
Part II

Chain complexes and homology
groups

7 Abelian groups

So far the tools we have presented were purely combinatorial in nature, not
algebraic. A triangulation of a space is a typical example of a combinatorial
method. This means that we are describing the topological object using the
set consisting of simplices. This set has a combinatorial structure, like the
information about the way simplices intersect with each other, but it has no
algebraic structure. This is because we have not introduced a useful way to
”add” simplices together in an abstract way.

Recall that an algebraic operation on the set X is just a mapping κ : X×
X → X . Informal idea is that an algebraic operation should be a rule that
operates on the pair x, y of elements of X and produces a result of this oper-
ation κ(x, y) which is an element of X again. The functional notation κ(x, y)
is almost never used, instead it is usually notated x κ y. Also, familiar sym-
bols like + and · are used to denote algebraic operations. In the former case
operation is called ”addition”, in the latter - ”multiplication”. In this course
we will mainly be dealing with operations that are denoted additively.

Addition in the set of real numbers or, more generally, addition in vector
spaces is an example of an algebraic operation in the set. The scalar multi-
plication · : R × V → V is not - unless V = R. It is an algebraic operation
in more general sense, but not an algebraic operation on any set.

We assume that the reader is familiar with the basic concepts of abstract
algebra, such as group, homomorphism etc, as well as the result related. For
the sake of convenience we will however briefly recollect them.

Definition 7.1. A set G equipped with an algebraic operation + is called an
abelian group if the following conditions are satisfied.

i) Associativity of the addition:

(x+ y) + z = x+ (y + z)

for all x, y, z ∈ G.
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ii) Commutativity of the addition :

x+ y = y + x

for all x, y ∈ G.

iii) Zero element:
There exists an element 0 ∈ G such that

(7.2) 0 + x = x = x+ 0

for all x ∈ G.

iv) For every x ∈ G there exists an opposite element −x ∈ G such that

(7.3) x+ (−x) = 0.

It can be shown that a zero element of an abelian is always unique. Also
the opposite of every element is also unique. Whenever a set G is equipped
with addition +, that makes it an abelian group, it is customary to denote
the group as a pair (G,+).

Examples 7.4. 1) The set of all natural numbers N equipped with stan-
dard addition + satisfies conditions i), ii), iii) , but not condition iv).
Only zero has opposite element in N. Hence (N,+) is not an abelian
group.

2) If one tries to enlarge N by adding opposite elements, one arrives natu-
rally at the concept of negative numbers and the set Z of whole numbers.
The set Z of all whole numbers IS an abelian group with respect to ad-
dition.

3) Other well known examples of abelian groups with respect to familiar
addition of numbers are the group of rational numbers (Q,+), the group
of real numbers (R,+) or the group of complex numbers (C,+). Also,
every vector space V is an abelian group with respect to addition of
vectors - this is a part of the definition of a vector space.

4) The set of integers Z has another well-known algebraic operation - mul-
tiplication ·. Pair (Z, ·) is not an abelian group with respect to this oper-
ation for the same reason (N,+) is not an abelian group - most integers
do not have opposite elements, which are called ”inverse numbers” in
this case. The natural way to fix this leads to the construction of ratio-
nal numbers Q, but (Q, ·) is still not an abelian group, because 0 does
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not have an inverse. For the same reason (R, ·) is not an abelian group.

However the set of all nonzero real numbers R∗ = R\{0} is closed under
multiplication, in other words multiplication is a well-defined algebraic
operation in R∗. The pair (R∗, ·) is an abelian group. The zero element
of this group is a number 1. Opposite of number x ∈ R∗ is its inverse
number 1

x
.

Also (Q∗, ·) is an abelian group. Here Q∗ = Q \ {0}.

Suppose (G,+) is an abelian group and H ⊂ G. We say that H is a
subgroup of G if it satisfies the following conditions.

• H is closed under operation +, in other words for all x, y ∈ H also
x+ y ∈ H .

• Zero element 0 is an element of H .

• For every x ∈ H its opposite element −x ∈ H .

It is clear that if H is a subgroup of G, the restriction of the operation +
on H ×H defines an algebraic operation in H . Moreover (H,+) is then an
abelian group as well.

Examples 7.5. 1) The group (Z,+) is a subgroup of the group (Q,+).
The group (Q,+) is a subgroup of the group (R,+).

2) Consider the group (R∗, ·) of non-zero real numbers equipped with mul-
tiplication. The subset R+ consisting of all positive real numbers is a
subgroup of (R∗, ·).

3) It is easy to show (see any basic course in abstract algebra or prove it
yourself) that subgroups of (Z,+) are precisely the sets of the form

nZ = {nx | x ∈ Z}

for some fixed n ∈ N.

Suppose (G,+) and (G′,+′) are abelian groups. A mapping f : G → G′

is called a homomorphism of abelian groups if it preserves the algebraic
structure, i.e. if for all x, y ∈ G

f(x+ y) = f(x) +′ f(y).
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Any homomorphisms defines two important canonical subgroups - the kernel
Ker f and the image Im f (compare this to the corresponding notions in
linear algebra). These are defined by

Ker f = {x ∈ G | f(x) = 0′},

Im f = {f(x) | x ∈ G}.
Here 0′ is a zero element of the group G′. Kernel is a subgroup of G and
image is a subgroup of G′.
Suppose f : G → G′ is a homomorphism between abelian groups. Then

- f is injection if and only if Ker f = {0} is a trivial subgroup of G
consisting of a zero element only.

- f is surjection if and only if Im f = G′.

- If f is bijection, then its inverse mapping f−1 : G′ → G is also a bijective
homomorphism of groups.

A bijective homomorphism f : G → G′ is called an isomorphism. If there
exists an isomorphism between abelian groups G and G′ we say that groups
are isomorphic and denote this as G ∼= G′. Isomorphic groups are ”the same”
up to the way elements are called - algebra do not see any difference between
them.

Examples 7.6. 1) Fix n ∈ N and consider a mapping f : Z → Z defined
by f(x) = nx, x ∈ Z. Because addition of numbers is distributive over
multiplication,

f(x+ y) = n(x+ y) = nx+ ny = f(x) + f(y) for all x, y ∈ Z.

Hence f is a homomorphism. Its image Im f is a subgroup nZ of Z. Its
kernel is a trivial subgroup {0} whenever n 6= 0. Hence in this case f
is an injection, thus also bijective as a mapping Z → nZ. In particular
nZ is isomorphic to Z itself.

When n = 0 image Im f = {0} is a trivial group and the kernel Ker f =
Z is the whole group.

2) Consider the mapping f : Z → R∗ defined by f(x) = (−1)x. This map-
ping maps even integers onto number 1 and odd integers onto number
−1. Since

f(x+ y) = (−1)x+y = (−1)x · (−1)y,
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f is a homomorphism between abelian groups (Z,+) and (R∗, ·). Its ker-
nel is Ker f = 2Z, the set of even integers. Its image is Im f = {1,−1}.
Hence in particular R∗ has a subgroup consisting of two elements. This
is our first example of a non-trivial finite group.

3) The groups (R,+) and (R+, ·) are isomorphic as abelian groups, because
the mapping exp : R → R+, exp(x) = ex is an isomorphism of groups.
Its inverse is a natural logarithm mapping ln : R+ → R.

4) Assuming the reader is familiar with complex numbers, consider the
mapping f : R → C∗ defined by

f(x) = (cos(2πx), sin(2πx)).

Here C∗ = R2 \ {0} is a set of non-zero complex numbers, which is
an abelian group with respect to the multiplication of complex numbers.
Formulas for the sine and cosine of the sum of two angles easily imply
that f is a homomorphism of groups (verification left as an exercise).
The kernel of this homomorphism is precisely the group of integers Z
and the image Im f is the unit sphere in the plane,

Im f = S1 = {y ∈ C∗ | |y| = 1}.

Quotient groups.

The concept of a quotient group and isomorphism theorems related to it
are among the most important ideas in abstract algebra. They will also be
essential for the construction of homology groups.

Suppose (G,+) is an abelian group and H is a subgroup of G. We define
a relation ∼H on G by asserting that x ∼H y if and only if x− y ∈ H .

The following facts are proved in the standard courses of abstract algebra.

Proposition 7.7. (1) Relation ∼H is an equivalence relation.

(2) The equivalence class of an element x ∈ G is

x+H = {x+ h | h ∈ H} = H + x = x.

(3) There is a well-defined algebraic operation + on the set G/ ∼H , which
is defined by

(x+H) + (y +H) = (x+ y) +H.
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(4) The quotient set G/ ∼H equipped with this operation is an abelian
group. The zero element of this group is H, which is an equivalence
class of the zero element 0 ∈ G.

The abelian group G/ ∼H is usually denoted G/H and is referred to as
a quotient group (or a factor group) of H in G. An equivalence class x+H
of the element x ∈ G is also denoted shortly as x.

In general group theory, where groups are not assumed to be commuta-
tive, in order for G/H to be a groupH needs to be so-called normal subgroup,
but in the case of abelian groups every subgroup is automatically normal.

The canonical projection p : G → G/H from a group to its factor group
is a homomorphism with respect to operations in both groups. This follows
directly from the definition of the algebraic operation in G/H . Also, p is
always surjective. The kernel of p is exactly the subgroup H .

The most important applications of factor groups lies within factorization
and isomorphism theorems.

Proposition 7.8. Factorization theorem.
Suppose (G,+) and (G′,+′) are abelian groups and let H be a subgroup of
G. Let f : G → G′ be an arbitrary homomorphism. Then there exists a
homomorphism f : G/H → G′ such that the diagram

G
f //

p

!!D
DD

DD
DD

D G′

G/H

f

<<yyyyyyyy

commutes, i.e. such that f ◦p = f if and only if H ⊂ Ker f . If such f exists,
it is unique and given by the formula

f(x) = f(x)

for all x ∈ G. Mapping f is injective if and only if H = Ker f . Mapping f
is surjective if and only if f is surjective. More generally Im f = Im f .

The mapping f : G/H → G′ provided by the previous proposition is
referred to as the induced mapping. Applying factorization theorem for the
case H = Ker f we obtain the following important result.
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Corollary 7.9. Isomorphism theorem.
Suppose (G,+) and (G′,+′) are abelian groups and f : G → G′ is a homo-
morphism. Then the induced mapping f : G/Ker f → Im f given by

f(x) = f(x), x ∈ G,

is an isomorphism of groups.

Examples 7.10. (1) Let n ∈ N. The group of integers modulo n is, by
definition, quotient group

Zn = Z/nZ.

For n = 0 this group is essentially a group of integers Z. Otherwise it
is a finite group that has exactly n elements. Every element of Zn is of
the form k for 0 ≤ k ≤ n− 1, i.e.

Zn = {0, . . . , n− 1}.

(2) Consider the mapping f : Z → R∗ defined by f(x) = (−1)x from the
example 7.6. By an isomorphism theorem f induces an isomorphism
f : Z/Ker f → Im f . Since Ker f = 2Z and Im f = {1,−1}, we see
that the subgroup {1,−1} of R∗ is isomorphic to Z/2Z = Z2. It is not
hard to see this also directly.

(3) As an example of an application of a more general factorization theorem
7.8 suppose m ∈ N and n ∈ N are such that m is divisible by n i.e.
m = nk for some k ∈ N. It follows that mZ ⊂ nZ. Now, the group
nZ is a kernel of a projection p : Z → Zn. By the theorem 7.8 p can be
factorized to a surjective homomorphism p : Zm → Zn.

Example 7.11. In the algebra textbooks the isomorphism theorem 7.9 is of-
ten referred to as ”the first isomorphism theorem (of group theory)”. There is
also ”second isomorphism theorem”, which is actually, in a sense, a certain
application of the isomorphism theorem. Since we shall need it later, let us
go through it as an example.

Suppose G is an abelian group and H, K its subgroups. Then the subset

H +K = {h+ k | h ∈ H, k ∈ K} ⊂ G

is a subgroup of G (easy verification, left as an exercise). It is clear that H
and K are both subgroups of H +K. In particular there exists an inclusion
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i : H → H+K and also the canonical projection p : (H+K) → (H+K)/K.
Consider the composite homomorphism α = p ◦ i : H → (H + K)/K. This
mapping is a surjection. This is seen as following. Suppose x = h + k ∈
(H + K)/K is a class of an element h + k ∈ H + K, where h ∈ H and
k ∈ K. Then (h + k) − h = k ∈ K, so h+ k = h in the factor group
(H +K)/K. It follows that

α(h) = p(i(h)) = h = x.

Hence α is a surjection. Next we calculate the kernel of α. Suppose h ∈ H
is such that

α(h) = h = 0

in the factor group (H+K)/K. By definition this means that h ∈ K. Hence
Kerα = H ∩K. Since a kernel of a homomorphism is always a subgroup, we
also see that the intersection H ∩ K of two subgroups is always a subgroup
as well. Of course this can be easily shown also directly from the definition.

Applying the isomorphism theorem to the mapping α, we obtain that there
exists induced isomorphism

α : H/(H ∩K) → (H +K)/K.

This fact is exactly what is known as ”the second isomorphism theorem”.

8 Free abelian groups

Supppose (G,+) is an abelian group and x ∈ G. We define integer multi-
plicities nx of x, n ∈ Z, in a natural way as following. First we defined it for
non-negative values of n.

For n = 0 we assert 0x = 0. Here 0 on the left side is an integer 0 ∈ Z,
while 0 on the right side is a zero element of the group. We continue by
induction. Suppose nx is already defined for some n ≥ 0. Then we assert

(n + 1)x = nx+ x.

By definition 1x = (0 + 1)x = 0x + x = 0 + x = x for every x ∈ G. Less
formal, but more natural way to think about the multiplicity nx is to realize
that it is x summed up with itself precisely n times,

nx = x+ x+ . . .+ x︸ ︷︷ ︸
n times

.
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This defines nx for non-negative n. For n < 0 we assert

nx = (−n)(−x).

Multiplicities satisfy the following natural equations.

(n+m)x = nx+mx, and

(nm)x = n(mx), for all n,m ∈ Z, x ∈ G

The verification of this equations are left to the reader as an exercise.

Through the concept of multiplicities one can think of integers as scalars
of the theory of abelian groups, just like real numbers are scalars for vector
spaces. Using this analogy we call the expression of the form

n1x1 + . . .+ nkxk,

where ni ∈ Z, xi ∈ G, i = 1, . . . , k, where G is an abelian group, a linear
combination of the elements x1, . . . , xk of the group G. Integers n1, . . . , nk

are coefficients of this combination.
Linear combinations, and, more generally finite sums in abelian groups are

often convenient to denote using so-called sigma-notation
∑

. For example a
sum n1x1 + . . .+ nkxk above can be more compactly written as

k∑

i=1

nixi.

The following result is completely analogous to the similar statement for
vector spaces.

Lemma 8.1. Suppose G is an abelian group and A ⊂ G is an arbitrary
subset. Then the smallest (with respect to inclusion) subgroup G(A) of G
that contains A is the set

G(A) = {n1x1 + . . .+ nkxk |k ∈ N, ni ∈ Z, xi ∈ A, i = 1, . . . , k}

of all possible linear combinations of elements of A.

Proof. Exercise.

In the formulation above we are allowing case k = 0, which is so-called
”empty sum”. By definition we assert the value of this sum to be the zero
element 0 of the group. The subgroup H(A) above is called the subgroup
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generated by the set A. We also say that the set A generates or spans the
group H(A).

If an abelian group G equals to its subgroup G(A) for some finite subset
A ⊂ G, we call the group G finitely generated.

SupposeG is an abelian group. A subset A ⊂ G is linearly independent
or free if for all ak ∈ A, k = 1, . . . , n and n1, . . . , nk ∈ Z the condition

n1a1 + . . .+ nkak = 0

is equivalent to n1 = . . . = nk = 0. If independent subset A also generates
the whole group i.e. if every element x ∈ G can be written as a finite sum

x = n1a1 + . . .+ nkak,

where ni ∈ Z, ai ∈ A, we say that A is a basis of an abelian group G. An
abelian group G is free if it has a basis.

Lemma 8.2. Suppose G is a group and A ⊂ G. Then A is a basis of G if
and only if every element x ∈ G has a unique representation in the form

x = n1a1 + . . .+ nkak,

where ni is a non-zero integer and ai ∈ A for every i = 1, . . . , k.

Proof. Exercise.

In the lemma above we also allow the case k = 0, i.e. an empty sum.
Remember, that the value of this sum is a zero element.

Examples 8.3. (1) The group of integers Z is free. It has a basis A = {1},
consisting of only one element. Indeed, the singleton {1} generates the
group, since n1 = n for every n ∈ Z. Also if n = n · 1 = 0, then n = 0.
Hence {1} is a basis of Z. Another basis for Z is a singleton {−1}.
There are no other basis.

(2) The theory of vector spaces and the theory of abelian groups is not
completely similar. In particular we know from linear algebra that every
finite dimensional vector space has a (finite) basis. Actually it can
be shown that every vector space has a basis, even if it is not finite
dimensional - in that case the basis is infinite. The analogous claim for
abelian groups is not true at all!

For example consider the group Zn of integers modulo n, for n > 1.
Then Zn is finite, hence in particular trivially finitely generated. How-
ever it does not have a basis. In fact much more general claim is true
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- an abelian group that has at least one so-called non-trivial torsion
element is not free. An element x ∈ G of the group G is torsion if
there exists n ∈ Z such that nx = 0. Zero element is trivially torsion
element. A torsion element which is not zero is a non-trivial torsion
element. We leave it as an exercise to verify that a free abelian group
does not have a non-trivial torsion element.

Any element of Zn is a torsion element, since nx = 0 for every x ∈ Zn.
Hence Zn is not free if n > 1. if n = 1 the group Zn is the trivial group
{0}. Trivial group is always free - it has an empty basis.

In fact the result, which is analogous to the fact that every finitely
dimensional vector space has a basis in the theory of abelian groups is
the following - every finitely generated abelian group that has no non-
trivial torsion elements is free (and has finite basis). This fact is proved
in the abstract general algebra. We won’t need it in this course.

(3) The group of rational numbers (Q,+) does not have torsion elements.
However, it it not finitely generated and it is not free. We leave the
proof of this claims to the reader.

(4) The group of positive rational numbers (Q+, ·) equipped with multipli-
cation is free. The set of prime numbers P = {2, 3, 5, . . .} is a basis
of Q. This follows from the fundamental theorem of arithmetic, which
asserts that every positive integer m can be expressed as a product

m = pk11 pk22 . . . pkll .

where l ≥ 0 and k1, . . . , kl ∈ N+ in a unique way. Notice that for
m = 1, l = 0 i.e. the product is ”empty”. From this it follows that
every rational number can be written (in the unique way) as a product

q = pk11 pk22 . . . pkll ,

where ki is either positive or negative integer for every i = 1, . . . , l.
This implies the claim.

The group (Q∗, ·) of all non-negative rational numbers is not free, since
it contains a non-trivial torsion element (−1).

Basis have the following important extension property. It asserts that in
order to define a homomorphism f : G → H , where G is free, it is enough to
specify the images of the basis elements. Those can be arbitrary. Compare
this to the similar result in linear algebra, regarding basis of vector spaces.
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Lemma 8.4. Suppose G is an abelian group and a subset A ⊂ G is a basis
of G. Suppose f : A → H, where H is an abelian group, is a mapping of
sets. Then there exists a unique group homomorphism g : G → H which is
an extension of f i.e. g(a) = f(a) for all a ∈ A.

Proof. Exercise.

So far the only examples of free abelian group we have seen were the triv-
ial group consisting of one element, the group of integers Z and the group
of positive rational numbers equipped with multiplication. We proceed by
constructing canonical set of examples of free abelian groups. We will show
that any given set is a basis of a free abelian group.

The idea of the construction is the following. Let A be an arbitrary set.
Suppose a set A is ”embedded” in an abelian group G i.e. is a subset of G.
Since G contains all elements a ∈ A it also contains all integer multiplies na,
n ∈ Z, a ∈ A. Since G is closed under its addition, it must contain all the
possible finite sums of these multiplies, i.e. all possible linear combinations

n1a1 + . . .+ nkak,

where ni ∈ Z and ai ∈ A. If we forget about the group G itself, we can also
think of such a sum as a ” formal sum ” made of elements of A. A formal
sum like these can be identified with the indexed collection of its integer
coefficients (n1, . . . , nk). For the element a of A which does not occur in the
sum above (i.e. a 6= a1, . . . , ak) we can think that it actually does occur,
with the coefficient n = 0. In this manner we can extended the indexed
family (n1, . . . , nk) to the indexed family (na)a∈A. On the other hand, Such
an indexed family can be thought of as a function f : A → Z. The set of
such functions is denoted by

ZA = {f : A → Z}.

Moreover, not every element of ZA can come from a formal sum. Every
indexed family that comes from a formal sum has the additional property
that only finite amount of its coordinates differs from zero.

Definition 8.5. A function f : A → Z is said to be finetely supported if

Bf = {a ∈ A | f(a) 6= 0}

is a finite subset of A. This set is called the carrier of f .
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The subset of ZA consisting of finitely supported functions is denoted
Z(A). It is clear that a function f ∈ ZA is finitely supported if and only if
there exists a finite B ⊂ A such that f(a) = 0 for all a /∈ B.

The set ZA has a natural structure of an abelian group, with addition +
defined ”point-wise” by

(f + g)(a) = f(a) + g(a)

for all f, g ∈ ZA and A ∈ A.
The zero element of this group is the constant zero function 0: A → Z,

defined by 0(a) = 0 for all a ∈ A. The opposite element of f ∈ ZA is a
function −f defined point-wise by

(−f)(a) = −f(a), a ∈ A.

Lemma 8.6. (ZA,+) is an abelian group and Z(A) is a subgroup of ZA, hence
an abelian group as well.

Proof. Exercise.

If the set A is finite, every element of ZA is finitely supported, hence in
that case Z(A) = ZA. If, on the other hand, A is infinite, Z(A) is a proper
subgroup of ZA.
Note a particular special case A = ∅. Then there exists one and only one
mapping f : A → Z (so-called empty mapping. This mapping is trivially
finitely supported. Thus, by definitions, Z∅, as well as Z() are both trivial
groups {0}. We usually denote such a group simply by 0.

Whenever a finite set A is written in the form A = {a1, . . . , an}, we also
denote ZA = Z(A) by

Z[a1, a2, . . . , an].

Hence, if A = {a} is a singleton, we denote ZA = Z[a].

The notion of finitely supported families also allows us to give another,
more elegant version of Lemma 8.2. Suppose G is an abelian group, A ⊂ G a
subset and let (na)a∈A be an element of Z(A) i.e. a finitely supported family
of integers indexed on the set A. We can define the sum

∑
a∈A naa by the

formula ∑

a∈A

naa =
∑

a∈B

naa,

where B on the right side is the carrier of the finitely supported family
(na)a∈A. Since B is by definition finite, the sum on the right is a well-defined
finite sum of element of the group G.
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Lemma 8.7. Suppose G is an abelian group and A ⊂ G is a subset. Then A
is a basis of G if and only if every element x ∈ G has a unique representation
as a sum ∑

a∈A

naa,

where the family (na)a∈A is finitely supported.

Proof. Suppose A is a basis. Then A in particular spans the group G, so
every element x ∈ G can be written in the form

x = n1a1 + . . .+ nkak,

where ni ∈ Z and ai ∈ A. Let B = {a1, . . . , ak} ⊂ A. Define the family of
integers (na)a∈A by asserting na = nai if a = ai and na = 0 otherwise. Then,
by definition ∑

a∈A

naa = n1a1 + . . .+ nkak = x.

Hence every element of G can be represented as a sum
∑

a∈A naa, where the
family (na)a∈A is finitely supported.

Next we show that such a representation is unique. Suppose

∑

a∈A

naa = x =
∑

a∈A

n′
aa

for some finitely supported families (na)a∈A and (n′
a)a∈A of integers. We have

to show that na = n′
a for all a ∈ A. Let B be the union of carriers of both

families. Then B is finite, as a union of two finite sets and na = 0 = n′
a for

all a /∈ B. Hence it is enough to show that na = n′
a for all a ∈ B. Moreover,

∑

a∈A

naa =
∑

a∈B

naa =
∑

a∈B

n′
aa =

∑

a∈A

n′
aa.

Sums in the middle are regular finite sums. Subtracting one sum from the
other, we obtain ∑

a∈B

(na − n′
a) = 0.

Since we are assuming that A is linearly independent and B ⊂ A, it follows
that na − n′

a = 0 i.e. na = n′
a for all a ∈ B. This is what had to be shown.

The proof of the other direction is left to the reader as an exercise.
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Suppose A is an arbitrary set. Let us show that Z(A) is a free abelian
group by construct a canonical basis for Z(A). For every a ∈ A let

fa ∈ Z(A)

be defined by

fa(x) =

{
1, if x = a,

0, otherwise .

It is clear that fa 6= fb whenever a 6= b, so we identify a with fa and think of
A as a subset {fa : a ∈ A} of Z(A).

Lemma 8.8. The set {fa | a ∈ A} is a basis of an abelian group Z(A).

Proof. Exercise.

Since we can identify A with the basis {fa | a ∈ A} of Z(A) we obtain, in
particular, the following result, which will provide us with a starting point
of the construction of the singular and simplicial homology groups.

Corollary 8.9. Suppose A is an arbitrary set. Then there exists an abelian
group with basis A.

The free abelian group, that has A as a basis, is actually unique up to an
isomorphism.

Lemma 8.10. Suppose A is a basis of a free abelian group G. Then G is
isomorphic to Z(A).

Proof. Consider a mapping α : A → Z(A), α(a) = fa. Since G is free and A is
its basis, by Lemma 8.4 α can be extended to a homomorphism α : G → Z(A)

of abelian groups.
On the other hand the correspondence a 7→ fa is bijective, and collection

{fa | a ∈ A} is a basis of Z(A), so conversely we can define a homomorphism
β : Z(A) → G with the property β(fa) = a, for all a ∈ A. The composite
homomorphism γ = β ◦ α : G → G has the property γ(a) = a = id(a) for all
a ∈ A. Since A is basis and γ, id are both homomorphism, by the uniqueness
part of the claim in Lemma 8.4 we see that γ = id. In other words β◦α : G →
G is identity mapping. Similarly we see that α ◦ β : Z(A) → Z(A) is identity.
Hence α and β are inverses of each other, in particularly isomorphisms.
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If A is a basis of a free abelian group G we also call elements of A free
generators of G.
It can be shown that the size of the basis determine the free group uniquely
up to an isomorphism, i.e. Z(A) ∼= Z(B) if and only if there is a bijection
between A and B. We will need this result for the special case of finite sets
A,B, so we prove it only in this special case later in this chapter. Before
that let us also recollect the useful notion of the direct sum of abelian groups.

Direct sums.
Suppose (Gα)α∈A is a collection of abelian groups. We want to find the
simplest and most universal abelian group, that would include all groups Gα

as subgroups. The construction is a generalization of the same idea, that lead
to the construction of the free group Z(A). Indeed, a group G that contains
every group Gα would also contain all possible finite sums of the form

xα1 + xα2 + . . .+ xαk
,

where xαi
∈ Gαi

for all i = 1, . . . , k. This leads naturally to the following
exact construction.

First we form so-called direct product
∏

α∈A Gα, which, by definition,
consists of all possible families (xα)α∈A, where xα is an element of the group
Gα for all α ∈ A. An element xα ∈ Gα is called α-component of the family
(xα)α∈A.
For every β ∈ A there exists a projection mapping pβ :

∏
α∈AGα → Gβ,

which is the canonical projection,

p(β)((xα)α∈A) = xβ.

An element (xα)α∈A of the direct product is called finitely supported if
there exists a finite subset B ⊂ A such that xα = 0 ∈ Gβ for all α /∈ B. In
other words for all, but a finite amount of the indexes, a component of the
family is a zero element of the corresponding groups. We denote the set of
all finitely supported elements of

∏
α∈A Gα by

⊕α∈AGα

and call the direct sum of the groups (Gα)α∈A.

Direct product is given a natural structure of an abelian group with ad-
dition + defined ”componentwise”. In other words we assert

(xα)α∈A + (yα)α∈A = (xα + yα)α∈A.
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Lemma 8.11. The direct product
∏

α∈A Gα is an abelian group. The zero
element is the family (0)α∈A, whose every component is a zero element of
the corresponding group. The opposite of the element (xα)α∈A is an element
(−xα)α∈A.

The direct sum ⊕α∈AGα is a subgroup of the direct product, in particular
an abelian group.

Proof. Exercise.

We will be mainly interested in the direct sum⊕α∈AGα. IfA = {a1, . . . , an}
is finite, we also denote the direct sum as

Ga1 ⊕Ga2 ⊕ . . .⊕Gan .

In this case direct sum equals to the direct product.

For every index β ∈ A there exist natural mapping

prβ : ⊕α∈A Gα → Gβ,

called projection to Gβ, defined by

prβ((xα)α∈A) = xβ.

Also, for every β ∈ A there exists a natural mapping iβ : Gβ → ⊕α∈AGα,
called inclusion of the group Gβ into the direct product. It is defined as
following. Suppose x ∈ Gβ. We let iβ(x) to be the family (xα)α∈A such that
xβ = x and xα = 0 ∈ Gα for α 6= β. Clearly iβ(x) is finely supported, so the
mapping iβ : Gβ → ⊕α∈AGα is well-defined.

Proposition 8.12. Canonical projection prβ : ⊕α∈A Gα → Gβ is surjective.
Canonical inclusion iβ : Gβ → ⊕α∈AGα is injective, so really is an inclusion.
Hence iβ(Gβ) is isomorphic to Gβ for every β ∈ A.

Every element x of the direct sum ⊕α∈AGα can be written as a finitely
supported sum of the form

x =
∑

α∈A

iα(xα),

where xα ∈ Gα and the family (xα) is finitely supported in a unique way. In
fact this equation is true if and only if x = (xα)α∈A.
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Proof. Exercise.

Since iβ : Gβ → ⊕α∈AGα is, by the previous Proposition, an isomorphism
to the image iβ(Gβ), we identify the group Gβ with the subgroup iβ(Gβ) of
the direct sum ⊕α∈AGα.

The following property of direct sum is in fact universal property that
characterizes direct sum up to an isomorphism. We won’t formalize this
claim, since we do not need it.

Lemma 8.13. Suppose (Gα)α∈A is a collection of abelian groups and H is an
abelian group. Suppose that for every α ∈ A a homomorphism fα : Gα → H
of groups is given. Then there exists unique homomorphism f : ⊕α∈AGα → H
such that f ◦ iβ = fβ for all β ∈ A. Here iβ : Gβ → ⊕α∈AGα is a canonical
embedding.

This mappings is defined by the formula

f((xα)α∈A) = fα(xα).

Proof. Suppose f : ⊕α∈A Gα → H is a homomorphism such that f ◦ iβ = fβ
for all β ∈ A. Suppose x = (xα)α∈A. By the Lemma 8.12 we have that

x =
∑

α∈A

iα(xα),

where the sum is essentially finite i.e. finitely supported. Since f is a homo-
morphism, we have that

f(x) =
∑

α∈A

f(iα(xα)) =
∑

α∈A

fα(xα).

This proves that f is unique and must be given by this formula. Conversely
it is enough to prove that the mapping given by this formula is well-defined
and a homomorphism. This is a simple straightforward calculation.

The mapping f : ⊕α∈AGα → H such that f ◦ iβ = fβ for all β ∈ A, given
by the previous lemma, is sometimes denoted simply as

∑
α∈A fα. Then

∑

α∈A

fα((xα)α∈A) =
∑

α∈A

fα(xα)

for all (xα)α∈A ∈ ⊕α∈AGα.
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Example 8.14. The group (R∗, ·) of non-zero numbers equipped with multi-
plication is isomorphic with the direct sum Z2 ⊕R, where R is equipped with
addition. This is seen as follows. Let f1 : Z2 → R∗ be the homomorphism
defined by f1(n) = (−1)n (see example 7.10) and let f2 : R+ → R∗ be the
inclusion of sets. Then the homomorphism f1 + f2 : Z2 ⊕ R+ → R∗ exists
and easily seen to be an isomorphism (exercise). Finally we notice that by
example 7.6, 3) the group (R+, ·) is isomorphic to (R,+).

Similary one sees that (Q∗, ·) is isomorphic to Z2 ⊕ Q+, where Q+ is
(example 8.3) isomorphic to the free abelian group Z(N).

Suppose (Gα)α∈A and (G′
α)α∈A are collections of abelian groups indexed

on the same A and suppose that for every α ∈ A a homomorphism fα : Gα →
G′

α of groups is given. The direct sum

f = ⊕α∈Afα : ⊕α∈A Gα → ⊕α∈AG
′
α

is a mapping defined by

fα((xα)α∈A) = (f(xα))α∈A.

This is actually unique homomorphism given by the previous Lemma applied
to the collection of mappings jα ◦ fα : Gα → G′, where jβ : G

′
β → ⊕α∈AG

′
α =

G′.

Suppose Hα is a subgroup of Gα for every α ∈ A. Let ια : Hα → Gα be
a natural inclusion of subset Hα into Gα. Then we can form a mapping

ι = ⊕ια : ⊕α∈A Hα → ⊕α∈AGα.

On easily verifies that this mapping is an injection, in fact an inclusion of
sets. In other words the direct sum

H = ⊕α∈AHα

is a subgroup of the direct sum ⊕α∈AGα in a natural way.

Lemma 8.15. Suppose Hα is a subgroup of Gα for every α ∈ A. Denote

G = ⊕α∈AGα,

H = ⊕α∈AHα.

Let prα : Gα → Gα/Hα be canonical projection to the factor group for every
α ∈ A. Then the mapping ⊕ prα : G → ⊕α∈AGα/Hα is a surjective homo-
morphism of groups that induces an isomorphism

G/H ∼= ⊕α∈AGα/Hα.
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Proof. By isomorphism theorem 7.9 it is enough to notice the mapping ⊕ prα
is a surjection and that the kernel of this mapping is precisely H . The
verification of these facts is left to the reader as an exercise.

The operation
∑

that turns a collection of mappings fα : Gα → H into a
single homomorphism f = (

∑
fα) : ⊕α∈AGα → H assumes that all mappings

fα have the same target group H . Sometimes a construction ”in the different
direction”, where the domain is kept fixed, is needed. In general such a
construction works for direct products, not direct sums. However, since in
the final case both notions coincide, it does involve direct sum, when the
index set A is finite. Since this is the only case we need, we shall formulate
and prove the next result only for this case.

Lemma 8.16. Suppose G,H1, . . . , Hn are abelian groups and suppose that
for every i = 1, . . . , n we are given a homomorphism fi : G → Hi. Then there
exists unique f : G → ⊕n

i=1Hi such that

pj ◦ f = fi

for all j = 1, . . . , n. Here pj : ⊕n
i=1 Hi → Hj is the projection,

p(x1, . . . , xn) = xj .

The mapping f is defined by

f(x1, . . . , xn) = (f1(x1), . . . , fn(xn)).

Proof. Exercise.

The free group Z(A) we have constructed before, is a special case of the
direct sum. Indeed, if we take Ga = Z for every a ∈ A, then the direct sum
⊕a∈AGa is precisely the group Z(A). In particular, whenever A = {a1, . . . , an}
is finite, we have that

Z(A) = Z[a1]⊕ Z[a2]⊕ . . .⊕ Z[an],

where every subgroup Z[ai] is isomorphic to the group of integers Z in a natu-
ral way. When A = {a1, . . . , an} has n elements, we simply denote Z(A) = Zn.
If B = {b1, . . . , bn} is another set that has n elements, groups Z(A) and Z(B)

are isomorphic in a natural way, so this notation can’t cause confusion.

Next we show that the size of the basis of a free group is unique - whenever
it is finite.
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Lemma 8.17. Suppose A and B are sets and A is finite. Then Z(A) ∼= Z(B)

if and only if B is finite and has the same amount of elements as A, |A| = |B|

Proof. Let G be an abelian group and denote

2G = {2x | x ∈ G}.

It is easy to see that 2G is a subgroup of G (exercise). Hence we can also
form the quotient group G/2G.

Let f : G → H be an isomorphism of groups and consider the mapping
g = p◦f : G → H/2H , where p : H → H/2H is a canonical projection to the
factor group H/2H . This mapping is a surjective homomorphism of groups
and its kernel Ker g = 2G (check it!). Hence, by the isomorphism theorem
7.9, g induces an isomorphism between quotient groups G/2G and H/2H .

Next we apply this construction to the case G = Z(A) and H = Z(B). We
know that

Z(A) = ⊕a∈AZ.

From the definition it follows, that

2Z(A) = ⊕a∈A2Z.

By Lemma 8.15 the factor group Z(A)/2Z(A) is isomorphic to the direct sum

⊕a∈AZ/2Z = ⊕a∈AZ2.

Hence, if Z(A) and Z(B) are isomorphic, also the direct sums ⊕a∈AZ2 and
⊕b∈BZ2 are isomorphic. It is easy to see that if A is infinite, also the direct
sum ⊕a∈AZ2 is infinite. On the other hand, if A is finite, also ⊕a∈AZ2 is
finite and in fact has precisely 2|A| elements. Thus, if ⊕a∈AZ2 and ⊕b∈BZ2

are isomorphic and A is finite, also B must be finite and 2|A| = 2|B|. This
implies that |A| = |B|, hence the claim.

Simplicial chains.
Now let us finally apply the abstract general algebra to our objects of study
- ∆-complexes, and later, more generally, to the arbitrary topological spaces.

Let K be a ∆-complex. For every n ∈ N let [Kn] be the collection of
geometrical n-simplices of K (i.e. two simplices are considered the same if
they are identified in the complex K).
By Cn(K) we denote the free abelian group Z[Kn] on the set [Kn]. By con-
struction the elements of Cn(K) are formal sums of geometrical n-simplices
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of K with integer coefficients. The elements of Cn(K) are called the sim-
plicial n-chains of the complex K. The set [Kn] of geometrical n-simplices
is the basis of this group. The group Cn(K) will be called the group of
simplicial n-chains of the complex K.

Example 8.18. Consider a ∆-complex K(σ) where σ is an ordered 2-simplex
[v0,v1,v2]. It consists of all the faces of σ, with no identifications.

Now Cn(K) is zero for n > 2, since complex do not have simplices in
these dimensions. For n = 2 there is only one 2-simplex, so C2(K) is a free
group based on one element [v0,v1,v2], hence isomorphic with Z. Elements
of this group have the form n[v0,v1,v2], n ∈ Z.

For n = 1 there are three 1-simplices, so C1(K) is a free group on 3 free
generators, thus isomorphic to Z(3). Elements can be written uniquely in the
form

n[v0,v1] +m[v0,v2] + l[v1,v2], n,m, l ∈ Z.

Since there are 3 vertices, C0(K) is also free on 3 generators, with elements
of the form

nv0 +mv1 + lv2

(we write [vi] = vi to simplify the notation).

If we identify all vertices of σ we obtain another ∆-complex K ′. This
has the same groups Cn(K

′) as Cn(K) for n 6= 0, but C0(K) is free on one
element v0 = v1 = v2, since all the vertices are the same now.

If we identify two 1-sides [v0,v1] and [v1,v2] we obtain another ∆-complex
K ′′, for which C1(K

′′) is free on two elements - one being [v0,v12] and the
other being [v0,v1] = [v1,v2].

Singular chains
Suppose X is a topological space. For every n ∈ N let

Singn(X) = {f : ∆n → X|f is continuous }.

Here ∆n is a canonical n-simplex defined by

∆n = {(x1, . . . , xn)|
n∑

i=1

xi ≤ 1}.
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We consider ∆n as an ordered simplex (e0, e1, . . . , en), where e0 = 0 and ei is
an ith element of the standard basis of Rn.

Elements of Singn(X) are called the singular n-chains in X .

Definition 8.19. Suppose X is a topological space. For n ≥ 0 we define
Cn(X) to be the free abelian group with the basis Singn(X). The group Cn(X)
is called the group of the singular n-chains of X.

The term ”singular” refers to the fact that the only ”regularity” we ex-
pect out of the basis elements of the group Cn(X) is continuity. The image
of such an element need not to look like simplex, and, as a consequence, can
contain ”singularities”, holes etc.

In the special case of empty space X = ∅, there are no mappings f : ∆n →
X , for any n ∈ N. Hence in this case Cn(X) = Z∅ = 0 is a trivial group for
every n ∈ N.

Simplicial chains as subgroup of singular chains.
Suppose K is a ∆-complex. Then we have the group of simplicial n-chains
Cn(K) defined. Since the polyhedron |K| is a topological space, we also have
the group of singular n-chains Cn(|K|). There is a natural way to consider
Cn(K) a subgroup of Cn(|K|) as following.

Suppose K is a ∆-complex and suppose σ ∈ K is one of its simplices.
We have previously defined the standard mapping gσ : σ → |K| which is
essentially a restriction of the canonical projection p : Z → |K| to a simplex
σ. Here

Z =
⊔

σ∈K

σ

is a disjoint topological union of simplices of K. Strictly speaking, the map-
ping gσ is not necessarily singular simplex in |K|, since σ need not to be a
standard simplex. But this technical detail is easy to fix, since every simplex
is homeomorphic to a standard simplex.

Thus let σ be an n-dimensional simplex of K. Let α : ∆n → σ be the
unique simplicial homeomorphism that preserves the order of vertices. We
define a simplicial singular n-simplex fσ : ∆n → |K| to be the composition
fσ = gσ ◦ α. Then fσ is indeed a simplicial singular n-simplex in the space
|K|, i.e. an element of the group Cn(|K|).
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Suppose σ ∼n σ′ in K|. Let f : σ → σ′ and α′ : ∆n → σ′ be the unique
order preserving simplicial homeomorphisms. Then, by uniqueness, α′ =
f ◦ α. Also gσ′ ◦ f = gσ. It follows that

fσ′ = gσ′ ◦ α′ = gσ′ ◦ f ◦ α = gσ ◦ α = fσ.

Thus fσ′ = fσ, i.e. we can talk about the singular n-simplex f[σ] defined by
the geometrical simplex [σ] of K, f[σ] = fσ. This mapping is also called the
characteristic mapping of the geometrical simplex [σ]

Conversely, if σ and σ′ are n-simplices of K that are not identified, thus,
define different geometrical simplices, then fσ 6= f ′

σ (follows easily from
Lemma 6.14).

Suppose [σ] = [v0, . . . ,vn] is a geometrical n-simplex of K. We define
ιn([σ]) = f[σ] ∈ Singn(|K|) ⊂ Cn(|K|) to be the characteristic mapping of
σ. Since different geometrical simplices define have characteristic mappings,
the mapping ιn is an injection that maps a basis generator of Cn(K) to
a certain basis generator of Cn(|K|). It follows that the mapping ιn de-
fines (by the universal property of free groups) an injective homomorphism
ιn : Cn(K) → Cn(|K|). Hence we can identify [σ] with a corresponding char-
acteristic mapping f[σ]. This makes it possible for us to regard Cn(K) as a
subgroup of Cn(|K|). The mapping ιn : Cn(K) → Cn(|K|) is then regarded
to be the inclusion of the subgroup Cn(K) into the group Cn(|K|).

9 Boundary operator and homology groups

We have defined the group Cn(X) of singular n-chains for every topological
space X and every n ≥ 0 and also the group Cn(K) of simplicial n-chains
for every ∆-complex K and every n ≥ 0.

As such this algebraic objects are too big to be useful for the purpose
of topology. They also do not reflect the essential properties of geometry of
the spaces we wish to study. In order to construct more usable invariants we
need to come up with a way to connect this groups with each other. This
is done with the aid of boundary operators.

Consider an ordered n-simplex σ = (v0, . . . ,vn). This simplex has a
boundary Bd σ, which, as a set, is the union of all (n− 1)-dimensional faces
of σ. Since we assume that σ is ordered, each (n − 1)-dimensional face can
be written as diσ = (v0, . . . , v̂i, . . . ,vn) i.e. can be given a well-defined index
i = 0, . . . , n. Also, the face diσ has a natural order induced straight from
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the original order given on the vertices of σ. However if you think of the
boundary geometrically, as a topological entity, it turns out that this order
do not always look ”natural”.

To see what we mean by that, let us consider the special case of triangle
i.e. a 2-simplex (v0,v1,v2). An obvious advantage of the triangle is that
we can actually draw it, as well as its boundary, and then test our intuition
using that drawing. In our search for the precise exact definitions we will
start off with an informal discussion, which is aiming to look for the right
kind of motivation. Once we find and justify that motivation, we will switch
to the formal mathematics.

From the point of view of our geometrical intuition the boundary of the
triangle looks like a ”continuous” (meaning here ”connected”) closed path
that starts at the vertex v0, goes around the boundary once through the
vertices v1 and v2, ending at the same vertex v0 it started off in. In other
words if you think of the boundary as kind of ”moving, dynamic” path,
it makes a circular motion, which is not surprising, since as a space the
boundary is homeomorphic to the circle S1. This natural circular motion
has a natural orientation - the path first goes from v0 to v1, i.e. ”travels”
along the edge (v0,v1), then goes from v1 to v2, i.e. ”travels” along the
edge (v1,v2), then finally ”travels” along the edge (v2,v0). This motion also
defines a sort of a natural orientation of the whole triangle (indicated in the
picture by the arc shaped arrow in the centre of the triangle) - which is the
” clockwise ” orientation in the case of this particular triangle.

v0

v1

v2

Hence, if we think of the boundary Bd(v0,v1,v2) as a geometrical entity
that consists of those edges, taken in accordance with this orientation you
may express it algebraically as an expression

Bd(v0,v1,v2) = (v0,v1) + (v1,v2) + (v2,v0).

Now, if you recall the original ordering of the vertices, you see that in the sum
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on the right side the faces (v0,v1) and (v1,v2) have their ”natural ordering”
inherited from the original ordering (v0,v1,v2). The face (v2,v0), on the
other hand, has an ”opposite ordering” in this expression. Hence we learn
that the natural geometrical orientation of a triangle, whatever it means, do
not necessarily coincide with the ordering of vertices - for some faces it does
and for some other it don’t.

The face (v2,v0) is an edge, i.e. an interval, a 1-simplex. The orientation
on the edge can be interpreted to indicate which of two vertices we regard as
the starting point of an interval and which - as the end point. An arrow drawn
on the edge show precisely the direction we want to move along - from the
starting point to the end point. Thus it is natural to think that switching of
the direction ”reverses the orientation”. Algebraically it is natural to agree
that if we switch that orientation, the ”sign” of anobject changes to the
opposite. In other words it is natural want to agree that

(v2,v0) = −(v0,v2).

Using that agreement we end up with ”the formula”

Bd(v0,v1,v2) = (v0,v1) + (v1,v2)− (v0,v2).

in which all faces are written with their induced order.

Along the way we have also decided what we mean by the orientation
of a 1-simplex (v0,v1) - it is what we defined as ”order”. We can think of
one simplex as a directed ”arrow”, a path from the point v0 to the point
v1. These points together form the boundary of this path. If we change
this orientation to opposite, we obtain an arrow (v1,v0) which goes from v1

to v0. Hence - as we already agreed - it is natural to think that (v1,v0) is
(v0,v1) ”with an opposite sign”, so we write

(v1,v0) = −(v0,v1).

v0

v1

simplex (v0,v1)

v1

v0

simplex (v1,v0)

It follows that a given 1-simplex has exactly two orientations. If we in-
terchange the order of two vertices, it interchanges the orientation to the
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opposite. This statement is obvious for an interval, but its generalization for
the arbitrary simplex is crucial for the concept of orientation.

Before we will define orientation of an arbitrary simplex formally, let us
go back to the triangle. Our visual intuition tells us that there are exactly
two natural ways to give the triangle and its boundary an orientation - a
clockwise way and the counter-clockwise way. They correspond to two ways
to go around the boundary, which is essentially a circle. Look at the picture
below, where we took a triangle (v0,v1,v2) oriented clockwise, and then
made a reflection, which interchanged two vertices v0 and v1, laving the
third vertex v2 fixed.

v0

v1

v2 v1

v0

v2

The picture shows that such a reflection changed orientation of a simplex,
to the opposite, counter clockwise orientation.

The conclusions are as following. An arbitrary 2-simplex has two ori-
entations, just like a 1-simplex did. Moreover, these orientations also have
the property of switching to the opposite, whenever two vertices are inter-
changed. We have checked it for the case when v0 and v1 are interchanged,
the reader can go through other cases and verify that this property remain
true for all cases.

Finally, let us look at the last case that we can actually draw, the case of
a 3-simplex (v0,v1,v2,v3) i.e. a tetrahedron. The 2-faces of a tetrahedron
are triangles. We already have a good idea about what we mean by an
orientation of a triangles - it can be ”clockwise” or ”counter-clockwise”.
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v0 v2

v1

v3

From the picture one sees immediately that the faces (v0,v1,v2) and
(v1,v2,v3) have opposite orientations - if one is taken to be ”clockwise”,
the other will forced to look ”counter-clockwise” to us and vice versa. One
can check all the 2-faces and compare their orientations in the same fashion
(exercise). As a result one obtains that the faces (v1,v2,v3) (a 0th face) and
(v0,v1,v3) (a 2nd face) have the same orientation, while the faces (v0,v2,v3)
(a 1st face) and (v0,v1,v2) (a 3rd face)also have the same orientation, which
is opposite to the orientation of the faces (v1,v2,v3) and (v0,v1,v3). If we
call the first orientation ”positive”. Algebraically this can be written in the
form

Bd(v0,v1,v2,v3) = (v1,v2,v3)− (v0,v2,v3) + (v0,v1,v3)− (v0,v1,v2)

for the boundary of a tetrahedron.

It is now clear that the combination of these orientations of the triangles
of the boundary define what we should think of as an orientation of the whole
tetrahedron, although it is more difficult to give it as simple geometrical in-
terpretation as we had for the case of an interval and a triangle. But what
we can easily do is to check what will happen if we interchange the order of
two vertices, for instance vertices v0 and v1. There are two faces, the 2-face
and the 3-face that contain both vertices, so as we interchange these vertices
in these triangles, their orientation will switch to the opposite, as we already
know. What about a 0th face and a 1th face? Well, the orientation of the 0th
face does not change, since the order of its vertices will remain the same. But
in the ”new” ordered simplex (v1,v0,v2,v3) this face does not have index 0
any more, it has an index 1, since it lies opposite the vertex v0, which now
has order number 1, so the orientation of this face will switch to the opposite
as well. The same, as you can check, is true for the face (v1,v2,v3).
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Hence, we see that for tetrahedron the operation of interchanging two ver-
tices switches the orientation of all the faces, in least in the case of vertices
v0 and v1. The reader is invited to check all the other cases as an exercise.

We are now motivated enough to formalize these observations.
Recall that a permutation of the finite set {0, . . . , n} is, by definition, a
bijection α : {0, . . . , n} → {0, . . . , n} of that set to itself. If v0 < v1 < . . . <
vn is a particular ordering of the vertices of a simplex and α is a permutation
of the set {0, . . . , n} one can define another ordering <′ by asserting that

vα(0) <
′ vα(1) <

′ . . . <′ vα(n).

Conversely, having any fixed ordering v0 < v1 < . . . < vn, we can obtain
any other ordering w0 <′ w1 <′ . . . <′ w′

n of the same set of vertices from
the original ordering v0 < v1 < . . . < vn in this way using a unique permu-
tation α - it will be the unique permutation that maps an index i to an index
j = α(i) with the property wi = vj.

Recall that a permutation α of the set {0, . . . , n} is called a transpose
if it interchanges two elements, leaving other elements fixed. To be more
precise α is a transpose if there exist i, j ∈ {0, . . . , n}, i 6= j so that α(i) = j,
α(j) = i and α(k) = k if k 6= i, j. In this case one often writes α = (ij).

Every permutation of the set {0, . . . , n} can be written as a composition of
transposes. This representation is not unique, but the oddity of the amount
of transposes needed to represent a given permutation is an invariant of the
permutation. In other words if α is a permutation that can be written as a
composition of n transposes as well as the composition of m transposes, both
n and m are even or both are odd. In the former case permutation is called
even, in the latter case - odd. These fact are usually proved in the course of
linear algebra with connection to the theory of determinants, so we assume
the reader is familiar with them.

Now suppose v0 < v1 < . . . < vn and w0 <′ w1 <′ . . . <′ wn are two
different orderings of the same set of vertices of a simplex σ. Let α be the
unique permutation of the set {0, . . . , n} for which wi = vα(i).
We say that ordered simplices (v0,v1, . . . ,vn) and (w0,w1, . . . ,wn) (that are
the same simplex except for ordering) have the same orientation (or ori-
ented coherently) if the permution α is even. If the permutation α is odd,
we say that the orderings have opposite orientation.
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The relation ”(v0,v1, . . . ,vn) and (w0,w1, . . . ,wn) have the same ori-
entation” is an equivalence relation in the set of all orderings of the set of
vertices of a simplex σ.

The orientation of a given simplex σ is an equivalence class of this re-
lation. It follows that every simplex has two orientations, except for the case
of a 0-simplex, which has only one possible orientation.

Note that this definition is motivated by our earlier observation that
transposes (which are odd permutations) must switch the orientation of a
simplex to the opposite. It is also natural to think that the composition of
permutations is compatible with the orientation switching. Since all permu-
tations can be written as a composition of transpose, these two requirements
actually define the notion of an orientation uniquely - the definition given
above is the only possible one.

Suppose σ = (v0,v1, . . . ,vn) is an ordered simplex and let i, j ∈ {0, . . . , n}
be indices, i < j. Consider the i’th face σi = (v0, . . . , v̂i, . . . ,vn) and the
j’th face σj = (v0, . . . , v̂j, . . . ,vn), i < j. We would like to test whether σi

and σj have ”the same” orientation or not. We cannot do it directly now,
using the definition of an orientation of a simplex as above, since these two
simplices are actually different and we did not define a way to see if two
different simplices have the same orientation or not. It is possible to do it in
general for the same dimensional simplices lying in the same space, but we
won’t go into most possible case. Instead we argue as following.

Both simplices σi and σj have the same n−2 vertices (v0, . . . , v̂i, . . . , v̂j , . . . ,vn),
ordered in the same way. They only differ in vertices vi and vj . The ordering
of σi looks like (v0, . . . ,vi−1,vi+1, . . . ,vj−1,vj ,vj+1, . . . ,vn) and the order-
ing of σj looks like (v0, . . . ,vi−1,vi,vi+1, . . . ,vj−1,vj+1, . . . ,vn). We look at
how many transpose we need in order to interchange vertices vi and vj ,
since that would correspond to the oddity of the ”permutation” that turns
a simplex σi into σj , leaving their common side (v0, . . . , v̂i, . . . , v̂j , . . . ,vn)
untouched. It is easy to verify that in order to do that one needs exactly
(j − i) amount of transposes - first you interchange b with vj−1, then b with
vj−2 and so on, until b gets to the ith place.

Hence, according to that natural observation, we agree that the orienta-
tions of σi and σj are coherent if (j − i) is even and are opposite if (j − i)
is odd.

The conclusion is the following. We see that all (n−1)-dimensional faces
of an n-dimensional ordered simplex σ fall into two categories. The faces with
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the even indexes all have the same orientation, and the faces with the odd
indexes also have the same orientation, which is opposite to the orientation
of even-indexed faces. If we call the former orientation positive and the latter
- negative, we obtain algebraic formula

Bd(v0, . . . ,vn) =

n∑

i=0

(−1)i(v0, . . . , v̂i, . . . ,vn)

for the boundary of n-simplex. This is the formula we ”borrow” both for
simplicial and for the singular groups of chains. The definition of the orien-
tation and the intuitive motivation for it that we have gone through is not
needed from the formal point of view - one can just define boundary opera-
tor by the formula as above and proceed with the formal constructions and
results. This is how it is often done in the literature. Such an approach,
however, might leave the bad taste of the ”magic trick” in the mouth of
the student, who feels like he can show why the formula works for his or her
purposes but has no idea how anyone could come up with it in the first place.

Boundary operator for the groups of simplicial chains.

Suppose K is a ∆-complex and let n ≥ 1. In the previous section we have
constructed the group Cn(K) of simplicial n-chains. By construction this is a
free group with the set of all geometric n-simplices [v0, . . . ,vn] ofK as a basis.

Motivated by our discussion of orientation we define the boundary op-
erator dn : Cn(K) → Cn−1(K) as a unique homomorphism which maps a
generator [v0, . . . ,vn] ∈ Cn(K) by the formula

dn[v0, . . . ,vn] =
n∑

i=0

(−1)i[v0, . . . , v̂i, . . . ,vn] ∈ Cn−1(K).

By Lemma 8.4 such a homomorphism exists and is unique.

Boundary operator for the groups of singular chains.

Let X be a topological space and let n ≥ 1. We define a boundary oper-
ator dn : Cn(X) → Cn−1(X) as following.

Let i ∈ {0, . . . , n} be an index. By Lemma 2.15 there exists a unique
order-preserving simplicial mapping εin : ∆

n−1 → ∆n defined by

εin(e
n−1
j ) = enj , if j < i,

137



εin(e
n−1
j ) = enj+1, if j ≥ i.

Here ∆n is a standard n-simplex with vertices en0 , . . . , e
n
n for every n ∈ N.

Note that in this context we use also upper indices to emphasize the dimen-
sion of the simplex.

By construction the mapping εin is the unique order-preserving simplicial
mapping ∆n−1 → ∆n whose image is precisely the i-th face [en0 , . . . , ê

n
i , . . . , e

n
n]

of ∆n.

By the definition the group Cn(X) is the free abelian group with basis
consisting of all possible continuous mappings f : ∆n → X .

Let f : ∆n → X be a generator of Cn(X). We define

din(f) = f ◦ εin : ∆n−1 → X.

Mapping din(f) is evidently continuous, as a composition of two continuous
mappings, hence a (generator) element of Cn−1(X). We call it the i-th face
of the singular simplex f .

We define the boundary operator dn : Cn(X) → Cn−1(X) as the unique
homomorphism which maps a generator f ∈ Singn(X) of the group Cn(X)
by the formula

dnf =

n∑

i=0

(−1)idin(f) ∈ Cn−1(X).

Once again, by Lemma 8.4 dn exists and is unique.

Let us get back to the simplicial chains. Suppose X = |K|, where K is a
∆-complex. In the previous section we have noticed, that we can consider the
group Cn(K) of the simplicial n-chains as a subgroup of the group Cn(|K|)
of simplicial n-chains in the polyhedron |K|. This amounts to identifying a
geometric n-simplex σ = [v0, . . . ,vn], which is a basis generator of Cn(K)
with its characteristic mapping fσ, which is a basis generator of Cn(K).

It is easy to see that for every i = 0, . . . , n the composition fσ ◦ εin is the
characteristic mapping fdiσ of the i-th face of the simplex σ, the simplex

diσ = [v0, . . . , v̂i, . . . ,vn].

Hence for the generator [v0, . . . ,vn] ∈ Cn(K) the simplicial boundary
operator

dn[v0, . . . ,vn] =

n∑

i=0

(−1)i[v0, . . . , v̂i, . . . ,vn],
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we have defined before, gives the same result as the boundary operator of
Cn(|K|) applied to [v0, . . . ,vn] as an element of Cn(|K|). By uniqueness the
same is true for all elements of Cn(K).

In other words, if we think of Cn(K) as a subgroup of Cn(|K|), the bound-
ary operator dn : Cn(K) → Cn−1(K) is simply just the restriction of the
boundary operator dn : Cn(|K|) → Cn−1(|K|) onto the subgroup.

The special cases of the formula for the simplicial boundary operator in
cases n = 1, 2, 3 are

d1[v0,v1] = v1 − v0,

d2[v0,v1,v2] = [v1,v2]− [v0,v2] + [v0,v1],

d3[v0,v1,v2,v3] = [v1,v2,v3]− [v0,v2,v3] + [v0,v1,v3]− [v1,v2,v3].

Analogous formulas for singular homology in these dimensions look similar.

The following theorem provides us with the fundamental property of the
boundary operator, which is essential for the construction of the homology
groups. It asserts that the composite of two consecutive boundary homo-
morphisms is always a trivial zero mapping. Since the simplicial boundary
operators are restrictions of the singular boundary operators, it is enough to
prove this result for the singular groups.

Theorem 9.1. Suppose X is a topological space and let dm : Cm(X) →
Cm−1(X) be the boundary operator for every m ≥ 1. Then, for all n ≥ 2 we
have that

dn−1 ◦ dn = 0.

In order to prove this theorem, we first make a notice of the following
technical result, whose proof is left to the reader as an exercise.

Lemma 9.2. Suppose n > 1 and 0 ≤ j < i ≤ n. Then

djn−1(d
i
nf) = di−1

n−1(d
j
nf)

for all f ∈ Singn(X).

Proof. Exercise.

Prove of the theorem 9.1:
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Proof. Let f ∈ Singn(X). Then

dnf =
n∑

i=0

(−1)idin(f),

hence

dn−1dn(f) =
n∑

i=0

(−1)idn−1d
i
n(f) =

=
n∑

i=0

n−1∑

j=0

(−1)i(−1)jdjn−1d
i
n(f) = A+B,

where
A =

∑

0≤i≤j≤n−1

(−1)i+jdjn−1d
i
n(f),

B =
∑

0≤j<i≤n

(−1)i+jdjn−1d
i
n(f).

The change of index i to k = i − 1 in the last sum shows that we can also
write

B =
∑

0≤j≤k≤n−1

(−1)k+j+1djn−1d
k+1
n (f) =,

= −
∑

0≤j≤k≤n−1

(−1)k+jdkn−1(d
j
nf) = −A

where the previous lemma is used in the second to last equation. Hence
A+B = 0 and the claim is proved for the free generators. This suffices.

The theorem 9.1 shows that singular chain groups (as well as simplicial
chain groups) form an example of what is generally known as a chain complex.

Definition 9.3. A chain complex (C, d) is a collection (Cn)n∈Z of abelian
groups indexed on the set Z of integers, together with the collection of homo-
morphisms dn : Cn → Cn−1, for every n ∈ Z, called the boundary opera-
tors of this complex, such that

dn−1 ◦ dn : Cn → Cn−2

is a zero homomorphism for every n ∈ Z.

. . . // Cn+1
dn+1 // Cn

dn // Cn−1
// . . .
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If Cn = 0 for all n < 0 a chain complex is said to be non-negative. If
all groups Cn are free (abelian) groups, the complex is said to be free.

The theorem 9.1 shows that the groups singular groups Cn(X) together
with the boundary operators dn form a chain complex. To be precise we
defined these groups only for n ≥ 0 (and dn only for n > 0). We extend
the definition by asserting Cn(X) = 0 for n < 0 and dn = 0 for n ≤ 0. The
equation dn−1 ◦ dn = 0 is then satisfied (trivially) also for n ≤ 1. Hence we
obtain a non-negative free chain complex C(X), called the singular chain
complex of the topological space X .

Suppose K is a ∆-complex. The simplical chain groups Cn(K) equipped
with its boundary operators also form a non-negative free chain complex.
Just as above we define Cn(K) = 0 for n < 0 and dn = 0 for n ≥ 1.
This complex is called the simplicial chain complex of the ∆-complex
K.

Homology.
Suppose (C, d) is an arbitrary chain complex. Denote

Zn(C) = Ker dn,

Bn(C) = Im dn+1.

Both Zn(C) and Bn(C) are subgroups of Cn. Elements of Zn(C) are called
n-cycles of the complex C, elements of Bn(C) are called n-boundaries
of the complex C.

Suppose x ∈ Bn(C) is a boundary chain. Then, by definition, x = dn+1y
for some y ∈ Cn+1, hence

dn(x) = dndn+1y = 0.

This implies that x ∈ Zn(C). We have shown that

Bn(C) ⊂ Zn(C),

i.e. Bn(C) is a subgroup of Zn(C). Hence, for all n ∈ N, we can form the
factor group

Hn(C) = Zn(C)/Bn(C).

141



This group is called the n-th homology group of the chain complex C.
The elements of Hn(C) are equivalence classes of the n-cycles x ∈ Zn(C), de-
noted x = x+Bn(C) ∈ Hn(X). Two elements x, y of Zn(C) define the same
homology class if and only if x− y ∈ Bn(C) i.e. if and only if x− y = dn+1z
for some z ∈ Cn+1.

By applying this construction to the singular chain complex C(X), where
X is a topological space, we obtain for every n ∈ N the homology group
Hn(C(X)), which will be denoted simply by Hn(X) and called the n-th
singular homology group of the topological space X .

Likewise for a ∆-complex K we obtain for every n ∈ Z the homology
group Hn(C(K)) of the simplicial chain complex C(K), which is denoted
simply by Hn(K) and called the n-th simplicial homology group of the
∆-complex K.

Of course in both cases we trivially have that Hn(X) = 0 = Hn(K) for
n < 0, since complexes are non-negative, so only homology groups of non-
negative index are interesting.

At this point this seems like a purely abstract mathematical game, since
we have not motivated the notions of cycles, boundaries and homology.
Surely we can define the groups Zn(X), Bn(X) and then form the quotient
groups Zn(X)/Bn(X), but why should we?

To give a little bit of a geometrical motivation consider a boundary of a
2-simplex σ = [v0,v1,v2] which algebraically is the expression

dσ = [v0,v1] + [v1,v2]− [v0,v2]

and topologically is the circle S1. Now, consider the image of this boundary,
lying in some topological space X . The corresponding singular chain in
C1(X) is a cycle, since already as a subset of 2-simplex it is a boundary
dσ, so its boundary is zero by the basic property of the boundary operator.
Hence it defines a class in the homology group H1(X).

Geometrically this image looks like a quotient of the circle S1, in other
words it looks like a ”1-dimensional hole”. If we are able to ”fill” this hole
in the space X , in other words if we can find the image of the 3-simplex
[v0,v1,v2] in the space X , then we don’t really have a hole in X , it is
”patched”. On the other hand algebraically in this case our cycle will be
a boundary, hence will define the zero class in the homology group H1(X).
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But, if on the contrary we cannot find the bigger simplex to fill this hole in
X , this cycle won’t be a boundary any more, hence will define a non-trivial
element of H1(X).

The same kind of reasoning applies in the higher dimensions. Thus a non-
trivial element of the homology group Hn(X) indicates that we have found
an ”n-th dimensional hole” in the space X .

For n = 0 this analogy does not work directly - non-trivial spaces always
have non-trivial zero dimensional homology, as we will see later, but they do
not need to have 0-dimensional holes in them. This can be fixed with the
concept of reduced homology, which we will also study later.

Before we slide further and deeper into complicated and abstract theory,
let us go through a couple of actual computations of homology groups directly
from the definition. This will also provide some real feel of handling the
algebraic objects we are attempting to use.

With the exception of some trivial cases, it is usually very hard, prac-
tically impossible to calculate singular homology groups directly from the
definition. The reason for that is that there are usually too many continuous
mappings ∆n → X , so the groups Cn(X) of singular n-chains, that are in-
volved in the calculations, are usually extremely big. In order to be actually
able to calculate them we will develop tricky results and technics. In practise
the calculations of homology groups directly from the definition are possible
only for the small chain complexes, such as simplicial chain complexes of
sufficiently small ∆-complexes.

Example 9.4. Let’s start off with a particularly simple ∆-complex K, which
has only one edge [v0,v1] with no identifications, and two different vertices
v0, v1. The polyhedron of this complex is an interval [0, 1].

For this complex Cn(K) is a trivial group for n 6= 0, 1. The group C0(K)
is a free abelian group based on two elements, and C1(K) is a free abelian
groups with one generator. More precisely

C0(K) = Z[v0]⊕ Z[v1],

C0(K) = Z[v0,v1].

In particularly for n 6= 0, 1 we immediately see that the group of cycles Zn(K)
is a trivial group, hence also its factor group Hn(K) is a trivial group.

The only interesting boundary operator is d1 : C1(K) → C0(K), since the
other boundary operators must be zero homomorphisms. We first calculate
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what boundary operator does to the only generator [v0,v1] of C1(K). By
definition of the boundary operator we have that

d1([v0,v1]) = v1 − v0 = x,

where we denote x = v1−v0 ∈ C0(K). Obviously x 6= 0 (because v0,v1 form
a basis). Since d1 is a homomorphism, we have, for every n ∈ Z that

d1(n[v0,v1]) = nx.

The arbitrary element of C1(K) is of the form n[v0,v1] for the unique integer
n ∈ Z. Since x 6= 0 and free group does not have non-trivial torsion element,
it follows that d1(a) = 0 only when a = 0 ∈ C0(K). In other words d1 is an
injection, so Z1(K) = Ker d1 = {0} is a trivial group. As a consequence, its
factor group H1(K) is also trivial.

It remains to calculate the group H0(K) = Z0(K)/B0(K). Now d0 : C0(K) →
C−1(K) is necessarily a zero mapping, since the group C−1(K) is trivial.
Hence

Z0(K) = Ker d0 = C0(K) = Z[v0]⊕ Z[v1].

On the other hand, by the calculation above

B0(K) = Im d1 = {nx | n ∈ Z}

is a free subgroup of C0(K) generated by an element x = v1 − v0. Thus, we
have to determine the exact nature of the factor group

(Z[a]⊕ Z[b])/Z[b − a],

where we denoted a = v0 and b = v1.

This is a standard situation which is usually resolved as following. The
aim is to use Lemma 8.15, which asserts, for instance, that

(G1 ⊕G2)/(H1 ⊕H2) ∼= G1/H1 ⊕G2/H2,

whenever H1 is a subgroup of an abelian group G1 and H2 is a subgroup of
an abelian group G2. We cannot use this result directly at this point to the
factor group

(Z[a]⊕ Z[b])/Z[b − a],

since Z[b − a] is not a subgroup of either Z[a] or Z[b]. So first we have to
arrange things so that the group in the ”denominator” is also in the ”nomi-
nator”, so that we can ”quotient it out”.
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The direct sum Z[a] ⊕ Z[b] is a free abelian group with basis {a, b}. It
can be shown (exercise!) that in that case the set {b − a, b} is also basis
of Z[a] ⊕ Z[b]. ”Switching” from the ”old” basis {a, b} to the ”new ” basis
{b− a, b} means that

Z[a]⊕ Z[b] = Z[b− a]⊕ Z[b].

Next we apply the result of the Lemma 8.15

(G1 ⊕G2)/(H1 ⊕H2) ∼= G1/H1 ⊕G2/H2

to the case G1 = H1 = Z[b− a], G2 = Z[b], H2 = {0}, obtaining

(Z[a]⊕Z[b])/Z[b−a] = (Z[b−a]⊕Z[b])/Z[b−a] ∼= (Z[b−a]/Z[b−a])⊕(Z[b]/{0}) ∼= Z[b] ∼= Z.

Hence H0(K) ∼= Z.

The result of the calculation is the following. Up to an isomorphism the
simplicial homology groups of K are

Hn(K) =

{
Z, if n = 0

0, otherwise .

In many cases one is interested in comparing groups of different complexes
or spaces in order to see if they are isomorphic, so it is enough to know
groups only up to an isomorphism. That is why it is customary to denote
the obtained results of the calculation in the form of the simplest isomorphic
group, such as Z or Zn etc.

In more sophisticated situations this might not be enough and more de-
tailed structure of the group is needed. So, if it is not quite enough to know
that H0(K) is essentially Z, one might keep a track of its generator. From
the calculation above it follows that H0(K) is generated by the class b of the
element b = v1. Since b − a ∈ B0(K), it follows that in the quotient group
H0(K) we have that

a = b,

so the class of a = v0 is a generator of H0(K) as well (it equals to the
generator b).

Example 9.5. Let σ = [v0,v1,v2] be a 2-simplex. Let us calculate the
simplicial homology of the complex K = Bd σ, which represents its boundary.
This complex has 3 simplices in the dimension 1 and three simplices (vertices)
in the dimension 0.
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For n < 0 or for n > 1 complex K has no simplices in dimension n,
so Cn(K) = 0 for those values. The group C0(K) is a free group on 3
free generators a = v0, b = v1, c = v2, while C1 is also a free group on 3
generators x = [v0,v1], y = [v1,v2] and z = [v0,v2].

The only interesting boundary operator is, as in the previous example the
operator d1. It is defined by

d1(nx+my+lz) = n(b−a)+m(c−b)+l(c−a) = (n−m)b+(m+l)c−(n+l)a.

Here we used directly the fact that every element of C1(K) can be written in
the form nx + my + lz for unique integers n,m, l ∈ Z. We see that for an
element α = nx + my + lz ∈ C1(K) the condition α ∈ Ker d1 is equivalent
to the conditions n −m = m + l = n + l = 0. It is easy to deduce that this
conditions are equivalent to equations n = m = −l. Hence the kernel of d1
consists of the elements of the form nx+ ny − nz = n(x+ y − z).

It follows that Z1(K) = Ker d1 is a free group on 1 element, generated
by an element x + y − z. Since the complex has no 2-simplices, B1(K) =
Im d2 = 0, hence H1(K) = Z1(K)/B1(K) is essentially Z1(K) = Ker d1, i.e.,
a free group on 1 generator [a+ b] + [b, c]− [a, c], isomorphic to Z.

This illustrates precisely the idea of homology - we have detected a 1-
dimensional hole in the boundary of triangle, which is represented by the
closed loop, that goes around it. Essentially this is the reason why the first
homology group of K is non-trivial.

It remains to calculate H0(K). This is left as an exercise to the reader.

Example 9.6. Mobius band.
Let us calculate the simplicial homology of the complex K, that represents
the Mobius band. The precise structure of the complex is given by the picture
below. Notice that the order of vertices is given by their integer indices.

U

V

a

a

b cd

v0 v1

v2v3

In this complex we have two 2-simplices, which we denote U and V , 4
edges, which we denote by a, b, c, d and two vertices - v0 = v2 = x and
v1 = v3 = y.
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First we calculate H2(K) = Z2(K) = Ker d2. For all n,m ∈ Z we have
that

d2(nU+mV ) = n(a+d+c)+m(−d−b+a) = (n+m)a+(n−m)d+nc−mb = 0

if and only if n = m = n + m = n − m = 0, hence n = m = 0. In other
words Ker d2 is trivial, so H2(K) = 0. What about the image of d2? By the
calculation above it is the set

B1(K) = {n(c+ a+ d) +m(b− a+ d)|n,m ∈ Z} ⊂ C1(K)

(the sign of m is switched for the convenience), so clearly it is a free group
on two elements generated by the elements a+ c+ d and b− a + d

On the other hand

d1(na+mb+kc+ld) = n(y−x)+m(y−x)+k(x−y)+l(y−y) = (n+m−k)y+(k−n−m)x = 0

if and only if n+m− k = 0 = k− n−m = −(n+m− k), hence if and only
if k = n +m. Thus

Z1(K) = Ker d1 = {na+mb+(n+m)c+ld = n(a+c)+m(b+c)+ld|n,m, l ∈ Z}

is a free group on three generators - a + c, b + c, d (as an exercise you can
check that these elements are independent, although we don’t really need that
information). Now a+c = (a+c+d)−d and b+c = (b−a+d)+(a+c+d)−2d,
so the group generated by a + c, b + c and d is contained in the free group
generated by elements a + c + d, b− a + d, d (as another exercise check that
these elements are independent!). Conversely a + c + d = (a + c) + d and
b−a+d = (b+c)− (a+c)+d, so the group generated by a+c+d, b−a+d, d
is contained in the group generated by a + c, b+ c and d. Thus

Z1(K) = Ker d1 = Z[a + c+ d]⊕ Z[b− a+ d]⊕ Z[d].

Hence

H1(K) = Z1(K)/B1(K) = (Z[a+c+d]⊕Z[b−a+d]⊕Z[d])/(Z[a+c+d]⊕Z[b−a+d]) ∼= Z[d] ∼= Z.

Notice that the first homology group H1(K) is generated by the class of the
edge d i.e. by the diagonal of the square (which topologically looks like the
circle, since its end points are identified).

It remains to calculate H0(K) = (Z[x] ⊕ Z[y])/ Im d1. Since

d1(na+mb+kc+ld) = n(y−x)+m(y−x)+k(x−y)+l(y−y) = (n+m−k)y+(k−n−m)x =
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= lx− ly = l(x− y),

where l = n+m− k, it follows that B0(K) = Im d1 = Z[x− y]. It is easy to
check that {x− y, y} is also a basis for C0. Hence it follows that

H0 = (K)(Z[x− y]⊕ Z[y])/Z[x− y] ∼= Z[y] ∼= Z.

Both classes x and y generate the group H0(K). For x it follows from the
above calculation and the equation x = x− y+ y = y, where we used the fact
that x− y is a boundary element in C0(K).

Example 9.7. So far all the homology groups we have calculated were simple
free groups. As a more sophisticated example let us calculate the simplicial
homology of the complex K, which represents the projective plane RP 2. The
exact structure of K is indicated in the picture below.

U

V

a

a

bb

v0

v1v2

v3

c

Now C2(K) = Z[U ]⊕ Z[V ] and

d2(nU+mV ) = n(c−b+a)+m(c−a+b) = (n−m)a+(m−n)b+(n+m)c = 0

if and only if n+m = n−m = 0 i.e. if and only if n = m = 0. Hence d2 is
injective, so its kernel is trivial, and consequently the group H2(K) is trivial.

The calculation above also implies, that B1(K) = Im d2 is a group gener-
ated by the elements c− b+ a and c− a+ b.

Denote v0 = v1 = x, v2 = v3 = y and observe that

d1(na +mb+ lc) = n(y − x) +m(y − x) = (n+m)(y − x) = 0

if and only if n = −m. Thus

Z1(K) = Ker d1 = {n(a− b) + lc|n, l ∈ Z},

so Z1(K) is a free group generated by the elements a− b and c.
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Next we use the fact (exercise) that if {α, β} is a basis of a free abelian
group, then also {α± β, β} is a basis of the same group. We apply this fact
first to the elements c−b+a, c−a+b (check that they are independent, hence
a basis of the group Im d2 they generate!) to obtain the basis {2c, c− (a− b)}
for Im d2. On the other hand, the same fact applied to the basis {a − b, c}
(check that it is a basis!) of Ker d1 gives the basis {c, c− (a− b)} for Ker d1.
Hence

H1(K) = (Z[c]⊕Z[c−(a−b)])/(Z[2c]⊕Z[c−(a−b)] ∼= Z[c]/Z[2c] ∼= Z/2Z = Z2.

Thus the first homology group of the projective plane is a group of two ele-
ments, generated by the only non-trivial element [c]. Since [c] = [c − (a −
b)]+ [a−b], and c− (a−b) is a boundary element, it follows that [c] = [a−b],
so we can think of the generator also as the image of the ” half-ark ” on the
boundary of the disk B2. The homology class of this ark is not trivial, but if
we add it to itself, thus ”travelling” it twice - back and forth as the picture
indicates - we obtain a circle, which is trivial in homology.

It remains to calculate the 0-th homology. Again H0(K) = (Z[x] ⊕
Z[y])/ Im d1. Since

d1(na +mb+ lc) = (n +m)(y − x),

we see that Im d1 = Z[y − x]. Since {y − x, x} is a basis for C0(K), we see
that H0(K) ∼= Z[x] = Z[y] ∼= Z.

Composition of paths and homology.

Recall that a path in a topological space X is a continuous mapping
f : I → X , where I = [0, 1] is a unit interval. Paths can be ”composed” in
the following sense.

Let s ∈]0, 1[ be an arbitraty point of an open interval ]0, 1[. Suppose
f, g : I → X are paths such that f(1) = g(0). Then we define f ·s g : I → X
by the formula

f ·s g(t) =
{
f(t/s), if 0 ≤ t ≤ s,

g((t− s)/(1− s)), if s ≤ t ≤ 1.

The idea is that we first ”travel” along the path f and then continue with the
path g. The switching from f to g happens in s. Notice that both formulas
agree for t = s, since we are assuming f(1) = g(0). Lemma 3.4 easily implies
that f ·s g is well-defined and continuous, hence a path in the space X . The
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path f ·s g is called the composition of paths f and g (with respect to s). It
is defined only when f(1) = g(0).

The composition of paths is a starting point of the construction of homo-
topy groups, which are a part of homotopy theory. We are only interested in
them because of the useful connection to the homology theory.

Since I = [0, 1] is the same thing as standard 1-simplex ∆1, every path
f : I → X is an element of C1(X). Since

d1f = f(1)− f(0),

a path f is a cycle if and only if f(0) = f(1) i.e. the starting point of f is
the same as its end point. Such a path is called a loop. A composition f · g
of two loops f, g : I → X is also a loop (when defined).

Lemma 9.8. Suppose f, g : I → X are paths in a topological space such that
f(1) = g(0). Let s ∈]0, 1[ be arbitrary. Then (f + g)− f ·s g is a boundary
element of C1(X) i.e. there exists a 2-simplex F : ∆2 → X such that

d1F = (f + g)− f ·s g.

Proof. It is enough to construct a continuous mapping F : ∆2 → X such that
d0F = g, d1F = f ·s g, d2F = f . Then, by definition, we will have that

dF = g − f ·s g + f,

which, by commutativity of addition, is what we need.

(0, 0) (1, 0)

(0, 1)

f

g
f ·s g

(0, s)

The geometric idea behind the construction of F is simple. Look at the
picture of the standard simplex ∆2 above. On the x1 axis F has to coincide
with f , on the x2-axis, with f ·s g and on the remaining face [e2, e1] it has to
coincide with g.
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For every z = (x1, x2) ∈ ∆2 we find a unique u ∈ [0, 1] such that z lies on
the segment between (u, 0) and (u, 1− u). The idea is that on that segment
F will be a path from f(u) to g(1 − u), passing through f(1) = g(0) at the
point that lies on the line x2 = s(1− x1). This line is precisely the line that
goes through (0, s) and (1, 0). Using those ideas as a motivation it is possible
to come up with the following exact definition of F : ∆2 → X ,

F (x1, x2) =

{
f(x1 + x2/s), x2 ≤ s(1− x1),

g((x2 − s(1− x1))/(1− s)), x2 ≥ s(1− x1).

Notice that when x2 = s(1− x1), we have that

f(x1 + x2/s) = f(1) = g(0) = g((x2 − s(1− x1))/(1− s)).

A straightforward verification of the facts that F is well-defined, continuous,
and satisfies the desired properties is left to the reader.

Let D = {0 = s0 < s1 < . . . < sm = 1} be a finite subset of the interval
I = [0, 1] that includes end points 0, 1. We index elements of D by their
order. A set D is called a division of the unit interval. Divisions are familiar
from the construction of Riemann integral in the basic calculus course.

The definition of a composed path can be generalized using divisions as
following. Suppose D = {0 = s0 < s1 < . . . < sm = 1} is a division
of I and let f1, . . . , fm : I → X be paths in the topological space X such
that fi(1) = fi+1(0) for all i = 1, . . . , m − 1. We define the composition∏

D fi : I → X by the formula

∏

D

fi(t) = fi((t− si−1)/(si − si−1)), when si−1 ≤ t ≤ si.

Corollary 9.9. Suppose D = {0 = s0 < s1 < . . . < sm = 1} is a division of
an interval I and let f1, . . . , fm : I → X be paths in the topological space X
such that fi(1) = fi+1(0) for all i = 1, . . . , m− 1. Then

(

m∑

i=1

fi)−
∏

D

fi

is a boundary element in the group C1(X).

Proof. Follows by induction on m from the previous Lemma. Details left as
an exercise.
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Example 9.10. Consider the circle S1 and the mapping γ : I → S1,

γ(t) = (cos(2πt), sin(2πt)).

Since γ(1) = (1, 0) = γ(0), γ is a loop, hence an element of the group of cy-
cles Z1(S

1). This implies that there exists an equivalence class γ in homology
group H1(S

1). Later we will show that H1(S
1) ∼= Z is a free abelian group

with one generator and γ actually generates H1(S
1).

Let D = {0 = s0 < s1 < . . . < sm = 1} be a division of an interval I. For
every i = 1, . . . , m we define γi : I → S1 by

γi(t) = (cos2π((1− t)si−1 + tsi), sin 2π((1− t)si−1 + tsi)).

The image of γi is an ark that connects the points γ(si−1) = γi(0) and γ(si) =
γi(1). It follows that

d1γi = γ(si)− γ(si−1), i = 1, . . . , m,

so

d1(

m∑

i=1

γi) =

m∑

i=1

(γ(si)− γ(si−1)) = γ(1)− γ(0) = 0,

so x =
∑m

i=1 γi is a cycle in C1(S
1). Moreover, it follows easily from the

definitions, that
∏

D fi = γ. Hence, by the previous Corollary,
∑m

i=1 γi − γ
is a boundary element. Since both γ and

∑m
i=1 γi are elements of Z1(S

1), so
their equivalence classes in homology group H1(S

1) exist, we have that

x =

m∑

i=1

γi = γ ∈ H1(S
1).

Once we know that γ is a generator of H1(S
1), this will also imply that∑m

i=1 γi is a generator of H1(S
1) for any choice of the division D.

10 Chain mappings, subcomplexes and quo-

tient complexes

Recall that a chain complex (C, d) consists of a family (Cn)n∈Z of abelian
groups indexed on the set Z of integers, together with the family of homo-
morphisms dn : Cn → Cn−1, for every n ∈ Z. These mappings are called the
boundary operators of the complex and are assumed to satisfy the equation

dn−1 ◦ dn = 0
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for all n ∈ Z.

The group Zn(C) of n-cycles is the kernel Ker dn of the boundary op-
erator dn. The group Bn(C) of n-boundaries is the image Im dn+1 of the
boundary operator. For every n ∈ Z the group Bn(C) is a subgroup of the
group Zn(C). The homology group Hn(C) is defined to be a factor group
Zn(C)/Bn(C).

Suppose (C, d) and (C ′, d′) are chain complexes and suppose that for
every n ∈ Z a homomorphism fn : Cn → C ′

n of abelian groups is given. The
collection f = {fn | n ∈ Z} is called a chain mapping if the components
fn of f commute with boundary operators i.e. if for every n ∈ Z we have
that

d′n ◦ fn = fn−1 ◦ dn.
This can also be illustrated by the commutativity of the diagram

Cn
fn //

d

��

C ′
n

d′

��
Cn−1

fn−1 // C ′
n−1.

Thus a chain mapping is not ”a mapping” in the classical sense, but rather
a family of mappings.

Suppose f : C → C ′ be a chain mapping and n ∈ Z. We claim that fn
maps n-cycles to n-cycles and n-boundaries to n-boundaries.

Let x ∈ Zn(C) be an n-cycle in the complex C. Then in C ′ we have that

d′nfn(x) = fn−1dn(x) = fn−1(0) = 0.

Thus fn(x) ∈ Zn(C
′). We have shown that

fn(Zn(C)) → Zn(C
′)

for every n ∈ Z. The restriction of fn as a mapping Zn(C) → Zn(C
′) will

also be denoted by fn.
Next suppose x = dn+1y i.e. x ∈ Bn(C). Then

fn(x) = fndn+1(y) = d′n+1(fn+1y)

is a boundary element. Hence

fn(Bn(C)) → Bn(C
′)
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for all n ∈ Z.

Consider a composite homomorphism gn = pn ◦ fn : Zn(C) → Hn(C
′),

where pn : Zn(C
′) → Hn(C

′) is a canonical projection to a factor group.
Then gn maps Bn(C) to zero, since for every x ∈ Bn(C) we have that fn(x) ∈
Bn(C

′), so
gn(x) = pn(fn(x)) = 0 ∈ Hn(C

′).

By the factorization theorem 7.8 gn induces the unique homomorphismHn(C) →
Hn(C

′) on abelian groups. This induced mapping is denoted f∗. By the con-
struction it satisfies the equation

f∗(x) = fn(x)

for all x ∈ Zn(C). Strictly speaking f∗ depends on the dimension n as well
- for every n ∈ Z we have its own induced homomorphism f∗ : Hn(C) →
Hn(C

′). If one needs to emphasize the index, this mapping can be denoted
more precisely by (fn)∗, but this notation is cumbersome, so usually it is not
used if not necessary.

Example 10.1. Suppose X and Y are topological spaces and f : X → Y is
a continuous mapping. Fix n ∈ N. Let σ ∈ Singn(X) be a singular n-simplex
σ : ∆n → X. The composite mapping

f♯(σ) = f ◦ σ : ∆n → Y

is continuous, hence a singular n-simplex in the space Y . By Lemma 8.4
there exists the unique group homomorphism f♯ = (f♯)n : Cn(X) → Cn(Y )
defined on generators by

f♯(σ) = f ◦ σ.
For n < 0 we define f♯ to be a zero mapping.

The collection f♯ = ((f♯)n) is a chain mapping C(X) → C(Y ) (Exercise).

The induced homomorphism (f♯)∗ : Hn(X) → Hn(Y ) in homology will be
denoted simply by f∗.

Chain mappings can be composed in a natural way. This means the fol-
lowing. Suppose f : C → C ′ and g : C ′ → C ′′ are chain mappings between
chain complexes. Then for every n ∈ Z we can form a composite homo-
morphism gn ◦ fn : Cn → C ′′

n. The collection (gn ◦ fn)n∈Z consisting of these
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composites satisfies the definition of a chain mapping, since for every n ∈ Z
we have that

d′′n ◦ (gn ◦ fn) = (d′′n ◦ gn) ◦ fn = (gn−1 ◦ d′n) ◦ fn =

= gn−1 ◦ (d′n ◦ fn) = gn−1 ◦ (fn−1 ◦ dn) = (gn−1 ◦ fn−1) ◦ dn.
In other words, if f : C → C ′ and g : C ′ → C ′′ are chain mappings, we can
define their composite g ◦ f : C → C ′′, which is also a chain mapping.

For every chain complex C there exists the identity chain mapping id.
This is chain mapping, defined component-wise to be the identity homomor-
phism idn : Cn → Cn, n ∈ Z. The verification of the fact that this collection
satisfies the definition of a chain mapping, is trivial.

A chain mapping f : C → C ′ is called an isomorphism of chain com-
plexes if there exists a chain mapping g : C ′ → C, called the inverse of f ,
such that g ◦ f = id and f ◦ g = id.

Lemma 10.2. Suppose f : C → C ′ is a chain mapping. Then f is an iso-
morphism of chain complexes if and only if fn : Cn → C ′

n is a bijection for
every n ∈ N.

If f is an isomorphism, its inverse is unique. It is denoted f−1.

Proof. Exercise.

Chain complexes C and C ′ are said to be isomorphic if there exists an
isomorphism f : C → C ′. Notice that in order for two chain complexes to be
isomorphic it is not enough that groups Cn and C ′

n are isomorphic for all
n ∈ N. An isomorphism also has to chain mapping i.e. it has to commute
with boundary operators.

The operation of taking the homomorphism f∗ induced in homology by
the chain mapping f ”respects” composition.

Lemma 10.3. (1) Suppose f : C → C ′ and g : C ′ → C ′′ are chain map-
pings between chain complexes. Then for the mappings induced in ho-
mology we have that

(g ◦ f)∗ = g∗ ◦ f∗ : Hn(C) → Hn(C
′′)

for all n ∈ Z.

(2) For the identity chain mapping id : C → C the induced mapping id∗ : Hn(C) →
Hn(C) is the identity homomorphism for al n ∈ Z.
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Proof. Exercise.

In the example 10.1 we have defined for every continuous mapping f : X →
Y between topological spacesX and Y a canonical chain mapping f♯ : C(X) →
C(Y ) between corresponding singular chain complexes. We have also agreed
to denote the homomorphism induced by this chain mapping in homology
simply by f∗ : Hn(X) → Hn(Y ).

The correspondence f 7→ f∗ is ”functorial”, in the following exact sense.

Lemma 10.4. (1) Suppose f : X → Y and g : Y → Z are continuous
mappings between topological spaces. Then for the mappings induced in
homology we have that

(g ◦ f)∗ = g∗ ◦ f∗ : Hn(X) → Hn(Z)

for all n ∈ Z.

(2) For the identity chain mapping id : X → X the induced mapping id∗ : Hn(X) →
Hn(X) is the identity homomorphism for all n ∈ Z.

Proof. Follows from Lemma 10.3 and the fact that (g ◦ f)♯ = g♯ ◦ f♯. Details
left as an exercise.

The previous Lemma implies that the singular homology is a topological
invariant. This means that homeomorphic spaces have isomorphic homol-
ogy groups. Hence in order to show that two spaces X and Y are not home-
omorphic it is enough to show that Hn(X) and Hn(Y ) are not isomorphic
for at least one n ∈ Z.

Corollary 10.5. Suppose f : X → Y is a homeomorphism. Then f∗ : Hn(X) →
Hn(Y ) is an isomorphism for all n ∈ N.

Proof. Let g : Y → X be the inverse of f . Then

id = id∗ = (g ◦ f)∗ = g∗ ◦ f∗,

and similarly f∗ ◦ g∗ = id. Hence g∗ is the inverse of f∗.

The fact that singular homology is a topological invariant is not surpris-
ing, since the singular chain complex is defined in terms of the continuous
mappings. On the contrary, the similar statement is not obvious at all for
the simplicial homology. Given an arbitrary polyhedron X , there are many
very different ∆-complexes K that represent X i.e. for which the polyhedron
|K| is homeomorphic to X . Hence the natural question that arises is the
following.
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Suppose K and K ′ are ∆-complex, that have the same polyhedra, i.e.
|K| and |K ′| are homeomorphic as topological spaces. Is simplicial homol-
ogy group Hn(K) then isomorphic to the simplicial homology group Hn(K

′)
for every n ∈ N?

The answer is yes. In fact if X = |K| is a polyhedron, then the simpli-
cial homology group Hn(K) is always isomorphic to the singular homology
group Hn(X). This fact has many useful implications and applications, for
instance we can regard simplicial homology as a technical tool that enables
us to calculate singular homology of the space we are interested in (provided
it can be triangulated).

The precise formulation of the fact mentioned above is the following
proposition. Here ι = (ιn)n∈Z is a collection of the inclusions ιn : Cn(K) →֒
Cn(|K|) defined earlier.

Proposition 10.6. SupposeK is a ∆-complex. Then the inclusion ι : C(K) →֒
C(|K|) is a chain mapping that induces isomorphisms in homology. In other
words

ι∗ : Hn(K) → Hn(|K|)
is an isomorphism for all n ∈ Z.

We will prove the proposition 10.6 later (and only for finite complexes),
after we have developed enough machinery to be able to do it.

Subcomplexes and quotient complexes.

Since chain complexes are essentially collections of abelian groups, many
notions and results from the theory of abelian groups have natural general-
izations in the world of chain complexes.

Let (C, d) be a chain complex. Suppose that for every n ∈ Z we are
given a subgroup C ′

n of Cn such that dn(C
′
n) ⊂ C ′

n−1 for all n ∈ Z. Then the
collection C ′ = {C ′

n}n∈Z together with the restrictions

d′n = dn|C ′
n : C

′
n → C ′

n−1

as boundary operators clearly defines a chain complex (C ′, d′). We call the
chain complex (C ′, d) a chain subcomplex of the chain complex (C, d).
In that case the collection i = {in : C ′

n → Cn}, that consists on natural
inclusions of subgroups defines a chain mapping i : C ′ → C. We call this
mapping the inclusion of the subcomplex C ′ into the complex C.
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A pair of chain complexes is a pair (C,C ′), where C is a chain complex
and C ′ is its subcomplex.

Suppose (C ′, d′) is a subcomplex of (C, d). Since dn(C
′
n) ⊂ C ′

n−1 for all
n ∈ N, the homomorphism dn induces, by the Factorization Theorem 7.8, a
homomorphism

dn : Cn/C
′
n → Cn−1/C

′
n−1

for all n ∈ Z. From the definition it follows that these homomorphism satisfy
the defining property of boundary operators,

dn−1 ◦ dn = 0, n ∈ Z.

Hence, if we denote Cn = Cn/C
′
n, we obtain a chain complex (C, d).

We call this complex a quotient chain complex of the complex C ′ in the
subcomplex C. It is also denoted by C/C ′.
The quotient mappings pn : Cn → Cn/C

′
n, n ∈ Z, define a chain mapping

p : C → C/C ′. This chain mapping is called the natural projection to the
quotient complex. The exact verification of the fact that p is a chain mapping
is left to the reader as an exercise.

Examples 10.7. (1) Suppose L is a subcomplex of a ∆-complex K. In
that case we call the pair (K,L) a pair of ∆-complexes.

Since the set of generators of the simplicial chain group Cn(L) is a sub-
set of the set of generators of the group Cn(K), we can consider Cn(L)
a subgroup of Cn(K) for every n ∈ Z. Since the boundary operator on
Cn(L) is obviously the same as the restriction of the boundary operator
on Cn(K), we see that C(L) is a subcomplex of C(K). The corre-
sponding quotient complex C(K)/C(L) is denoted C(K,L) and called
the simplicial chain complex of the pair (K,L). It is easy to see that
this is complex is free. As a basis of Cn(K,L) one can take the equiva-
lence classes of the geometric n-simplices of K, which are not simplices
of L (exercise).

The n-th homology group of the complex C(K,L) is denoted Hn(K,L)
and is called the n-th relative homology group of the pair (K,L).

(2) Suppose A is a subspace of a a topological space X. An element of
Singn(A) is a continuous mapping f : ∆n → A, which can be identified
with an element f ∈ Singn(X), with f(∆n) ⊂ A. This amounts to
regarding it as a mapping to X, not A.
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Conversely any f : ∆n → X with the property f(∆n) ⊂ A defines a
unique element of Singn(A) in an obvious way. Hence the set of the
generators of Cn(A) can be identified with the subset of the set of the
generators of Cn(X) and thus we can consider Cn(A) as a subgroup of
Cn(X) for all n ∈ Z in a natural way.

The corresponding quotient complex C(X)/C(A) is denoted C(X,A).
It is easy to see that it is a free complex, with the set of generators of
Cn(X,A) being the set of all continuous mappings f : ∆n → X with
Im f * A.

The n-th homology group of C(X,A) is denoted Hn(X,A) and is called
the relative n-th homology group of the pair (X,A).

The homology groups Hn(K) and Hn(X) defined earlier are often re-
ferred to as the ”absolute ” homology groups, as opposed to ”relative”
groups we have just defined for pairs. Notice that, however, absolute
groups can be thought of as special cases of relative groups, because the
relative group Hn(X, ∅) is essentially the same as the absolute group
Hn(X) and similar remark apply to simplicial groups.

Hence from the technical point of view it is enough to consider the
relative groups only. In order to classify spaces we are more interested
in the absolute groups. However, it turns out that in order to actually
calculate them, we do need relative groups as well, as a useful technical
tool.

(3) As we have already seen simplicial complex C(K) is a subcomplex of
the singular complex C(|K|) for every ∆-complex K. The inclusion
ι = C(K) → C(|K|) is a chain mapping.

Many constructions and results from the theory of abelian groups and
homomorphisms have natural generalizations for the chain complexes and
chain mappings. In particular suppose f : C → D is a chain mapping. Then
the collection of subgroups C ′

n = Ker fn is a subcomplex of C, which we
naturally denote Ker f . Likewise the collection of subgroups D′

n = Im fn is a
subcomplex of D, which is denoted Im f . We leave it to the reader to verify
this claims.

The straightforward analogues of the factorization and isomorphisms the-
orems are true for chain complexes and chain mappings. The proof is left to
the reader as an exercise.
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Proposition 10.8. Factorization theorem for the chain complexes.
Suppose C and D are chain complexes and let C ′ be a subcomplex of C.
Let f : C → D be a chain mapping. Then there exists a chain mapping
f : C/C ′ → D such that the diagram

C
f //

p

""D
DD

DD
DD

D D

C/C ′

f

<<yyyyyyyy

commutes, i.e. such that f ◦ p = f if and only if C ′ ⊂ Ker f . If such a
mapping f exists, it is unique and given by the formula

fn(x) = fn(x)

for all x ∈ Cn, n ∈ Z. The mapping f is injective if and only if C ′ = Ker f .
Mapping f is surjective if and only if f is surjective. More generally we have
that Im f = Im f .

The mapping f : C/C ′ → D provided by the previous proposition is re-
ferred to as the induced chain mapping.

Corollary 10.9. Isomorphism theorem for chain complexes.
Suppose C and D are chain complexes and f : C → D is a chain mapping.
Then the induced mapping f : C/Ker f → Im f given by

fn(x) = fn(x), x ∈ Cn, n ∈ Z,

is an isomorphism of chain complexes.

Suppose (C,C ′) and (D,D′) are pairs of chain complexes and suppose
that f : C → D is a chain mapping, such that f maps C ′ into D′, hence de-
fines by restriction also a chain mapping f | : C ′ → D′. In this case we say that
f is a chain mapping of pairs and denote this by f : (C,C ′) → (D,D′).
Since f(C ′

n) ⊂ D′
n for all n ∈ Z, the mapping f induces, by the factorization

theorem, a chain mapping f : C/C ′ → D/D′ in quotient complexes. To be
precise f is constructed as following. Let p : D → D/D′ be the canonical
projection and consider the composition g = p ◦ f : C → D/D′. Since f
maps C ′ into D′ and p maps D′ into zero, C ′ ⊂ Ker g. Thus, by the factor-
ization theorem for chain complexes 10.8, there exists unique chain mapping
f : C/C ′ → D/D′, defined by

fn(x) = fn(x)
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for all x ∈ Cn/C
′
n, n ∈ Z.

Suppose (X,A) and (Y,B) are topological pairs. Recall that the mapping
f : X → Y which maps A into B is called a mapping of topological pairs.
This is also denoted by f : (X,A) → (Y,B). In case f is a mapping of pairs,
it defines by restriction the mapping f | : A → B.

Suppose f : (X,A) → (Y,A) is a mapping of pairs. Then the induced
chain mapping f♯ : C(X) → C(Y ) maps the subgroup C(A) into the subgroup
C(B). In other words f♯ : (C(X), C(A)) → (C(Y ), C(B)) is a chain mapping
of pairs.

Thus there exists the induced homomorphism f : C(X,A) → C(Y,B)
between the relative chain complexes. This mapping, in its turn, induces
homomorphisms f : Hn(X,A) → Hn(Y,B) in relative homology, for all n ∈
Z. This homomorphism will be also denoted simply as f∗ : Hn(X,A) →
Hn(Y,B), if no confusion can arise.

Induced mappings between relative homology groups have the same func-
torial properties as in the absolute case. The proofs are similar and left as
exercises.

Lemma 10.10. (1) Suppose f : (X,A) → (Y,B) and g : (Y,B) → (Z,C)
are continuous mappings between topological spaces. Then for the map-
pings induced in homology we have that

(g ◦ f)∗ = g∗ ◦ f∗ : Hn(X,A) → Hn(Z,C)

for all n ∈ Z. Here f∗ : Hn(X,A) → Hn(Y,B) and g∗ : Hn(Y,B) →
Hn(Z,C).

(2) For the identity chain mapping id : (X,A) → (X,A) the induced map-
ping id∗ : Hn(X,A) → Hn(X,A) is the identity homomorphism for al
n ∈ Z.

Example 10.11. Suppose (X,A) is a topological pair. Then (X, ∅) is a
topological pair too and the identity mapping id : X → X can be thought of
as a mapping j : (X, ∅) → (X,A) of pairs. Hence there exists induced chain
mapping j♯ : Cn(X) → Cn(X,A) = Cn(A)/Cn(A), for every n ∈ Z. It is
easy to see (exercise!) that this mapping is actually the same as canonical
projection p : Cn(X) → Cn(A)/Cn(A) to the factor group, for every n ∈ Z.

Example 10.12. Suppose (X,A) and (Y,B) are topological pairs such that
X ⊂ Y and A ⊂ B. Then the inclusion X → Y defines a mapping
i : (X,A) → (Y,B) of pairs. This mapping induces a chain mapping i♯ : C(X,A) →
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C(Y,B), as usual. This mapping in general will not be an injective any more.
However, there is an important special case, in which it is injective. Since
we will need it later, let us look at it closer.

Suppose that above A = X ∩ B (notice that in general we only have
A ⊂ X ∩ B). Let us show that under this additional assumption the homo-
morphism (i♯)n : Cn(X,A) → Cn(Y,B) is an injection, for every n ∈ Z.

Since (i♯)n is, by construction, induced by a composition i′n = pn◦in : Cn(X) →
Cn(Y )/Cn(B), where pn : Cn(Y ) → Cn(Y,B) is a canonical projection and
in : Cn(X) → Cn(Y ) is an inclusion. By factorization theorem 10.8 this
induced mapping is injective if and only if Cn(A) = Ker i′n. The inclu-
sion Cn(A) ⊂ Ker i′n is clear and known from before. Conversely, suppose
x ∈ Ker i′n. Then pn(in(x)) = 0. Since Ker pn = Cn(B), we have that in(x) ∈
Cn(B). Since in : Cn(X) → Cn(Y ) is an inclusion of a subgroup, we have
that in(x) = x ∈ Cn(X). Hence in(x) = C(X) ∩ C(B) = C(X ∩B) = C(A).
Hence Cn(A) = Ker i′n and the claim is proved.

A mapping f : (X,A) → (Y,B) is called homeomorphism of pairs if there
exists g : (Y,B) → (X,A) such that g◦f = idX and g◦f = idY . Such a map-
ping g is then called an inverse of f . Topological pairs (X,A) and (Y,B) are
called homeomorphic if there exists a homeomorphism f : (X,A) → (Y,B)
of pairs.

Corollary 10.13. Suppose f : (X,A) → (Y,B) is a homeomorphism of pairs.
Then f∗ : Hn(X,A) → Hn(Y,B) is an isomorphism for all n ∈ Z.

Proof. Let g : (Y,B) → (X,A) be the inverse of f . Then, by the previous
Lemma

id = id∗ = (g ◦ f)∗ = g∗ ◦ f∗,
and similarly f∗ ◦ g∗ = id. Hence g∗ : Hn(X,A) → Hn(Y,B) is the inverse of
f∗ : Hn(X,A) → Hn(Y,B).

11 Short exact sequences and induced long

sequences in homology

Suppose we have a sequence

(11.1) . . . // An+1
fn+1 // An

fn // An−1
// . . .
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of abelian groups and homomorphisms. It can be unlimited in both di-
rection, i.e. indexed on the set of integers Z, or stop somewhere on the left
or/and on the right. We say that this sequence is exact at An if

Ker fn = Im fn+1

provided, that the mappings fn and fn+1 are defined.
If the sequence is exact at every group An that appears in it, we say that

the sequence is an exact sequence (of abelian groups and homomorphisms).

The condition Im fn+1 ⊂ Ker fn is equivalent to the condition fn+1 ◦ fn =
0. Hence the sequence (11.1) above is exact at An if and only
1)fn+1 ◦ fn = 0 and
2)Ker fn ⊂ Im fn+1.

Let (C, d) be a chain complex. We can think of it as an unlimited sequence

. . . // Cn+1
dn+1 // Cn

dn // Cn−1
// . . .

of abelian groups and homomorphisms. The condition dn+1 ◦ dn = 0, that
boundary operators satisfy, is equivalent to the condition

Im dn+1 ⊂ Ker dn.

By the definition of exactness the sequence 11 is exact at Cn if and only

Zn(C) = Ker dn = Im dn+1 = Bn(C)

i.e. if and only if Hn(C) = 0. Usually this does not happen, of course. In
some sense one can say that homology groups of a chain complex measure
the extend to which the complex, thought of as a sequence 11 as above, fails
to be exact.

A chain complex (C, d) is called acyclic if it is exact as a sequence.
From the previous considerations we see that (C, d) is acyclic if and only if
Hn(C) = 0 for all n ∈ Z.

An exact sequence of the form

0 // A
f // C

g // B // 0

is called a short exact sequence (of abelian groups). In other words an
exact sequence is short exact if it contains exactly 5 groups and the first as
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well as the last group in the sequence are trivial groups, which we denote
simply by 0. The first homomorphism 0 → A is a zero homomorphism, since
it is the only homomorphism from the trivial group to any group. For the
similar reason the last homomorphism of the sequence B → 0 is also zero
homomorphism.

Example 11.2. Suppose A is a subgroup of an abelian group B. Denote the
inclusion mapping i : A → B and let p : B → B/A be the canonical projection
to the quotient group. Then the sequence

0 // A
i // B

p // B/A // 0

is exact.

This follows from the Lemma 11.3 below. Later we will see that this exam-
ple is fundamental in a sense that every short exact sequence is ”essentially”
of the form 11.2.

Lemma 11.3. The sequence

0 // A
f // B

g // C // 0

of abelian groups is short exact if and only if all of the following conditions
are satisfied.

(1) f is injection,

(2) g is surjection,

(3) Im f = Ker f .

Proof. Exactness at A means that Im(0) = 0 = Ker f , which means precisely
that f is injection. Likewise exactness at C means that Im g = Ker 0 = C,
i.e. g is surjective. Finally, exactness at B by definition means that Im f =
Ker f .

It follows that every short exact sequence is ”essentially” of the form
11.2. Indeed since f is an injection, we can identify A with a subgroup
Im f of B. Under this identification mapping f becomes the inclusion of
subgroup A into the group B. Since g is surjective, and its kernel equals a
subgroup A, the isomorphism theorem 17.6 implies that g induces an isomor-
phism ĝ : B/A ∼= C. Under this identification g corresponds to the canonical
projection p : B → B/A.

In precise and more formal way these observations can be expressed as
following.
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Lemma 11.4. Suppose

0 // A
f // B

g // C // 0

is a short exact sequence of groups. Denote A′ = Im f ⊂ B, let i : A′ → B be
the inclusion p : B → B/A′ be the canonical projections. Then there exists
isomorphisms α : A → A′ and γ : C → B/A′ that make the diagram

0 // A
f //

α

��

B
g //

β

��

C //

γ

��

0

0 // A′ i // B
p // B/A′ // 0

commute.

In the formulation of the previous lemma we have used the expression
”this diagram commutes”. We have encountered this terminology couple of
times before and we will talk even more about commutative diagrams in the
future, so perhaps an official explanation is in order.

The diagrams that we will draw usually contain abelian groups (or other
algebraic objects), which are indicated as the ”points”, as well as the homo-
morphisms between the groups, which are indicated by directed arrows. The
direction of an arrow that represents a homomorphism f : A → B is from
object A to the object B. Object A is then the starting point of an arrow f ,
while object B is the end point.

A ”path” in the diagram is a finite sequence f1, . . . , fn of arrows such
that the end point of fi is the starting point of fi+1. Whenever we have such
a path, we can form the composite homomorphism fn ◦ . . . ◦ f1, because it
will be well-defined. Sometimes the diagram will contain two different paths
from A to B. For instance there might be a ”triangle”,

A
h //

f

��@
@@

@@
@@

@ C

B

g
??~~~~~~~~

The expression ”this triangle commutes” means that if you go from A to C
along two different paths - straight or through B - you will get the same
result. This just means that h = g ◦ f . Slightly more complicated example
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arises when diagram contains a square in the form

A
f //

h
��

B

g

��
C

k // D.

The commutativity of this square means that g ◦ f = k ◦ h.
Thus, when we say that some diagram commutes, what we mean is that

all the paths in the diagram, that has the same start and the same end,
amount to the same result, when calculated as composition. For example in
the diagram

0 // A
f //

α

��

B
g //

β

��

C //

γ

��

0

0 // A′ i // B
p // B/A′ // 0

above the commutativity essentially means that i◦α = β◦f and γ◦g = p◦β.
Usually it is pretty clear from the context and from the diagram what

”commutativity” of that diagram means.

Short exact sequences of chain complexes and long exact ho-
mology sequence

The diagram

0 // C ′ f // C
g // C // 0

of chain complexes and chain mappings is called a short exact sequence
if it is exact in every dimension as the sequence of abelian groups and homo-
morphisms i.e. if the sequence

0 // C ′
n

fn // Cn
gn // Cn

// 0

is short exact for every n ∈ Z.

Applying Lemma 11.3 to the sequence 11, for every n ∈ N, we see that f is
an embedding of chain complexes, hence C ′ can be considered a subcomplex
of C, while C can be identified with a quotient complex C/C ′. In other words
the sequence is essentially isomorphic to the sequence

0 // C ′ i // C
p // C // 0
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where i : C ′ →֒ C is an inclusion of s subcomplex and p : C → C/C ′ is a
canonical projection.

Suppose

0 // C ′ f // C
g // C // 0

is a short exact sequence of chain complexes. We shall construct for every
n ∈ Z a canonical homomorphism

∆ = ∆n : Hn(C) → Hn−1(C
′).

This mapping will be referred to as a boundary operator induced by the
short exact sequence 11.

0 // C ′
n+1

fn+1 //

d′n+1

��

Cn+1
gn+1 //

dn+1

��

Cn+1
//

dn+1

��

0

0 // C ′
n

fn //

d′n
��

Cn

gn //

dn

��

Cn
//

dn
��

0

0 // C ′
n−1

fn−1 // Cn−1
gn−1 // Cn−1

// 0

Suppose x ∈ Cn is a cycle, i.e. an element of Ker(dn). Since gn is a
surjection, there exists an element y ∈ Cn such that gn(y) = x. Then

gn−1(dn(y)) = dn(gn(y)) = dn(x) = 0.

Since the sequence is exact, this means that there is an element z ∈ C ′
n−1

such that fn−1(z) = dn(y). Moreover z is unique, since fn−1 is an injection.
Let us show that z is a cycle. We have that

fn−2d
′
n−1(z) = dn−1(fn−1(z)) = dn−1dn(y) = 0.

Since fn−2 is an injection, it follows that d′n−1(z) = 0 i.e. z in indeed a cycle
in C ′

n−1. Hence the class z ∈ Hn−1(C
′) is defined. We assert

δ(x) = z.

We want this construction to define a mapping δ : Zn(C) → Hn−1(C
′). So

far this is not clear, since the construction involved a choice of an element y ∈
Cn, hence we need to show that δ(x) actually does not depend on this choice.
Suppose y′ ∈ Cn is another element such that gn(y

′) = x and let z′ ∈ Z ′
n−1

be the unique element with fn−1(z
′) = dn(y

′). Since gn(y) = gn(y
′), it follows
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that y − y′ ∈ Ker gn = Im fn, so there is u ∈ C ′
n such that fn(u) = y − y′.

Now
fn−1d

′
n(u) = dn(fn(u)) = dn(y)− dn(y

′) = fn−1(z − z′).

Since fn−1 is an injection, it follows that

d′n(u) = z − z′,

hence z − z′ ∈ Bn−1(C
′), so z = z′ in the factor group Hn−1(C

′). We have
proved that the construction as above determines a well-defined mapping
δ : Zn(C) → Hn−1(C

′).

Lemma 11.5. The mapping δ is a homomorphism and factors through Bn(C),
hence induces a homomorphism

∆n : Hn(C) → Hn−1(C
′).

Proof. Suppose x, x′ ∈ Zn(B). Let y, y′ ∈ Cn such that g(y) = x, g(y′) = x′.
Let z, z′ ∈ C ′

n−1 be such that f(z) = dn(y), f(z
′) = dn(y

′). Then f(z + z′) =
dn(y + y′) and g(x+ x′) = y + y′. Thus

δ(x+ x′) = z + z′ = z + z′ = δ(x) + δ(x′).

Hence δ is a group homomorphism.

Suppose x ∈ Bn(C) and let w ∈ Cn+1 be such that dn+1(w) = x and
v ∈ Cn+1 be such that gn+1(v) = w. Then

gn(dn+1v) = dn(g(v)) = dn(w) = x,

hence we can choose y = dn+1v to be the element of Cn with the property
gn(y) = x. Now dn(y) = dndn+1v = 0, so ∆(x) = 0, by the definition.

Hence Bn(C) ⊂ Ker δ. By Theorem 7.8 δ induces the unique homomor-
phism

∆n : Hn(C) → Hn−1(C
′).

Let us go through the construction of boundary homomorphisms once
more. Suppose

0 // C ′ f // C
g // C // 0
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is a short exact sequence of chain complexes and let n ∈ Z. Suppose x ∈
Hn(C) is a class of an n-cycle x ∈ Zn(C). First, using the fact that gn is a
surjective mapping, we take y ∈ Cn with the property gn(y) = x. Then we
notice (using exactness of the sequence) that there exists unique z ∈ C ′

n−1

such that f(z) = dn(x). Moreover, it turns out that z is an n-cycle in C ′, i.e.
belongs to Zn−1(C

′). We assert

∆n(x) = z.

It was shown that this definition does not depend on the choice of y above and
defines a homomorphism ∆n : Hn(C) → Hn−1(C

′) between homology groups.

The homomorphisms ∆n : Hn(C) → Hn−1(C
′) constructed are referred

to as boundary homomorphisms in homology induced by the short exact se-
quence (11). Despite of the similarity of the terminology, one should not
confuse this boundary homomorphisms with boundary operators of a chain
complex.

Boundary homomorphisms ∆n are natural in the following sense.

Lemma 11.6. Suppose

0 // C ′ f //

α

��

C
g //

β

��

C //

γ
��

0

0 // D′ f ′

// D
g′ // D // 0

is a commutative diagram of chain complexes and chain mappings with exact
rows.

Then the diagram

Hn(C)
∆n //

γ∗
��

Hn−1(C
′)

α∗

��
Hn(D)

∆n // Hn−1(D
′)

is commutative. Here ∆n : Hn(C) → Hn−1(C
′) on the upper row is the bound-

ary homomorphism induces by the short exact sequence

0 // C ′ f // C
g // C // 0

and ∆n : Hn(D) → Hn−1(D
′) in the lower row is the boundary homomor-

phism induces by the short exact sequence

0 // D′ f // D
g // D // 0
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Proof. Exercise.

Remark 11.7. This is not the first time we refer to the ”naturality” of some
construction. In mathematics this term is often used in non-strict sense, just
to indicate that some construction is psychologically ”natural”. However, in
the field of mathematics known as ”category theory” this term has been given
a precise and exact meaning. We do not have an intention to go into category
theory in this course, but it is worth to mention that category theory has a
close relationship with algebraic topology, so anyone who is serious about
getting acquainted with more advanced algebraic topology is seriously advised
to get familiar with category theory as well.

We do not present the exact definition of naturality, since it would involve
going through the basics of category theory. The idea is that natural construc-
tion should commute with all ”essential mappings” that are involved.

One of the most important results in homological algebra is the existence
of the long exact sequence of homology groups, induced by the short exact
sequence of chain complexes.

Suppose

0 // C ′ f // C
g // C // 0

is a short exact sequence of chain complexes. Then, for every n ∈ Z we
have induced mappings in homology f∗ : Hn(C

′) → Hn(C) and g∗ : Hn(C) →
Hn(C). We also have boundary homomorphisms ∆n : Hn(C) → Hn−1(C

′).
Putting all these homomorphisms together, we obtain an infinite sequence

. . . // Hn+1(C)
∆n+1 // Hn(C

′)
f∗ // Hn(C)

g∗ // Hn(C)
∆n // Hn−1(C

′) // . . .

This sequence is called the long exact sequence of homology groups,
induced by the short exact sequence of chain complexes (11). As the termi-
nology suggests this sequence is always exact.

Theorem 11.8. Suppose

0 // C ′ f // C
g // C // 0

is a short exact sequence of chain complexes. Then the sequence

. . . // Hn+1(C)
∆n+1 // Hn(C

′)
f∗ // Hn(C)

g∗ // Hn(C)
∆n // Hn−1(C

′) // . . .

is exact sequence of abelian groups and homomorphisms.
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Proof. 1) Exactness at Hn(C).

Since g ◦ f = 0, in homology we have that g∗ ◦ f∗ = (g ◦ f)∗ = 0. Hence

Im f∗ ⊂ Ker g∗.

Conversely suppose x ∈ Zn(C) is such that g(x) = g∗x = 0 in the group
Hn(C). By definition of the factor group, this means that g(x) = dn+1w for
some w ∈ Cn+1. Let v ∈ Cn+1 be such that g(v) = w. Such a element exist,
since g is a surjection. Then

g(dn+1v) = dn+1g(v) = g(x),

hence x − dn+1v ∈ Ker g = Im f , by exactness. Consequently there exists
z ∈ C ′

n such that
x− dn+1v = f(z).

Since fn−1 is an injection, it follows easily that z is a cycle. Indeed

fn−1(d
′
n(z)) = dnf(z) = dn(x− dn+1v) = 0,

so d′n(z) = 0 by injectivity of fn−1.
Thus there exists an equivalence class z ∈ Hn(C

′) and

f∗z = f(z) = x− dn+1v = x,

since the boundary element dn+1v becomes zero in homology.
We have shown that Ker g∗ ⊂ Im f∗. This concludes the proof of the exact-
ness at Hn(C).

2)Exactness at Hn(C).

First we prove that ∆n ◦ g∗ = 0. Suppose y ∈ Zn(C), and let x = g(y) ∈
Zn(C). We claim that

∆n(g∗(y)) = ∆n(x) = 0.

To see that we recall how ∆n is defined. For the cycle x ∈ Zn(C) we choose y
to be the element of Cn with the property g(y) = x. Then ∆v(x) is the class
of the element u ∈ C ′

n−1 with the property fn−1(u) = dn(y). But dn(y) = 0,
since we assume that y ∈ Zn(C). Also, fn−1 is injection so if fn−1(u) = 0,
then also u = 0. Since ∆n(x) = u by definition, we obtain that

∆n(g∗(y)) = ∆n(x) = u = 0,
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which is what we wanted to prove.

The proof of the inclusion

Ker∆ ⊂ Im g∗

is left as an exercise.

3) Exactness at Hn(C
′): an exercise.

Long exact sequence in homology is natural, in the following sense.

Proposition 11.9. Suppose

0 // C ′ f //

α

��

C
g //

β

��

C //

γ
��

0

0 // D′ f ′

// D
g′ // D // 0

is a commutative diagram of chain complexes and chain mappings with exact
rows.
Then the diagram

. . . // Hn+1(C)
∆n+1 //

γ∗
��

Hn(C
′)

f∗ //

α∗

��

Hn(C)
g∗ //

β∗

��

Hn(C)
∆n //

γ∗
��

Hn−1(C
′) //

α∗

��

. . .

. . . // Hn+1(D)
∆n+1 // Hn(D

′)
f ′

∗ // Hn(D)
g′
∗ // Hn(D)

∆n // Hn−1(D
′) // . . .

is commutative.

Proof. Commutativity of the part

Hn(C)
∆n //

γ∗
��

Hn−1(C
′)

α∗

��
Hn(D)

∆n // Hn−1(D
′)

is proved in Lemma 11.6. The commutativity of other squares follows directly
from Lemma 10.3. For example, since β ◦ f = f ′ ◦ α, we have that

β∗ ◦ f∗ = f ′
∗ ◦ α∗
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in homology, which is exactly the commutativity of the part

Hn(C
′)

f∗ //

α

��

Hn(C)

β∗

��
Hn(D

′)
f ′

∗ // Hn(D)

.

As an interesting application of the long exact homology sequence let us
prove an interesting result from the homological algebra, we shall use later.
First we need the following technical result.

Lemma 11.10. Suppose that

0 // A
α // B

β // C // 0

is a short exact sequence of chain complexes and chain mappings. Then if
two of the complexes A,B,C are acyclic, then all three of them are acyclic.

Proof. Recall that a chain complex D is acyclic if it is exact as a sequence
or equivalently if Hn(D) = 0 for all n ∈ Z.

By the theorem 11.8 short exact sequence 11.10 induces long exact se-
quence in homology

. . . // Hn+1(C)
∆n+1 // Hn(A) // Hn(B) // Hn(C)

∆n // Hn−1(A) // . . .

Under our assumption ”almost all” groups in this exact sequence are
actually trivial - since two of the complexes A,B,C are acyclic. Denote by
D the third complex, which is not assumed to be acyclic. Consequently for
every n ∈ Z a part of the long exact sequence around Hn(D) looks like

. . . // 0
f // Hn(D)

g // 0.

Since the sequence is exact at Hn(D), this implies that Hn(D) = 0. Indeed,

0 = Im f = Ker g = Hn(D).

This proves the lemma.
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Proposition 11.11. Suppose

0

��

0

��

0

��
. . . // An+1

d′n+1 //

αn+1

��

An

d′n //

αn

��

An−1

d′n−1 //

αn−1

��

. . .

. . . // Bn+1
dn+1 //

βn+1

��

Bn
dn //

βn

��

Bn−1
dn−1 //

βn−1

��

. . .

. . . // Cn+1
dn+1 //

��

Cn
dn //

��

Cn−1
dn−1 //

��

. . .

0 0 0

is a commutative diagram of abelian groups and homomorphisms. Assume
that all columns are exact and the middle row is exact. Then the upper row
is exact if and only if lower row is exact.

Proof. This result can be proved ”directly” using co-called ”diagram chas-
ing”, but we shall prove it using long exact homology sequences.
First of all we notice that an exact sequence

. . . // Bn+1
dn+1 // Bn

dn // Bn−1
// . . .

can be considered as a chain complex B = (Bn)n∈Z in a natural way, with
mappings dn : Bn → Bn−1 serving as boundary operators. Moreover, since
the sequence is exact, it is acyclic as a chain complex, i.e. Hn(B) = 0 for all
n ∈ Z.

Suppose lower row

. . . // Cn+1
dn+1 // Cn

dn // Cn−1
// . . .

is also exact. Then we can consider it as an acyclic chain complex C as well.
This complex has mappings dn : Cn → Cn−1 as boundary operators and we
also have Hn(C) = 0 for all n ∈ Z.

Since we are assuming that the diagram 11.11 commutes, the collection
β = (βn : Bn → Cn) of homomorphisms is a chain mapping β : B → C
between chain complexes (since it commutes with the boundary operators).
Moreover, by assumptions, every column, i.e. every sequence

0 // An
αn // Bn

βn // Cn
// 0
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is a short exact sequence of abelian groups. It follows that for every n ∈ Z
the abelian group An is ”essentially” (isomorphic to) the kernel Ker βn of the
homomorphism βn. The mapping α : An → Bn is then an inclusion. Hence
we may identify An with Ker βn, for every n ∈ Z. It is a general fact that
whenever β : B → C is a chain mapping between chain complex, the collec-
tion of subgroups (Ker βn)n∈Z is a subcomplex of the complex B, denoted
naturally by Kerβ. Hence we may think of A = (An)n∈Z as a subcomplex of
B, in particular as a chain complex equipped with the boundary operators
d′n : An → An−1. The inclusion αn then constitute a chain mapping (inclu-
sion) α : A → B between chain complexes.

Hence so far we have established, that all three vertical sequences in the
diagram 11.11 can be considered as chain complexes, under the assumption
that both middle sequence B as well as the lower sequence C are exact. We
have also established the existence of the short exact sequence

0 // A α // B
β // C // 0

of chain complexes and chain mappings. Here complexes B and C are acyclic.
By the previous Lemma also A must be acyclic. This is equivalent to it being
exact as a sequence.

The other case, in which A and B are exact is proven in the same way.
First one shows that C is essentially a quotient complex B/A, in particular
a chain complex.

Long exact homology sequence of a topological pair

Let (X,A) be a topological pair. Then for every n ∈ N there exists a
sequence

0 // Cn(A)
i♯ // Cn(X)

j♯ // Cn(X,A) // 0

of abelian groups, which is exact by definition of the singular groups involved.
Here i : A →֒ X is an inclusion and j : (X, ∅) → (X,A) is a map of pairs.
Recall that j♯ is, in fact, a canonical projection to the factor group. Since
this sequence is exact for all n ∈ Z and mappings i♯, j♯ are chain mappings,
there exists exact sequence

0 // Cn(A)
i♯ // Cn(X)

j♯ // Cn(X,A) // 0

of chain complexes.
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By the theorem 11.8 there exists long exact sequence

. . . // Hn+1(X,A)
∆ // Hn(A)

i∗ // Hn(X)
j∗ // Hn(X,A)

∆ // Hn−1(A) // . . .

of singular homology groups. This exact sequence is called the long exact
homology sequence of the pair (X,A).

Suppose f : (X,A) → (Y,B) is a continuous mapping of the topological
pairs. Then f induces chain mappings f♯ between chain complexes C(X) →
C(Y ), C(A) → C(B) and C(X,A) → C(Y,B), and the diagram

0 // C(A)
i♯ //

(f |)♯
��

C(X)
j♯ //

f♯
��

C(X,A) //

f♯
��

0

0 // C(B)
i♯ // C(Y )

j♯ // C(Y,B) // 0

commutes. Hence proposition 11.9 implies that there is a commutative dia-
gram

. . . // Hn+1(X,A)
∆ //

f∗
��

Hn(A)
i∗ //

(f |)∗
��

Hn(X)
j∗ //

f∗
��

Hn(X,A)
∆ //

f∗
��

Hn−1(A) //

(f |)∗
��

. . .

. . . // Hn+1(Y,B) ∆ // Hn(B)
i∗ // Hn(Y )

j∗ // Hn(Y,B) ∆ // Hn−1(B) // . . .

with rows long exact homology sequences of the pairs (X,A) and (Y,B).

There is also a useful generalization of the long exact homology sequence
for the triples. A topological triple is a triple (X,A,B) of topological
spaces where B ⊂ A ⊂ X . In this situation we have a short exact sequence
(exercise)

0 // C(A,B)
i♯ // C(X,B)

j♯ // C(X,A) // 0,

where i : (A,B) → (X,B) and j : (X,B) → (X,A) are obvious inclusions.
This implies the following result.

Lemma 11.12. Suppose (X,A,B) is a topological triple. Then there exists
exact sequence

. . . // Hn+1(X,A) ∆′

// Hn(A,B)
i∗ // Hn(X,B)

j∗ // Hn(X,A) ∆′

// Hn−1(A,B) // . . .

This sequence is called the long exact homology sequence of the triple
(X,A,B). It is natural with respect to the mappings of triples.
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Moreover for the boundary operators ∆ of the long exact homology sequences
of the pair (X,A) and ∆′ of the triple (X,A,B) we have the commutative
diagram

Hn(A)

i∗

��

Hn+1(X,A)

∆
77ooooooooooo

∆′

''OO
OO

OO
OO

OO
O

Hn(A,B),

where i : A → (A,B) is an inclusion.

Proof. Exercise.

”Mappings of triples” are defined in an obvious way. Long exact homol-
ogy sequence of the pair (X,A) is, by definition, the same as the long exact
homology sequence of the triple (X,A, ∅).

Similarly for the pair of ∆-complexes (K,L) there exists the long exact
homology sequence of the pair (K,L)

. . . // Hn+1(K,L)
∆ // Hn(L)

i∗ // Hn(K)
j∗ // Hn(K,L)

∆ // Hn−1(L) // . . .

that involves simplicial homology groups. Here i : Cn(L) → Cn(K) is an in-
clusion of a subgroup Cn(L) into the group Cn(K) and j : Cn(K) → Cn(K,L)
is a canonical projection to the factor group, for all n ∈ Z.

Let n ∈ Z. Consider the canonical inclusion ιn : Cn(K) → Cn(|K|) of
the group of simplicial n-chains of the ∆-complex K into the group of sin-
gular chains of the corresponding polyhedron |K|. Recall that this map-
ping is defined by ιn(σ) = fσ, for every geometrical simplex σ of K, where
fσ : ∆n → |K| is a characteristic mapping of the simplex σ.
For the subcomplex L of K there exists similar inclusion ιn : Cn(L) →
Cn(|L|). Let jn : Cn(K) → Cn(K,L) and jn : Cn(|K|) → Cn(|K|, |L|) be
the canonical projections into factor groups. The composite jn : ιn : Cn(L) →
Cn(|K|, |L|) clearly maps Cn(L) into zero element of Cn(|K|, |L|). By the fac-
torization theorem there exists a well-defined homomorphism ιn : Cn(K,L) →
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Cn(|K|, |L|) that makes the diagram

Cn(K)
jn //

ιn

��

Cn(K,L)

ιn
��

Cn(|K|) jn // Cn(|K|, |L|)

commutative. We drop the bar from notation ιn and denote this induced ho-
momorphism also simply by ιn. It is easy to see that collection of homomor-
phisms ιn : Cn(K,L) → Cn(|K|, |L|) defines a chain mapping ι : C(K,L) →
C(|K|, |L|) between chain complexes.

The diagram

0 // C(L)
i♯ //

k
��

C(K)
j♯ //

k
��

C(K,L) //

k
��

0

0 // C(|L|) i♯ // C(|K|) j♯ // C(|K|, |L|) // 0

of chain complexes and chain mappings with exact rows is commutative.
Hence, by the naturality of the long exact sequences in homology, we obtain
the commutative diagram
(11.13)

. . . // Hn+1(K,L)
∆ //

ι∗

��

Hn(L)
i∗ //

ι∗

��

Hn(K)
j∗ //

k∗
��

Hn(K,L)
∆ //

ι∗

��

Hn−1(L) //

ι∗

��

. . .

. . . // Hn+1(|K|, |L|) ∆ // Hn(|L|) i∗ // Hn(|K|) j∗ // Hn(|K|, |L|) ∆ // Hn−1(|L|) // . . .

between long exact homology sequences.

This result also provides us with a motivation for the next extremely
useful algebraic result. As already mentioned, we want to prove eventually
that ι∗ : Hn(K) → Hn(|K|) is an isomorphism for all n ∈ N, whenever K is a
∆-complex. Let’s take a look at the commutative diagram (11.13) between
long exact sequences of the pairs (K,L) and (|K|, |L|). Suppose that we
already know that the result is true for the subcomplex L (for example in
finite case L could have less simplices than K, so we could use an inductive
assumption) and also for the pair (K,L). Then, in the diagram (11.13) above
all five vertical mappings are isomorphisms, except for the one in the middle.
Now, if we could prove that under this assumptions the middle mapping also
must be an isomorphism, we will have precisely the result we want. Luckily
the so-called five lemma tells us that this is precisely the case.
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Lemma 11.14. Suppose we have a commutative diagram

G1
α1 //

f1
��

G2
α2 //

f2
��

G3
α3 //

f3
��

G4
α4 //

f4
��

G5

f5
��

H1
β1 // H2

β2 // H3
β3 // H4

β4 // H5

of abelian groups and homomorphisms with exact rows. Then
1) If f1 is surjective and f2, f4 are injective, also f3 is injective.
2) If f5 is injective and f2, f4 are surjective, also f3 is surjective.
In particular if f1, f2, f4, f5 are isomoprhism, also f3 is an isomorphism.

Proof. We will prove 1) and leave 2) as an exercise.
The proof is an example of so-called diagram chasing. Suppose f3(x) = 0
for some x ∈ G3. We must show that x = 0. Now

0 = β3(f3(x)) = f4(α3(x)).

Since f4 is injective, α3(x) = 0. Since the upper row is exact, x = α2(y) for
some y ∈ G2. We have

β2(f2(y)) = f3(α2(y)) = f3(x) = 0,

hence, since the lower row is exact, there is z ∈ H1 such that β1(z) = f2(y).
Now f1 is surjective, so there is u ∈ G1 such that f1(u) = z. Consequently

f2(α1(u)) = β1(f1(u)) = β1(z) = f2(y).

Since f2 is injective this implies that y = α1(u). Hence

x = α2(y) = α2(α1(u)) = 0

by exactness.

We will see many examples of the applications of the five lemma.

Finally we discuss the splitting of the exact sequence.

Suppose 0 // A
f // C

g // B // 0 and 0 // A
f ′

// C ′ g′ // B // 0
are short exact sequences with the same first and third (non-trivial) groups.
We say that these sequences are isomorphic (in the strong sence) if there
exists a homomorphism α : C → C ′ such that the diagram

C

α

��

g

  A
AA

AA
AA

A

0 // A

f
>>}}}}}}}}

f ′

  A
AA

AA
AA

B // 0

C ′

g′
>>}}}}}}}
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commutes. Observe that we can also write this diagram in the form

0 //

id
��

A
f //

id
��

C

α
��

g // B //

id
��

0

id
��

0 // A
f // C ′ g′ // B // 0.

Since identity mappings are obviously isomorphisms, the application of the
five lemma 11.14 implies that in this case α must be an isomorphism. This
explains the choice of the terminology.

Suppose A and B are abelian groups. There exists the direct sum A⊕B
and canonical inclusions i : A → A⊕B, j : A⊕B defined by

i(a) = (a, 0),

j(b) = (0, b)

as well as the canonical projections p : A ⊕ B → A, q : A ⊕ B → B defined
by

p(a, b) = a,

q(a, b) = b.

It is easy to see that the sequence

0 // A
i // A⊕ B

p // B // 0,

is a short exact sequence. We shall call such a sequence trivial short exact
sequence .

Definition 11.15. Suppose

0 // A
f // C

g // B // 0

is a short exact sequence. We say that this sequence splits if it is isomorphic
(in the strong sense) to the trivial sequence

0 // A
i // A⊕ B

p // B // 0.

Notice in particular, that in this case the middle group C is isomorphic
to the direct product A⊕ B.

In practice one usually uses other, alternative definitions, presented in
the next lemma.
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Lemma 11.16. Suppose

0 // A
f // C

g // B // 0

is a short exact sequence of abelian groups. Then the following conditions
are equivalent.
1) The sequence splits.
2) There exists a homomorphism f ′ : C → A such that f ′ ◦ f = id.
3) There exists a homomorphism g′ : B → C such that g ◦ g′ = id.

Proof. Suppose the sequence split. Then there exists an isomorphism α : C →
A⊕B such that

C

α

��

g

##G
GG

GG
GG

GG

0 // A

f
;;wwwwwwwww

i

##G
GG

GG
GG

GG
B // 0

A⊕B

p
;;wwwwwwwww

Let pr1 : A⊕ B → A be the canonical projection, pr1(a, b) = a.
Define f ′ = pr1 ◦ α : C → A, g′ = α−1 ◦ j. Then

f ′(f(a)) = pr1αf(a) = pr1i(a) = pr1(a, 0) = a,

g(g′(b)) = gα−1(j(b)) = p(j(b)) = p(b, 0) = b,

hence f ′ ◦ f = id and g ◦ g′ = id.
Hence 1) implies 2) and 3).

Suppose f ′ : C → A is such that f ′ ◦ f = id. Define α : C → A⊕ B by

α(c) = (f ′(c), g(c)).

Then pα(c) = g(c), i.e. p ◦ α = g. Also αf(a) = (f ′(f(a), g(f(a)) = (a, 0),
hence α ◦ f = i. In other words the diagram

C

α

��

g

##G
GG

GG
GG

GG

0 // A

f
;;wwwwwwwww

i

##G
GG

GG
GG

GG
B // 0

A⊕B

p
;;wwwwwwwww

commutes.
The proof that 3) implies 1) is similar and left to the reader.
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There is an important special case, in which we can be sure that the
sequence splits.

Lemma 11.17. Suppose

0 // A
f // C

g // B // 0

is a short exact sequence. If B is a free abelian group, then this sequence
splits.

Proof. Exercise.

Since Cn(X,A) (Cn(K,L)) is a free abelian group for every topological
pair (X,A) (simplicial pair (K,L)), and for every n ∈ Z, it follows that the
sequences

0 // Cn(A)
i♯ // Cn(X)

j♯ // Cn(X,A) // 0

0 // Cn(L)
i♯ // Cn(K)

j♯ // Cn(K,L) // 0

splits for every n ∈ Z. In particular Cn(X) is isomorphic, as an abelian
group, to the direct product Cn(A)⊕ Cn(X,A), for every n ∈ Z.

However, this does not necessarily mean that the chain complex C(X)
is isomorphic to the chain complex C(A)⊕C(X ;A) (which can be defined in
an obvious way)! The reason for that is the following. It is true that for every
n ∈ Z there exists a group isomorphism αn : Cn(X) ∼= Cn(A) ⊕ Cn(X,A),
but usually they have nothing in common, so if you put them together, the
family α = (αn) might not be a chain mapping!
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