
Part III

Singular homology

12 Zeroth homology group, path components

and reduced homology

Suppose X is a topological space. Let f : ∆n → X be a singular simplex in
X . Since ∆n is path-connected, the image f(∆n) is a path-connected subset
of X (Lemma 3.15), hence is contained in some path-component Xa of X .
In particular, as an element of Cn(X), the chain f belongs to a subgroup
Cn(Xa). It follows that the singular chain complex of X is completely deter-
mined by the singular chain complexes of its components. To formalize this
in precise mathematical terms we first make the following definition.

Suppose (Ca, da)a∈A is a collection of chain complexes. We define their
direct sum to be the chain complex (C, d) = ⊕a∈ACa defined by

Cn = ⊕a∈A(Ca)n,

d = ⊕a∈Ada.

This means that for every family x = (xa)a∈A ∈ ⊕a∈A(Ca)n the value of the
boundary operator d(x) is the family

(da(xa))a∈A ∈ ⊕a∈A(Ca)n−1.

The verification of the fact that (C, d) is a chain complex i.e. dn−1 ◦ dn = 0
for all n ∈ Z is almost trivial.

For every a ∈ A there exist obvious natural chain mappings ia : Ca → C
(inclusion) and pa : C → Ca (projection). Since ib is an injection in every di-
mension, Ca can be identified with a subcomplex ia(Ca) of C in a natural way.

Let (Ca, da)a∈A is a collection of chain complexes, D is a chain complex
and suppose fa : Ca → D is a chain mapping for all a ∈ A. Then, for every
n ∈ Z we have a homomorphism and every a ∈ A we have a homomorphism
fn =

∑
a∈A(fa)n : ⊕a∈A (Ca)n → D, given by Lemma 8.13. It is easy to verify

that the collection f = {fn}n∈Z is then a chain mapping f : ⊕a∈A Ca → D.
We denote it, naturally, by

∑
a∈A fn.

Lemma 12.1. The operation of taking homology groups preserves direct sums
of chain complexes. More precisely suppose the chain complex C is a direct
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sum of the complexes (Ca)a∈A. Then inclusion mappings ia : Ca → C induce
a chain isomorphism

i∗ = ((ia)∗)a∈A : ⊕a∈A Hn(Ca) → Hn(C)

for every n ∈ Z.

Proof. Exercise.

Suppose (X,A) is a topological pair. Let (Xa)a∈A be the set of all path-
components of X . For every a ∈ A let Aa = A ∩ Xa. There exists an
inclusion of pairs iα : (Xa, Aa) → (X,A). By Example 10.12 the induced
chain mapping i♯ : Cn(Xa, Aa) → Cn(X,A) is an injection in every dimension.
Hence we can regard C(Xa, Aa) as a subcomplex of C(X,A) in a natural way.
It turns out that C(X,A) is actually a direct sum of subcomplexes C(Xa, Aa)
(up to an isomorphism).

Proposition 12.2. Suppose (X,A) is a topological pair. Let (Xa)a∈A be the
set of all path-components of X. For every a ∈ A let Aa = A ∩ Xa. Then
the sum of the chain inclusions (ia)♯ : C(Xa, Aa) → C(X,A)

i =
∑

a∈A

(ia) : ⊕a∈A C(Xa, Aa) → C(X,A)

is a chain isomorphism. In other words C(X,A) is actually (isomorphic to)
a direct sum of its subcomplexes C(Xa, Aa).

Proof. It is enough to show that the mapping

in =
∑

a∈A

(ia)n : ⊕a∈A Cn(Xa, Aa) → Cn(X,A)

is a bijection for all n ∈ Z.
For n < 0 this is obvious, so we can assume that n ≥ 0.

First we show that i is an injection. Suppose x = (xa)a∈A ∈ ⊕a∈ACn(Xa, Aa)
is such that i(x) = 0 ∈ Cn(X,A). By Proposition 8.12 the family (xa)a∈A is
finitely supported and

x =
∑

a∈A

xa.

Since this sum is essentially finite we can write it as

x = x1 + . . .+ xn,
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where xi ∈ Cn(Xai , Aai) and Xa1 , . . . , Xan are different path-components of
X . Recall that for every topological pair (Z, Y ) and every n ∈ Z the group
Cn(Y,B) is a free group with a basis

{σ | σ : ∆n → Z is continuous and σ(∆n) ( Y }.
Hence for every i = 1, . . . , n there exists mi ∈ N such that

xi =

mi∑

ji=1

njiσji ,

where nji ∈ Z and σji : ∆n → Xai is a singular simplex in the space Xai and
σji ( Aa1 . We may assume that for every i singular simplices σ1i , σ2i , . . . , σmi

are different.
It follows that

i(x) =
n∑

i=1

mi∑

ji=1

σji ,

where we identify, as usual, a singular simplex σji : ∆n → Xai with a singular
simplex σji : ∆n → X . Moreover, none of these simplices is an element of
Cn(A). On the other hand we are assuming that this sum i.e. i(x) equals to
zero. Since

{σ | σ : ∆n → X is continuous and σ(∆n) ( A}.
is a free subset of the group Cn(X,A), it follows that nji = 0 for all i and
all ji involved. Hence xi = 0 for all i = 1, . . . , n, thus also x = 0. We have
shown that i is an injection.

Next we prove that i is a surjection. Suppose

x =

n∑

i=1

niσi

is an element of C(X,A) represented as a finite sum of different singular
simplices σi : ∆n → X . Since ∆n is path-connected, for every i = 1, . . . , n
there exists an index ai ∈ A such that σi(∆n) is contained entirely in the
path-component Xai . Hence, we can regard σi as an element of Cn(Xai). We
can rewrite x as

i(
n∑

i=1

niσi),

where each σi is considered as an element of Cn(Xai , Aai), which, in its turn,
is considered as a subgroup of the direct sum ⊕a∈ACn(Xa, Aa). This proves
surjectivity.
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Corollary 12.3. Suppose (X,A) is a topological space let (Xa)a∈A be the set
of all path-components of X. For every a ∈ A let Aa = A ∩ Xa. Then the
inclusions ia : (Xa, Aa) → (X,A) induce an isomorphism

∑

a∈A

((ia)∗)n : ⊕a∈A Hn(Xa, Aa) → Hn(X,A)

for every n ∈ Z.

Proof. Follows immediately from two previous results.

In particular for absolute groups we have an isomorphism

∑

a∈A

((ia)∗) : ⊕a∈A Hn(Xa) → Hn(X)

for every n ∈ Z. It follows that, as far as absolute groups goes, it is enough
to study homology groups of path-connected spaces.

Next we compute the 0-th homology group of every space. Let X be
a topological space. Define a homomorphism of groups ε : C0(X) → Z by
asserting

ε(σ) = 1

for every singular 0-dimensional simplex σ ∈ Sing0(X). The set Sing0(X)
can be identified with the set of points of X , since σ : ∆0 → X is completely
determined by its image, which is a singleton. This is because ∆0 is a sin-
gleton. Notice that for an arbitrary element x ∈ C0(X), represented in the
standard basis Sing0(X),

x =
n∑

i=1

niσi,

we have

ε(x) =
n∑

i=1

ni.

Now d0 = 0, since C−1(X) = 0, so Ker d0 = C0(X) and hence

H0(X) = C0(X)/ Im d1.

Suppose σ ∈ Sing1(X) is a basis element of C1(X). Then

ε(d1(σ)) = ε(d11σ − d01σ) = 1− 1 = 0,
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because d11σ, d
0
1σ are both elements of Sing0(X).

Since this is true for every free generator of C1(X), we have that

ε ◦ d1 = 0.

This means that B0(X) = d1(C1(X)) ⊂ Ker ε, so, by Factorization Theorem
6.6, the homomorphism ε induces the homomorphism

ε∗ : H0(X) → Z.

If X = ∅ is an empty space, then Hn(X) = 0 for all n ∈ Z, since C0(X) = 0.
In particular ε∗ is a trivial zero mapping.
SupposeX is not an empty space. Then there exists at least one 0-dimensional
singular simplex σ : ∆0 → X . Since σ ∈ Z0(X) and ε(σ) = 1, it follows that,
for every n ∈ Z, we have that

ε∗(nσ) = n.

This proves that whenever X 6= ∅ is non-empty, the mapping ε∗ : H0(X) → Z
is a surjection.

Proposition 12.4. Suppose X is path-connected and non-empty. Then
ε∗ : H0(X) → Z is an isomorphism.

Proof. We have already observed that ε∗ is surjective. Since it is induced by
a mapping ε : C0(X) → Z, it is enough, by factorization theorem, to prove
that Ker ε = Im d1 = B0(X).

The inclusion Im d1 ⊂ Ker ε is already proved above for all spaces. Con-
versely suppose that

c =

k∑

i=1

nixi ∈ Ker ε,

for some k ∈ N, ni ∈ Z, xi ∈ X . Then

k∑

i=1

ni = ε(c) = 0.

Fix a point x ∈ X . Since X is path-connected, for every i = 1, . . . , k there
exists a path fi : I → X from x to xi, i.e. fi(0) = x, fi(1) = xi. Let

g =

k∑

i=1

nifi ∈ C1(X).
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Then

d1(g) =

k∑

i=1

ni(xi − x) =

k∑

i=1

nixi −
( k∑

i=1

ni

)
x =

k∑

i=1

nixi = c.

Hence c ∈ Im d1 and we are done.

Since 1 ∈ Z is a generator of the free group Z and ε∗(σ) = 1 for every
σ ∈ Sing0(X), it follows that as a generator of H0(X) for the path-connected
space X we can take a homology class σ of any fixed 0-dimensional singular
simplex σ : ∆0 → X . Since the image of such σ is a point of X , and con-
versely, every point of X is the image of unique σ ∈ Sing0(X), it is natural to
identify them. Hence H0(X) is essentially generated by an equivalence class
of a fixed point x ∈ X .

Corollary 12.5. Suppose X is a topological space. Then H0(X) is a free
abelian group on the set of path components of X.
If H0(X) ∼= Zn for n ∈ N, then X has exactly n path components.

In particular X is path-connected if and only H0(X) ∼= Z.

Proof. The first assertion follows from the previous proposition and Corollary
12.3. The second follows from the the fact that Z(A) ∼= Zn if and only if A
has n elements (Lemma 8.17).

The proof of the previous Corollary, together with Corollary 12.3, shows
that as the basis ofH0(X) ∼= Z(A) we can take any collection of points (xa)a∈A
(or their homology classes to be precise), where exactly one point is chosen
from every path-component of X .

Consider a chain complex C ′ with C ′
n = 0 for n 6= 0, C ′

0 = Z and all
boundary operators zero homomorphism. We will denote this complex simply
by Z, slightly abusing the notation. Obviously Hn(Z) = 0 for n 6= 0 and
H0(Z) = Z.
Let C be an arbitrary chain complex. A chain mapping ε : C → Z reduces
to a single homomorphism ε0 : C0 → Z subject to a single condition

ε0 ◦ d1 = 0

since the diagram
C1

//

d1
��

0

��
C0

ε0 // Z
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must be commutative, and εn : Cn → (Z)n = 0 for n 6= 0.

A surjective homomorphism ε : C0 → Z, where C is a non-negative chain
complex, that satisfies the condition

ε ◦ d1 = 0

is called an augmentation of the complex C. The pair (C, ε) is then called
an augmented chain complex. Above we have constructed a canonical
natural augmentation of the complex C(X) for every non-empty topological
space X (notice that for empty space the constructed mapping is not sur-
jective, hence not an augmentation). Any augmentation ε : C0 → Z defines
a chain mapping ε : C → Z, where on the right side we consider Z a chain
complex as above.

Since ε : C → Z is a chain mapping, its kernel C̃ = Ker ε is a chain
subcomplex of C. Clearly C̃n = Cn for n 6= 0 and, since ε is surjective in all
dimensions, we have an exact short sequence

0 // C̃
i∗ // C

ε // Z // 0

of chain complex and chain mappings. From the corresponding long exact
homology sequence we obtain for n > 0 the exact sequence

Hn+1(Z) = 0 // Hn(C̃)
i∗ // Hn(C) // Hn(Z) = 0

and for n = 0 the exact sequence

H1(Z) = 0 // H0(C̃)
i∗ // H0(C)

ε∗ // Z = H0(Z) // 0

Since Z is a free abelian group, it follows from the lemma 11.17 that the last
sequence splits. Hence it follows that

Hn(C̃) = Hn(C) for n > 0

H0(C) = H0(C̃)⊕ Z and

H0(C̃) ∼= Ker ε∗.

The last claim follows from the fact that the sequence

0 // H0(C̃)
i // H0(C)

ε∗ // Z // 0
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is exact, so i : H0(C̃ → H0(C) is an injective mapping with image Im i∗ =
Ker ε∗.

In particular these considerations apply to the non-negative augmented
chain complex C(X), where X is non-empty topological space, with augmen-

tation ε : C0(X) → Z defined above. The homology groups Hn(C̃(X)) of the

chain complex C̃(X) are called the reduced singular homology groups

of the space X and are denoted H̃n(X). It follows that

H̃n(X) = Hn(X) if n 6= 0,

H0(X) = H̃0(X)⊕ Z and

H̃0(X) = Ker ε∗.

It can be proved that H̃0(X) is also a free abelian group (this is trivial, if you
know that any subgroup of a free group is free, but this fact is not exactly
elementary to prove). For our purposes the following result will suffice.

Proposition 12.6. SupposeX is a non-empty topological space. Then H̃0(X) =
0 if and only X is path-connected.

Proof. If X is path-connected, ε∗ is an isomorphism, in particular H̃0(X) =

Ker ε∗ = 0. Conversly if H̃0(X) = 0, then H0(X) = H̃0(X)⊕ Z ∼= Z, so X is
path-connected by the corollary 12.5.

Notice that for the empty space the reduced homology groups are not
defined.

Suppose (C, ε) and (C ′, ε′) are augmented chain complexes. The chain
mapping of augmented complexes f : (C, ε) → (C ′, ε′) is a chain mapping
that commutes with augmentation, i.e. satisfies the equation

ε′ ◦ f = ε.

In practise this means that f is a chain mapping for which the diagram

C0

ε

&&MM
MM

MM
MM

MM
MM

M

f0

��

Z

C ′
0

ε′

88qqqqqqqqqqqqq
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commutes, since in all other dimensions similar diagram must commute triv-
ially. Suppose x ∈ C̃n i.e. εn(x) = 0. Then

ε′n(fn(x)) = εn(x) = 0,

so fn(x) ∈ C̃ ′. It follows that f maps a subcomplex C̃ to a subcomplex

C̃ ′. Since the restriction f : C̃ → C̃ ′ is also chain mapping, there exists an
induced mapping f∗ : Hn(C̃) → Hn(C̃ ′).

Of course for n 6= 0, Hn(C̃) = Hn(C) and similarly for C ′, so the only
interesting case is n = 0 and the only new piece of information is the induced
mapping f∗ : H0(C̃) → H0(C̃ ′).

Suppose

0 // C ′ f // C
g // C // 0

is a short exact sequence of chain complexes, where C ′ and C are augmented
and f preserves augmentation. Notice that the complex C is not assumed to
be augmented, only complexes C ′ and C are. The diagram

0

��

0

��

0

��

0 // C̃ ′,
f̃ //

��

C̃
g| //

��

C //

id
��

0

0 // C ′ f //

ε′

��

C
g //

ε

��

C //

��

0

0 // Z id //

��

Z //

��

0 //

��

0

0 0 0

is a commutative diagram of chain complexes and chain mappings (check!).
Moreover all columns in this diagram are exact, as well as the middle and
bottom rows. By Proposition 11.11 also the upper row

0 // C̃ ′
f | // C̃

g| // C // 0

is then short exact sequence of chain complexes and chain mappings. From
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the theorem 11.8 it follows that there exists long exact sequence in homology
(12.7)

. . . // Hn+1(C)
∆ // Hn(C

′)
f∗ // Hn(C)

g∗ // Hn(C)
∆ // Hn−1(C

′) // . . .

. . . // H1(C)
∆ // H0(C̃ ′)

f∗ // H0(C̃)
g∗ // H0(C) // 0 ,

called the reduced long homology sequence of the original exact se-
quence

0 // C ′ f // C
g // C // 0.

This sequence ends at trivial group 0 after dimension 0, since we assume that
C ′ is non-negative, so H−1(C

′) = 0. Notice that this sequence differs from
the usual long exact sequence
(12.8)

. . . // Hn+1(C) ∆ // Hn(C
′)

f∗ // Hn(C)
g∗ // Hn(C) ∆ // Hn−1(C

′) // . . .

. . . // H1(C)
∆ // H0(C

′)
f∗ // H0(C)

g∗ // H0(C) // 0 ,

only in dimension 0. Also the boundary operator ∆: H1(C) → H0(C̃ ′) from
the sequence 12.7 and the boundary operator ∆: H1(C) → H0(C

′) from the
sequence 12.8 satisfy the commutative diagram

H1(C)
∆ //

∆

$$JJ
JJ

JJ
JJ

JJ
H0(C̃ ′)

i∗

��
H0(C

′),

where i : C̃ ′ → C ′ is an inclusion. This follows easily by naturality of long
exact sequence (details as an exercise). Recall that i∗ : H0(C̃ ′) → H0(C

′) is

actually an inclusion and H0(C̃ ′) can be identified with a subgroup Ker ε∗
of H0(C

′). Thus ∆: H1(C) → H0(C̃ ′) is the same mapping as ∆: H1(C) →
H0(C

′), only with restricted image.

Let us apply this constructions to the singular homology. Suppose (X,A)
is a topological pair and A 6= ∅. Then there exist an exact sequence

0 // C(A)
i♯ // C(X)

j♯ // C(X,A) // 0.
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Since both A and X are assumed to be non-empty, the complexes C(A) and
C(X) are augmented by the mappings εX : C(X) → Z and εA : C(A) → Z
both defined by ε(σ) = 1 for every singular 0-simplex σ. By the definition it
follows easily that the inclusion i♯ : C(A) → C(X) commutes with augmen-
tation ε. Indeed, suppose σ : ∆0 → A is an element of basis Sing0(A). Then
i♯(σ) is an element of basis Sing0(X), so

εX(i♯(σ)) = 1 = εA(σ).

This proves that εX ◦ i♯ = εA for basis elements, hence for all elements, in
dimension 0. In all other dimensions augmentation mappings are both zero
mappings, so the equation εX ◦ i♯ = εA is trivial for those dimensions.

Hence, by the general results above, there exists the reduced long sin-
gular homology sequence

. . . // Hn+1(X,A)
∆ // Hn(A)

i∗ // Hn(X)
j∗ // Hn(X,A)

∆ // Hn−1(A) // . . .

. . . // H1(X,A) ∆ // H̃0(A)
i∗ // H̃0(X)

j∗ // H0(X,A) // 0

of the pair (X,A).

Suppose f : X → Y is a continuous mapping between topological spaces.
It is easy to see, that the chain mapping f♯ : C(X) → C(Y ) preserves stan-
dard augmentations of C(X) and C(Y ). As a consequence, there exists

induced homomorphism f∗ : H̃n(X) → H̃n(Y ), for all n ∈ Z. Of course it
differs from f∗ : Hn(X) → Hn(Y ) only in dimension n = 0. Also, if we re-

gard H̃0(X) as a subgroup Ker ε of H0(X) and similarly for Y , we see that

f∗ : H̃0(X) → H̃0(Y ) is just a restriction of f∗ : H0(X) → H0(Y ) to sub-
groups.

Reduced long homology sequence is natural with respect to chain map-
pings that preserve augmentation. In particular in case of singular homology
it is natural with respect to the mappings induced by continuous mappings.
The proof

The reduced homology groups are not absolutely necessary to study, but
they turn out to be convenient from the technical point of view. In many
cases one has to make additional arguments for the cases n = 0 or n = 1,
when using ordinary homology groups Hn(X). The group H0(X) is a bit
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different from the other homology groups, because it does not ”count” how
many 0-dimensional holes the space has. The reduced group H̃0(X) instead
does. Hence reduced groups make considerations more ”symmetric” and
universal. We will see many examples of reducing homology groups making
calculations easy.

In the end of this section let us compute the singular homology of a
singleton space X = {x}. It is clear that for every n ∈ N there exists exactly
one (continuous) mapping σn : ∆n → X , so Cn(X) is a free abelian group
generated by a single element σn, in particular isomorphic to Z, for every
n ∈ Z. Clearly di(σn) = σn−1 for all n ≥ 1 and all i = 0 . . . , n, so

d(σn) =

n∑

i=0

(−1)nσn−1 =

{
σn−1, if n is even

0, if n is odd

Hence the chain complex C(X) is a sequence

. . . // Z = C2m+1
0 // Z = C2m

id // Z = C2m−1
// . . . // Z = C1

0 // Z = C0
0 // 0.

Let n = 2m + 1 be positive odd integer. Then dn+1 : Cn+1 → Cn is an iso-
morphism, hence Bn(C(X)) = Im dn+1 = Cn. The homomorphism dn : Cn →
Cn−1 is a zero mapping, so Zn(C(X)) = Ker dn = Cn. It follows that

Hn(X) = Cn/Cn = 0

is a trivial group. Similarly (check!) we obtain the same result for even n,
except when n = 0. In this special case H0(X) ∼= Z either directly from the
definition and sequence above or since a singleton space is path-connected.
For the same reason H̃0(X) = 0. For the feature reference we put results
obtain in the form of an official Proposition.

Proposition 12.9. Let X = {x} be a singleton space. Then

Hn(X) = 0 for n 6= 0

H0(X) ∼= Z

H̃n(X) = 0 for all n ∈ Z.

A basis of H0(X) is a singleton {x}, where x is a homology equivalence class
of the only singular 0-simplex x : ∆0 → X.

194



13 Homotopy axiom

So-called ”homotopy axiom” for homology groups asserts that homotopic
mappings induce the same homomorphism between homology groups. Pre-
cisely put this property states as following.

Proposition 13.1. Suppose that the mappings f, g : (X,A) → (Y,B) of pairs
are homotopic as mappings of pairs i.e. there exists a mapping
F : (X × I, A× I) → (Y,B) of pairs for which

F (x, 0) = f(x),

F (x, 1) = g(x)

for all x ∈ X. Then

f∗ = g∗ : Hn(X,A) → Hn(Y,B), n ∈ Z.

In the absolute case the same is true for reduced groups.

The rest of this section is devoted to the proof of this result.

Let f, g : (X,A) → (Y,B) be homotopic as mappings of pairs. We also
denote this as f ≃ g. Let F : (X × I, A × I) → (Y,B) be a homotopy
between f and g. For a singular simplex σ : ∆n → X we have a homo-
topy F ◦ (σ × id) : ∆n × I → Y between the mappings f♯(σ) : ∆n → X and
g♯(σ) : ∆n → X . Now, the set ∆×I is not a simplex, but it is a prism, which
is a polyhedron, i.e. can be triangulated in such a way that the bottom and
the top (which are both n-simplices) preserve their natural simplicial struc-
ture.

To be precise, we let the bottom and the top of this prism to be simplices
with vertices vi = (ei, 0) and v′

i = (ei, 1), i ∈ {0, . . . , n}. It can be verified,
that for every index i the sequence (v0, . . . ,vi,v

′
i, . . . ,v

′
n), is affinely inde-

pendent, hence span a simplex. Moreover, together these simplices form a
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simplicial complex, which is a triangulation of ∆n×I. We will not prove this
and leave this claim as an exercise for the interested reader, since we really
don’t need this fact, it merely provides us with the motivation and idea for
the proof, which will work on the formal algebraic level without verification
of the claims above .

Inspired by this for every σ ∈ Singn(X) and for every i ∈ {0, . . . , n}
we define the singular (n + 1)-simplex σi : ∆n+1 → X × I by restricting the
mapping σ × id : ∆n+1 × I → X × I on the subset [v0, . . . ,vi,v

′
i, . . . ,v

′
n].

To be more precise, for every i = 0, . . . , n, let αi
n : ∆n+1 → ∆n × I be the

unique affine mapping that maps vertices (en+1
0 , . . . , en+1

n+1) of the simplex
∆n+1 to the points (v0, . . . ,vi,v

′
i, . . . ,v

′
n) in that order. In other words αi

n

is characterised by

αi
n(e

n+1
k ) =

{
vk, 0 ≤ k ≤ i,

v′
k−1, i < k ≤ n+ 1.

.

Such a mapping exists by Lemma 2.15, since the prism ∆n × I is a convex
subset of Rn+1. Here, as above, vi = (eni , 0) and v′

i = (eni , 1).

Recall that for every n ≥ 1 and every i = 0, . . . , n, we have defined an
affine mapping εin : ∆

n−1 → ∆n defined by

εin(e
n−1
j ) =

{
enj , if j < i,

enj+1, if j ≥ i.

The useful relationships between mappings αi
n and εjn are summarized

in the following lemmas. Proofs are simple formal calculations, so left as
exercises.

Lemma 13.2. Suppose n ≥ 1, i = 0, . . . , n− 1 and j = 0, . . . , n. Then

(εjn × id) ◦ αi
n−1 =

{
αi+1
n ◦ εjn+1, 0 ≤ j ≤ i,

αi
n ◦ εj+1

n+1, i < j.

Proof. Exercise.

Lemma 13.3. Suppose n ≥ 1. Then for every i = 1, . . . , n we have that

αi
n ◦ εin+1 = αi−1

n ◦ εin+1.

Proof. Exercise.
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Suppose F : X × I → Y is a homotopy between continuous mappings
f, g : X → Y . For every n ∈ Z we define so-called prism operator Pn : Cn(X) →
Cn+1(Y ) as following. For every singular n-simplex σ ∈ Singn(X) we assert

Pn(σ) =

n∑

i=0

(−1)i(F ◦ (σ × id) ◦ αn
i ).

Then we extend Pn to the unique group homomorphism Pn : Cn(X) →
Cn+1(Y ). Notice that F ◦ (σ × id) ◦ αn

i is a well-defined continuous map-
ping ∆n+1 → Y , for all i. Hence Pn is well-defined.

For n < 0 we naturally assert Pn : Cn(X) → Cn+1(Y ) to be the zero ho-
momorphism.

Proposition 13.4. For all n ∈ Z the equation

dn+1Pn = g♯ − f♯ − Pn−1dn

holds.

Geometrically we can think of the left side of this equation representing
the whole boundary of the prism (the top, the bottom, and horizontal sides),
while the right side is the signed sum of the bottom, top and all horizontal
sides.

Proof. For n < 0 there is nothing to prove, so we may assume that n ≥ 0.
Let σ be a singular n-simplex σ : ∆n → X . It is enough to prove that

dn+1Pn(σ) = g♯(σ)− f♯(σ)− Pn−1dn(σ).

First we calculate the left side. By the definition of the boundary operator
we have that
(13.5)

dn+1Pn(σ) =
n+1∑

j=0

(−1)j(Pn(σ))◦εjn+1) =
∑

0≤i≤n,0≤j≤n+1

(−1)i+jF◦(σ×id)◦αi
n◦εjn+1.

We divide this sum into four pieces. Let

A =
∑

0≤j<i≤n

(−1)i+jF ◦ (σ × id) ◦ αi
n ◦ εjn+1,

B =
∑

0≤j=i≤n

(−1)i+jF ◦ (σ × id) ◦ αi
n ◦ εjn+1,
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C =
∑

0≤j=i+1≤n+1

(−1)i+jF ◦ (σ × id) ◦ αi
n ◦ εjn+1,

D =
∑

0≤i+1<j≤n+1

(−1)i+jF ◦ (σ × id) ◦ αi
n ◦ εjn+1.

Then dn+1Pn(σ) = A+B + C +D.

First we show that B + C = g♯(σ)− f♯(σ). By Lemma 13.3 we have

(13.6) αk
n ◦ εkn = αk−1

n ◦ εkn
for every k = 1, . . . , n. In this equation the left-hand side occurs in the sum
B, in the term

ak = (−1)k+kF ◦ (σ × id) ◦ αk
n ◦ εkn = F ◦ (σ × id) ◦ αk

n ◦ εkn.

Notice that the sign is ”positive”, since (−1)k+k = 1.
On the other hand the right hand side of the equation 13.6 occurs in the

sum C, in the term

(−1)k−1+kF ◦ (σ × id) ◦ αk−1
n ◦ εkn,

which, by equation above, equals

−ak = −F ◦ (σ × id) ◦ αk
n ◦ εkn.

Notice that minus sign occurs because (−1)k−1+k = −1.
It follows that in the sum B + C these terms actually cancel each other

out. Do all terms of B and C get cancel out in this fashion? No, not exactly.
In the sum B the index pair (i, j) goes through pairs

(0, 0), (1, 1), . . . , (n, n).

In the sum C the index pair (i, j) goes through pairs

(0, 1), (1, 2), . . . , (n, n+ 1).

Now, the term in B corresponding to (1, 1) cancels out with the term in
C corresponding to (0, 1) (see equation (13.6)!), the term corresponding to
(2, 2) is paired with the term corresponding to (1, 2) and so on.

(0, 0) (1, 1)

{{ww
ww
ww
ww
w

(2, 2)

{{ww
ww
ww
ww
w

. . . (n− 1, n− 1)

vvmmm
mmm

mmm
mm
mm

(n, n)

wwnnn
nn
nn
nn
nn
n

(0, 1) (1, 2) . . . (n− 2, n− 1) (n− 1, n) (n, n+ 1)
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In the sum B the only term that does not have a ”pair” in C, is the term
corresponding to indices i = 0 = j. That term is

F ◦ (σ × id) ◦ α0
n ◦ ε0n = g ◦ σ = g♯(σ).

To verify this first notice that α0
n ◦ ε0n(ek) = (ek, 1) for every k = 0, . . . , n.

This easily implies that αn
0 ◦ ε0n(x) = (x, 1) for all x ∈ ∆n. Thus

F ◦ (σ × id) ◦ α0
n ◦ ε0n(x) = F (σ × id)(x, 1) = F (σ(x), 1) = g(σ(x)).

In the sum C the only term, which does not have a pair in B is the term
corresponding to indices j = n+ 1, i = n. In the same way as above one can
easily verify that this term is

(−1)2n+1F ◦ (σ × id) ◦ αn
n+1 ◦ εnn = −f ◦ σ = −f♯(σ).

Hence B + C = g♯(σ)− f♯(σ) and thus

dn+1Pn(σ) = g♯(σ)− f♯(σ) + A+D,

where
A =

∑

0≤j<i≤n

(−1)i+jF ◦ (σ × id) ◦ αi
n ◦ εjn,

D =
∑

0≤i+1<j≤n+1

(−1)i+jF ◦ (σ × id) ◦ αi
n ◦ εjn.

To conclude the proof of the proposition, it remains to show that

A+D = −Pn−1dn(σ).

Hence, the next natural step is to calculate Pn−1dn(σ). Since Pn−1 is a
homomorphism, we have that

Pn−1(dn(σ)) =
n∑

j=0

(−1)jPn−1(σ ◦ εjn).

By the definition of Pn−1 for every j = 0, . . . , n we have

Pn−1(σ ◦ εjn) =
n−1∑

i=0

(−1)i(F ◦ (σ ◦ εjn)× id) ◦ αi
n−1.

It is trivial to verify that

((σ ◦ εnj )× id) = (σ × id) ◦ (εj × id).
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Hence

Pn−1(dn(σ)) =

n∑

j=0

n−1∑

i=0

(−1)i+j(F ◦ (σ × id) ◦ (εj × id) ◦ αi
n−1) = A′ +D′,

where
A′ =

∑

j≤i≤n−1

(−1)i+j(F ◦ (σ × id) ◦ (εj × id) ◦ αi
n−1),

D′ =
∑

i<j≤n

(−1)i+j(F ◦ (σ × id) ◦ (εj × id) ◦ αi
n−1).

By Lemma 13.2 we have that actually

A′ =
∑

j≤i≤n−1

(−1)i+jF ◦ (σ × id) ◦ αi+1
n ◦ εjn+1,

D′ =
∑

i<j≤n

(−1)i+jF ◦ (σ × id) ◦ αi
n ◦ εj+1

n+1.

Change of indices i+ 1 7→ i in A′ gives

A′ =
∑

j<i≤n

(−1)i+j+1F ◦ (σ × id) ◦ αi
n ◦ εjn+1 = −A.

Similarly one sees that D′ = −D. Hence

dn+1Pn(σ) = g♯(σ)− f♯(σ) + A+D = g♯(σ)− f♯(σ)− (A′ +D′) =

g♯(σ)− f♯(σ)− Pn−1dn(σ).

This is exactly what had to be shown.

Suppose f, g : (X,A) → (Y,B) are mappings of pairs and suppose F : (X×
I, A× I) → (Y,B) is a homotopy of pairs between f and g.

We have constructed a prism operator P : Cn(X) → Cn+1(Y ), defined by
F for every n ∈ Z. In the next step we show that it defines an induced prism
operator P n : Cn(X,A) → Cn+1(Y,B).

Suppose σ ∈ Singn(A) ⊂ Cn(A), where we think of Cn(A) as a subgroup
of Cn(X), as usual. It follows by definitions that in this case (σ× id)◦αn

i is a
continuous mapping ∆n+1 → A× I, for every i = 0, . . . , n. Since F (A× I) ⊂
B by our assumption, it follows that F ◦ (σ× id)◦αn

i : ∆n+1 → B is a (basis)
element of the group Cn+1(B). Since Pn is a linear combination of such
elements, it follows that the prism operator Pn maps Cn(A) into Cn+1(B).
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By the standard application of the factorization theorem 6.6 Pn induces a
homomorphism P n : Cn(X,A) → Cn+1(Y,B) which we call the relative prism
operator, for every n ∈ Z. The formula

dn+1Pn = g♯ − f♯ − Pn−1dn

which we have proved in Proposition 13.4 induces the similar formula

dn+1P n = g♯ − f♯ − P n−1dn

for the quotient groups.

The prism operators P n is an example of what is generally known as
”chain homotopy”.

Definition 13.7. Suppose α, β : C → C ′ are chain mappings between chain
complexes. The collection H = (Hn)n∈N of homomorphisms Hn : Cn → C ′

n+1

is called a chain homotopy between α and β if

d′n+1Hn +Hn−1dn = αn − βn,

for all n ∈ Z.

If for chain mappings α, β : C → C ′ there exists a chain homotopy H
between them, we say that α and β are chain homotopic.

Notice that chain homotopy is not a chain mapping itself!

So far, we have shown the following.

Lemma 13.8. Suppose f, g : (X,A) → (Y,B) are homotopic as mapping
of pairs. Then the induced mappings f♯, g♯ : C(X,A) → C(Y,B) are chain
homotopic.

The homotopy axiom 13.1 follows from the previous Lemma and the
following general result from homological algebra.

Lemma 13.9. Suppose α, β : C → C ′ are chain homotopic chain mappings
between chain complexes. Then

α∗ = β∗ : Hn(C) → Hn(C
′)

for all n ∈ Z.
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Proof. Let H be a chain homotopy between α and β. Suppose c ∈ Zn(C) is
a cycle. Then d(c) = 0, hence

α(c)− β(c) = d′H(c) +Hd(c) = d′H(c) ∈ Bn(C
′).

Hence f(c) = g(c) in homology.

The only part of the homotopy axiom 13.1 that remains unproved is the
special case of reduced groups. In other words suppose f, g : X → Y are
homotopic. We need to show that f∗ = g∗ : H̃n(X) → H̃n(Y ), n ∈ Z. For
n 6= 0 this follows from the homotopy axiom, since then reduced groups are
the same as absolute. The only interesting case is the case n = 0. But we
know that H̃0(X) can be considered as a subgroup ofH0(X) in a natural way,
and similarly for Y . Moreover then f∗ : H̃0(X) → H̃0(Y ) is just the restric-
tion of f∗ : H0(X) → H0(Y ) to a subgroup and g∗ : H̃0(X) → H̃0(Y ) is also
a restriction of g∗ : H0(X) → H0(Y ). Since f∗ = g∗, also their restrictions are.

The Proposition 13.1, which is known as the homotopy axiom for the
singular homology theory is proved.

Remark 13.10. The reader should not be confused by the usage of the word
”axiom” in this context. By the axiom one often understands ”self-evident
truth”, which is assumed or otherwise known to be true a priori and requires
no proof. We do, of course, prove that the homology groups we have con-
structed satisfy homotopy axiom, it is not an assumption, it is a property
homology groups possess.

The terminology comes from the axiomatic approach to homology theory.
In a nutshell, homotopy axiom is called an axiom, because it is a property
one expects any homology theory to satisfy. Besides the singular homology
theory there exists a lot of different homology theories in topology. The precise
definition of ”homology theory” involves a list of ”axioms” i.e. properties that
homology theory should satisfy, in order to be called a homotopy theory.

Recall that the mapping f : (X,A) → (Y,B) is called a homotopy
equivalence if there exists g : (Y,B) → (X,A) such that f ◦ g ≃ id(Y,B),
g ◦ f ≃ id(X,A) (as mappings of pairs).
Mapping g is then called a homotopy inverse of f . The pairs (X,A) and
(Y,B) are said to have the same homotopy type if there exists homotopy
equivalence f : (X,A) → (Y,B).

202



Corollary 13.11. Suppose f : (X,A) → (Y,B) is a homotopy equivalence.
Then

f∗ : Hn(X,A) → Hn(Y,B)

is an isomorphism for all n ∈ Z. The same is true for reduced groups in the
absolute case.
In particular spaces of the same homotopy type have isomorphic homology
groups, in all dimensions.

Proof. Suppose g : (Y,B) → (X,A) is a homotopy inverse of f . Then g ◦f ≃
id as mappings (X,A) → (X,A), so by the homotopy axiom 13.1 we have
that

g∗ ◦ f∗ = (g ◦ f)∗ = id: Hn(X,A) → Hn(X,A) for all n ∈ N.

Similarly f∗ ◦ g∗ = id: Hn(Y,B) → Hn(Y,B). Hence the homomorphism g∗
is the inverse of the homorphism f∗. In particular f∗ is an isomorphism.

The next result is the important generalization of the previous result.

Proposition 13.12. Suppose f : (X,A) → (Y,B) is a mapping of pairs such
that both f : X → Y and f |A : A → B are homotopy equivalences. Then

f∗ : Hn(X,A) → Hn(Y,B)

is an isomorphism for all n ∈ Z.

Proof. Exercise (application of the precious result and Five Lemma).

Example 13.13. Consider the inclusion of pairs i : (B
n
, Sn−1) → (B

n
, B

n \
{0}). Then i : B

n → B
n
is just the identity mapping, so certainly a ho-

motopy equivalence. The restriction i : Sn−1 → B
n \ {0} is known to be

a homotopy equivalence (Example 7.10, details as exercise). Hence, by the
previous proposition the induced mapping

i∗ : Hn(B
n
, Sn−1) → Hn(B

n
, B

n \ {0})

is an isomorphism for all n ∈ Z.

This example also shows that the result 13.12 is truly a generalization of
the Corollary 13.11. Namely, it can be shown that as a mapping of pairs the
mapping i : (B

n
, Sn−1) → (B

n
, B

n \ {0}) is not a homotopy equivalence, so
the result above cannot be obtained by Corollary 13.11.
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Recall that a topological space X is called contractible, if the identity
mapping id: X → X is homotopic to a constant mapping x0 : X → X for
some x0 ∈ X . Precisely this means that there exists a continuous mapping
H : X × I → X such that H(x, 0) = x, H(x, 1) = x0 for all x ∈ X .
If this homotopy is stable at x0 i.e. H(x0, t) = x0 for all t ∈ I, we say that
the pair (X, x0) is contractible.

Lemma 13.14. The space X is contractible if and only if it has the same
homotopy type as a singleton space {x}.
Similarly the pair (X, x) is contractible if and only if it has the same homo-
topy type as the pair ({x}, {x}).
Every contractible space is path-connected.

Proof. Exercise.

Example 13.15. As we already note before the spaces Rn, B
n
and Bn are

contractible. More generally any convex subset C of a finite dimensional vec-
tor space V is contractible.

Example 13.16. Consider the so-called ”topological comb”-space X defined
as

X =
⋃

n∈N+

{1/n} × I ∪ {0} × I ∪ I × {0}.

Then X is contractible. Let x0 = (0, 1). Then the pair (X, x0) is not con-
tractible. Proofs are left as an exercise.

Since spaces with the same homotopy type have the same homology and
the homology of the singleton space is already calculated, we obtain the
following result.

Corollary 13.17. Suppose X is a contractible space. Then

Hn(X) = 0 for n > 0,

H0(X) ∼= Z,

H̃0(X) = 0.

In particular this is true for X = Rn,∆n, B
n
, Bn for all n ∈ N.

This result seems disappointing at this point. Homology groups of Eu-
clidean spaces turn out to be all isomorphic and quite boring. In particular
they alone do not tell us anything about any topological differences of the
spaces Rn for different n. In order to be able to do that we need to learn
to calculate homology groups of less trivial, non-contractible spaces, such as
the spheres Sn.
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14 Excision

So-called excision property is perhaps the most powerful and important prop-
erty of the singular homology (although in order for it to work we do need
other properties, for instance the homotopy axiom). It makes homology
groups highly computable and ”well-behaved”, compared, for instance to the
homotopy groups, which do not satisfy excision property.
Formally Excision axiom is the following statement

Theorem 14.1. Suppose A ⊂ U ⊂ X, where X is a topological space.
Suppose A ⊂ intU . Then the inclusion mapping i : (X \A,U \A) → (X,U)
of pairs induces isomorphism

i∗ : Hn(X \ A,U \ A) → Hn(X,U)

in homology for all n ∈ Z.

In other words, under the assumptions of the theorem, you can ”cut out
” or ”excite” the set A from the pair (X,U) without altering the homology.

Before proving this theorem let us give an example of its application,
which will illuminate its importance and the way this property is applied in
practice.

Suppose one wants to calculate the homology groups of the sphere Sn. It
is enough to compute the reduced homology groups. Let

U = Sn \ {en+1} ⊂ Rn+1.

The subset U is homeomorphic to Rn via stereographic projection from the
”north pole”, see example 3.8. In particular U is contractible, so its reduced
homology groups are trivial, by the results of the previous section (Corollary
13.17). From the long exact reduced homology sequence

H̃m(U) = 0 // H̃m(S
n)

j∗ // Hm(S
n, U) // H̃m−1(U) = 0

we see that the homomorphism j∗ : H̃m(S
n) ∼= Hm(S

n, U) is an isomorphism
(by exactness), so it is enough to compute the relative groups Hm(S

n, U).
Let

A = {x = (x1, . . . , xn+1) ∈ Sn | xn+1 < 0}.
Then A = {x ∈ Sn | x ≤ 0} ⊂ U = intU , so the excision axiom implies that

Hm(S
n, U) ∼= Hm(S

n \ A,U \ A).
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The set Sn \ A is a closed upper hemisphere {x ∈ Sn|xn+1 ≥ 0} of the
sphere Sn, which is homeomorphic to the closed ball B

n
(exercise). Under

this homeomorphism the subset U \ A corresponds to the punctured ball
B

n \ {0}. Hence

Hm(S
n \ A,U \ A) ∼= Hm(B

n
, B

n \ {0}).

The application of the Proposition 13.12 (see Example 13.13) shows that the
inclusion of pairs (B

n
, Sn−1) → (B

n
, B

n \ {0}) induces an isomorphism

Hm(B
n
, B

n \ {0}) ∼= Hm(B
n
, Sn−1),

for all m ∈ Z.

On the other hand the space B
n
is contractible, so its reduced homology

groups are trivial (Corollary 13.17). The part of the long exact reduced
homology sequence of the pair (B

n
, Sn−1) is the sequence

H̃m(B
n
) = 0 // Hm(B

n
, Sn−1)

∆ // H̃m−1(S
n−1) // H̃m−1(B

n
) = 0.

By exactness ∆ is an isomorphism, hence

Hm(B
n
, Sn−1) ∼= H̃m−1(S

n−1), m ∈ Z.

Thus we have proved that for all m ∈ Z and all n ≥ 1 we have the equation

H̃m(S
n) ∼= H̃m−1(S

n−1).

Notice that if we would use ordinary groups instead of reduced, we would
have to deal with exceptional cases m = 0, 1 and the computations would be
more involved, complicated and unsymmetrical. This is a typical illustration
of the convenience of reduced groups.

Now we can proceed by induction. The reduced homology groups of the
space S0, which is a discrete space consisting of two points, is easy to calculate
directly. They are (exercise)

H̃m(S
0) = 0 for m 6= 0,

H̃0(S
0) ∼= Z.

Hence the previous computations imply by induction the following impor-
tant result (and our first interesting example of non-trivial homology groups).
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Theorem 14.2. Singular homology groups of the sphere Sn, n ∈ N are the
following.

Hm(S
n) =





Z, if m = n 6= 0 or n 6= 0, m = 0,

Z⊕ Z, if m = n = 0,

0, otherwise

.

The reduced groups are

H̃m(S
n) =

{
Z, if m = n

0, if m 6= n
.

Since 0 = Hn(S
m) 6= Hn(S

n) = Z, n 6= m, the Proposition 13.11 immedi-
ately implies the following result.

Corollary 14.3. If n 6= m spheres Sn and Sm don’t have the same homo-
topy type. In particular they are not homeomorphic. A sphere Sn is not
contractible for any n ∈ N.

Now we can also deduce the long promised classical result.

Corollary 14.4. Euclidean spaces Rn and Rm are not homeomorphic if n 6=
m.

Proof. Suppose f : Rn → Rm is a homeomorphism. By composing it with
a translation, if necessary, we may assume that f(0) = 0. Hence f induces
a homeomorphism Rn \ {0} → Rm \ {0}. In particular these spaces have
the same homotopy type. But Rn \ {0} has the same homotopy type as
Sn−1, so we obtain that Sn−1 and Sm−1 have the same homotopy type. This
contradicts previous corollary.

This result can be slightly generalized. If U ⊂ Rn and V ⊂ Rm are both
open, non-empty and there is a homeomorphism f : U → V , then n = m.
We leave the proof of this result to the reader. Later we will get to even
even stronger claim, which is officially known as ”the invariance of domain”.
It asserts that if U ⊂ Rn is open and f : U → Rm is an injective continuous
mapping, then f(U) is open in Rm and m = n.

Another result we can immediately prove using Theorem 14.2, is that
Sn−1 is not a retract of B

n
. A continuous mapping p : X → A is called

a retraction if A is a subspace of X and p|A = idA. In other words if
i : A → X denotes the inclusion, p is retraction if and only if p ◦ i = idA. If
p : X → A is a retraction, we say that A is a retract of X .
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Corollary 14.5. Sn−1 is not a retract of B
n
.

Proof. Suppose p : B
n → Sn−1 is such that p ◦ i = idA. This implies in

particular that

p∗ ◦ i∗ = id: H̃n−1(S
n−1) → H̃n−1(S

n−1).

It follows that i∗ : H̃n−1(S
n−1) → H̃n−1(B

n
) is an injection. This is however

not possible, since H̃n−1(S
n−1) ∼= Z 6= 0, while H̃n−1(B

n
) = 0.

It remains to actually prove the excision property. The proof is rather
long and tedious. In fact we will prove more general result stated below in
the theorem 14.6.

Suppose A = (Ai)i∈I is a collection of subsets of a topological space X .
By CA

n (X) we denote the free subgroup of Cn(X) generated by exactly those
singular simplices σ : ∆n → X that have the property σ(∆n) ⊂ Ai for some
i ∈ I. It is elementary to check that the collection of these subgroups form a
chain subcomplex CA(X) of the chain complex C(X). The homology groups
of this chain complex are denoted HA

n (X).

Theorem 14.6. Suppose U is a covering of X with the property that the
collection {intU |U ∈ U} of interiors of all the elements of U (with respect to
X) is also a covering of X. Then the inclusion mapping i : CU(X) → C(X)
induces isomorphisms

i∗ : H
U
n (X) ∼= Hn(X)

in homology for every n ∈ Z.

Let us first check that the this theorem implies excision property. Suppose
A ⊂ U ⊂ X are such that A ⊂ intU . Denote V = X \A and let U = {U, V }.
Then (by the general topology)

int V = int(X \ A) = X \ A, thus

int V ∪ intU = X.

Hence the covering U satisfies conditions of Theorem 14.6. Also in this case

CU
n (X) = Cn(U) + Cn(V ) = {u+ v | u ∈ Cn(U) + Cn(V )},

so it is natural to denote the complex CU(X) by C(U) + C(V ). Both C(U)
and C(V ) are subcomplexes of C(U) + C(V ). Hence also the quotient sub-
complexes (C(V )+C(U))/C(U) and (C(V )+C(U))/C(V ) exist. Moreover,
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there exists commutative diagram

0 // C(U) //

id
��

C(V ) + C(U) //

i

��

(C(V ) + C(U))/C(U) //

��

0

0 // C(U) // C(X) // C(X,U) // 0

with exact rows. By the naturality of the long homology sequence we obtain
a commutative diagram

Hn(U) //

id
��

HU
n (X) //

i∗

��

Hn((C(V ) + C(U))/C(U)) //

��

Hn−1(U) //

id
��

HU
n−1(X)

i∗

��
Hn(U) // Hn(X) // Hn(X,U) // Hn−1(U) // Hn−1(X).

with exact rows. By Theorem 14.6 the homomorphism i∗ is isomorphism
for all n ∈ Z. Also the identity mapping id : Hn(U) → Hn(U) is trivially
isomorphism. By the five-lemma 11.14 it follows that also induced mapping
Hn((C(V ) + C(U))/C(U)) → Hn(X,U) is an isomorphism, for all n ∈ Z.

Next consider a mapping j : C(V )/C(U ∩ V ) → (C(V ) + C(U))/C(U)
induced by the inclusion C(V ) →֒ C(V ) + C(U). Notice that C(U ∩ V ) =
C(U)∩C(V ). By the second isomorphism theorem of the group the-
ory (see example 7.11) j is a (chain) isomorphism. In particular it induces
isomorphisms between homology groups.
Collecting all these data together gives us the isomorphism Hn(V, V ∩ U) ∼=
Hn(X,U) induced by the inclusion, for all n ∈ N. Since V = X \ A and
V ∩ U = U \ A, this is precisely the excision axiom.

Hence it remains to prove the theorem 14.6. We prove it by showing that
i : CU(X) → C(X) is a chain homotopy equivalence i.e. there is a chain
mapping j : C(X) → CU(X) such that j ◦ i and i ◦ j are chain homotopic
to the identity mapping. Since chain homotopic mappings induce the same
homorphisms in homology (Lemma 13.9), it follows that

j∗ ◦ i∗ = id, i∗ ◦ j∗ = id,

so i∗ is indeed an isomorphism.

The construction of j and the homotopies involved is done in several steps.

Suppose V is a finite-dimensional vector space andD ⊂ V is a convex non-
empty subset. Denote by LCn(D) a subgroup of Cn(D) generated by singular
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n-simplices f : ∆n → D, which are affine as mappings. Notice that such a
mapping is uniquely determined by the (n + 1)-tuple {f(e0), . . . , f(en)} ∈
Dn+1. Conversely, since D is convex, any (n + 1)-tuple (f0, . . . , fn) i.e. any
element of the cartesian product Dn+1 defines a unique convex mapping
f : ∆n → D with the property f(ei) = fi, for all i = 0, . . . , n. Thus we might
as well define LDn as a free group generated by the cartesian product Dn+1.
The boundary operator d of Cn(D) maps LDn to LDn−1 and is defined by
the formula (on generators)

d(f0, . . . , fn) =

n∑

i=0

(−1)i(f0, . . . , f̂i, . . . fn).

This means that the subgroups LCn(D) form a chain subcomplex LC(D)
of the singular chain complex C(D). Notice that LC0(D) = C0(D), so the
chain complex LC(D) had a natural augmentation ε : LC0(D) → Z defined
by ε(f) = 1 for all f ∈ D.

Let b ∈ D be a fixed point. We define, for every n ∈ N, a homomorphism

Bb = B : LCn(D) → LCn+1(D)

by
B(d0, . . . ,dn) = (b,d0, . . . ,dn).

For n < 0 we define B : LCn(D) → LCn+1(D) to be an obvious zero mapping.
Straightforward calculation shows (exercise) that for all x ∈ LCn(D) we have
that

(14.7) (dn+1B +Bdn)(x) =

{
x, if n > 0,

x− ε(x)b, if n = 0.

This implies that the restriction of B to the reduced subgroup

L̃Cn(D) = Ker ε ∩ LCn(D)

is a chain homotopy between the identity mapping of L̃C(D) and the zero
mapping. Chain homotopic mappings induce the same mappings in homol-
ogy, by Lemma 13.9. On the other hand the identity mapping induces the
identity mapping in homology and zero mapping induced zero mapping in
homology. The only instance in which the identity mapping of the group
equals to the zero mapping, is when the group is a trivial group. Hence
Hn(L̃C(D)) = 0 for all n ∈ N i.e. the reduced complex L̃C(D) is acyclic.
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Next we define so-called subdivision homomorphism Sn : LCn(D) →
LCn(D) by induction on n. For n = 0 we assert S0 = id.

Suppose n > 0 and Sn−1 is already defined. Let f = (f0, . . . , fn) be a
generator of the group LCn(D), which by definition is an affine mapping
f : ∆n → D. Let b be the barycentre of the simplex ∆n. Let

bf = f(b).

By B = Bf : LCn−1(D) → LCn(D) we denote the homomorphism Bf(b)

defined, as above, by

Bf (f0, . . . , fn−1) = (bf , f0, . . . , fn−1).

We define
Sn(f) = Bf (Sn−1(dnf))

and extent Sn to the unique homomorphism LCn(D) → LCn(D). This
makes sense, since dnf ∈ LCn−1(D) and Sn−1(dnf) ∈ LCn−1(D) is already
by inductive assumption defined. This concludes the inductive step in the
construction of the family (Sn) of homomorphisms. As usual we can define
Sn : LCn(D) → LCn(D) also for negative n < 0 as zero homomorphisms.

Lemma 14.8. Suppose f ∈ LCn(D) is an affine singular simplex f : ∆n →
D. Let K = K(∆n) be the simplicial complex that consists of ∆n and all its
faces. Let K ′ be the first barycentric subdivision of K. Let

A = {f(σ) | σ ∈ K ′}.

Then Sn(f) is an element of CA(D).

Proof. Since the operator Sn is defined by induction on n, we also prove this
claim by induction on n. For n = 0 K ′ = K and S0(f) = f , so the claim is
trivial.

Suppose the claim is true for n− 1. By the definition

dnf =
n∑

i=0

(−1)idinf,

where dinf = f ◦εin : ∆n−1 → D. Applying inductive assumption on fi = dinf ,
we see that Sn−1fi is a finite linear sum of the singular affine (n−1)-simplices
whose images lie in the subset of D of the form

fi(τ) = f(εin(τ)),
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where τ is a simplex from the first barycentric division of ∆n−1. Now, recall
how barycentric division K ′ of an arbitrary simplicial complex K is defined.
By definition simplicies of K ′ are simplices spanned by the affinely indepen-
dent sequences of the form

(b(σ0),b(σ1), . . . ,b(σn)),

where σ0 < σ1 < . . . < σn are simplices of K and b(σ) is a barycentre of
σ. Since the mapping εin : ∆n−1 → ∆n is a simplicial embedding, it follows
that it maps any simplex τ of K ′(∆n−1) into the simplex εin(τ) = σ of the
barycentric division K ′(∆n), that lies on the boundary Bd∆n, i.e. is actually
a simplex of the barycentric division K ′(Bd∆n) of the boundary of ∆n. By
definition

Sn(f) = Bf(Sn−1(dnf)) =

n∑

i=0

(−1)iBf(Sn−1(fi)),

so it enough to conclude now that Bf(Sn−1(fi)) ∈ Cn(A). We have already
shown that Sn−1fi is a linear sum of the affine simplices of the form f(τ),
where τ is a simplex from the first barycentric division of the boundary
Bd∆n of ∆n. Hence it is enough to show that Bf(fτ)) ∈ CA

n (D). This
follows straight from the definition of Bf and the definition of the barycentric
division K ′(∆n).

The next step is the construction of the chain homotopy Hn : LCn(D) →
LCn+1(D) between the chain mappings S and id. At this point careful reader
might notice that we did not actually show that S is a chain mapping. How-
ever it turns out that the sheer existence of the chain homotopy H already
implies that S is chain mapping, so we do not even need to prove it. More
precisely the following statement is true.

Lemma 14.9. Suppose C and C ′ are chain complexes. Suppose for every
n ∈ Z homomorphisms fn : Cn → C ′

n and fn : Cn → C ′
n are given. Suppose

also that for every n ∈ Z there exists a group homomorphism Fn : Cn → C ′
n+1

such that
d′n+1Fn + Fn−1dn = fn − gn

for all n ∈ Z. Then f = (fn) is a chain mapping if and only if g = (gn) is a
chain mapping.

Proof. By the symmetry it is enough to prove that if g is a chain mapping,
then also f is. Let n ∈ Z. Then

d′nfn = d′n(d
′
n+1Fn + Fn−1dn + gn) = d′nd

′
n+1Fn + d′nFn−1dn + d′ngn.
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Here d′nd
′
n+1 = 0 since C ′ is a chain complex and

d′ngn = gn−1dn,

since we are assuming g to be a chain mapping. Hence

d′nfn = (d′nFn−1 + gn−1)dn = (fn−1 − Fn−2dn−1)dn = fn−1dn,

what is what had to be shown. Here we used the equation

d′nFn−1 + Fn−2dn−1 = fn−1 − gn−1

which is a part of assumption and the fact that dn−1dn = 0, which holds
since C is a chain complex.

The identity mapping id: C → C is always a chain mapping. Hence,
if we manage to construct the family of homomorphisms Hn : LCn(D) →
LCn+1(D) with the property

dn+1Hn +Hn−1dn = id−Sn,

the previous lemma would automatically imply that S is a chain mapping.

We construct Hn : LCn(D) → LCn+1(D) by induction on n. For n = 0
we assert H0 = 0. For n > 0 we assert

Hn(f) = Bf(f −Hn−1df)

for every singular affine simplex f : ∆n → D and then extend Hn to a homo-
morphism.

Next we check by induction on n ≥ 0 that dn+1Hn + Hn−1dn = id−Sn

(for n < 0 this formula is trivially true). For n = 0 this is clear, since
H0 = H−1 = id−S0 = 0. Assume that the formula is true for n− 1 ≥ 0 i.e.

dnHn−1 = id−Sn−1 −Hn−2dn−1.

Then for n > 0 we have

dn+1Hn(f) = dn+1(Bf(f−Hn−1dnf)) = f−Hn−1dnf−Bf (dn(f−Hn−1dnf)), since

dn+1Bf = id−Bf (dnf),

which was shown before (see 14.7). On the other hand by induction we have
that

dnHn−1 = id−S −Hn−2dn−1,
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so

dn(f −Hn−1dnf) = dnf − (dnf − Sn−1(dnf)−Hn−2dn−1dnf) = Sn−1(dnf).

Also Bf (Sdnf) = Sn(f) by the inductive definition of S.
Hence

dn+1Hn(f) = f −Hn−1dnf − Bf(Sn−1(dnf)) = f − Sn(f)−Hn−1dn(f),

which is what had to be shown.

So far everything was done for a special case of the convex set D. Next
step is to generalize the constructions we have done to arbitrary topological
space. Let X be a topological space. We define barycentric subdivision
operator Sn : Cn(X) → Cn(X) for every n ∈ Z as following. For the singular
n-simplex σ ∈ Singn(X) we assert

Sn(σ) = σ♯Sn(id∆n).

This is to be understood in the following way. The simplex ∆n is a con-
vex subset of a finite-dimensional vector space Rn+1, so for it we have the
operator Sn : LCn(∆n) → LCn(∆n) already defined. Moreover the identity
mapping id: ∆n → ∆n is affine, hence is an element of LCn(∆n). we apply
Sn : LCn(∆n) → LCn(∆n) to this element, obtaining an element of LCn(∆n),
which is a subgroup of the group Cn(∆n) of regular n-chains. Finally we apply
homomorphism σ♯ : Cn(∆n) → Cn(X), induced by the continuous mapping
σ : Cn(∆n) → Cn(X).

By Lemma 14.8 Sn(id∆n) is an element of the group CA(∆n), where A
is simply a collection of all simplices in the first barycentric subdivision of
the simplex ∆n. Hence, for an arbitrary singular n-simplex σ : ∆n → X , in
an arbitrary topological space, Sn(σ) is an element of the subgroup CB(X),
where

B = {σ(τ) | τ ∈ A}
In other words Sn(σ) is a linear combination of the restrictions of the contin-
uous mapping σ : ∆n → X to the simplices in the first barycentric division
of ∆n.
Since S : Cn(X) → Cn(X) maps Cn(X) into itself, we can ”iterate it” i.e.
form compositions of S with itself any number of times, obtaining a homo-
morphism

Sm = S ◦ S ◦ . . . ◦ S︸ ︷︷ ︸
m times

.

Previous observation, generalized by induction, easily implies the following
important result, which is the key to the proof of excision theorem.
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Lemma 14.10. Suppose X is a topological space and σ : ∆n → X is a
singular n-simplex in X. Let m ∈ N and denote

Bm = {σ(τ) | τ ∈ Km},

where Km is the m-th barycentric subdivision of K(∆n). Then Sm(σ) belongs
to a subgroup CBm(X).

After Sn is defined, we define, for every n ∈ Z, a chain homotopy
Hn : Cn(X) → Cn+1X by

Hn(σ) = σ♯(Hn(id∆n)),

where again Hn(id∆n) is the image of id : ∆n → ∆n under already defined
Hn : LCn(∆n) → LCn+1(∆n) ⊂ Cn(∆n). The corresponding property of this
homotopy shows, that H is then in general a chain homotopy between id and
S (exercise). Lemma 14.9 then shows that S is indeed a chain mapping.

We are ready to prove the theorem 14.6.
Suppose U is a covering of X such that

intU = {intU |U ∈ U}

is also a covering of X .
Let σ ∈ Singn(X) be a singular n-simplex in the topological space X .

Then, since σ is continuous, the collection

σ−1(intU) = {σ−1(intU) | U ∈ U}

is an open covering of the simplex ∆n. By Proposition 4.21 there exists
m ∈ N such that the m-th barycentric division Km of ∆n is finer than this
covering. In particular this means that for every τ ∈ Km there exists U ∈ U
such that τ ⊂ σ−1(intU). It follows that for every τ ∈ Km there exists
U ∈ U such that

σ(τ) ⊂ intU ⊂ U.

By Lemma 14.10 this implies, that the iterated barycentric subdivision
operator

Sm = S ◦ . . . ◦ S︸ ︷︷ ︸
m times

maps the element σ onto an element of the subgroup CU
n (X).
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In the previous observation the index m naturally depends on σ. For
every singular n-simplex σ ∈ Singn(X) let m(σ) be the smallest integer
m(σ) ∈ N that has the property

Sm(σ)(σ) ∈ CU
n (X).

Since S is a chain mapping and CU(X) is a subcomplex, we have that

S
m(σ)
n−1 (dnσ) = dnS

m(σ)
n (σ) ∈ CU

n−1(X).

This implies that for every face din(σ) of the simplex σ we have that

m(din(σ)) ≤ m(σ).

Also for any m ≥ m(σ) evidently Sm(σ) ∈ CU
n (X), since S maps CU

n (X) to
itself (check!).

It is a straightforward calculation (exercise) to verify that

Dm =
∑

0≤i<m

HSi

is a chain homotopy between the chain mappings id and Sm, for every m ∈ N.
We define D : Cn(X) → Cn+1(X) for every n ∈ N by asserting

D(σ) = Dm(σ)(σ).

for singular n-simplices σ in X . Now, for a singular n-simplex σ we have
that

(dn+1D +Ddn)(σ) = (dDm(σ)(σ) +Dm(σ)(dσ))−Dm(σ)(d(σ)) +D(d(σ)) =

= (σ − Sm(σ))−Dm(σ)(d(σ)) +D(d(σ)) = σ − p(σ),

where we haveused the equation

dDm(σ) +Dm(σ)d = id−Sm(σ)

and denoted p(σ) = Sm(σ) + Dm(σ)(d(σ)) − D(dσ). We claim that p(σ) ∈
CU

n (X). This is clear for the term Sm(σ). For all i ∈ {0, . . . , n} we have that
m(diσ) ≤ m(σ), so

Dm(σ)(d
iσ)−D(diσ) = Dm(σ)(d

iσ)−Dm(diσ)(diσ) =
∑

m(diσ)≤j<m(σ)

HSj(dσ).
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Now for j ≥ m(diσ) Sj(diσ) ∈ CU
n (X), as we have already noticed above.

Also, it is easy to see that the homotopy H maps CU
n (X) into itself (check),

so the claim is proved.

If we now denote by p the mapping C(X) → CU(X) defined by p, we see
that D is then a chain homotopy between id and i ◦ p, where i : CU(X) →
C(X) is an inclusion.
Lemma 14.9 implies that i ◦ p, hence also p itself, are chain mappings.
Moreover, by the definition of p, it follows easily that p ◦ i = id, because
m(σ) = 0 = m(diσ) for σ ∈ CU(X), so in that case Sm(σ)(σ) = id(σ), and
Dm(σ)(dσ) = D(dσ).

Since p ◦ i = id, in homology we have that

p∗ ◦ i∗ = (p ◦ i)∗ = id∗ = id .

Moreover, since i◦p is a chain homotopic to the identity mapping, by Lemma
13.9 we obtain that

i∗ ◦ p∗ = (i ◦ p)∗ = id∗ = id .

Hence p∗ and i∗ are inverses of each other, in particular i∗ is an isomorphism.
This is precisely what Theorem 14.6 claims. Excision property of the singu-
lar homology is proved.

Now we know essentially everything one needs to know about the singular
homology groups. All the applications and further development of the theory
will be done using the properties proved so far, such as excision property and
homotopy property.

As a useful example of the calculation that involves different properties
of the singular homology we will investigate the exact structure of the group
Hm(∆n,Bd∆n) for all m,n ∈ N.

At this point we can already easily compute these groups up to an iso-
morphism. Indeed we have the long exact reduced homology sequence of the
pair (∆n,Bd∆n), which locally looks the following

H̃m(∆n) // Hm(∆n,Bd∆n)
∆ // H̃m−1(Bd∆n) // H̃m−1(∆n).

The simplex ∆n is contractible, so its reduced homology groups H̃m(∆n) are
trivial 0 groups for all m ∈ N (Corollary 13.17). Hence we have the exact
sequence

0 // Hm(∆n,Bd∆n)
∆ // H̃m−1(Bd∆n) // 0
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for all m ∈ Z. By exactness Ker∆ = Im0 = 0 and Im∆ = Ker 0 =
Hm−1(Bd∆n), which means that the homomorphism ∆: Hm(∆n,Bd∆n) →
H̃m−1(Bd∆n) is an isomorphism for m ∈ Z. The boundary Bd∆n is homeo-
morphic to the sphere Sn−1 (Corollary 3.21). The reduced homology groups
of the sphere Sn−1 are already calculated in Theorem 14.2. Hence

Hm(∆n,Bd∆n) ∼=
{
Z, if m = n

0, if m 6= n
.

This calculation tells us in particular that Hn(∆n,Bd∆n) is isomorphic to
the group of integers Z, which is a free group generated by one element.
However the calculation does not tell us which element of Hn(∆n,Bd∆n) is
its generator.

Consider the singular n-simplex idn = id: ∆n → ∆n, which is an element
of the group Cn(∆n). Its boundary is the element

d(id) =

n∑

i=0

εin,

which belongs to the subgroup Cn−1(Bd∆n) of the group Cn−1(Bd∆n), since
the image of the mapping εin : ∆n−1 → ∆n lies in the boundary Bd∆n. Hence
id is not in general a cycle element in C(∆n) (unless n = 0), but its equiv-
alence class in the quotient group Cn(∆n,Bd∆n) is a cycle. Hence there
exists a homology class id ∈ Hn(∆n,Bd∆n).

Proposition 14.11. Suppose n,m ∈ N. Then

(1) Hm(∆n,Bd∆n) = 0 if m 6= n,

(2) the group Hn(∆n,Bd∆n) is a free abelian group on one element gener-
ated by an element id.

Proof. The claim (1) is already established, so it is enough to prove the claim
(2).

We prove this claim by induction on n by constructing an isomorphism
between γ : Hn(∆n, d∆n) → Hn−1(∆n−1,Bd∆n−1) that takes idn to idn−1.
Once we have such an isomorphism, it is enough to verify the claim for
n = 0. But for n = 0 the pair (∆n,Bd∆n) is just a singleton (∆0, ∅) = ∆0.
By Proposition 12.9 the group H0(∆0) is a free abelian group generated by
(class of) the unique mapping ∆0 → ∆0, which is exactly the identity map-
ping id0.
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It remains to contruct an isomorphism γ : Hn(∆n,Bd∆n) → Hn−1(∆n−1,Bd∆n−1)
that takes idn to idn−1 for every n > 0.

Denote
Λ0

n =
⋃

i>0

din∆n,

which is thus the union of all (n − 1)-faces of ∆n, except for the 0’th face.
The linear homotopy α : ∆n×I → ∆n, which contracts ∆n into the point e0,

α(x, t) = (1− t)x+ te0

has the property
α(Λ0

n × I) ⊂ Λ0
n

(verification left as an exercise). In other words the restriction of α : Λ0
n×I →

Λ0
n is a contraction of Λ0

n into a point. In particular Λ0
n is contractible, so its

reduced homology groups are all trivial, just as the reduced homology groups
of ∆n. Consider the long exact homology sequence of the pair (∆n,Λ

0
n),

. . . // H̃m(∆n) // Hm(∆n,Λ
0
n)

// H̃m−1(Λ
0
n)

// . . . .

Since all reduced absolute homology groups in this sequence are trivial, we
obtain exact sequence of the form

0 // Hm(∆n,Λ
0
n) // 0

for every m ∈ Z. As usual, by exactness, this implies that Hm(∆n,Λ
0
n) = 0

for all m ∈ Z. Next we consider the long exact homology sequence of the
triple (∆n,Bd∆n,Λ

0
n), a part of which looks like

Hn(∆n,Λ
0
n)

j∗ // Hn(∆n,Bd∆n)
∆ // Hn−1(Bd∆n,Λ

0
n)

i∗ // Hn−1(∆n,Λ
0
n).

Since Hn(∆n,Λ
0
n) = 0 = Hn−1(∆n,Λ

0
n), we obtain the exactness of the se-

quence

0 // Hn(∆n,Bd∆n)
∆ // Hn−1(Bd∆n,Λ

0
n)

// 0,

which implies that ∆: Hn(∆n,Bd∆n) → Hn−1(Bd∆n,Λ
0
n) is an isomor-

phism. To calculate ∆(idn)) we have to recall how the boundary operator of
the long exact homology sequence is defined. First we need an element c of
Cn(∆n,Λ

0
n) with the property j(c) = idn. Obviously, the class of the identity

mapping idn, as an element of Cn(∆n,Λ
0
n), has this property, so we take it as

a c. Next, we take its boundary dc in the complex C(∆n,Λ
0
n) and its class,
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thought of as an element of Cn−1(Bd∆n,Λ
0
n), is an element ∆n(idn) we are

looking for. In other words

∆(idn) = d(idn).

But in the group Cn−1(Bd∆n,Λ
0
n)

d(idn) =
n∑

i=0

di(idn) = d0(idn),

since di idn ∈ Cn−1(Λ
0
n) for i > 0. Thus finally we obtain, for the isomorpism

∆: Hn(∆n,Bd∆n) → Hn−1(Bd∆n,Λ
0
n), that

∆(idn) = d0(idn).

Recall the mapping ε0n : ∆n−1 → ∆n which embeds ∆n−1 as a 0’th face of ∆n.
For our purposes we think of it is a mapping of pairs ε0n : (∆n−1,Bd∆n−1) →
(Bd∆n,Λ

0
n) (an embedding), which by definition has the property

ε0n = ε0n ◦ idn−1 = d0(id).

Next step is to prove that the induced mapping

ε∗ : Hn−1(∆n,Bd∆n−1) → Hn−1(Bd∆n,Λ
0
n)

is an isomorphism. Consider the commutative diagram

Hn−1(Bd∆n,Λ
0
n)

Hn−1(∆n,Bd∆n−1)

ε∗
33hhhhhhhhhhhhhhhhhhh

ε∗

++VVVV
VVV

VVV
VVV

VVV
VVV

Hn−1(Bd∆n \ {e0},Λ0
n \ {e0})

i∗

OO
,

where we denote by ε also the mapping of pairs (∆n−1,Bd∆n−1) → (Bd∆n \
{e0},Λ0

n \ {e0}) defined by the same formula as ε0n. By choosing A = {e0},
U = Λ0

n, we see that

A = A ⊂ intU = {x ∈ Bd∆n|x0 > 0},

so the inclusion of pairs

i : (Bd∆n \ {e0},Λ0
n \ {e0}) → (Bd∆n,Λ

0
n)
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satisfies the assumptions of the Excision Theorem 14.1. Hence the induced
mapping

i∗ : Hn−1(Bd∆n \ {e0},Λ0
n \ {e0}) → Hn−1(Bd∆n,Λ

0
n)

is an isomorphism. Since the diagram 14 commutes, it follows that

ε∗ : Hn−1(∆n,Bd∆n−1) → Hn−1(Bd∆n,Λ
0
n)

is an isomorphism if and only if

ε∗ : Hn−1(∆n−1,Bd∆n−1) → Hn−1(Bd∆n \ {e0},Λ0
n \ {e0})

is an isomorphism. Define

λ : (Bd∆n \ {e0},Λ0
n \ {e0}) → (∆n−1,Bd∆n−1)

by the formula

λ(x0, . . . , xn) =
( x1

1− x0
, . . . ,

xn

1− x0

)
.

We leave it to the reader as an exercise to prove that λ is a well-defined
mapping of pairs and a homotopy inverse of the mapping

ε : (∆n−1,Bd∆n−1) → (Bd∆n \ {e0},Λ0
n \ {e0}).

This means that this mapping ε is a homotopy equivalence, hence induced
mapping ε∗ between homology groups is an isomorphism (Corollary 13.11).
By the consideration above this implies that also the mapping

ε∗ : Hn−1(∆n,Bd∆n−1) → Hn−1(Bd∆n,Λ
0
n)

is an isomorphism for every n ∈ Z. Now let

γ = ε−1
∗ ◦∆: Hn(∆n, d∆n) → Hn−1(∆n−1,Bd∆n−1).

As a composition of two isomorphisms this mapping is an isomorphism.
Moreover

γ(idn) = idn−1.

Thus the needed isomorphism is constructed and the claim follows by induc-
tion.

Corollary 14.12. Suppose n > 0. Then the group Hn(Bd∆n+1) is isomor-
phic to Z and generated by the class of an element d id ∈ Cn(Bd∆n+1), where
id : ∆n+1 → ∆n+1.
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Proof. By definition

d id =

n∑

i=0

(−1)n+1εin+1

is indeed an element of the subgroup Cn(Bd∆n+1) of Cn(∆n+1). Moreover,
since dd = 0, this element is obviously a cycle. Hence the homology class
d id ∈ Hn(Bd∆n+1) really exists.

To deduce that it is a generator consider the reduced exact homology
sequence of the pair (∆n+1,Bd∆n+1) Since ∆n is contractible, exactness im-
plies (as usual) that

∆: Hn+1(∆n+1,Bd∆n+1) → Hn(Bd∆n+1)

is an isomorphism. By the previous Proposition [id] is a generator of the
group Hn+1(∆n+1,Bd∆n+1). It is easy to see, using the definition of the
boundary operator ∆ that

∆(id) = d id.

The claim is proved.

15 The equivalence of the simplicial and sin-

gular homologies

In this section we will prove that in order to calculate the singular homology
groups of a compact polyhedron pair, it is enough to calculate its simplicial
homology, since both are actually isomorphic. More precisely, we will prove
the following result

Theorem 15.1. Suppose (K,L) is a pair of finite ∆-complexes. Then the
inclusion ι : C(K,L) → C(|K|, |L|) induces isomorhisms in homology i.e.

ι∗ : Hn(K,L) → Hn(|K|, |L|)

for all n ∈ Z.

This result has both practical and theoretical applications. Later we will
also prove slightly more abstract generalization of this result for the CW-
complexes.

Before we go through the proof of Theorem 15.1, let us recall how the
mapping ι : C(K,L) → C(|K|, |L|) is defined exactly. LetK be a ∆-complex.
The group Cn(K) of simplicial n-chains is defined to be a free abelian group
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on the set of all geometrical n-simplices of K. For every geometrical n-
simplex σ of K (recall that this is not a simplex per se, but actually an
equivalence class of simplices identified together in K) we let fσ : ∆n → |K|
to be its characteristic mapping. Then we define ιn : Cn(K) → Cn(|K|) to
be the unique homomorphism with the property

ιn(σ) = fσ,

for every geometrical n-simplex σ of K.
Let L be a subcomplex of K. Then ιn maps Cn(L) into Cn(|L|), hence

defines a mapping ιn : Cn(K,L) → Cn(|K|, |L|) between factor groups. This
mapping is injective for every n ∈ Z and defines a chain embedding ι : C(K,L) →
C(|K|, |L|).

Notice, in particular, that the group Cn(|K|) is usually much ”larger” then
Cn(K) - it contains, as a basis element, every possible continuous mapping
∆n → K, and there is usually really a lot of different and weird continuous
mapping. The group Cn(K) is, on the other hand, much smaller, especially
when K is finite - it has a finite basis, consisting of very simple, linear map-
pings. Hence the result 15.1 is indeed non-trivial and useful. Consider, for
example the calculation of the simplicial homology groups of such spaces as
the Mobius band, or projective plane, that we underwent in the section 9
- directly from the definition. It would be impossible to even dream about
the similar ”directly from the definition” calculation of the corresponding
singular homology groups of these spaces.

The theorem 15.1 is actually true for arbitrary ∆-complex pairs (K,L),
also infinite, but the proof of the general version is more involved, so we will
concentrate on the finite case only.

The theorem 15.1 follows easily from the following special case with the
aid of standard technical tricks from homological algebra. Recall that so-
called n’th skeleton Kn of the ∆-complex K is defined to be the subcomplex
of K consisting of all its simplices with dimension smaller or equal to an
integer n.

Lemma 15.2. Suppose K is a finite ∆-complex and n ∈ N. Then the inclu-
sion mapping ι : C(Kn, Kn−1) → C(|Kn|, |Kn−1|) induces an isomorphism

ι∗ : Hm(K
n, Kn−1) → Hm(|Kn|, |Kn−1|)

in homology for every m ∈ N
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Before we proof this lemma that us actually see, how Theorem 15.1 can
be deduced out of it.

Proof of Theorem 15.1 assuming Lemma 15.2:

First we prove the absolute case, i.e. we show that ι∗ : Hm(K) → Hm(|K|)
is an isomorphism for all m ∈ Z and finite ∆-complexes K.

Since K is finite, K = Kn, where Kn is an n-skeleton, for some n ∈ N,
so we prove the claim for Kn by induction on n.

For n = 0 the claim follows immediately from Lemma 15.2, since (K0, K−1) =
(K0, ∅). It can also be proved directly from the definition. Indeed, first of all
K0 has only simplices of dimension 0, so the group Cn(K

0) is a trivial zero
group when m 6= 0, while C0(K

0) is a free group on the set of geometrical
0-simplices of K. Since all but one groups in the chain complex Cn(K0) are
zero groups, all of its boundary operators must be zero mappings. Simple
straightforward calculation implies then that

Hm(K
0) = 0, when m 6= 0

and H0(K
0) is essentially C0(K

0), a free group on the set of geometrical
0-simplices of K. Moreover ι∗(σ) is an equivalence class of the constant
mapping fσ : ∆0 → {σ}, for every geometrical 0-simplex σ in K.

On the other hand |K0| is a discrete space that consists of isolate points, 0-
simplices ofK. In particular path-connected components ofK0 are singletons
{σ}, where σ is a geometrical 0-simplex of K. By Propositions 12.3 and 12.9
we have that

Hm(|K0|) = 0, when m 6= 0

and H0(|K0|) is a free group generated by the constant mappings fσ : ∆0 →
K0, fσ(1) = σ, for every geometrical 0-simplex σ (i.e. a vertex) in K. It
follows that ι∗ : Hm(K

0) → Hm(|K0|) is an isomorphism in any case.

Suppose the claim is proved for (n−1) i.e. ι∗ : Hm(K
n−1) → Hm(|Kn−1|)

is an isomorphism for all m ∈ Z. We have to prove that ι∗ : Hm(K
n) →

Hm(|Kn|) is an isomorphism for all m ∈ Z.
Consider the following diagram of chain complexes and chain mappings

0 // C(Kn−1)
i //

ι

��

C(Kn)
j //

ι

��

C(Kn, Kn−1) //

ι

��

0

0 // C(|Kn−1|) i // C(|Kn|) j // C(|Kn|, |Kn−1|) // 0.
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The groups on the upper row are simplicial and the groups on the lower row
are singular. Rows are known to be exact and the diagram is easily seen to
be commutative. By naturality of long exact homology sequence (Lemma
11.9) we obtain the commutative diagram

Hm+1(K
n,Kn+1) //

i∗∼=
��

Hm(Kn−1) //

i∗∼=
��

Hm(Kn) //

i∗
��

Hm(Kn,Kn−1) //

i∗∼=
��

Hm−1(K
n−1)

i∗∼=
��

Hm+1(|Kn|, |Kn−1|) // Hm(|Kn−1|) // Hm(|Kn|) // Hm(|Kn|, |Kn−1|) // Hm−1(|Kn−1|)

where upper row is a part of the long exact simplicial homology sequence
of the pair (Kn, Kn−1) and the lower row is a part of the long exact sin-
gular homology sequence of the pair (|Kn|, |Kn−1|). Here all vertical ho-
momorphisms are known to be isomorphism by Lemma 15.2 and inductive
assumption (this fact is indicated by the symbol ∼= in the diagram next to
the mapping), except for the middle one, which is the one we are interested
in. The five-lemma 11.14 implies that also the middle mapping is an isomor-
phism ι∗ : Hm(K

n−1) → Hm(|Kn−1|). This works for all m ∈ Z, hence proves
the inductive step. The theorem 15.1 is proved in an absolute case.

Relative case now follows easily by a similar trick involving five-lemma.
Let (K,L) is a pair of finite ∆-complexes. By the absolute case, which is
already proved for all finite complexes, we have that

ι∗ : Hm(L) → Hm(|L|) and

ι∗ : Hm(K) → Hm(|K|)
are isomorphisms for all m ∈ Z.

The commutative diagram

0 // C(L)
i //

ι

��

C(K)
j //

ι

��

C(K,L) //

ι

��

0

0 // C(|L|) i // C(|K|) j // C(|K|, |L|) // 0

of chain complexes and chain mappings with exact rows induces, by Lemma
11.9 the commutative diagram

Hn(L) //

i∗
��

Hn(K) //

i∗
��

Hn(K,L) //

��

Hn−1(L)

i∗
��

// Hn−1(K)

i∗
��

Hn(|L|) // Hn(|K|) // Hn(|K|, |L|) // Hn−1(|L|) // Hn−1(|K|)
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with exact rows. Again, by the absolute case, we know that all vertical
mappings, except the one in the middle, are isomorphisms. By the five-
lemma 11.14 also the middle mapping is an isomorphism. This concludes the
proof of the Theorem 15.1 (assuming Lemma 15.2).

It remains to actually prove the Lemma 15.2.
Proof of the Lemma 15.2.

The simplicial homology groups Hm(K
n, Kn−1) can be easily calculated

directly from the definition. Complexes Kn and Kn−1 have exactly the same
(geometrical) simplices in dimensions m 6= n. In dimension n complex Kn−1

do not have simplices. It follows that all groups, except possibly one, of the
chain complex C(Kn, Kn−1) are trivial, so the boundary operators of this
complex are zero homomorphisms. It follows that Hm(K

n, Kn−1) = 0 when
m 6= n, while Hn(K

n, Kn−1) is isomorphic to Cn(K
n, Kn−1) via projection,

hence is a free abelian group generated by the set

{σ | σ ∈ Kn/ ∼},

in other words by the classes of all geometrical n-simplices of K.

A homomorphism between a free abelian group A and a group B is an
isomorphism if and only if it maps some basis of A into a basis of B. By
definition of the mapping ι we have that

ι(σ) = fσ,

where fσ : ∆n → |K| is the characteristic mapping of the geometrical simplex
σ ofK. Hence the Lemma is proved if we can show thatHm(|Kn|, |Kn−1|) = 0
when m 6= n and Hn(|Kn|, |Kn−1|) is a free abelian group with basis

{fσ | σ ∈ Kn/ ∼]}.

For every geometrical n-simplex σ of K we choose an interior point xσ ∈
Int σ. For instance we can choose xσ to be ”’a barycentre” i.e. the image of
the barycentre b of ∆n under the characteristic mapping fσ. Thus we assert,
for

xσ = fσ(b).

let A = |Kn−1| and let U be the set

U = |K| \ {xσ | σ ∈ Kn}.

Then A is closed in |Kn| (as a polyhedron of a subcomplex), U is open
(exercise) and A ⊂ U . Hence the inclusion i : (|Kn| \ |Kn−1|, U \ |Kn−1|) →
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(|Kn|, U) satisfies the excision property and thus induces isomorphisms in
singular homology (Theorem 14.1).

On he other hand the inclusion j : (|Kn|, |Kn−1|) → (|Kn|, U) is a map-
ping such that both j = id: |Kn| → |Kn| and j||Kn−1| : |Kn−1| → U are
homotopy equivalences (exercise). Such a mapping always induces isomor-
phisms in singular homology (Proposition 13.12). Hence there is an isomor-
phism

j−1
∗ ◦ i∗ : Hn(|Kn| \ |Kn−1|, U \ |Kn−1|) → Hn(|Kn|, |Kn−1|).

The space X = |Kn| \ |Kn−1| is a disjoint union of simplicial interiors Int[σ],
where σ goes through all n-dimensional geometric simplices of K. Every
interior Int σ is open in |Kn|. Here one needs to be extremely careful not to
make a logical mistake. The claim is not true because they are ” interiors ”-
usually simplicial interiors of simplices in ∆-complexes are not open in the
polyhedron |K| are are not the same thing as topological interiors of those
simplices. However in this special case they are. This is seen as following.
Let σ be a geometrical n-simplex of K. Since Kn is a ∆-complex itself, it
follows, by Lemma 6.12, that it is enough to show that g−1

τ (Int[σ]) is open
in τ for every simplex τ of Kn. Here g : τ → |Kn| is a standard quotient
mapping. If dim τ < n, then no point of τ can be identified with a point
from Int σ (simple consequence of Lemma 6.11), so g−1

τ (Int[σ]) is empty. If
dim τ = n, g−1

τ (Int[σ]) is non-empty if and only if τ ∼ σ in K, in which case

g−1
τ (Int[σ]) = Int τ,

which is open in τ . The only remaining case dim τ > n is not possible, since
Kn has no simplices in dimensions bigger than n (here is where the proof
would not go through for the whole complex K).

We have shown that the space X = |Kn| \ |Kn−1| is a disjoint union of
simplicial interiors Int[σ], which are all open in X . Since arbitrary unions of
open sets are also open,

Int[σ] = X \
( ⋃

[τ ] 6=[σ]

Int[τ ]
)

is also closed as a complement of an open set. Moreover, by Lemma 6.14
the restriction of the characteristic mapping fσ : Int∆n → Int σ is a home-
omorphism for all [σ] ∈ Kn/ ∼. This homeomorphism maps the subset
Int∆n \ {b} exactly to

Int σ \ {x} = Int σ ∩ (U \ |Kn−1|)
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It follows in particular that every subset Int[σ] is homeomorphic to the open
ball Bn, in particular path-connected. Hence the path-components of X are
exactly the sets Int[σ]. Combining all these results with Lemma 12.3, we see
that the mapping

∑
((f[σ])∗)m : ⊕Hm(Int∆n, Int∆n \ b) → Hm(|Kn|, U)

is an isomorphism for all m ∈ Z.

The inclusion (Int∆n, Int∆n \ b) → (∆n,∆n \ b is a special case of the
mapping of pairs i : (|Kn| \ |Kn−1|, U \ |Kn−1|) → (|Kn|, U), for the complex
K = K(∆n). Hence this inclusion is an excision mapping, that induces an
isomorphism in homology, in all dimensions. The diagram

⊕Hm(Int∆n, Int∆n \ b)∑
(fσ)∗

**TTT
TTT

TTT
TTT

TTT
T

∼=

��

Hm(|Kn|, U)

⊕Hm(∆n,∆n \ b)

∑
(f[σ])∗

44jjjjjjjjjjjjjjjj

,

is easily seen to commute. Hence the mapping
∑

((f[σ])∗)m : ⊕Hm(∆n,∆n \ b) → Hm(|Kn|, U)

is also an isomorphism for all m ∈ Z.

The inclusion (∆n,Bd∆n) → (∆n,∆n \ b) is a homotopy equivalence
(exercise). Hence it induces isomorphisms between homology groups and we
can substitute Hm(∆n,∆n \ b) with Hm(∆n,Bd∆n) above. In other words
the mapping

∑
((f[σ])∗) : ⊕Hm(∆n,Bd∆n) → Hm(|Kn|, U)

is an isomorphism for all m ∈ Z. Since fσ maps Bd∆n into |Kn−1|, we can
finally substitute the group Hm(|Kn|, U) with the group Hm(|Kn|, |Kn−1|).
The mapping remains an isomorphism, since the inclusion j : (|Kn|, |Kn−1|) →
(|Kn|, U) is a homotopy equivalence.

We have shown that the mapping
∑

((f[σ])∗)m : ⊕Hm(∆n,Bd∆n) → Hm(|Kn|, |Kn−1|)
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is an isomorphism for all m ∈ Z.
Using Lemma 14.11 from the previous section, we obtain from this that

Hm(|Kn|, |Kn−1|) = 0 form 6= n and Hn(|Kn|, |Kn−1|) is a free abelian group
with the set of generators {[fσ] | [σ] ∈ Kn/ ∼}. This is exactly what needed
to be shown and the proof of Lemma 15.2 is now complete. Thus also the
main result of this section, the Theorem 15.1, is proved.

The result is quite powerful indeed - in many cases the calculation of
simplicial homology is much simpler and much concrete algebraic exercise
concerning (finitely generated) free abelian group then the calculation of the
singular homology directly from the definition. The result also helps further
investigation of the structure of homological groups. As an example let us
calculate the concrete generator of the group Hn(S

n), n > 0, which we know
to be isomorphic to Z.

Example 15.3. We know that Sn ∼= Bd∆n+1 and by Corollary 14.12 we
know that d id is a generator for the group Hn(Bd∆n+1). Thus for any
homeomorpism f : Bd∆n+1

∼= Sn, the element f∗([d id]) is a generator of
Hn(S

n). However this element depends on the choice of the homeomorphism
f and does not really have a simple and ”natural” relation to the structure
of Sn, so it might not be useful.

Let
B+ = {x ∈ Sn|xn+1 ≥ 0},
B− = {x ∈ Sn|xn+1 ≤ 0},

and define i : Sn → Sn, i(x0, . . . , xn, xn+1) = (x0, . . . , xn,−xn+1). Then ι is
clearly a homeomorphism which maps B+ to B− (and vice versa).
The mapping α : B+ → B

n
defined by

α(x) = (x1, . . . , xn)

is a homeomorphism (exercise). Choose any homeomorphism β : ∆n → B
n
,

then f = α−1◦β : ∆n → B+ ⊂ Sn is a homeomorphism and can be thought of
as an element of Cn(S

n). Likewise g = i◦f : ∆n → B− is a homeomorphism,
that can be identified with an element of Cn(S

n).
It is easy to see that the images of f and g intersect precisely at the ”equator”

Sn−1 = B+ ∩ B− = {x ∈ Sn | xn+1 = 0.}

which is the image of the boundaries of ∆n under both mappings. Hence, if we
take two n-simplices U and V and identify all their (n−1)-faces i.e. identify
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the face diU with the face diV , we obtain a ∆-complex K with |K| = Sn.
Mappings f and g are then precisely the characteristic mappings of simplices
U and V .
We have that dU = dV 6= 0 in the simplicial chain group Cn−1(K), so
Hn(K) = Ker dn (since there are no n + 1-simplices) and an element kU +
lV ∈ Cn(K) is in the kernel of dn if and only if

d(kU + lV ) = (k + l)dU = 0 i.e. if and only if k + l = 0.

It follows that Hn(K) is a free abelian group generated on one element U−V .
Using the isomorphism i∗ : Hn(K) → Hn(|K|) we see immediately that f − g
is a generator of the group Hn(S

n).

Geometrically this generator can be thought of as ”upper hemisphere mi-
nus lower hemisphere”.

As an application let us calculate the mapping i∗ : Hn(S
n) → Hn(S

n)
induced by the mapping i : Sn → Sn defined above by

i(x0, . . . , xn, xn+1) = (x0, . . . , xn,−xn+1).

We have that i♯(f) = i◦f = g and i♯(g) = i◦g = i◦ i◦f = f , since i◦ i = id.
Hence

i∗[f − g] = [g − f ] = −[f − g].

Thus i∗(x) = −x for all x ∈ Hn(S
n). Using this fact it is now easy to prove

(exercise) that for the antipodal mapping h : Sn → Sn, h(x) = −x one has

h∗(x) = (−1)n+1x, x ∈ Hn(S
n).

Notice that if we would use as a generator an element f∗(d id), where
f : Bd∆n+1

∼= Sn is a homeomorphism, then it would not provide us with a
simple way to calculate the induced homomorphism i∗, since i∗ has no obvious
relation with f∗(d id).

Example 15.4. We can now use the calculations of the simplicial homology
of spaces such as the Mobius Band and projective plane from examples 9.6
and 9.7 in the section 9. Since simplicial homology and singular homology
groups are isomorphic we obtain for singular groups of the Mobius Band M
and projective plane RP 2 results

Hn(M) ∼=
{
Z, n = 0, 1

0, otherwise,
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Hn(RP 2) ∼=





Z, n = 0,

Z2, n = 1,

0, otherwise,

.

In particular the Mobius band has the same homology groups as the sphere S1.
This is not a coincidence. It can be shown that the Mobius band has the same
homotopy type as the sphere S1 (exercise), so the singular homology groups of
the Mobius band can be also calculated using that fact (and homotopy axiom).

Example 15.5. Consider the ∆-complex K constisting of one 1-simplex σ =
∆1 = [0, 1] with both end points d0σ = 1, d1σ = 0 identified. The polyhedron
|K| of this complex is homeomorphic to S1. The charachteristic mapping
fσ : ∆1 → |K| = S1 is actually (up to a homeomorphism) a mapping γ : I →
S1 defined by

γ(t) = (cos 2πt, sin 2πt).

The simplicial homology group H1(K) is easy to calculate. It is free abelian
group Z[σ] with one generator σ. Since ι∗(σ) = γ, it follows by Theorem
15.1, that γ is a generator of H1(S

1).

Let D = {0 = s0 < s1 < . . . < sm = 1} be a division of an interval I. For
every i = 1, . . . , m we define γi : I → S1 by

γi(t) = (cos2π((1− t)si−1 + tsi), sin 2π((1− t)si−1 + tsi)).

According to the example 9.10 we have that

γ =

m∑

i=1

γi,

so
∑m

i=1 γi is also a generator of H1(S
1) for any choice of the division D.

Moreover all these generators are actually the same element.

In particular let α, β : I → S1 be defined by

α(t) = cos(πt) + i sin(πt),

β(t) = cos(πt+ πt) + i sin(π + πt).

Then α represents upper half ark of the circle and β represents lower half ark
of the circle.
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b bb

b

b

e1−e1

e2

−e2

α

β

b e1

γ

Choosing D = {0, 1/2, 1} we obtain that α = γ1, β = γ2 for this particular
division. Hence

γ = α+ β.

We will use this equation in the next section in the course of calculating the
homology groups of the projective plane.

16 Mayer-Vietoris sequence.

Mayer-Vietoris sequence is an equivalent way to formulate the excision the-
orem, which in some contexts can be technically more convenient than the
statement of the excision property.

Algebraic motivation for the Mayer-Vietoris sequence is quite elementary.
Suppose A,B are subgroups of an abelian group G. Then A + B is also a
subgroup of G. In general we cannot expect this sum to be the direct sum
A⊕B, since the intersection A∩B might be non-trivial. Nevertheless there
exists group homomorphism q : A⊕ B → A+B defined by

q(x, y) = x+ y,

for all x ∈ A, y ∈ B. The mapping j is clearly surjective. An element
(x, y) ∈ A ⊕ B belongs to the kernel of q if and only x + y = 0 i.e. if and
only if y = −x, in which case x, y ∈ A ∩ B. It follows that if we define a
homomorphism h : A ∩ B → A ⊕ B by h(x) = (x,−x), then Im h = Ker q.
Moreover, it is easy to verify, that the mapping h is injective. Thus there
exists a short exact sequence

0 // A ∩B
h // A⊕B

q // A+B // 0
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of abelian groups and homorphism.

Suppose (C, d) is a chain complex and A,B ⊂ C are subcomplexes. Then
A ∩ B and A+B are also subcomplexes of C and, by considerations above,
for every n ∈ Z we have a short exact sequence

0 // An ∩Bn
hn // An ⊕Bn

qn // An +Bn
// 0,

where hn : An ∩B → A⊕B and qn : A⊕B → A +B are defined as above,

hn(x) = (x,−x),

qn(x, y) = x+ y.

It is easy to check that h = {hn} and q = {qn} are chain mappings (exercise).
Hence we obtain a short exact sequence

0 // A ∩B
h // A⊕B

q // A+B // 0

of chain complexes and chain mappings. As usual, this sequence induces long
exact sequence

. . . // Hn+1(A+B)
Γ // Hn(A ∩ B)

h∗ // Hn(A⊕B)
q∗ // Hn(A +B) // . . .

in homology (where Γ is the boundary operator). Let k1 : A → A ⊕ B and
k2 : B → A⊕ B be canonical inclusions. By Lemma 12.1

k = (k1)∗ + (k2)∗ : Hn(A)⊕Hn(B) → Hn(A⊕B)

is an isomorphism for all n ∈ Z. Let i1 : A ∩ B → A and i2 : A ∩ B → B be
inclusions. Then

h(x) = (x,−x) = (k1 ◦ i1(x),−k2 ◦ i2(x)).

It follows that (exercise)

k−1 ◦ h∗(z) = ((i1)∗(z),−(i2)∗(z)), z ∈ Hn(A ∩B), and

q∗ ◦ k(x, y) = (l1)∗(x) + (l2)∗(y),

where l1 : A → A+B, l2 : B → A+B are inclusions.

Substituting h∗ with k−1 ◦ h∗ and q∗ with q∗ ◦ k, we obtain long exact
sequence

. . . // Hn+1(A+B)
Γ // Hn(A ∩ B)

α // Hn(A)⊕Hn(B)
β // Hn(A+B) // . . . ,
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which is called the Mayer-Vietoris sequence of the pair (A,B). Here
α = ((i1)∗,−(i2)∗) and β = (l1)∗ + (l2)∗.

The boundary operator Γ: Hn+1(A + B) → Hn(A ∩ B) of this sequence
is defined as following. Let c ∈ A + B be a cycle. Then c = a + b for some
a ∈ A, b ∈ B (not necessarily unique). Moreover,

dn(a) + dn(b) = dn(c) = 0.

Hence dn(a) = −dn(b) ∈ An ∩Bn, so by the definition of Γ, we have that

Γc = dna = −dn(b).

Example 16.1. Suppose K is a ∆-complex and L1, L2 are subcomplexes of
K such that L1 ∪ L2 = K, i.e. every simplex of K is either in L1 or in L2

(or both). Then C(L1) + C(L2) = C(K), so the Mayer-Vietoris sequence of
the pair (C(L1), C(L2)) is the exact sequence
(16.2)

. . . // Hn+1(K) // Hn(L1 ∩ L2) // Hn(L1)⊕Hn(L2) // Hn(K) // . . . ,

involving simplicial homology groups. Here the simple fact C(L1) ∩C(L2) =
C(L1 ∩L2) was also used. We call the sequence (16.2) the Mayer-Vietoris
sequence of the pair (L1, L2).

In general, when L1 and L2 are just subcomplexes of a ∆-complex K,
their union K ′ = L1 ∪L2 is also a subomplex, so there exists Mayer-Vietoris
sequence (16.2) with K ′ = L1 ∪ L2 in place of K.

Mayer-Vietoris sequence for the singular homology
Suppose X is a topological pair and let U, V ⊂ X . Then C(U) ∩ C(V ) =
C(U ∩ V ) and there exists Mayer-Vietoris sequence of the pair C(U), C(C),
which is the exact sequence
(16.3)

. . . // Hn+1(C(U) + C(V )) // Hn(U ∩ V ) // Hn(U)⊕Hn(V ) // Hn(C(U) + C(V )) // . . .

Usually for the arbitrary subsets U, V the sequence (16.3) is not very useful,
since the groups Hn(C(U) + C(V )) are rarely interesting. The standard
applications of Mayer-Vietoris is a calculation of the groupsHn(X), using the
groups Hn(U), Hn(V ) and Hn(U∩V ), which are assumed to be known. That
is why we are only interested in the special case when we can substitute the
group Hn(C(U)+C(V ) with Hn(X). This motivates the following definition.

Definition 16.4. Let U and V be subsets of the topological space X. Let
i : C(U) + C(V ) → C(X) be the inclusion of a subcomplex C(U) + C(V )
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into C(X). We call the triple (X ;U, V ) a proper triad if the induced
homomorphism

i∗ : Hn(C(U) + C(V )) → Hn(X)

in homology are isomorphisms for all n ∈ Z.

Proposition 16.5. Suppose (X ;U, V ) is a proper triad. Then there exists
exact sequence

. . . // Hn+1(X) ∆ // Hn(U ∩ V )
((i1)∗,−(i2)∗)// Hn(U)⊕Hn(V )

(l1)∗+(l2)∗// Hn(X) ∆ // . . . ,

called the Mayer-Vietoris sequence of the proper triad (X ;U, V ).
Here i1 : U ∩ V → U, i2 : U ∩ V → V , l1 : U → X and l2 : V → X are
inclusions.

Proof. By considerations above there exist the exact sequence

. . . // Hn+1(C(U) + C(V )) // Hn(U ∩ V ) // Hn(U)⊕Hn(V ) // Hn(C(U) + C(V )) // . . .

Substituting Hn(C(U) +C(V )) with an isomorphic group Hn(X) and map-
pings involved with corresponding mappings, we obtain the claim.

The theorem 14.6 implies directly the following important result.

Lemma 16.6. Suppose U, V ⊂ X are such that

intU ∪ int V = X.

Then (X ;U, V ) is a proper triad.

Example 16.7. As an example of the way Mayer-Vietoris sequence can be
applied, let us calculate (once more) the groups Hm(S

n), for n > 0. We only
assume the homotopy axiom and other basis properties of homology groups,
but not excision.
Let

U = Sn \ {en+1},
V = Sn \ {−en+1}.

Then U and V are open subsets of Sn, so (Sn;U, V ) is a proper triad (Lemma
16.6). Hence there exists Mayer-Vietoris sequence

. . . // Hm(U)⊕Hm(V ) // Hm(S
n)

∆ // Hm−1(U ∩ V ) // Hm−1(U)⊕Hm−1(V ) // . . . ,

which is exact. Both spaces U and V are homeomorphic to Rn (Example
3.8), hence contractible, if n > 0. It follows that, as long as m 6= 0, we
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have that Hm(U) = Hm(V ) = 0. Thus, if m > 1, Mayer-Vietoris sequence
becomes the exact sequence

0 // Hm(S
n)

∆ // Hm−1(U ∩ V ) // 0,

thus ∆: Hm(S
n) → Hm−1(U∩V ) is an isomorphism of groups (by exactness).

But, the space U ∩ V is homeomorphic to Rn minus a point, which has the
same homotopy type as Sn−1. Thus Hm−1(U ∩ V ) ∼= Hm−1(S

n−1), and we
obtain that

Hm(S
n) ∼= Hm−1(S

n−1).

Now we can ”slide down” arriving, by induction, to the case n = 1. The
only technical problem is that H0(U) and H0(V ) are not trivial and the proof
above works only as long as m > 1. For m = 1 the sequence is of the form

0 // H1(S
n)

∆ // H0(U ∩ V ) // H0(U)⊕H0(V ) // H0(S
n) // 0,

where H0(U) ∼= Z, H0(V ) ∼= Z and the mapping H0(U) ⊕H0(V ) → H0(S
n)

is induced by inclusions U → Sn, V → Sn. By exactness ∆: H1(S
n) →

H0(U ∩ V ) is an injection, whose image is (by exactness) the same as the
kernel of H0(U ∩ V ) → H0(U) ⊕ H0(V ). Hence we need to investigate this
mapping first. There are two cases - if n > 1, then space U ∩ V , as well
as U and V are path-connected, so all groups H0(U ∩ V ), H0(U), H0(V ) are
isomorphic to Z and the mapping H0(U ∩ V ) → H0(U) ⊕H0(V ) essentially
looks like the mapping Z → Z× Z, n → (n,−n). This mapping is injective,
so its kernel is trivial. It follows that the image of ∆ is trivial, so, since ∆
is injective, we must have H1(S

n) = 0.
The case n = 1 is different. When n = 1, we have that U∩V = S1\{e2,−e2}
has two path components. It is easy to check (exercise) that the mapping
H0(U ∩V ) → H0(U)⊕H0(V ) is now essentially the mapping Z×Z → Z×Z
given by the formula (n,m) → (n+m,−(n+m)). The kernel of this mapping
is a subgroup

{(n,−n) | n ∈ Z}
of Z × Z. This subgroup is a free abelian group with one generator (1,−1),
hence isomorphic to Z.

We have shown that H1(S
1) is isomorphic to Z and H1(S

n) = 0 for
n > 1. To calculate Hm(S

n) by induction, using the isomorphism Hm(S
n) ∼=

Hm−1(S
n−1) (m > 1), that we have shown to exist above, we need to calculate

Hm(S
1) for all m ∈ Z first. This claim will become a initial step in inductive
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proof of the statement

Hm(S
n) =

{
Z, m = n, 0

0, m 6= n, 0
,

where n ≥ 1. We will calculate the initial case n = 1, leaving the inductive
step as an exercise to the reader.

For m = 0 we know that H0(S
1) ∼= Z, since S1 is path-connected. For

m = 1 we have already calculated Hm(S
1) ∼= Z Also for m < 0 the claim is

clear. We have to show that Hm(S
1) = 0 for m > 1. In this case we have

the portion of the Mayer-Vietoris sequence (see above)

0 // Hm(S
1)

∆ // Hm−1(U ∩ V ) // 0,

where U ∩ V have the homotopy type of S0. Since m > 1, we have that
Hm−1(U ∩ V ) = 0, and we are done. Notice that we also use the fact that
Hm(S

0) = 0 for m > 0, which can be proved, as earlier, directly.

The lack of symmetry in cases m = 1 and m > 1 in the previous example
has lead to complicated technical calculations, where the case m = 1 had to
be treated separately. Reader might have a suspicion that the the calculation
would be easier if one would use reduced groups instead of absolute groups.
That is true, but in order to perform such a proof, we need the version of
the Mayer-Vietoris sequence for the reduced groups.

Proposition 16.8. Suppose (X ;U, V ) is a proper triad, such that U∩V 6= ∅.
Then there exists exact sequence

. . . // H̃n+1(X) ∆ // H̃n(U ∩ V )
(i1)∗,−(i2)∗// H̃n(U)⊕ H̃n(V )

(k1)∗+(k2)∗ // H̃n(X) ∆ // . . . ,

called the reduced Mayer-Vietoris sequence of the proper triad (X ;U, V ).
Here i1 : U ∩ V → U, i2 : U ∩ V → V , k1 : U → X and k2 : V → X are inclu-
sions.

The proof of the previous proposition is a standard application of homo-
logical algebra (namely Lemma 11.11) and is left to the reader as an exercise.

Example 16.9. Let’s see how much more easier the calculation of the ho-
mology groups of the sphere Sn using Mayer-Vietoris would be, if we would
use reduced groups instead. Let n > 0. We use the same subsets

U = Sn \ {en+1},
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V = Sn \ {−en+1}
as before. The triad (Sn;U, V ) is still proper (Lemma 16.6). Moreover U ∩V
is non-empty when n > 0 (notice - when n = 0 it is empty). Hence there
exists reduced Mayer-Vietoris sequence

. . . // H̃m(U)⊕ H̃m(V ) // H̃m(S
n)

∆ // H̃m−1(U ∩ V ) // H̃m−1(U)⊕ H̃m−1(V ) // . . . ,

which is exact. Both spaces U and V are homeomorphic to Rn (Example

3.8), hence contractible, so the reduced groups H̃m(U), H̃m(V ) are trivial for
all m ∈ Z (this is symmetry that absolute groups lack). Thus, the reduced
Mayer-Vietoris sequence becomes the exact sequence

0 // H̃m(S
n)

∆ // H̃m−1(U ∩ V ) // 0,

thus ∆: H̃m(S
n) → H̃m−1(U∩V ) is an isomorphism of groups (by exactness).

Since U ∩ V have the same homotopy type as Sn−1, there is an isomorphism
H̃m(S

n) → H̃m−1(S
n−1) for all m ∈ Z. Since reduced homology groups of

S0 can be calculated directly from definition, the general case can be deduced
from this by induction.

Compare this to the calculation in the previous example and learn an
important lesson - reduced groups are much more convenient for the concrete
calculations.

Mayer-Vietoris sequence is easily seen to be natural with respect to the
mappings of proper triads. To be precise let (X ;U, V ) and (Y ;Z,W ) be
proper triads and suppose f : X → Y is a continuous mapping with f(U) ⊂
Z, f(V ) ⊂ W . We also denote this as f : (X ;U, V ) → (Y ;Z,W ). Then the
diagram

Hn+1(X) //

f∗
��

Hn(U ∩ V ) //

f |∗
��

Hn(U)⊕Hn(V ) //

f |∗⊕f |∗
��

Hn(X) //

f∗
��

Hn−1(U ∩ V )

f |∗
��

Hn+1(Y ) // Hn(Z ∩W ) // Hn(Z)⊕Hn(W ) // Hn(Y ) // Hn−1(Z ∩W )

where both rows are portions of the corresponding Mayer-Vietoris sequences,
commutes, for all n ∈ Z. The simple verification of this claim is left to the
reader.

Example 16.10. As a more complicated example let us calculate the homol-
ogy groups of the projective plane RP n for all n ≥ 1.
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There exist two models for RP n, that we shall need in this example. The
traditional way to define projective space is as a quotient space Xn = Sn/ ∼
of the sphere Sn defined by the equivalence relation ∼, which is generated by
relations x ∼ −x for all x ∈ Sn.

There is also another model for RP n. Define an equivalence relation ∼′ on
the ball Bn generated by the relations x ∼′ −x for all x ∈ Sn−1. Notice that
the identifications happen only on the boundary and Bn remain ”untouched”.
We define Yn = B

n
/ ∼′.

Define the mapping p : Sn → B
n
/ ∼′= Yn by

p(x1, . . . , xn+1) =

{
(x1, . . . , xn) if xn+1 ≥ 0

(−x1, . . . ,−xn) if xn+1 ≤ 0
.

Then p is a well-defined mapping. Moreover it is continuous and closed,
in particular a quotient mapping (exercise). The relation ∼p defined by
p on Sn is exactly the relation ∼ (exercise). Hence, by Corollary 6.2) p
induces homeomorphism p : Xn = Sn/ ∼→ B

n
/ ∼′= Yn. Hence we can

identify X = RP n = Y . Notice that under this identification the mapping
p : Sn → RP n = Yn is exactly a projection quotient space.

Since we consider Rn a subset of Rn+1, we can also consider Sn−1 as a
subset of Sn. This means that we identify Sn−1 with a subset (”equator”)

Sn ∩ Rn = {(x1, . . . , xn, 0) ∈ Sn}

of Sn, which is homeomophic to Sn−1. Consider the restriction q = p|Sn−1 : Sn−1 →
Yn of p. Then q(x) = q(y) if and only if y = ±x. Also, q : Sn−1 → q(Sn−1)
is a closed mapping. This is a consequence of the general topological fact,
that asserts that whenever f : X → Y is a closed mapping and A ⊂ Y ,
then the restriction mapping f |f−1(A) : f−1A → A is also a closed mapping.
Choosing f = p, A = q(Sn−1) gives a claim.

It follows, by Corollary 6.2, that q induces a homeomorphism q : RP n−1 →
q(Sn−1) ⊂ RP n. Here we are using the model Xn−1 = Sn−1/ ∼ for RP n−1.
Thus we can think of RP n−1 as a subset of RP n in a natural way. In the
model Xn this is an image of the equator Sn−1 with respect to the projection
mapping Sn → RP n. In the model Yn this is an image of the boundary Sn−1

with respect to the projection mapping B
n → RP n.

Let q : B
n → B

n
/ ∼′= RP n to be a quotient mapping. Then q is a closed

mapping (exercise), so the restriction q|Bn : Bn → q(Bn) is of the form
q|q−1U : q−1U → U , where U = q(Bn), hence also closed, by the general
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topological result above. Also, this restriction is bijective. Hence it is a
homeomorphism. The subset U is open in the quotient space RP n, since
q−1(U) = Bn is open in B

n
and q is a quotient mapping. We also denote

V = q(B
n \ {0}). Since q−1V = B

n \ {0} is open in B
n
, V is also open in

RP n. Clearly U ∪V = RP n. Hence the triad (RP n;U, V ) is proper, so there
exists a reduced Mayer-Vietoris exact sequence

. . . // H̃m+1(RP n) // H̃m(U ∩ V ) // H̃m(U)⊕ H̃m(V ) // H̃m(X) // . . .

The subspace RP n−1 is a subspace of V . Moreover the inclusion RP n−1 →
V is a homotopy equivalence, exactly for the same reason that Sn−1 →֒ B

n \
{0} is a homotopy equivalence (exercise).

Hence we can substitute the group H̃m(V ) above with the isomorphic group

H̃m(RP n−1). Also U is contractible (since it is homeomorphic to Bn), so its
reduced homology groups are all trivial. What about the subset U ∩ V ? Since
U is homeomorphic to Bn, U ∩ V is homeomorphic to the punctured open
ball Bn \ {0} in a natural way. Clearly it has the same homotopy type as its
subpace

S ′ = {x ∈ Bn | |x| = 1/2},
which is homeomorphic to Sn−1. More precisely the inclusion S ′ → U ∩ V is
a homotopy equivalence, hence induces an isomorphism in reduced homology
groups. If we substitute H̃m(U∩V ) with isomorphic group H̃m(S

n−1), then the
inclusion U ∩V → V will be substituted with a quotient projection p : Sn−1 →
RP n−1 = Xn−1 (check it!). Hence we obtain an exact sequence
(16.11)

. . . // H̃m+1(RP n)
∆ // H̃m(S

n−1)
p∗ // H̃m(RP n−1)

i∗ // H̃m(RP n)
∆ // H̃m−1(S

n−1) // . . .

where p∗ is induced by the projection p : Sn−1 → RP n−1 = Xn−1 and i∗ is
induced by the inclusion i : RP n−1 → RP n.

Since H̃n−1(S
n−1) is the only non-trivial reduced homology group of Sn−1,

the exact sequence 16.11 implies the following facts
1) The homomorphism i∗ : H̃m(RP n−1) → H̃m(RP n) induced by inclusion is
an isomorphism for m 6= n, n− 1.
2) There is an exact sequence

0 // H̃n(RP n−1)
i∗ // H̃n(RP n)

∆ // H̃n−1(S
n−1)

p∗ // H̃n−1(RP n−1)
i∗ // H̃n−1(RP n) // 0.

So, if we want to calculate homology groups of RP n by induction on n, in the
inductive step we need not only to know the homology groups of the previous
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case RP n−1 but also a homomorphism p∗ : H̃n−1(S
n−1) → H̃n−1(RP n−1).

Let us start with the initial step n = 1. The second model for RP 1

shows immediately that RP 1 = [−1, 1]/{1,−1} is a closed interval with end
points identified, hence essentially S1. Moreover under this identification
p : S1 → RP 1 ∼= S1 looks like the mapping S1 → S1 that wraps the upper ark
of S1 around S1 one time, and then does the same for the lower ark. More
precisely this means (exercise) that

p(cos 2πt, sin 2πt) = (cos 4πt, sin 4πt)

for all t ∈ I.
Recall the mappings α, β, γ : I → S1 from Example 15.5, defined by

α(t) = cos(πt) + i sin(πt),

β(t) = cos(πt+ πt) + i sin(π + πt).

γ(t) = (cos 2πt, sin 2πt).

According to the Example 15.5

γ = α + β

is a generator for H1(S
1) ∼= Z.

By definition we have that

p♯(α) = p ◦ α = γ = p ◦ β = p♯(β), so

p∗(γ) = p∗(α + β) = γ + γ = 2γ.

Since γ is a generator of the free group H1(S
1) ∼= Z, we have that

p∗(x) = 2x for all x ∈ H1(S
1).

In other words p∗ : H1(S
1) → H1(S

1) looks like the homomorphism Z → Z,
n 7→ 2n.

Since RP 1 is homeomorphic to S1, we have that H̃m(RP 1) = 0 for m >

1. Since H̃m(RP n) is isomorphic to H̃m(RP n−1) for m > n, this implies

immediately by induction on m that H̃m(RP n) = 0 for m > n. Hence the
exact sequence above becomes the exact sequence

0 // H̃n(RP n)
∆ // H̃n−1(S

n−1)
p∗ // H̃n−1(RP n−1)

i∗ // H̃n−1(RP n) // 0.
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By exactness this sequence implies that H̃n(RP n) is a subgroup Ker p∗ of

H̃n−1(S
n−1) ∼= Z, so, in particular it is always either trivial, or isomorphic

to Z, since all subgroups of Z are either trivial or of the form kZ, k > 0.
This is true for all n > 0. Hence p∗ : H̃n−1(S

n−1) → H̃n−1(RP n−1) is always
essentially a homomorphism Z → Z. Such a homomorphism is always of
the form z 7→ kz for some fixed k ∈ Z. It follows that p∗ is either a zero
homomorphism or injective. In case it is injective, we have that H̃n(RP n) =

Ker p∗ = 0. In case it is a zero homomorphism, H̃n(RP n) = Ker p∗ =

H̃n−1(S
n−1) ∼= Z. Hence in particular we obtain the following conclusion.

Suppose H̃n(RP n) = 0. Then in the next dimension we will have exact
sequence

0 // H̃n+1(RP n+1)
∆ // H̃n(S

n) // 0 // H̃n(RP n+1) // 0.

By exactness this sequence implies that H̃n+1(RP n+1) ∼= H̃n(S
n) ∼= Z and

H̃n(RP n+1) = 0.

Let us continue by induction and consider the next case n = 2. Since we
have seen that p∗ : H̃1(S

1) → H̃1(RP 1) is an injection x 7→ 2x, it follows that

H̃2(RP 2) = Ker p∗ = 0 and H̃1(RP 2) ∼= H̃1(RP 1)/ Im p∗ = Z/2Z = Z2.
From the considerations from the proceeding paragraph it now follows that
H̃3(RP 3) ∼= Z, H̃2(RP 3) = 0 and H̃1(RP 3) = H̃1(RP 2) = Z2.

For the next case n = 4 we need to know the mapping p∗ : Z = H̃3(S
3) →

H̃3(RP 3) = Z, so let us investigate this matter in general.

To make use of the naturality of Mayer-Vietoris sequence it makes sense
to define proper triad (Sn;Z,W ) such that p : Sn → RP n will be mapping of
triads p : (Sn;Z,W ) → (RP n;U, V ). Miming the definition of U and V and
keeping in mind the definition of p we define

Z = Z+ ∪ Z −= {x ∈ Sn | xn+1 > 0} ∪ {x ∈ Sn | xn+1 < 0},

W = Sn \ {en+1,−en+1}.
Then (Sn;Z,W ) is a proper triad, since Z and W are both open and cover Sn.
Moreover p : (Sn;Z,W ) → (RPn, U, V ), so we have a commutative diagram

H̃m+1(S
n)

∆ //

p∗
��

H̃m(Z ∩W )
i∗ //

p|∗
��

H̃m(Z)⊕ H̃m(W )
j∗ //

p|∗⊕p|∗
��

H̃m(S
n)

∆ //

p∗
��

H̃m−1(Z ∩W )

p|∗
��

H̃m+1(RP n)
∆ // H̃m(U ∩ V )

i∗ // H̃m(U)⊕ H̃m(V )
j∗ // H̃m(RP n)

∆ // H̃m−1(U ∩ V )
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with exact rows. Now let us simplify the upper row in the same way we have
already simplified the lower row. The subspace Z∪W has the same homotopy
type as its subspace S+ ∪ S−, where

S+ = {x ∈ Sn | xn+1 =
√
3/4},

S− = {x ∈ Sn | xn+1 = −
√
3/4},

via the inclusion S+ ∪ S− → Z ∩W . The reason we have chosen the weird
looking number

√
3/4 above is that then p maps S+ ∪ S− onto

S ′ = {x ∈ Bn | |x| = 1/2} ⊂ RPn. Since both S+ and S− are homeomorphic
to Sn−1 in an obvious way, we can write the restriction of p to S+ ∪ S− as
a mapping Sn−1 ⊔ Sn−1 → Sn−1 (⊔ denotes the disjoint topological union)
defined by the identity mapping id on the first copy of Sn−1 (corresponding to
S+) and by the antipodal mapping h : Sn−1 → Sn−1, h(x) = −x on the second

summond corresponding to Sn−1. In particular p|∗ : H̃m(Z ∪W ) → H̃m(U ∩
V ) in the diagram above becomes the homomorphism id+h∗ : H̃m(S

n−1) ⊕
H̃(Sn−1) → H̃m(S

n−1).

The subspace Z is a disjoint union of two contractible spaces, so H̃m(Z) =
0 for m ∈ Z. The subspace W has the same homotopy type as its subspace
Sn−1 = {x ∈ Sn | xn+1 = 0}. Substituting spaces with their subspaces with
the same homotopy type, we see that p : W → V becomes p : Sn−1 → RP n−1

and i : Z ∩W → W becomes id⊔ id : Sn−1 ⊔ Sn−1 → Sn−1. Summarizing all
these information we obtain the following commutative diagram

0 // H̃n(S
n) //

p∗
��

H̃n−1(S
n−1)⊕ H̃n−1(S

n−1)
id+ id //

id⊕h∗

��

H̃n−1(S
n−1)

j∗ //

p∗
��

H̃n−1(S
n) //

p∗
��

0

0 // H̃n(RP n)
∆ // H̃n−1(S

n−1)
p∗ // H̃n−1(RP n−1) // H̃n−1(RP n) // 0

with exact rows. The interesting case is the case when p∗ : Hn−1(S
n−1) →

Hn−1(RP n−1) is a zero mapping, since in the other case p∗ is injective, so we
can say for certain that Hn(RP n) = 0. Thus suppose that p∗ : Hn−1(S

n−1) →
Hn−1(RP n−1) is a zero mapping. Then, by exactness of the diagram above,
we have the commutative diagram

Hn(S
n)

∆∼= //

p∗

��

G

(id∗+h∗)|
��

Hn(RP n)
∆∼= // Hn−1(S

n−1),
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where G is the kernel of the mapping

(id+ id) : Hn−1(S
n−1)⊕Hn−1(S

n−1) → Hn−1(S
n−1)

and both boundary operators ∆ are isomorphisms .
Now id+ id: Hn−1(S

n−1)⊕Hn−1(S
n−1) → Hn−1(S

n−1) is essentially the map-
ping Z⊕ Z → Z, (n,m) 7→ n +m, so

Ker(id+ id) = {(x,−x) ∈ Hn−1(S
n−1)⊕Hn−1(S

n−1)) | x ∈ Hn−1(S
n−1)}.

It can be shown, using example 15.3, that h∗(x) = (−1)nx for all x ∈
Hn−1(S

n−1). Hence

(id∗+h∗)(x,−x) = x+(−1)n(−x) = x+(−1)n+1(x) =

{
0, if n is even,

2x, if n is odd.
.

By the commutativity of the diagram above, the mapping p∗ : Hn(S
n) →

Hn(RP n) has the same description i.e. as a mapping Z → Z looks like
the zero mapping, if n is even, and the mapping x 7→ 2x, if n is odd, at least
when suitable generators are used.

Let us prove by induction that whenever Hn(RP n) ∼= Z only the second
case actually occurs. To be precise we claim that
(1) if n is even, then Hn(RP n) = 0 and Hn−1(RP n) ∼= Z2,
(2) if n is odd, then Hn(RP n) ∼= Z, H̃n−1(RP n) = 0 and p∗ : Hn(S

n) →
Hn(RP n) is essentially the mapping n 7→ 2n.

For n = 1 we have already shown the claim to be true. Suppose n is odd
and the claim is true for n−1, which is even. Then, by inductive assumption
Hn−1(RP n−1) = 0 and the considerations above apply, showing that the claim
is true also for n.
If n is even and the claim is true for n−1, which is then odd, then p∗ : Hn(S

n−1) →
Hn(RP n−1)is the injection with image 2Z ⊂ Z, so the exact sequence above
shows that Hn(RP n) = 0 and Hn−1(RP n) ∼= Z/2Z = Z2.

Putting together all the information about the homology groups of RP n

we have managed to obtain, we get the following.

Hm(RPn) =





Z, for m = 0,

Z2, for 0 < m < n if m is odd ,

Z, for m = n if n is odd ,

0, otherwise.
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All the examples of proper triads so far we of the form (X ;U, V ), where
intU ∪ int V = X . There are also other important classes of proper triads.

Proposition 16.12. Suppose K is a ∆-complex and L1 and L2 are sub-
complexes of K such that K = L1 ∪ L2. Then (|K|; |L1|, |L2|) is a proper
triad.

Proof. By Example 16.1 there exists long exact sequence

. . . // Hn+1(K) // Hn(L1 ∩ L2) // Hn(L1)⊕Hn(L2) // Hn(K) // . . .

involving simplicial homology groups. On the other hand in any case, there
always exists long exact sequence

. . . // Hn+1(C) // Hn(|L1| ∩ |L2|) // Hn(|L1|)⊕Hn(|L2|) // Hn(C) // . . . ,

where C = C(|L1|) + C(|L2|), see (16.3). There exist canonical chain map-
pings ι : C(L1 ∩ L2) → C(|L1| ∩ |L2|), (note that |L1 ∩ L2| = |L1| ∩ |L2|),
ι : C(L1) → C(|L1|), ι : C(L2) → C(|L2|) and ι : C(K) → C(|K|). All these
mappings induce isomorphisms in homology, by Theorem 15.1. On the other
hand, since K = L1 ∪ L2, it is easy to see that ι : C(K) → C(|K|) maps
C(K) into a subcomplex C(|L1|) + C(|L2|) of C(K). Hence there exists
commutative diagram

Hn(L1 ∩ L2) //

ι

��

Hn(L1)⊕Hn(L2) //

ι

��

Hn(K) //

ι∗

��

Hn−1(L1 ∩ L2) //

ι

��

Hn−1(L1)⊕Hn−1(L2)

ι

��
Hn(|L1| ∩ |L2|) // Hn(|L1|)⊕Hn(|L2|) // Hn(C) // Hn−1(|L1| ∩ |L2|) // Hn−1(|L1|)⊕Hn−1(|L2|)

with exact rows. Here again C stands for a complex C(|L1|) + C(|L2|). In
this diagram all vertical mappings are isomorphisms, except possibly for the
middle mapping ι∗ : Hn(K) → Hn(C(|L1|) + C(|L2|)). Five Lemma 11.14
implies that this mapping is also an isomorphism, for all n ∈ Z. Now, in the
commutative diagram

Hn(K)
ι∗ //

ι∗

%%KK
KK

KK
KK

KK
Hn(C(|L1|) + C(|L2|))

i∗uukkkk
kkk

kkk
kkk

k

Hn(|K|)

both mappings ι∗ are isomorphisms. Hence also i∗ : Hn(C(|L1|)+C(|L2|)) →
Hn(|K|) is an isomorphism. This means precisely that (|K|; |L1|, |L2|) is a
proper triad.
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Example 16.13. Let K be the ∆-complex generated by two n-simplices σ1,
σ2, with all their corresponding faces diσ1 and diσ2 (as well as the corre-
sponding lower dimensional faces) identified. Let Lj be the subcomplex of K
generated by σj, j = 1, 2. Then K = L1 ∪ L2, so the previous result implies
that (|K|; |L1|, |L2|) is a proper triad. It is easy to see that (|K|; |L1|, |L2|) is
homeomorphic to the triad (Sn, Sn

+, S
n
−), where

Sn
+ = {x ∈ Sn | xn+1 ≥ 0},

Sn
− = {x ∈ Sn | xn+1 ≤ 0}

are the upper and lower hemispheres. Both subpaces Sn
+ and Sn

− are homeo-

morphic to B
n
, in particular contractible. Moreover, Sn

+∩Sn
− = Sn−1. Hence

the reduced Mayer-Vietoris sequence

H̃m(S
n
+)⊕ H̃m(S

n
−)

// H̃m(S
n)

∆ // H̃m−1(S
n−1) // H̃m−1(S

n
+)⊕ H̃m−1(S

n
−)

// . . .

is the exact sequence

0 // H̃m(S
n)

∆ // H̃m−1(S
n−1) // 0,

which implies directly the existence of the homomorphism H̃m(S
n) ∼= H̃m−1(S

n−1),
for all m ∈ Z. So far, this is probably the simplest and shortest way to calcu-
late homology groups of the sphere by induction, that we have encountered.

17 Some classical applications

In this section we will apply the machinery of singular homology theory to
prove some important classical topological results, such as the Brouwer’s
fixed point theorem, invariance of domain and Jordan-Brouwer separation
theorem.

Theorem 17.1. The Brouwer’s fixed point theorem
Suppose C ⊂ V is a compact and convex non-empty subset of the finite-
dimensional vector space V . Then every continuous mapping f : C → C has
a fixed point.

Proof. Since C is homeomorphic to B
n
for some n ∈ N (Theorem 3.20), it is

enough to consider the case C = B
n
.
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The claim is proved by counter-assumption. Suppose f : B
n → B

n
is a

continuous mapping without a fixed point. Then f(x) 6= x for all x ∈ B
n
.

For every x ∈ B consider the open half-line

Lx = {(1− t)f(x) + tx | t > 0}

starting at f(x) (not including it however) and going through x (see the
picture).

b

b

f(x)

x

g(x)

For every x ∈ B
n
let g(x) be the unique point of Sn−1 that belongs to Lx.

This defines a mapping g : B
n → Sn−1. The exact construction of the formula

for g and verification of the facts that g is well-defined and continuous is left
as an exercise.

By construction it follows that g(x) = x for all x ∈ Sn−1. Hence g is a
retraction of B

n
onto Sn−1. However this is a contradiction with Corollary

14.5, which says that such retraction cannot exist.

There is a generalization of the Brouwer’s fixed point theorem, that says
that any mapping f : C → C, where C is a contractible compact polyhedra,
has a fixed point, but the proof is much more difficult and requires the de-
velopment of some further machinery.

To prove invariance of domain and Jordan’s separation theorem we need
some technical results. Next Lemma says that singular homology has ”com-
pact carriers”.

Lemma 17.2. Suppose X is a topological space.

(1) Suppose x ∈ Hn(X), for some n ∈ Z. Then there exists compact subset
C of X such that x = j∗(y) for some y ∈ Hn(C), where j : C → X is
inclusion.
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(2) Suppose C is a compact subset of X, j : C → X is inclusion. Suppose
that y ∈ Hn(C) is such that j∗(y) = 0 ∈ Hn(X). Then, there exists
compact D ⊂ X such that C ⊂ D and j′∗(y) = 0, where j′ : C → D is
inclusion.

Similar claims are true for reduced homology groups.

Proof. Both properties follow from the fact that singular homology is defined
in terms of continuous images of simplices, which are compact.

(1) Suppose x ∈ Hn(X). Then x = α for some cycle α ∈ Zn(X) ⊂ Cn(X).
In particular

α =

m∑

i=1

nifi

for some n1, . . . , nm ∈ Z and some singular n-simplices f1, . . . , fm : ∆n → X .
Since ∆n is compact, continuous images of compact spaces are compact and
finite union of compact spaces is compact, the subset

C =

m⋃

i=1

fi(∆n) ⊂ X

is compact. Moreover α ∈ Cn(C). The boundary in the subgroup Cn(C) is
calculated in the same way as in Cn(X), so α ∈ Zn(C), hence the homology
class y = α ∈ Hn(C) exists. Clearly i∗(y) = x.
In reduced case, if α ∈ C̃(X), then also α ∈ C̃(C).

(2) This is similar to (1) and left to the reader as an exercise.

Lemma 17.3. Suppose B ⊂ Sn is homeomorphic to B
k
for some 0 ≤ k ≤ n.

Then H̃m(S
n \B) = 0 for all m ∈ N.

Proof. The proof goes by induction on k. If k = 0, then B is a point and
the claim is clear, since then Sn \ B is homeomorphic to Rn (Example 3.8),
hence contractible.

Let k > 0 and suppose that the claim is true for k − 1. Since the k-

dimensional cube Ik is homeomorphic to B
k
, there exists a homeomorphism

f : Ik → B. Let
C1 = f(Ik−1 × [0, 1/2]),

C2 = f(Ik−1 × [1/2, 1]).
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Since C1 and C2 are both compact, {Sn \C1, S
n \C2} is an open covering of

the set
(Sn \ C1) ∪ (Sn \ C2) = Sn \ (C1 ∩ C2) = Sn \ C.

Here C = C1 ∩ C2 = f(Ik−1 × {1/2}) is homeomorphic to Ik−1. Also

(Sn \ C1) ∩ (Sn \ C2) = Sn \ (C1 ∪ C2) = Sn \B.

By Proposition 16.6 (Sn \C;Sn \C1, S
n \C2) is a proper triad. Hence there

exists reduced Mayer-Vietoris sequence

H̃m+1(S
n \ C) = 0 // H̃m(S

n \B)
(i∗,−i∗)// H̃m(S

n \ C1)⊕ H̃m(S
n \ C2) // H̃n(S

n \ C) = 0

where H̃m+1(S
n \ C) = 0 = H̃n(S

n \ C) = 0 by inductive assumption, since

C is homeomorphic to B
k−1

. By exactness we see that the homomorphism

(i∗,−i∗) : H̃m(S
n \B) → H̃m(S

n \ C1)⊕ H̃m(S
n \ C2)

is an isomorphism, for all m ∈ Z.

Fix m ∈ Z. We want to prove that H̃m(S
n \ B) = 0. Let us make a

counter-assumption - there exists x ∈ H̃m(S
n \ B) such that x 6= 0. Then,

since (i∗,−i∗) : H̃m(S
n \B) → H̃m(S

n \C1)⊕H̃m(S
n \C2) is an isomorphism,

either i∗(x) 6= 0 ∈ H̃m(S
n \C1) or i∗(x) 6= 0 ∈ H̃m(S

n \C2). Choose B1 = C1

in the first case and B1 = C2 in the second case.
Since B1 satisfies the same assumptions asB (as well as the counter-assumption

H̃m(S
n\B1) 6= 0), we may repeat the same reasoning applied to B1, to obtain

B2. Continuing like that (by induction) we obtain an infinite nested sequence

B = B0 ⊃ B1 ⊃ B2 ⊃ . . . ⊃ Bl ⊃ Bl+1 ⊃ . . .

such that il∗(x) 6= 0 for all inclusions il : (Sn \B) → (Sn \Bl) and
⋂∞

i=0Bi =
B∞ is homeomorphic to Ik−1, hence satisfies the inductive assumption. In
other words H̃m(S

n \B∞) = 0.
Let i : (Sn \ B) → (Sn \ B∞) be the inclusion, then i∗(x) = 0. By

Lemma 17.2, there exists compact C ⊂ Sn \B such that x = j∗(y) for some
y ∈ H̃n(C), where j : C → Sn \B is an inclusion. Let j′ : C → Sn \B∞ is the

inclusion. Then j′∗(y) = 0 ∈ H̃m(S
n \B∞) = 0. By Lemma 17.2 there exists

compact D ⊂ Sn \ B∞ such that C ⊂ D and j′′∗ (y) = 0 for the inclusion
j′′ : C → D.

249



The collection
{Sn \Bl | l ∈ N}

is an open covering of the set Sn \B∞, hence also of D. Since D is compact
there exists q ∈ N such that

D ⊂
q⋃

i=0

Sn \Bl = Sn \Bq.

The diagram

H̃m(C)
j′′
∗ //

j
��

H̃m(D)

k∗
��

H̃m(S
n \B)

i
q
∗ // H̃m(S

n \Bq),

where k : D → Sn\Bq and iq : Sn\B → Sn\Bq are inclusions, is commutative.
This implies that

iq∗(x) = iq∗(j(y)) = k∗(j
′′
∗ (y)) = k∗(0) = 0.

This however contradicts the construction of Bq. Hence counter-assumption
was false, so the claim is true also for k.

Lemma 17.4. Suppose B ⊂ Sn is homeomorphic to Sk for 0 ≤ k ≤ n − 1.
Then

H̃m(S
n \B) =

{
0, for m 6= n− k − 1,

Z, for m = n− k − 1.

Proof. Lemma is proved by induction on k.
If k = 0, then B = {a, b} is space consisting of two isolated points. Since

Sn minus a point is homeomorphic to Rn (example 3.8), Sn minus two points
is homeomorphic to Rn minus a point, i.e. essentially homeomorphic to the
space Rn \ {0}. This space, on the other hand, has a homotopy type of the
sphere Sn−1. Hence in this case

H̃m(S
n \B) =

{
0, for m 6= n− 1,

Z, for m = n− 1,

which is exactly the claim for k = 0.

Suppose claim is true for k−1 ≥ 0 and let us show it for k. Let f : Sk → B
be a homeomorphism. Denote C1 = f(S+) and C2 = f(S−), where S+, S− are
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upper and lower hemisphere of Sk, as usual. Since hemispheres are compact,
the sets C1, C2 are compact, hence closed in Hausdorff space Sn. It follows
that their complements are open. Hence {Sn\C1, S

n\C2} is an open covering
of the space Sn \ (C1 ∩ C2) = Sn \ C, where C = C1 ∩ C2 is homeomorphic
to the sphere Sk−1. Also

(Sn \ C1) ∩ (Sn \ C2) = Sn \B.

Since S+ and S− are both homeomorphic to the closed ball B
k
, the same

is true for subsets C1 and C2. Hence, by the previous lemma both spaces
Sn\C1 and Sn\C2 have trivial reduced groups in all dimensions. The Mayer-
Vietoris sequence of the proper triad (Sn \ C;Sn \ C1, S

n \ C2), implies, in

the usual way, that ∆: H̃m+1(S
n \ C) → H̃m(S

n \ B) is an isomorphism for
all m ∈ N. Since, by inductive assumption,

H̃m(S
n \ C) =

{
0, for m 6= n− k,

Z, for m = n− k,

it follows that

H̃m(S
n \B) =

{
0, for m 6= n− k − 1,

Z, for m = n− k − 1.

Theorem 17.5. (Jordan-Brouwer separation theorem).
Suppose B is a subset of Sn homeomorphic to Sn−1. Then the space Sn \B
has exactly two path components U and V , which are both open in Sn \ B.
Moreover

∂U = B = ∂V,

where the topological boundary of both subsets U and V is taken in Sn.

Proof. The case k = n−1 in the previous lemma shows that H̃0(S
n\B) = Z.

Hence
H0(S

n \B) ∼= H̃0(S
n \B)⊕ Z ∼= Z⊕ Z.

By the lemma 12.5 this implies that Sn\B has exactly two path components,
U and V .

Let x ∈ B be arbitrary. By Example 3.8 Sn minus a point x is homeo-
morphic to Rn. Since Sn \ B is a subset of Sn \ {x}, it follows that Sn \ B
is homeomorphic to a subset of Rn. Moreover, since B is compact (being
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homeomorphic to Sn−1), it is closed, so Sn \B is open in Sn, in particular it
is open in Sn\{x}. It follows that Sn \B is homeomorphic to an open subset
of Rn. So, in order to prove that it is components U and V are open in it,
it is enough to prove in general, that path components of the open subsets
of Rn are open. The proof of this simple (well-known) topological fact is left
to the reader as an exercise.

Thus both U and V are open in Sn \B. Since Sn \B is open in Sn, this
implies that both U and V are open in Sn. It follows that U ⊂ Sn \V , where
Sn\V is closed in Sn. Since the closure (taken in Sn) U is the smallest closed
subset of Sn, which contains U , we have that

U ⊂ Sn \ V = U ∪ B.

Since U is open, we also have that

U = intU ∪ ∂U = U ∪ ∂U,

where the last union is disjoint. Combining these results, we obtain that
the boundary ∂U must be a subset of B, ∂U ⊂ B. By the same reasoning
∂V ⊂ B.

It remains to prove that B ⊂ ∂U ∩ ∂V . Since B does not intersect U or
V , it is enough to show that B ⊂ U ∩ V . Suppose x ∈ B and let W be a
neighbourhood of x ∈ Sn. Then B ∩W is a neighbourhood of x ∈ B. Since
B is homeomorphic to Sn−1, there exists a neighbourhood A of x in B such

that A ⊂ B ∩W and B \A is homeomorphic to B
n−1

(why? make sure you
understand why!).

By lemma 17.3
H̃0(S

n \ (B \ A)) = 0,

hence, by Lemma 12.5, the set

Sn \ (B \ A) = U ∪ V ∪A

is path-connected. Hence there exist a path p : I → Sn \ (B \ A) from a
point p(0) ∈ U to the point p(1) ∈ V (both chosen arbitrary). Since U ∪ V
is not path-connected and U , V are exactly its path-components, the path p
cannot stay in the set U ∪ V . Hence p must intersect the set A. In fact let

t0 = sup{t ∈ I | p(t) ∈ U}.
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Then clearly p(t0) ∈ U and p(t0) /∈ U ∪ V , since U and V are both open.
Thus p(t0) ∈ A ∩ U . Similarly we see that A ∩ V 6= ∅. Since A ⊂ W , it
follows that in particular W intersects both U and V . Since W is open, this
implies that W must actually intersect both U and V (exercise). Since W
is an arbitrary neighbourhood of x ∈ B, it follows that x ∈ U ∩ V . Since
x ∈ B is arbitrary, it follows that

B ⊂ U ∩ V .

The theorem is proved.

If n ≥ 2 the Jordan-Brouwer theorem separation also holds in Rn (what
about the case n = 1?). More precisely, if a subset S of Rn is homeomorphic
to Sn−1, n ≥ 2, then Rn \ S has exactly two path components and S is a
boundary of both of them. This easily follows from the proved version of the
theorem for Sn, since Rn is homeomorphic to Sn minus a point. Detailed
proof is left to the reader as exercise.

Theorem 17.6. Invariance of Domain Suppose U, V are homeomorphic
subsets of Sn. If U is open in Sn, also V is.

Proof. Let h : U → V be a homeomorphism. It is enough to prove that for
every x ∈ U there is a neighourhood Z ⊂ U of x such that h(Z) is open in Sn.

Let W be small enough neighbourhood of x in Sn contained in U , such
that W is homeomorphic to B

n
and its boundary A is homeomorphic to

Sn−1. The existence of such W follows easily from the fact that Sn minus a
point is homeomorphic to Rn. Now, W and h(W ) are both homeomorphic
to B

n
, while A and h(A) are both homeomorphic to Sn−1. Also

Sn = Sn \ h(W ) ∪ h(A) ∪ h(W \ A)

and this union is disjoint. The set Sn \ h(W ) is path-connected by Lemma
17.3. The set h(W \A) is also path connected, since W \A is path-connected
(it is homeomorphic to Bn). On the other hand by the Jordan-Brouwer
separation theorem the set

Sn \ h(A) = Sn \ h(W ) ∪ h(W \ A)

has exactly two path-connected components. It follows that these compo-
nents must be exactly the sets Sn\h(W ) and h(W \A). Just like in the proof
of Jordan-Brouwer theorem, we notice that the path components of the open
subset Sn \h(A) of Sn must be open. In particular h(W \A) is open. Hence
Z = W \ A is an open neighbourhood of x, whose image is also open.
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Invariance of Domain Theorem is also true for subsets of Rn, just like
Jordan-Brouwer separation theorem, for all n ∈ N. This time the proof of
this fact is an elementary corollary of Theorem 17.6 - Rn is (homeomorphic
to the) open subset of Sn, so its subsets are open if and only their open in Sn.

Let
Hn = {x ∈ Rn|xn ≥ 0}.

A non-empty topological spaceM is called a topological n-manifold (with
boundary) if
1) M is Hausdorff and
2) M is locally homeomorphic to Rn or Hn. Precisely these means that every
point x of M has a neighbourhood U which is homeomoprhic to an open
subset of Rn or open subset of Hn.
This definition is a bit redundant since every open subset of Rn is clearly
homeomorphic to an open subset of Hn.

In the definition of the manifold it is also customary to include the ad-
ditional demand that M is second countable or paracompact, but we don’t
need such technical requirements in this context.

Suppose M is a manifold. Any homeomorphism f : U → f(U) ⊂ M ,
where U is an open subset of Rn or Hn and f(U) is open in M is called a
chart in M .
A point x ∈ M is called a boundary point if there is a chart f : U → f(U)
such that U is an open subset of Hn and x = f(y) for some

y ∈ {z ∈ Hn | zn = 0}.

The set of all boundary points of M is denoted by ∂M .
The point x ∈ M is called an interior point if there is a chart f : U → f(U)
such that U is an open subset of Rn. The set of all interior points is denoted
by intM .
If ∂M = ∅ (which means that all possible charts of M are defined on the
open subsets of Rn), we say that M is a manifold without boundary.

Once more one needs to be careful with the concepts of interior and
boundary. The interior and the boundary of a manifold defined above are
not the same as the topological interior and boundary. They are absolute,
while their topological cousins are relative. The usage of such terminology
is, admittedly, abuse of notation, but it so common in the literature, that we
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must commit it to.

Using invariance of domain and other information available to us it is
easy to prove the following results concerning manifolds. The proofs are left
to the reader.

Lemma 17.7. Suppose M is an n-manifold. Then the sets ∂M and intM
are disjoint. The interior intM is open in M and itself is an n-manifold
without boundary. The boundary ∂M is closed in M and is an (n − 1)-
manifold without boundary. An n-manifold cannot be homeomorphic to an
m-manifold if m 6= n.

The last assertion of the previous lemma says that the concept of the
”dimension” of a manifold is well-defined.

Lemma 17.8. Suppose M is an m-manifold, N is an n-manifold.
1) If m > n there are no continuous injections M → N .
2) If m = n and M has no boundary, then any continuous injection f : M →
N is an open embedding, i.e. a homeomorphism to the image f(M), which
is open in N (and is a subset of intN).

In particular we obtain the following result, mentioned before. In the
literature this result is also often referred to as ”the invariance of domain”.

Corollary 17.9. Suppose f : U → Rn is an injective continuous mapping,
where U is an open subset of Rn. Then f is an embedding and f(U) is open
in Rn.

Corollary 17.10. Suppose M is a compact n-manifold without boundary
and N is a connected n-manifold. If f : M → N is a continuous injection,
then it it a surjective homeomorphism.

Proof. By the previous lemma f(M) is open in N . On the other hand f(M)
is compact, since M is compact, so f(M) is also closed in N . Since N is
connected f(M) = N .

Example 17.11. Examples of n-manifolds without boundary include Rn (and
all open subsets of Rn), sphere Sn, projective plane RP n, torus and Klein
bottle, which are 2-manifolds. Mobius band is a 2-manifold with boundary.
Closed disk B

n
is an n-manifold with boundary.

Example 17.12. The claim 2) in Lemma 17.8 is not true if M has boundary.
For example consider the mapping f : [0, 1[→ S1, f(t) = e2πti. Then f is a
continuous bijection between two 1-manifolds but it is not homeomorphism.

255



Also if m < n there might be continuous injection from m-manifold M to
an n-manifold N , which is not embedding, even if M has no boundary. For
example let f : ]0, 1[→ R2 be a mapping defined as in the picture below. Then
f is not embedding and the image f ]0, 1[ is not even a manifold

bc bc bcbc

Corollary 17.10 shows that if M is compact n-manifold without boundary
and N is a connected n-manifold, which is not compact, then M cannot be
embedded in N . This implies, that, for example, the sphere Sn cannot be
embedded in Rn.
There is also more precise result known as the Borsuk-Ulam theorem,
which says that for any mapping f : Sn → Rn there is x ∈ Sn such that
f(x) = f(−x), but the proof of this theorem is too difficult for us at this
point.

18 The degree of a mapping

Suppose n ≥ 1 and f : Sn → Sn is a continuous mapping. Then the induced
mapping f∗ : Hn(S

n) → Hn(S
n) ”looks like” the homomorphism Z → Z.

Precisely Hn(S
n) is a free group on one generator. There are precisely two

choices for this generator - if a is a generator, then −a is the other possibility.
Fix a certain generator a. Then there exists unique m ∈ Z such that f∗(a) =
ma. Moreover n does not depend on the choice of the generator, since then
f∗(−a) = −f∗(a) = −ma = m(−a). Also in this case for every x ∈ Hn(S

n)
we have

f∗(x) = mx

and this property characterizes m uniquely.

Definition 18.1. Suppose f : Sn → Sn is a continuous mapping (n ≥ 1).
The unique m ∈ Z for which

f∗(x) = mx, x ∈ Hn(S
n)

is called the degree of the mapping f and denoted deg f .

Proposition 18.2. 1) deg id = 1.
2) deg(g ◦ f) = deg g · deg f .
3) If f ≃ g are homotopic, then deg f∗ = deg g∗.
4) If f is not surjective, then deg f∗ = 0.
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5) If f is a homotopy equivalence, then deg f∗ = ±1.
6) Suppose h : Sn → Sn is antipodal mapping h(x) = −x. Then deg h =
(−1)n+1

Proof. Collection of exercises.

Lemma 18.3. Suppose f, g ∈ Sn → Sn are such that f(x) 6= −g(x) for all
x ∈ Sn. Then f and g are homotopic. In particular deg f = deg g.

Proof. The assumption of the Lemma implies that the interval

{(1− t)f(x) + tg(x) | t ∈ [0, 1]} ⊂ Rn

from f(x) to g(x) does not contain 0 (check!). Hence the mapping H : Sn ×
I → Sn defined by

H(x, t) =
(1− t)f(x) + tg(x)

|(1− t)f(x) + tg(x)|
is a well-defined and continuous homotopy from f to g.

Corollary 18.4. Suppose f : Sn → Sn, where n is even. Then there is exists
x ∈ Sn such that either f(x) = x or f(x) = −x.

Proof. Let us assume that such a point does not exist. Then for the mappings
id and h (antipodal mapping), we have that f(x) 6= − id(x) and f(x) 6=
−h(x). By the previous lemma deg f∗ = deg id = 1 and at the same time
deg f∗ = deg h∗ = (−1)n+1 = −1, since n is even. This is a contradiction.

Recall that the standard inner product · on the Euclidean space Rn is a
mapping Rn × Rn → R defined by

x · y =

n∑

i=1

xiyi.

A continuous mapping f : Sn → Rn+1 is called a tangent vector field if
x, ·f(x) = 0 for all x ∈ Sn. Geometrically this could be interpreted as the
assignment of a tangent vector at every point of Sn, i.e. an ”arrow” that is
perpendicular to the surface of Sn at this point, in continuous fashion. This
explains the name of the following proposition. It asserts that a ball of even
dimension (for example S2) cannot be ”comped” without ”bold” spots.

Theorem 18.5. Hairy Ball’s theorem.
Suppose f : Sn → Rn+1 is a tangent vector field, where n is even. Then there
exists a point x ∈ Sn such that f(x) = 0. In other words there is no non-zero
vector fields on Sn.
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Proof. Suppose f : Sn → Rn+1 is a non-zero vector field. Then f defines a
mapping g : Sn → Sn by g(x) = f(x)/|f(x)|. By the properties of the inner
product it follows that

x · g(x) = 0

for all x ∈ Sn. By the previous corollary there is a point x ∈ Sn such that
either g(x) = x or g(x) = −x. In both cases we obtain

x · x = x · (±g(x)) = ±(x, g(x)) = 0.

By the properties of inner product this implies that x = 0. This is impossible,
since x ∈ Sn.

Both corollary 18.4 and the Hairy Ball’s theorem are not true for odd
values of n ∈ Z (exercise).

We conclude this section by showing that for every m,n ∈ Z there is a
mapping f : Sn → Sn with deg f = m.

First we need to recall the concept of complex number. A complex number
is an element of the plane R2 i.e. a pair z = (x, y) of real numbers. Complex
numbers can be added together and multiplied via algebraic operations +, ·,

(x, y) + (x′, y′) = (x+ x′, y + y′),

(x, y) · (x′, y′) = (xx′ − yy′, xy′ + x′y).

When we think of the plane R2 equipped with those operations, we call it
the set of complex numbers and denote C.
The set C equipped with addition + is an abelian group. The zero element is
the pair (0, 0) and an opposite of a complex number (x, y) is a complex num-
ber (−x,−y). The set C equipped with a multiplication · is not an abelian
group, since origin (0, 0) do not have an inverse with respect to the multi-
plication. However if zero is excluded, the remaining system is an abelian
group. More precisely the set C∗ = C \ {0} of non-zero complex numbers
is closed under multiplication of complex numbers. The pair (C∗, ·) is an
abelian group.

The set
S1 = {x ∈ C | |x| = 1}

is a subgroup of (C∗, ·), in particularly an abelian group with respect to the
multiplication of complex numbers. A zero element of this group is 1 = (1, 0)
and an inverse (x, y)−1 of an element (x, y) is

(x, y)−1 = (x,−y).
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The power zn of a complex number is defined in the same way as a multiplicity
in abelian groups, by induction,

zn = z · z . . . · z︸ ︷︷ ︸
n times

.

Negative power is defined by

z−n = (z−1)n.

An element z of S1 can be written in the form

z = (cos 2πt, sin 2πt),

where t ∈ R. It can be shown that if z = (cos 2πt, sin 2πt) and w =
(cos 2πs, sin 2πs), then

z · w = (cos 2π(t+ s), sin 2π(t+ s).

In particular
zn = (cos 2πnt, sin 2πnt).

Proposition 18.6. Let n ∈ Z and let fn : S
1 → S1 be defined by pn(z) = zn,

where we treat z ∈ S1 as a complex number. Then deg pn = n. In particular
for every n ∈ Z there exists a mapping f : S1 → S1 with deg f = n.

Proof. For n = 0 the mapping p0 is a constant mapping, which certainly
has degree 0. Also p−1(x, y) = (x,−y) is a reflection along the x-axis, which
has degree −1, by Example 15.3. Since p−n = p−1 ◦ pn, it is thus enough to
consider only the case n > 0.

For every k = 0, . . . , n− 1 let

xi = (cos 2πki/n, sin 2πki/n)

and define the path αk : I → S1 by

αk(t) = (cos(1− t)2πki/n+ t2π(k+1)i/n, sin(1− t)2πki/n+ t2π(k+1)i/n).

By the Example 9.10

x =

n−1∑

k=0

αk

is a generator of H1(S
1) and x = γ, where

γ(t) = (cos 2πt, sin 2πt).

259



We have that (pn)♯(αk) = γ, hence

(pn)∗(x) =
n−1∑

k=0

[γ] = n[γ] = nx.

Let n > 1 and suppose f : Sn−1 → Sn−1 be a continuous mapping. We
define the suspension Σf : Sn → Sn of f as follows. Write

Sn = {(x, t) ∈ Rn−1 × R | |x|2 + |t|2 = 1}.

Assert

Σf(x, t) =

{
(|x| · f(x/|x|), t), if x 6= 0,

(x, t), if x = 0.

The geometric idea behind this formula is that for every c ∈ [−1, 1] the
” slice ” {x ∈ Sn|x = c} is homeomorphic to Sn−1 in a natural way, except
for extreme cases c = ±1, where this set reduces to a point (north and south
poles of Sn). Using this homeomorphism we define Σf to ”look like ” f
on every slice. North and south poles are fixed points. The verification of
continuity of Σf is left as an exercise to the reader.

Proposition 18.7. deg Σf = deg f .

Proof. Recall from Example 16.13 that (Sn;Sn
+, S

n
−), where

Sn
+ = {x ∈ Sn | xn+1 ≥ 0},

Sn
− = {x ∈ Sn | xn+1 ≤ 0}

are upper and lower hemispheres of Sn, is a proper triad. For the suspen-
sion we have, for definition that Σf(Sn

+) ⊂ Sn+ and Σf(Sn
−) ⊂ Sn

−. Also
Σf |Sn−1 = f . By the naturality of the Mayer-Vietoris sequence of the proper
triad (Sn;Sn

+, S
n
−) we obtain a commutative diagram

Hn(S
n)

∆∼= //

(Σf)∗
��

Hn(S
n−1)

f∗
��

Hn(S
n)

∆∼= // Hn(S
n−1),

where vertical mappings are isomorphisms. The claim follows.

Corollary 18.8. For every n ≥ 1 and every m ∈ Z there exists f : Sn → Sn

s.t. deg f = m. In particular the set [Sn, Sn] is infinite (but countable).
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Proof. The first assertion follows from Propositions 18.6 and 18.7 by induc-
tion on n. Since homotopic mappings have the same degree, the mapping
[Sn, Sn] → Z defined by f̄ = deg f is well-defined (recall that [Sn, Sn] means
the set of all homotopy classes of cont. mappings Sn → Sn). The first part
of Corollary implies that this mapping is surjection. Since Z is infinite, also
[Sn, Sn] is infinite. It is countable by Corollary 5.11.

It can be actually proved that the mapping [Sn, Sn] → Z defined by
f̄ = deg f is even bijective, i.e. mappings f, g : Sn → Sn are homotopic if
and only if they have the same degree. The proof of this fact is too elaborate
for this course.

As the last application we will prove the fundamental theorem of algebra.
Recall that the mapping p : C → C (where C is the set of complex numbers) is
called a polynomial, if there exists n ∈ N and fixed coefficients a0, . . . , an−1 ∈
C, an ∈ C, an 6= 0, such that for all z ∈ C we have that

p(z) = anz
n + an−1z

n−1 + . . .+ a1z + a0.

If n ≥ 1, polynomial is not a constant mapping.
A root of the polynomial p : C → C is a complex number z0 ∈ C such

that p(z0) = 0.

Theorem 18.9. Every non-constant polynomial p : C → C has at least one
root.

Proof. Suppose p is a non-constant polynomial that does not have roots. We
may assume that p is of the form

p(z) = zn + an−1z
n−1 + . . .+ a1z + a0

for some a0, . . . , an−1 ∈ C. Since p does not have roots, the mapping fr : S
1 →

S1 defined by
fr(z) = p(rz)/|p(rz)|

is well defined and continuous for all r ≥ 0. Also the mapping f : S1×[0,∞[→
S1,

f(z, r) = fr(z) = p(rz)/|p(rz)|
is well-defined and continuous. For every r > 0 the restriction f |S1×[0, r] is a
homotopy10 between constant mapping f0 and fr. Hence deg fr = deg f0 = 0

10In the formal definition of the homotopy one requires the homotopy to be the mapping
F : X × I → Y , where I is a unit interval [0, 1], but it is clear that any interval suffices.
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for all r > 0.

On the other hand let r be any real number such that

r > 1 + |a0|+ |aa|+ . . .+ |an−1|.

Then for z with |z| = r we have

|zn| = rn = r × rn−1 > (|a0|+ |aa|+ . . .+ |an−1|)|zn−1|

≥ |an−1z
n−1|+ . . .+ |a1z|+ |a0| ≥ |an−1z

n−1 + . . .+ a1z + a0|.
It follows that for 0 ≤ t ≤ 1 the polynomial pt(z) = zn + t(an−1z

n−1 + . . .+
a1z + a0) has no roots in the set {z | |z| = r} . In particular the homotopy
H : S1 × [0, 1] → S1 defined by

H(z, t) = pt(rz)/|pt(rz)|

is well-defined. Hence fr = H(·, 1) is homotopic to pn = H(·, 0), pn(z) = zn.
By the proposition 18.6 it follows that deg fr = deg pn = n.
Hence n = 0, so p must be constant polynomial.
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