
Department of Mathematics and Statistics
Introduction to Algebraic topology, fall 2013

Exam 1 TU 22.10.2013 Solutions

1. a) Explain what ”affinely independent set” means.
b) Let

A = {(0, 0), (2, 0), (1, 1), (0, 3)} ⊂ R
2.

Is A affinely independent? Is conv(A) a simplex? If the answer is ”yes”,
what are the vertices and the dimension of this simplex?

Solution: a) By definition a finite subset {v0,v1, . . . ,vm} of a vector
space V is affinely independent if every vector x from the convex hull
conv{v0,v1, . . . ,vm} can be written as a convex combination

x = t0v0 + t1v1 + . . .+ tmvm, ti ≥ 0,
m
∑

i=0

ti = 1

in a unique way. In other words it means that if

t0v0 + t1v1 + . . .+ tmvm = t′0v0 + t′1v1 + . . .+ t′
m
vm,

where scalar coefficients t0, t1, . . . , tm, t
′

0, t
′

1, . . . , t
′

m
are all non-negative

and
t0 + t1 + . . .+ tm = 1 = t′0 + t′1 + . . .+ t′

m
,

then ti = t′
i
for all i = 0, . . . , m.

In practise however usually other, equivalent definitions given in Lemma
2.10. are used. These equivalent definitions are:

(1) v1−v0, . . . ,vi−v0,vm−v0 is a linearly independent set of vectors
in V .

(2) Suppose
m
∑

i=0

tivi = 0 and

m
∑

i=0

ti = 0,

for some choice of scalars ti, i = 0, . . . , m. Then ti = 0 for all
i = 0, . . . , m.
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(3) Suppose
m
∑

i=0

tivi =
m
∑

i=0

t′
i
vi

where
∑

m

i=0 ti =
∑

m

i=0 t
′

i
. Then ti = t′

i
for all i = 0, . . . , m.

(4) Every point x in the affine hull aff({v0, . . . ,vm}) has a unique
representation as the affine combination

x = t0v0 + . . .+ tmvm,

where
∑

m

i=0 ti = 1.

Condition (1) is especially convenient in practise, since it allows one to
reduce the question of affine independence into linear algebra.

b) We denote v0 = (0, 0), v1 = (2, 0), v2 = (1, 1), v3 = (0, 3). By
condition (1) above the set {v0,v1,v2,v3} is affinely independent if
and only if the set {v1 − v0,v2 − v0,v3 − v0} is linearly independent.
This is the set

{(2, 0), (1, 1), (0, 3)}.

This set is not linearly independent. There are at least two ways to
see that:

Direct approach: We use definition of linear independence. Let
r1, r2, r3 ∈ R be such that

r1(2, 0) + r2(1, 1) + r3(0, 3) = 0.

This reduces to the linear system

{

2r1 + r2 = 0,

r2 + 3r3 = 0.

These equations are clearly equivalent to

−2r1 = r2 = −3r3.

It is clear that there are non trivial solutions to this system, for exam-
ple r1 = −3, r2 = 6, r3 = −2.

2



Theoretical approach: The set {(2, 0), (1, 1), (0, 3)} is a subset of
2-dimensional vector space R

2, but contains 3 vectors. From linear al-
gebra we know that such a set cannot be linear independent.

Since the set {(2, 0), (1, 1), (0, 3)} is not linearly independent, it follows
that the original set A is not affinely independent. In general a subset
A of n-dimensional vector space that contains more then n+1 elements
cannot be affinely independent.

Although the set A is not affinely independent, its convex hull conv(A)
is simplex with vertices (0, 0), (2, 0), (0, 3). This is seen as following.
Let

B = {(0, 0), (2, 0), (0, 3)}.

Set B is affinely independent. Indeed, applying the condition (1) above
we see that it is enough to show that the set {(2, 0), (0, 3)} is affinely
independent. It is since the condition

r1(2, 0) + r2(0, 3) = (0, 0)

implies 2r1 = 0 = 3r2, so r1 = r2 = 0. Since B is affinely independent,
its convex hull conv(B) is a simplex with vertices (0, 0), (2, 0), (0, 3).
Thus it remains to prove that

conv(B) = conv(A).

By definitions B ⊂ A ⊂ conv(A), where conv(A) is convex. Since
conv(B) is the smallest convex subset that contains B, it follows that
conv(B) ⊂ conv(A).
To prove the converse inclusion conv(A) ⊂ conv(B) it is enough, by the
similar argument, to show thatA ⊂ conv(B). For elements (0, 0), (2, 0), (0, 3)
of A this is clear, since they are even elements of B ⊂ conv(B). We
need to show that (1, 1) ∈ conv(B) i.e. to prove that there exist scalars
t0, t1, t2 ∈ R such that t0 + t1 + t2 = 1 and

t0(0, 0) + t1(2, 0) + t2(0, 3) = (1, 1).

This reduces to










t0 + t1 + t2 = 1,

2t1 = 1,

3t2 = 1.
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It is clear that this system has exactly one solution which is t0 = 1/6,
t1 = 1/2, t2 = 1/3. In particular, since solution exists (1, 1) ∈ conv(B)
and we are done.

It follows that conv(A) is a 2-dimensional simplex with vertices (0, 0), (2, 0), (0, 3).

2. Suppose K is a simplicial complex.
a) Let σ, σ′ ∈ K. Prove that Int σ ∩ σ′ 6= ∅ if and only if σ < σ′. Here
Int σ is a simplicial interior.
b) A simplex σ ∈ K is called maximal if it is not a face of any simplex
of K except for itself. In other words if σ < σ′ for some σ′, then σ = σ′.
Prove that the topological interior Int σ of a simplex σ ∈ K is open in
the polyhedron |K| if and only if σ is a maximal simplex of K.

Solution: The formulation of this problem unfortunately had some
terminological and notational mistakes. Luckily, everybody was able
to notice that and also to fix them using the context.

a) In the lecture notes we used notation σ ≤ σ′ to mean that σ is
a face of σ′, while σ < σ′ means that σ is a proper face of σ′. Of
course every simplex σ intersects its own simplicial interior Int σ (since
∅ 6= Int σ ⊂ σ), so the claim cannot be true. However it is easy to
realise that it is true if substitute < for ≤. Another way to fix this is
to add the assumption σ 6= σ′.

Claim: Let σ, σ′ ∈ K, where K is a simplicial complex. Then Int σ ∩
σ′ 6= ∅ if and only if σ ≤ σ′. Here Int σ is a simplicial interior.

Proof of the claim: Suppose Int σ∩σ′ 6= ∅. In any case, since K is a
simplicial complex, the intersection σ′∩σ is either empty or a common
face τ of both σ′ and σ. Since by assumption

∅ 6= Int σ ∩ σ′ ⊂ σ ∩ σ′,

the intersection cannot be empty. Thus it is a common face τ . On the
other hand

∅ 6= Int σ ∩ σ′ ⊂ σ ∩ σ′ = τ,

so in particular there is a point x ∈ Int σ ∩ σ′ ⊂ Int σ which is also a
point of τ . In particular a simplicial interior of σ′ and the face τ of σ
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have a point in common. The only possibility a face of a simplex can
intersect its simplicial interior is when the face is a simplex itself. In
other words τ = σ. Thus σ is a face of σ′.

The other direction is simpler. Indeed suppose σ ≤ σ′. The simpli-
cial interior of any simplex is non-empty, since it contains at least a
barycentre of that simplex. Notice that if simplex is a singleton i.e. a
0-simplex, then its interior is the simplex itself and it has no boundary.
This is the only case when a vertex of a simplex is in the interior of the
simplex.

In any case Int σ 6= ∅. Since we are assuming σ ⊂ σ′, we have that

Int σ ∩ σ′ = Int σ ∩ σ ∩ σ′ = Int σ ∩ σ = Int σ.

Thus in particular also Int σ ∩ σ′ 6= ∅.

b) Here formulation contained another misprint - Int σ is defined to be
simplicial, not topological interior. Besides any talk about ”topologi-
cal interior” makes no sense if one does not specify with respect to what
space that interior is taken. Thus simplest right way to interpret the
claim is to substitute ”topological interior” with ”simplicial interior”.
Another way is to substitute ”topological interior” with ”topological
interior with respect to the affine hull of the simplex”, since by Lemma
3.18 it coincides with the simplicial interior.

Claim: The simplicial interior Int σ of a simplex σ ∈ K is open in
the polyhedron |K| if and only if σ is a maximal simplex of K.

Proof of the claim: Of course in the polyhedron |K| we use weak
topology coherent with the standard topologies of the simplices of K,
since this is by-default topology we have agreed to us in |K|.

Suppose σ is maximal. To prove that Int σ is open with respect to the
weak topology of K, we need to show that Int σ∩σ′ is open in σ′ for all
simplices σ′ ∈ K. Suppose σ′ ∈ K is arbitrary. Suppose first σ′ 6= σ.
Since K is a simplicial complex, the intersection σ ∩ σ′ is either empty
or a common side τ of both simplices. If it is empty, then also Int σ∩σ′

is empty, as its subset. Suppose σ ∩ σ′ = τ is a common side of both
σ and σ′. if τ = σ, then σ is a face of σ′, which by maximality would
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imply σ′ = σ. That contradicts our assumption. Thus τ is in particular
a proper face of σ. This means that Int σ does not intersect τ , so in
this case

Int σ ∩ σ′ ⊂ Int σ ∩ τ = ∅.

Thus if σ′ 6= σ, then Int σ ∩ σ′ is always an empty set, so in particular
open in open in σ′, since empty set always is.

On the other hand if σ′ = σ then Int σ ∩ σ = Int σ, and simplicial
interior of a simplex is known to be open in that simplex with respect
to its standard topology (this is a simple consequence of Lemma 3.18).

To prove the other direction it is enough to show that if σ is not

maximal, then Int σ is not open in |K|. If σ is not maximal, then there
exists τ ∈ K such that σ is a proper face of τ . Then

Int σ ⊂ σ ⊂ Bd τ.

It is known that a subset of the boundary Bd τ of any simplex τ cannot
be open in the standard topology of σ. In fact Bd τ does not intersect
the topological interior of σ with respect to the affine hull of σ (Lemma
3.18.), the fact that easily implies the claim above.
Thus in particular Int σ is not open in τ , so it cannot be open in |K|,
by definition of the weak topology.

3. Suppose f : Sm → Sn is a continuous mapping where m < n. Prove
that f is homotopic to a constant mapping. You may assume Simplicial
Approximation Theorem known. Also the fact that Sn minus a point
is homeomorphic to R

n can be assumed.

Solution: Both spaces Sm and Sn can be triangulated as polyhedrons
of simplicial complexes K, K ′. In fact we can choose K = K(Bd σ),
K ′ = K(Bd σ′), where σ is (m + 1)-dimensional and σ′ is (n + 1)-
dimensional.

Since bothK andK ′ are finite simplicial complexes, Simplicial Approx-
imation Theorem 5.10. applies and according to that theorem continu-
ous mapping f : Sm → Sn has a simplicial approximation g : |K(k)| →
|K ′| for some k ∈ N. Here K(k) is a k-th barycentric subdivision. No-
tice, it is not enough to take first subdivision, so it is important to
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emphasize that k can be arbitrary. K ′ on the range side, on the other
hand, need not to be subdivided.

By Lemma 5.8. f and g are homotopic, so, by transitivity of homo-
topy relation, it is enough to prove that g is homotopic to a constant
mapping.

The complex K is m-dimensional (the biggest dimension of a simplex
in K is m), so any barycentric subdivision K(k) of K is also precisely
m-dimensional (follows from the construction of subdivision). On the
other hand K ′ is n-dimensional.

The mapping g, being simplicial, maps vertices to vertices, so it maps
l-dimensional simplices of K(k) onto at most l-dimensional simplices
of K ′ (dimension of a simplex can decrease, if different vertices are
mapped to the same vertex, but it cannot increase). Since l ≤ m, g
maps K(k) onto m-skeleton of K ′, which is, since m < n, a proper
subset of K ′. In particular g is not a surjection. Thus there exists
x ∈ Sn such that g can be thought of a mapping Sm → Sn \ {x}.
But it is well-known that the space Sn \ {x} is homeomorphic to the
Euclidean space R

n. This space is contractible, so also Sn \ {x}. Any
mapping to a contractible space is nullhomotopic, so g is homotopic to
a constant mapping.

4. Projective plane RP 2 can be defined as a quotient space of the square
I2 with respect to the equivalence relation generated by relations of the
form (0, y) ∼ (1, 1 − y) and (x, 0) ∼ (1 − x, 1), x, y ∈ [0, 1]. Explain
how RP 2 can be represented as a polyhedron of a ∆-complex K. State
clearly how all the simplices in K are ordered and what simplices are
identified in K. How many different geometrical n-simplices your com-
plex has in dimensions n = 0, 1, 2, 3?

Solution: The following scheme shows one possibility:

U

V

a

a

bb

v0

u0v1 / u1

v2 / u2

c
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The definition of K starts off with two abstract ordered 2-simplices U
and V . The vertices of U are denoted (u0,u1,u2), in that order and
the vertices of V are denoted (v0,v1,v2). K consists of these simplices
and all their faces. In addition to that the following identifications are
part of the definition of K:

(u0,u1) ∼ (v0,v2), (denoted by ’a’)

(u0,u2) ∼ (v0,v1), (denoted by ’b’),

(u1,u2) ∼ (v1,v2), (denoted by ’c’),

these force also identifications of vertices:

u0 ∼ v0,

u1 ∼ v2,

u2 ∼ v1,

u1 ∼ v1,

u2 ∼ v2,

which mean that in the polyhedron |K| there are only two different
vertices - the vertex x = [u0] = [v0] and the vertex

y = [u1] = [v2] = [v1] = [v2].

The complex has zero 3-simplices, two 2-simplices (U and V ), three
1-simplices (a, b, c), and two 0-simplices (x and y).

5. Prove that there exists unique homomorphism f : Z⊕Z → Z⊕Z such
that f(1, 0) = (1, 1) and f(0, 1) = (1,−1). Is it surjective? If not, what
is the image Im f? Is Im f free? What is the kernel of f?

Solution: The set {(1, 0), (0, 1)} is the basis of thee free abelian group
Z
2, so by Lemma 8.4. there exists unique homomorphism f : Z⊕ Z →

Z⊕ Z with given values f(1, 0) = (1, 1) and f(0, 1) = (1,−1) on basis
elements. On the other hand in this case it is not difficult to come up
with an explicit formula for f . Indeed suppose n,m ∈ Z. Then

f(n,m) = f(n(1, 0)+m(0, 1)) = nf(1, 0)+mf(0, 1) = n(1, 1)+m(1,−1) = (n+m,n−m),

where we have used the fact that f is a homomorphism.
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Mapping f is not surjective. In fact we claim that

Im f = {(x, y) ∈ Z
2 | x ≡ y (mod 2)}.

Indeed suppose (x, y) ∈ Im f . Then (x, y) = (n +m,n −m) for some
n,m ∈ Z. This implies that x+ y = 2n is even integer. The only way
the sum of two integers is even is when they are both even or both odd,
i.e. when x ≡ y (mod 2).

Conversely suppose x ≡ y (mod 2). Then x + y and x − y are both
even, so x + y = 2n, x − y = 2m for some n,m ∈ Z. Then one easily
sees that n+m = x and n−m = y, so f(n,m) = (x, y).

The simpler answer

Im f = {(n+m,n−m) ∈ Z
2 | n,m ∈ Z}

is also perfectly acceptable. The main thing is to notice that f is not
surjective. For instance if one attempts to find n,m ∈ Z such that
f(n,m) = (1, 0), one obtains contradiction.

The kernel of f is trivial. Indeed suppose n,m ∈ Z are such that

f(n,m) = n(1,−1) +m(1,−1) = (n+m,n−m) = (0, 0).

Then n + m = 0 = n − m, which is easily seen to be equivalent to
n = m = 0. Hence f is injective. Incidentally, the same calculation
implies that the element (1, 1) and (1,−1), which, by construction, gen-
erate Im f , is a free set. Hence Im f is a free abelian group with the
basis {(1, 1), (1,−1)}.

Another, more theoretical way to see that Im f is free is to use the iso-
morphism theorem for abelian groups (Corollary 7.9). Indeed by that
theorem f induces an isomorphism f : Z2/Ker f → Im f . But Ker f is
trivial, so the quotient group Z

2/Ker f is essentially Z
2, which is free.

Hence Im f is free, since it is isomorphic to the free abelian group Z
2.

Remark 1: This task demonstrates the essential difference between
the linear algebra of vector spaces and algebra of abelian groups. For
linear mappings between same dimensional vector spaces it is impos-
sible for a mapping to be injective, but not surjective. Also it is im-
possible for a vector space to contain a proper subspace of the same
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dimension.

Remark 2: The group Im f is a subgroup of a free abelian group Z
2.

It is actually true that every subgroup of a free abelian group is free,
but the proof of this fact is not trivial.
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