduced groups one must be careful - they are not defined for empty
space.
What about induction? Well, induction is often used to proof claims about all
natural numbers, but that is not the only application. By induction one can also
prove claims concerning finite ordered sets - for example interval [0, N ] for some
natural N . Then it is enough to prove that the claim is true for 0 (initial step) and
to prove that if k < N and the claim is true for k, then it is also true for k + 1.
This is exactly what we did above - for N = n− 1.

Remark: It is actually possible to extend the notion of reduced groups to emp-
tyset. Then H̃−1(∅) = Z, so the claim of this exercise becomes formally true for the
case k = n as well!

Grading:

1, 5 points for initial step
3, 5 points for inductive step
1 point for some satisfactory answer to the extra question.
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