
Part I

Simplices and simplicial
methods
One of the main objectives of study in this course - the singular homology
theory - is defined in terms of the continuous images of simplices. Simplices
are also convenient for combinatorial representations of topological spaces
and concrete computations of the algebraic invariants (such as the singular
homology theory itself) in practise. This is why the first part of this course
is dedicated to the brief introduction to simplices and simplicial methods.

1 Euclidean spaces

This section is intended to be merely a recollection of standard linear alge-
bra. No proofs are given and the reader is assumed to be familiar with the
contents of this section.

One of the fundamental objects of modern mathematics is the ordered
field of real numbers R. The reader is assumed to be familiar with basic
properties of real numbers and sets of real numbers.
Real numbers can be added together and multiplied. The sum of two real
numbers x, y is denoted x+y and the product is denoted xy. Both operations
are associative and commutative. This means that for all real numbers x, y, z
we have

(x+ y) + z = x+ (y + z), x+ y = y + x, and

(xy)z = x(yz), xy = yx.

There is also a distributive law, which asserts that for all real numbers x, y, z
we have

(x+ y)z = xz + yz.

Real number 0 is a neutral element with respect to addition and the real
number 1 is a neutral element with respect to multiplication. This means
that for any real number r we have that

r + 0 = 0 + r = r, and r1 = 1r = r.

Every real number r has an opposite number −r, which is characterized by
the property

r + (−r) = 0.
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Every real number r not equal to 0 has an inverse number r−1, which is
characterized by the property

rr−1 = 1.

Number 0 does not have an inverse. Subtraction x− y and division x/y can
be defined using addition, multiplication, opposite number and an inverse
number by formulas

x− y = x+ (−y),

x/y = xy−1.

Division by zero is not defined, since 0 does not have an inverse.

Real numbers can be compared by the size, i.e. there exists a natural
order ≤ on the set of real numbers. Using the order we can talk about
positive, negative, non-negative, non-positive numbers.

One of the most important distinctive properties of real numbers is the
completeness of the field R. Completeness can be formulated in terms of
order in the form of the following statements.
Every non-empty bounded from above subset of real numbers have the small-
est upper bound i.e. supremum.
Every non-empty bounded from below subset of real numbers have the great-
est lower bound i.e. infimum.

Important subsets of the set of real numbers are the set of natural numbers

N = {0, 1, . . .}

and the set of integers

Z = {. . . ,−2,−1, 0, 1, 2, . . . , }.

Note, in particular, that we consider zero a natural number in this course.

In order to define and study simplices, we need notions of linear algebra,
so we start off by recalling the concept of a vector space.
Informally vector space is a set of some objects called vectors that can be
added together and multiplied by a scalar i.e. a real number.
Formally a vector space (over the field of real numbers) is any system (V,+, ·),
where V is a set, +: V × V → V and · : R × V → V are mappings, which
satisfy axioms of vector spaces listed below. It is customary to write v +w
instead of +(v,w) and r ·v or simply rv instead of ·(r,v) for all v,w ∈ V and
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all real numbers r ∈ R. Real numbers are often called scalars in this context
and the elements of a vector space are called vectors. We will emphasize
the difference between scalars and vectors by using bold font on vectors, the
convention already used above. Although formally vector space is a triple
(V,+, ·), it is usually denoted simply by V , with algebraic structure being
understood.
The axioms which a vector space (V,+, ·) is required to satisfy are the fol-
lowing.

i) Associativity of the addition:

(v +w) + u = v + (w + u)

for all v,w,u ∈ V .

ii) Commutativity of the addition :

v +w = w + v

for all v,w ∈ V .

iii) Zero element:
There exists an element 0 ∈ V such that

(1.1) 0+ v = v = v + 0

for all v ∈ V .
It can easily be shown that an element with such a property is unique,
hence a notation 0 can cause no problem.

iv) For every v ∈ V there exists an opposite vector −v ∈ V such that

(1.2) v + (−v) = 0.

It can be shown that opposite vector is unique, i.e. no vector can have
two different opposite vectors that satisfy (1.2).

v) r(r′v) = (rr′)v for all r, r′ ∈ R,v ∈ V .

vi) (r + r′)v = rv + r′v for all r, r′ ∈ R,v ∈ V .

vii) r(v +w) = rv + rw for all r ∈ R,v,w ∈ V .

viii) 1v = v for all v ∈ V .
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Notice that in vi) and vii) we tacitly assume that scalar multiplication
has a priority over addition, i.e. is calculated first, unless there are brackets.
The subtraction of vectors is defined just as for real numbers,

v −w = v + (−w),

where on the right side −w is an opposite of w.

The canonical set of examples of vector spaces is provided by the n-
dimensional Euclidean space Rn, where n ∈ N. As a set Rn consists of
so-called n-tuples (x1, x2, . . . , xn) i.e. ordered sequences of real numbers of
length n. Hence

Rn = {(x1, x2, . . . , xn) | x1, x2 . . . , xn ∈ R}.

The real number xi, 1 ≤ i ≤ n is an i’th component of an ordered n-tuple
(x1, x2, . . . , xn) ∈ Rn.
The vector space structure in Rn is defined in a natural manner, ”component-
wise”,

(x1, x2 . . . , xn) + (y1, y2 . . . , yn) = (x1 + y1, x2 + y2 . . . , xn + yn),

r(x1, x2 . . . , xn) = (rx1, rx2 . . . , rxn).

Zero vector is the vector (0, 0, . . . , 0) (every component of which is zero). An
opposite vector −x of a vector x = (x1, x2 . . . , xn) is a vector

−x = (−x1,−x2 . . . ,−xn).

We assume the fact that this definitions really define a structure of a vector
space known, but the reader is advised to make sure (s)he understands why
it is so.

A non-empty subset W of a vector space V is called a vector subspace if
for all v,w ∈ W and all real numbers r it is true that
1) v +w ∈ W ,
2) rv ∈ W .
In other words W is required to be non-empty and closed under addition of
vectors and arbitrary scalar multiplication. It follows then, that (W,+, ·) is
a vector space itself.

Suppose V is a vector space, v1,v2, . . . ,vm is a finite set of vectors in V
and r1, . . . , rm are real numbers. Any vector that can be written in the form

r1v1 + r2v2 + . . .+ rmvm
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for some real numbers r1, . . . , rm is called a a linear combination of the vectors
v1,v2, . . . ,vm. Real numbers r1, . . . , rm are coefficients of this particular
combination. A combination is not necessarily unique, i.e. the same vector
might equal linear combinations of the vectors v1,v2, . . . ,vm with different
coefficients. If this never happens the sequence v1,v2, . . . ,vm is called free
or linearly independent. In formal terms the sequence v1,v2, . . . ,vm is free
if the equation

r1v1 + r2v2 + . . .+ rmvm = r′1v1 + r′2v2 + . . .+ r′mvm

always implies that r1 = r′1, r2 = r′2, . . . , rm = r′m. In fact it is enough to
check that a zero vector 0 has unique representation as a linear combination.

Lemma 1.3. Sequence v1,v2, . . . ,vm of vectors in a vector space is linearly
independent if and only if

r1v1 + r2v2 + . . .+ rmvm = 0

implies that r1 = r2 = . . . = rm = 0.

Suppose v1,v2, . . . ,vm is a finite sequence of vectors in a vector space V .
The set W of all possible linear combinations of the vectors v1,v2, . . . ,vm

satisfies the conditions of a vector subspace. This subspace is denoted

Span(v1,v2, . . . ,vm)

and called the subspace generated or spanned by the vectors v1,v2, . . . ,vm.
More generally let A ⊂ V be any subset of V . A subset A need not to be a
subspace, but let W be the set of all linear combinations

r1v1 + r2v2 + rmvm,

where v1,v2, . . . ,vm is a finite sequence of elements of A. Then W is a
subspace. It is called a subspace generated (or spanned) by A and denoted
Span(A). The choice of terminology is explained by the following fact.

Lemma 1.4. Let A ⊂ V , where V is a vector space. Then Span(A) is the
smallest subspace of V that contains A. This means that if W ⊂ V is any
subspace that contains A, i.e. A ⊂ W , then Span(A) ⊂ W .

A vector space V is called finite-dimensional if there exist v1,v2, . . . ,vm

such that V = Span(v1,v2, . . . ,vm). If V = Span(v1,v2, . . . ,vm), where the
sequence (v1,v2, . . . ,vm) is also linearly independent, the sequence (v1,v2, . . . ,vm)
is called a basis for V . If V has a finite basis (v1,v2, . . . ,vm), V is called
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m-dimensional. This is also denoted as dimV = m.

Following extremely important facts about finite-dimensional spaces are
proved in the basic course of linear algebra. Notice that in particular it
asserts that the dimension of a finite-dimensional space always exists and is
unique.

Proposition 1.5. (i) Suppose V = Span(v1,v2, . . . ,vm) is a finite di-
mensional vector space. Then there exists a subsequence vi1 ,vi2, . . . ,vik

which is free, such that

V = Span(vi2,vi2 , . . . ,vik).

In particular every finite-dimensional space has a basis.

(ii) Suppose V = Span(v1,v2, . . . ,vm) is a finite dimensional vector space
and suppose w1,w2, . . . ,wk is a free sequence in V . Then k ≤ m.

(iii) Suppose V is finite dimensional. Suppose (v1,v2, . . . ,vm) and (w1,w2, . . . ,wk)
are both its basis. Then m = k. In particular a dimension of V is well-
defined unique natural number.

(iv) Suppose V is finite dimensional and W ⊂ V a subspace. Then W
is also finite-dimensional. In fact any basis (w1,w2, . . . ,wk) of W
can be extended to a basis (w1,w2, . . . ,wk,vk+1,v2, . . . ,vm) of V . In
particular

dimW ≤ dimV.

The inequality is strict if W 6= V .

It is possible for a space to have a dimension 0. This means that space is
trivial i.e. contains only one element, which must be its zero vector 0.

Vector space Rn is n-dimensional. In fact it has a canonical basis (e1, . . . , en)
defined by

ei = (0, . . . , 0, 1, 0, . . . , 0),

where 1 is precisely the ith coordinate of the vector ei and the rest of co-
ordinates are zeros. Every vector x ∈ Rn can be represented as a linear
combination

x = r1e1 + . . .+ rnen,

where ri ∈ R, in unique way - in fact it is clear than this equation is true if
and only if x = (r1, . . . , rn).
Since we consider 0 a natural number, one might ask how to interpret the
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definition of Rn in case n = 0 i.e. what is a vector space R0. The answer
is that we define R0 to be the trivial 0-dimensional vector space {0}, which
consists of a zero vector only. This definition is consistent with the natural
requirement that Rn should be n-dimensional for all n ∈ N.

So far, we have been only discussing vector spaces. The suitable mappings
between them are equally important.
mapping L : V → W between vector spaces V and W is called linear if it
preserves the addition and scalar multiplication, i.e. if equations

L(v + v′) = L(v) + L(v′),

L(rv) = rL(v)

are true for all v,v′ ∈ V and for all r ∈ R.
A linear mapping L : V → W defines two important subspaces in a canonical
way - the kernel KerL, which is a subset of V and the image ImL which is
a subset of W . These are defined as follows,

KerL = {v ∈ V | L(v) = 0} = L−1(0) ⊂ V,

ImL = {L(v) | v ∈ V } ⊂ W.

Composition L′◦L : V → U of two linear mappings L : V → W , L′ : W →
U is also linear. Also the identity mapping id : V → V is linear for any vector
space V .

Suppose V is finite-dimensional and let (v1,v2, . . . ,vm) be its (fixed)
basis. Then it is easy to construct linear mappings L : V → W for any
vector space W - it is enough to specify the images of basis vectors, which
can be asserted arbitrary. More precisely we have the following basic result.

Lemma 1.6. Suppose V is finite-dimensional vector space and let (v1,v2, . . . ,vm)
be its basis. Suppose W is an arbitrary vector space and (w1,w2, . . . ,wm) be
any (ordered) sequence of vectors of W with length m = dimV . Then there
exists a unique linear mapping L : V → W such that

L(vi) = wi

for all i = 1, . . . , m. This mappings is defined as following. Let x ∈ V be a
vector. Then there exists a representation

x =

n∑

i=1

rivi
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and we have that

L(x) =
n∑

i=1

riL(vi).

Recall that a mapping f : X → Y between any sets X and Y is called

- injection, if for all x, x′ ∈ X , x 6= x′ also f(x) 6= f(x′),

- surjection, if f(X) = Y i.e. for any y ∈ Y there exists x ∈ X such that
f(x) = y,

- bijection, if f is injection and surjection.

It is a well-known fact that mapping f : X → Y is bijection if and only if
there exists a mapping g : Y → X such that g ◦ f = idX and f ◦ g = idX .
Such a mapping is called an inverse of f and is also denoted f−1.

Regarding linear mappings between vector spaces we have the following
results. Suppose L : V → W is a linear mapping between vector spaces.
Then

- L is injection if and only if KerL = {0} is a trivial subspace.

- L is surjection if and only if ImL = W .

- If L is bijection, then its inverse mapping L−1 : W → V is also linear
bijection.

A linear bijection between vector spaces is called an isomorphism. If there
exists an isomorphism L : V → W , we say that V and W are isomorphic.
Isomorphic vector spaces ”look the same” from the point of view of linear
algebra - one can substitute every vector v ∈ V by its isomorphic image
L(v) ∈ W and algebra won’t notice the difference, since the amount of vec-
tors and their algebraic relations (addition and scalar multiplication) remain
precisely the same.

One of the reasons the classical theory of finite dimensional vector spaces
is so relatively ”simple” (compared to the theory of other algebraic objects)
is the fact that it is very easy to classify finite-dimensional vector spaces up
to an isomorphism.

Proposition 1.7. Suppose V and W are finite dimensional vector spaces.
Then they are isomorphic if and only if

dimV = dimW.

8



In particular every n-dimensional vector space V is isomorphic to Rn. Spaces
Rn and Rm are isomorphic if and only if n = m.

Hence any n-dimensional vector space can be identified with Rn via some
isomorphism, so it is enough to study the structure of Rn. Notice however
that if V is an n-dimensional vector space, there might not be any ”canoni-
cal” basis for V or any ”canonical” isomorphism V ∼= Rn. When identifying
V ∼= Rn one must be carefully aware of the particular identification (i.e.
a particular isomorphism) one is using. Switching to another isomorphism
changes the nature of identification.

Suppose m,n ∈ N, m < n. Consider a linear mapping L : Rm → Rn

defined by
L(x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0).

Here the j’th component of L(x1, . . . , xm) is xj for j ≤ m and is zero for
j > m. One easily verifies that L is injection. Hence if you think of it as
a mapping L : Rm → ImL = L(Rm), such a mapping is a linear bijection,
hence an isomorphism of vector spaces. Thus we can identify the vector space
Rm with a subspace

ImL = {(x1, . . . , xm, 0, . . . , 0) | x1, . . . , xm ∈ R}

of the vector space Rn. We adopt a convention of regarding Rm as a subset
of Rn via this natural identification.

2 Simplices

Let V be an (arbitrary) vector space. It is natural to call any 1-dimensional
subspace W of V a line. On the other hand, we are used to talk about
”lines” in plane and space, which are not necessarily subspaces, i.e. do not
pass through the origin (i.e. zero vector 0). Hence it is also natural to call
any translation of a 1-dimensional subspace W by an arbitrary vector y ∈ V
a line. We adopt this as an official definition.

A line in a vector space V is a subset of the form

v +W = {v +w | w ∈ W},

where v ∈ V is an arbitrary fixed vector and W ⊂ V is a 1-dimensional
subspace of V .
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By definition subspace is 1-dimensional if and only if it is generated by a
single vector w 6= 0, i.e. can be written in the form

W = {tw | t ∈ R}.

It follows that ℓ ⊂ V is a line if and only if it can be represented in a form

ℓ = {v + tw | t ∈ R}

for some fixed v,w ∈ V , w 6= 0 (both not unique).

From the school geometry we know that one of the postulates of the classi-
cal, Euclidean geometry is ”given two distinct points there exists unique line
that contains these points”. Our formal definition of a line in the Euclidean
space satisfies this property.

Lemma 2.1. Suppose x,y ∈ V , where V is a vector space and x 6= y. Then
there exists unique line ℓ in V that contains both x and y. In fact

ℓ = {(1− t)x + ty | t ∈ R} =

= {λx+ µy | λ, µ ∈ R, λ+ µ = 1}.

Proof. Exercise.

Consider the unique line

ℓ = {(1− t)x+ ty | t ∈ R}.

that contains given different vectors x and y. When t = 0, we obtain a point
x. When t = 1 we obtain a point y. Hence, as t goes from 0 to 1, i.e. goes
through the unit interval [0, 1] ⊂ R, corresponding point on the line ℓ travels
through the closed interval

[x,y] = {(1− t)x+ ty | t ∈ R, 0 ≤ t ≤ 1}

”in between” points x and y. This definition can be thought of as a gener-
alization of a closed interval on the real line.
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a closed interval [x,y]

A line ℓ that contains vectors x and y

We are now motivated to give the following definitions.

Definition 2.2. Suppose V is a vector space. A subset A ⊂ V is called
affine if

(1− t)x+ ty ∈ A

for all x,y ∈ A, t ∈ R.
A subset A ⊂ V is called convex if

(1− t)x+ ty ∈ A

for all x,y ∈ A, t ∈ [0, 1].

In other words subset if affine if for two (different) points of A the unique
line that contains these points is also contained in A. A subset is convex if
two (different) points of A the closed interval between them is contained in
A.
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b b

x y

Convex Not convex

It is clear that every affine subset is also convex, while the opposite
claim is not true. One easily verifies that an empty set and every singleton
{x}, x ∈ V are trivially affine. Also, every vector subspace of a vector space
is clearly affine. Lemma 2.4 below shows that actually the only non-empty
affine subsets of V are precisely translations of subspaces. Hence translations
of subspaces are the only possible examples of affine subsets.

Convex sets are, on contrary, much more versatile and not that simple to
classify.

Examples 2.3. 1) The unit square I2 = [0, 1]2 ⊂ R2 is a convex set,
which is not affine. More generally n-dimensional cube

In = [0, 1]n ⊂ Rn

is a convex set, which is not affine. Let us prove this precisely.

Suppose x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ In and suppose t ∈ [0, 1] is
a real number. By definition of the n-cube In this means that 0 ≤ xi ≤ 1
and 0 ≤ yi ≤ 1 for all i = 1, . . . , n. The i’th coordinate of the vector
(1− t)x+ ty is (1− t)xi+ tyi. Since xi, yi, t ∈ [0, 1] one easily sees that

0 ≤ (1− t)xi + tyi ≤ (1− t) + t = 1.

Since every coordinate of the vector (1 − t)x + ty is an element of the
unit interval [0, 1], it follows that (1 − t)x + ty ∈ In. That is what we
had to prove.
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Let us show that In is not affine. Since 0 ∈ In, by Lemma 2.4 below,
In is affine if and only if it is a vector subspace. But In is not subspace
- for instance e1 = (1, 0, . . . , 0) ∈ In, while 2e1 /∈ In.

In fact every non-empty affine subset of Rn is either a single point or
is unbounded with respect to standard norm, since it contains at least
one unbounded line, so a bounded subset (such as In) cannot be affine
(unless it is a singleton or empty).

2) Let x ∈ Rn be fixed. A closed ball

B
n
(x, r) = {y ∈ Rn | |y− x| ≤ r}

around origin of radius r > 0 is a convex set. Here

|v| =
√

v21 + v22 + . . .+ v2n

is a standard norm in Rn.

The convexity of B
n
(x, r) is a consequence of the well-known properties

of the norm | · | (which we will revisit in the next section). We leave
the exact proof to the reader as an exercise.

Also an open ball Bn(x, r) = {y ∈ Rn | |y − x| < r} around origin of
radius r > 0 is convex. The proof is similar as for the closed ball.

3) A convex set is path-connected since by definition any two points of it
can be joined by a straight line belonging to this set. We will revisit the
notions of connectedness in the next section.
In particular any non path-connected set cannot be convex.

A punctured unit ball

{x ∈ Rn | 0 < |x| < 1}

with origin removed is an example of a path-connected set (for n > 1)
which is not convex. In fact for every x ∈ Bn the closed interval [x,−x]
contains origin.
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The square I2 the closed ball

Affine subsets are easy to classify - they turn out to be simply translations
of subspaces (except for the empty set).

Lemma 2.4. Suppose A ⊂ V is a non-empty affine subset. Then there exists
a vector subspace W ⊂ V such that

A = v +W

for any v ∈ A.
Moreover such subspaces W is unique.

Conversely every set of the form v +W , where v ∈ V and W is a vector
subspace of V , is affine.

An affine subset A is a vector subspace if and only if 0 ∈ A.

Proof. We start by proving the last assertion. Vector subspace A contain
0 trivially. Conversely suppose A is an affine subset such that 0 ∈ A. Let
v ∈ A and r ∈ R be arbitrary. Then

rv = rv + (1− r)0 ∈ A,

since A is affine. Hence A is closed under scalar multiplication. Let v,w ∈ A
be arbitrary. Then, since A is affine,

1

2
v +

1

2
w =

1

2
v + (1− 1

2
)w ∈ A.

Since A is closed under scalar multiplication (which we have proved above),
we have that

v +w = 2(
1

2
v +

1

2
w) ∈ A.

Thus A is also closed under addition of vectors. Since 0 ∈ A by assumption,
A is a vector subspace.
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Next we notice the following. Suppose A ⊂ V is an affine subset and v
in V an arbitrary vector. Then (precise verification left as an exercise) the
translation v +D is also affine subset.

Now we are ready to prove the first claim. Suppose A ⊂ V is a non-empty
affine subset. Choose v ∈ A. Then W = A − v = (−v) + A is an affine
subset of V , as a translation of an affine set A. On the other hand 0 ∈ W .
As an affine subset of V that contains a zero vector, W is a vector subspace.
Since

A = v +W,

we have shown that A is a translation of a vector subspace W . The unique-
ness of W is left as an exercise.

Suppose W is a vector subspace. It follows almost trivially from the
definition that W is affine, since it is closed under addition of vectors and
scalar multiplication. Hence any set of the form

A = v +W,

where W is a vector subspace, is affine, as a translation of an affine set.

Suppose V is a finite-dimensional vector space and suppose A ⊂ V is a
non-empty affine subset. By the previous lemma A = v +W for the unique
subspace W . Since W is finite-dimensional (being a subspace of V ), we can
define affine dimension dimA of A by

dimA = dimW,

where dimW is a dimension of W as a finite-dimensional vector space. In
case A = ∅ we assert dimA = −1.
By definition it follows that 0-dimensional affine spaces are singletons i.e.
points, 1-dimensional are lines, 2-dimensional are planes.

More generally suppose A ⊂ V is an arbitrary subset. Consider the collec-
tion of all affine subsets of V which contain A. This collection is non-empty,
since V itself is affine and contains A. Hence we can form an intersection
of all affine subsets of V that contain A. It is easy to verify that arbitrary
intersection of affine sets is also affine. Hence this intersection is affine subset
of V . By construction it contains A and contains in every other affine subset
of V , which contains A. Hence we have shown that

Lemma 2.5. Suppose A ⊂ V is arbitrary. Then there exists unique smallest
(with respect to inclusion) affine subset W of V that contains A. This means
that
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• W is affine,

• A ⊂ W ,

• if W ′ is an affine subset of V such that A ⊂ W ′, then

W ⊂ W ′.

The smallest affine subset of V that contains a given subset A is called the
affine hull of the set A and is denoted aff(A). We define affine dimension
dimA of A by

dimA = dimaff(A).

The affine dimension of the affine set aff(A) has already been defined above.

We now turn our attention to convex sets. First of all, it follows directly
from the definition that an arbitrary intersection of convex sets is also convex.
Hence, for arbitrary subset A of a vector space V , we can take intersection of
all convex sets that contain A, which will be the smallest(with respect to set
inclusion) convex sets containing A. This convex set is called the convex
hull of A and denoted conv(A). Since every affine set is in particular convex,
we have that

A ⊂ conv(A) ⊂ aff(A).

There is also a simple, explicit way to express both affine and convex hull
in terms of the points of A. Suppose v0,v1, . . . ,vm ∈ V are arbitrary points,
m ≥ 0. A linear combination

t0v0 + t1v1 + . . .+ tmvm ∈ V

is called an affine combination of the vectors v0,v1, . . . ,vm if scalars t0, . . . , tn
satisfy the equation

t0 + t1 + . . .+ tm = 1.

If it is also true that ti ≥ 0 for all i = 0, 1, . . . , m, combination is called a con-
vex combination of the vectors v0,v1, . . . ,vm (compare these definitions
to a definition of a linear combination).

Lemma 2.6. A subset A of a vector space V is affine (convex) if and only if
it is closed under affine (convex) combination of its elements. In other words
A is affine if and only if

t0v0 + t1v1 + . . .+ tmvm ∈ A

whenever v0,v1, . . . ,vm ∈ A and t0+ . . .+ tm = 1. A is convex if this is true
whenever also ti ≥ 0 for all i = 0, . . . , m.
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Proof. We consider the case of affine combinations. The convex case is sim-
ilar.
Suppose A satisfies given condition and let t ∈ R be arbitrary. Then
t + (1 − t) = 1, so by applying given condition in case m = 2, we see
that (1− t)x + ty ∈ A whenever x,y ∈ A. Hence A is affine.

Conversely suppose A is affine. We will prove by induction on m ∈ N
that whenever v0,v1, . . . ,vm ∈ A and t0 + . . .+ tm = 1 we have that

t0v0 + t1v1 + . . .+ tmvm ∈ A.

The case m = 0 is trivial. Suppose claim is true for m ≥ 0 and suppose
v0,v2, . . . ,vm,vm+1 ∈ A and t0+ . . .+ tm+ tm+1 = 1. Since m ≥ 0, it follows
that there must be an index i = 0, . . . , m + 1 such that ti 6= 1 (otherwise
all ti = 1, so t0 + . . . + tm + tm+1 = m + 2 > 1, which is a contradiction).
Without loss of generality we may assume that tm+1 6= 1.
Since t0 + . . .+ tm + tm+1 = 1, it follows that t0 + . . .+ tm = 1− tm+1, hence

t0
1− tm+1

+ . . .+
tm

1− tm+1
= 1

(here is where we need the assumption tm+1 6= 1). If we denote t′i =
ti

1−tm+1
,

i = 0, . . . , m, we see that t′0 + . . .+ t′m = 1, hence, by inductive assumption

t′0v0 + t′1v1 + . . .+ t′mvm = w ∈ A.

Note that by construction

(1− tm+1)w = t0v0 + t1v1 + . . .+ tmvm

Hence

t0v0 + t1v1 + . . .+ tmvm + tm+1vm+1 = (1− tm+1)w + tm+1vm+1 ∈ A,

since A is affine. The claim is proved.

Affine and convex hulls of A can be characterized in terms of affine/convex
combinations of the vectors in A

Lemma 2.7. Suppose A ⊂ V is non-empty. Then

aff(A) = {t0v0 + t1v1 + . . .+ tmvm | vi ∈ A, t0 + . . .+ tm = 1, m ≥ 0},

conv(A) = {t0v0+t1v1+ . . .+tmvm | vi ∈ A, t0+ . . .+tm = 1, m ≥ 0, ti ≥ 0}.
In other words affine hull of A consists precisely of all possible affine combi-
nations of the elements of A and similarly for convex hull.
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Proof. We prove the claim for the convex hull. The case of the affine hull is
similar.
Denote

{t0v0 + t1v1 + . . .+ tmvm | vi ∈ A, t0 + . . .+ tm = 1, m ≥ 0, ti ≥ 0} = C.

We need to show that

1) A ⊂ C,

2) C is convex,

3) If A ⊂ D, where D is convex, then C ⊂ D.

Choosing m = 1 above, we see that every element of A can be represented
as an element of C. Hence A ⊂ C. Suppose A ⊂ D, where D is convex.
Then, by the previous lemma, D contains all possible convex combinations
of the elements of A. In other words C ⊂ D.
It remains to prove that C is actually convex. This is left as an exercise to
the reader.

If W = aff A, then we say that W is an affine subset generated (as an
affine set) by A. Similarly a convex set C is said to be generated (as a convex
set) by the subset A if C = convA.

Suppose V is a finite dimensional vector space and suppose W is an affine
subset of . Then W is generated by some finite set A = {v0,v1, . . . ,vm}.
This is seen as follows. By the Lemma 2.4 we have that W = y+U where U
is a subspace of V and y ∈ W . Since V is finite dimensional, also U is. Let
{u0,u1, . . . ,um} be the basis of U . It is easy to verify that then W = aff A,
where A = {u0 + y,u2 + y, . . . ,um + y} is affine.

The situation is not that simple with convex sets. A convex subset of
a finite dimensional vector space V might not be generated (as a convex
set) by a finite set. For example a closed ball B

n
cannot be a convex hull

of a finite set in Rn for n ≥ 2 (can you prove it?) and it is even easier to
see that the same for a corresponding open ball Bn, even for n = 1 (exercise).

A convex hull of a finite set is called a linear (closed) cell. For example
a square, more generally n-cube is a linear cell, so is triangle or a pyramid
with triangle or square base. We won’t need a general notion of a linear
cell, and we will in fact restrict our attention to a useful special case of the
simplex. To define the notion of simplex we first need a notion of affinely
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independent subset.

Consider a fixed finite set {v0,v1, . . . ,vm} of vectors in a vector space V .
By Lemma 2.7 every element x of the convex hull conv{v0,v1, . . . ,vm} can
be written in the form

x = t0v0 + t1v1 + . . .+ tmvm,

where ti ≥ 0 and
∑n

i=0 ti = 1. In general representation of a vector x in this
form need not to be unique.

Definition 2.8. Suppose V is a vector space and v0,v1, . . . ,vm ∈ V . We
say that the sequence v0,v1, . . . ,vm is affinely independent1 if every vec-
tor x from the convex hull conv{v0,v1, . . . ,vm} can be written as a convex
combination

x = t0v0 + t1v1 + . . .+ tmvm, ti ≥ 0,
m∑

i=0

ti = 1

in a unique way. In other words if

x = t0v0 + t1v1 + . . .+ tmvm = t′0v0 + t′1v1 + . . .+ t′mvm,

where both combinations are convex, then ti = t′i for all i = 0, . . . , m.

Definition 2.9. A convex hull of the affinely independent finite sequence
(v0,v1, . . . ,vm) (m ∈ N) is called an m-dimensional simplex with vertices
v0,v1, . . . ,vm.

The reason we call a simplex with vertices v0,v1, . . . ,vm anm-dimensional
and not (m+ 1)-dimensional (which is the amount of generating vectors), is
that the affine dimension of such a simplex is exactly m (Corollary of Lemma
2.11).

Before we start investigating simplices, let us prove the Lemma which
gives several useful conditions equivalent to the notion of affinely indepen-
dence. Notice that the condition (5) is precisely how we defined affine inde-
pendence.

Lemma 2.10. Suppose V is a vector space and (v0,v1, . . . ,vm) is a finite
sequence of vectors in V . Then the following conditions are equivalent.

1Also the term geometric independence is used.
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(1) v1 − v0, . . . ,vi − v0,vm − v0 is a linearly independent set of vectors in
V .

(2) Suppose
m∑

i=0

tivi = 0 and

m∑

i=0

ti = 0,

for some choice of scalars ti, i = 0, . . . , m. Then ti = 0 for all i =
0, . . . , m.

(3) Suppose
m∑

i=0

tivi =

m∑

i=0

t′ivi

where
∑m

i=0 ti =
∑m

i=0 t
′
i. Then ti = t′i for all i = 0, . . . , m.

(4) Every point x in the affine hull aff({v0, . . . ,vm}) has a unique repre-
sentation as the affine combination

x = t0v0 + . . .+ tmvm,

where
∑m

i=0 ti = 1.

(5) Every point in the convex hull conv({v0, . . . , vn}) has a unique repre-
sentation in the form

t0v0 + . . .+ tmvm,

where
∑m

i=0 ti = 1 and ti ≥ 0 for all i = 0, . . . , m.

Proof. (1)⇒ (2). Condition (1) means that the equation

t1(v1 − v0) + t2(v2 − v0) + . . .+ tm(vm − v0) = 0

is true if and only if t1 = . . . = tm = 0. Now, suppose

m∑

i=0

tivi = 0 and
m∑

i=0

ti = 0,

for some choice of scalars ti, i = 0, . . . , m. Now, the second equation implies
that

t0 = −t1 − . . .− tm, hence

we can rewrite equation above in the form

t1(v1 − v0) + . . . tm(vm − v0) = 0.
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By assumption this implies that t1 = . . . = tm = 0. Since t0 = −t1− . . .− tm,
we also obtain that t0 = 0. This shows that (1) implies (2).

(2)⇒ (3)Clear, since conditions of (3) are equivalent to

m∑

i=0

(ti − t′i)vi = 0 and

m∑

i=0

(ti − t′i) = 0.

(3)⇒ (4) Condition (4) is a special case of condition (3) - considered when∑m

i=0 ti = 1.

(4) ⇒ (5) Clear, since every convex combination is in particular an affine
combination.

(5)⇒ (1) Assume (5) and suppose that

m∑

i=1

ti(vi − v0) = 0

for some scalars t1, . . . , tm. We need to show that t1 = . . . = tm = 0. Define

t0 = −t1 − . . .− tm.

Then t0 + t1 + . . .+ tm = 0 and

m∑

i=0

t0vi = 0.

It is enough to prove now that t0 = t1 = . . . = tm = 0. Assume this is not
true. This means that there exists at least one index i = 0, . . . , m so that
ti 6= 0. Since

∑n

i=0 ti = 0, this implies that there must be actually at least
one index i for which ti > 0 and at least one index j for which tj < 0. We
may assume that t0, . . . , tk ≥ 0 and tk+1, . . . , tm < 0 for some k < m.

Define
t = t0 + t1 + . . .+ tk = −tk+1 − . . .− tm > 0.

We have that

t0v0 + . . .+ tkvk = (−tk+1)vk+1 + . . .+ (−tm)vm, hence

t0
t
v0 + . . .+

tk
t
vk =

−tk+1

t
vk+1 + . . .+

−tm
t

vm.

It is easy to see that both left and right sides of this equation are convex
combinations of points v0,v1, . . . ,vm. Thus we obtain different convex com-
binations for the same vector, which is a contradiction with (5).
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The concept of affinely independent set provides us with another way to
calculate affine dimension.

Lemma 2.11. Let V be a finite-dimensional vector space and let A ⊂ V .
Then affine dimension dimA = m ∈ N if and only if m + 1 is the maximal
amount of vectors in any affinely independent subset. In other words dimA =
m if and only if
1) for any affinely independent subset {v0,v1, . . . ,vk} ⊂ A we have that
k ≤ m and,
2) there exists an affinely independent subset {w0,w1, . . . ,wm} ⊂ A.

Proof. Exercise (follows easily from the previous lemma and classic linear
algebra).

We now turn our full attention to the theory of simplices. By definition
an m-dimensional simplex is a set of the form σ = conv{v0,v2, . . . ,vm},
where {v0,v1, . . . ,vm} is affinely independent subset of a vector space V . It
can be shown, that the set of the vertices {v0,v1, . . . ,vm} of a simplex is
uniquely determined by the set σ itself. Put precisely this means that if a
simplex σ is both conv{v0,v2, . . . ,vm} and conv{w0,w2, . . . ,wm′} for some
affinely independent sets A = {v0,v1, . . . ,vm} and B = {w0,w2, . . . ,wm′},
then m = m′ and A = B. We leave the proof of this claim as an exercise.
Hence we can talk about the set of vertices of σ without risk of sounding
unambiguous.

The previous lemma implies that the affine dimension of such a simplex
σ is precisely m (exercise). Hence we can also talk about dimension of a
given simplex unambiguously. If we want to emphasize that a simplex σ is
m-dimensional, we might denote it by σm.

The fact that v0,v1, . . . ,vm are vertices of the simplex σ is also expressed
by saying that vertices v0,v1, . . . ,vm span a simplex σ. In that case one
tacitly assumes that the set of vertices is a priori known to be affinely inde-
pendent.

Of course the ordering in which vertices v0,v1, . . . ,vm of a simplex are
listed can be arbitrary - any permutation would define the same simplex (as
a set). For the technical reasons, that will become apparent later, in some
contexts it is convenient to fix the ordering of vertices. For example we
would like to call a simplex spanned by the set {v0, . . . ,vi−1,vi+1, . . . ,vm}
(the vertex vi is omitted) the i’th face of a simplex σ. This is not possible,
if we treat the set of vertices as merely a set.

Definition 2.12. An ordered simplex is simplex σ together with a fixed
ordered sequence (v0,v1, . . . ,vm) of its vertices.
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Since a finite set can always be ordered2, we can always regard any simplex
as an ordered simplex, if necessary. There are usually many different ways
to order a simplex ((n+ 1)! ways for an n-dimensional simplex).

Examples 2.13. 1) Let v ∈ V be arbitrary vector. The singleton {v}
is affinely independent (check it!), so spans a 0-dimensional simplex,
which is actually the same as a singleton {v}. Hence every singleton
is a 0-dimensional simplex. Conversely any 0-dimensional simplex is a
singleton.

Every 0-dimensional simplex can be ordered in only one way.

2) Next we investigate 1-simplices. Suppose v,w ∈ V . By Lemma 2.10
(condition (1)) the set {v,w} is affinely independent if and only if
singleton {w − v} is linearly independent. But a singleton is linearly
independent if and only if its only element is not a zero vector. Hence
sequence v,w is affinely independent if and only if v 6= w. In other
words any two different vectors in a vector space span a 1-simplex
σ1 = conv{v,w}. By definitions it follows easily that this simplex is
actually precisely closed interval

[v,w] = {(1− t)v + tw}
we defined before. Hence 1-simplex is the same thing as a closed inter-
val.

A 1-simplex conv{v,w} can be ordered in two different ways - either
with the order (v,w) on the vertices or with the order (w,v).

3) What about 2-simplices? A 2 simplex is spanned by 3 affinely indepen-
dent vectors. Now, by Lemma 2.10, an arbitrary sequence v0,v1,v2 of
3 vectors in a vector space V is affinely independent if and only if vec-
tors x = v1 − v0 and y = v2 − v0 are linearly independent i.e. span a
plane. The affine translation v → v−v0 preserves affine independence
(check!), hence maps the simplex spanned by the vertices (v0,v1,v2)
onto the simplex spanned by the vertices (0,x,y), bijectively. This is a
triangle in the 2-dimensional plane spanned (as a vector subspace) by
linearly independent vectors x,y. Since one of the vertices is origin,
we see that this triangle can be written as a set

{t1x + t2y | t1 + t2 ≤ 1}.
2Actually any set can be linearly ordered but the proof of this claim is non trivial and

uses Axiom of Choice
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One can easily convince oneself, that geometrically this is a closed tri-
angle with x,y as two sides (here we identify a vector of R2 with a
geometrical vector i.e. a ”directed arrow” that starts in origin).

Hence a 2-simplex is the same thing as a triangle. Since there are 6
permutations of the set of 3 elements, there are 6 different ways to or-
der a 2-simplex.

Somehow similarly it is possible to visualise 3-simplex as a tetrahedron.

b

b

bb

0-simplex 2-simplex1-simplex 3-simplex

As these examples suggest, same dimensional simplices ”look alike” - at
least for dimensions 0, 1, 2, 3. This is true in general. In order to make this
claim precise we introduce the following definition.

Definition 2.14. Suppose V and W are vector spaces, C ⊂ V and D ⊂ W
are convex. A mapping f : C → D is called affine if

f((1− t)x + ty) = (1− t)f(x) + tf(y)

for all x,y ∈ C, t ∈ [0, 1].

Affine mapping thus ”preserves convex combinations”3. If affine mapping
f : C → D is bijection, then its inverse f−1 : D → C is also affine (exercise).
A bijective affine mapping between two convex sets is called affine isomor-
phism. Two convex sets C,D are affinely isomorphic if there exists an affine
isomorphism f : C → D between them.

An affine mapping f : σ → σ′, where σ and σ′ are both simplices is called
simplicial if for every vertex vi of σ the image f(vi) is also a vertex of σ′.

Lemma 2.15. Suppose V and W are vector spaces. Suppose σ ⊂ V is an
m-dimensional simplex with vertices {v0,v1 . . . ,vm}, C ⊂ W is a convex set

3Reader might wonder why we choose to call such mappings affine and not convex. The
reason for that is the fact that the term ”convex mapping” is already reserved in analysis
to mean something else. Also, it can be shown that affine mapping, as we defined it, also
preserves any affine combination, assuming a set C contains it.
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and let w0,w1, . . . ,wm ∈ C be arbitrary elements of C. Then there exists
unique affine mapping f : σ → C such that f(vi) = wi for all i = 0, . . . , m.

Proof. We prove uniqueness first. Every point x ∈ σ has a unique represen-
tation

x = t0v0 + . . .+ tmvm

in the form of a convex combination. Since f is affine, this implies (by
induction, exercise) that we must have

f(x) = t0f(v0) + . . .+ tmf(vm) = t0w0 + . . .+ tmwm.

Hence f is determined uniquely.
Conversely this formula defines a mapping, which is well defined, since C

is convex. The (easy) verification that this mapping is indeed affine is left to
the reader.

Corollary 2.16. Suppose σ ⊂ V is an m-dimensional simplex with vertices
v0, . . . ,vm and τ ⊂ W is an n-dimensional simplex with vertices w0, . . . ,wn.
Then there exists affine isomorphism f : σ → τ if and only if m = n.

In case m = n there exists unique affine isomorphism such that f(vi) =
wi for all i = 0, . . . , m.

Proof. It is easy to see, that affine isomorphism between convex sets preserves
affine dimension (exact proof left as an exercise). Since affine dimension of
σ is m and affine dimension of τ is n, they can be affinely isomorphic only if
m = n.

The second claim can be proved directly, but we shall prove it using so-
called ”categorical” type of argument, which is typical in algebraic topology.
Suppose σ ⊂ V and τ ⊂ W are both m-dimensional simplices, v0, . . . ,vm are
vertices of σ (taken in some particular fixed order), w0, . . . ,wm are vertices of
τ (also taken in a particular fixed order). By the previous Lemma there exists
unique affine mapping f : σ → τ such that f(vi) = wi for all i = 0, . . . , m.
On the other hand by the same result there exists unique affine mapping
g : τ → σ such that f(wi) = vi for all i = 0, . . . , m. Now consider composite
mapping g ◦ f : σ → σ. Composition of affine mappings is easily seen to be
affine as well, so g ◦ f is an affine mapping. Moreover g ◦ f(vi) = vi for all
i = 0, . . . , m.

On the other hand the identity mapping id : σ → σ is trivially affine and
clearly has property id(vi) = vi for all i = 0, . . . , m. But, by the previous
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Lemma, the affine mapping with such property is unique. Hence g ◦ f = id.
In the same way one verifies that also f ◦ g = id. Hence f is a bijection, i.e.
also affine isomorphism.

The uniqueness of f follows from the previous Lemma.

So far we have actually seen concrete examples of simplices only in small
dimensions 0, 1, 2. We shall now construct canonical families of simplices,
which will prove useful through the course.

Examples 2.17. Suppose n ∈ N.
The canonical example of the n-dimensional simplex is the set

∆n = {(x1, . . . , xn) ∈ Rn | xi ≥ 0 for all i,
n∑

i=1

xi ≤ 1}.

To see that this is indeed a simplex, consider the sequence of vectors 0, e1, . . . , en
in Rn. Lemma 2.10 easily implies that this set is affinely independent. It is
easy to see that ∆n is a convex hull of these points. For the notational
convenience we will denote 0 = e0. Hence ∆n is a convex hull of an affinely
independent sequence e0, e1, . . . , en. We shall call this simplex the standard
n-simplex. We regard ∆n an ordered simplex, with the canonical order on
the vertices given by the natural order (0, e1, . . . , en)

Another canonical example of an n-simplex for every n ∈ N is the set

∆′
n = {(x0, . . . , xn) ∈ Rn+1 | xi ≥ 0 for all i,

n∑

i=0

xi = 1}.

Here the set of vertices is exactly the standard basis of Rn+1 i.e. the sequence
(e1, . . . , en+1).
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Interior and boundary points.
Suppose σ is an m-dimensional (ordered) simplex with vertices v0, . . . ,vm

(taken in that order, if necessary), m ∈ N. By the Lemma 2.10 every point
x of the simplex σ can be written as a convex combination

x = t0v0 + . . .+ tmvm,

ti ≥ 0 for all i = 0, . . . , m,
∑m

i=0 ti = 1, in a unique way.
In case ti > 0 for all i = 0, . . . , m, we say that x is an interior point of the
simplex. The set of all interior points of σ is called (the simplicial) interior
of the simplex σ. It will be denoted by Int σ. The points which are not
interior points are called boundary points. The set of boundary points is
called (the simplicial) boundary of the simplex, denoted by Bdσ.
The definitions imply that the point

x = t0v0 + . . .+ tmvm

of a simplex σ is the boundary point if and only if there exists an index
i = 0, . . . , m such that ti = 0.

Now, regard σ as above as an ordered simplex. Lemma 2.10 easily implies
that any subset of an affinely independent set is also affinely independent,
hence any ordered subsequence {vi0 , . . . ,vik},

i0 < . . . < ik
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spans a k simplex σ′, which is clearly a subset of σ. Such a simplex will be
called a face of the simplex σ. The fact that σ′ is a face of σ will also be
denoted as σ′ ≤ σ. In case σ′ ≤ σ and σ′ 6= σ i.e. σ′ is a proper face of σ,
the notation σ′ < σ is used.

In particular consider a fixed index i ∈ {0, . . . , m}. The sequence of m
vertices v0, . . . , v̂i, . . . ,vm, where v̂i symbolises that the element vi is omit-
ted, defines a (m − 1)-dimensional face of σ. We call this ordered simplex
the ith face of the ordered simplex σ and denote it by diσ. The expression
”face opposite to the vertex vi” is also used. Notice that it would not be
possible to attach to an m-dimensional face a well-defined index, if we would
have not fixed an order for vertices of σ.
Every (m − 1)-dimensional face of σ is a face diσ for some (unique) i =
0, . . . , m. In particular every m-dimensional simplex has exactly m faces
that are (m− 1)-dimensional.

The definition of a boundary of a simplex easily implies that x ∈ σ is a
boundary point if and only if x ∈ diσ for some i = 0, . . . , m. Hence

Bd σ =
m⋃

i=0

diσ.

Examples 2.18. 0-dimensional simplex {v} (i.e. a singleton) has no faces.
Its simplicial boundary is empty and simplicial interior is the whole simplex
{v}.

Consider ordered 1-simplex σ with vertices v0,v1. This simplex has two 0-
dimensional faces - the 0’th face {v1} and the 1’st face {v0}. The boundary
of σ thus consists of exactly two points. The interior is the corresponding
”open interval”

{(1− t)v0 + tv1 | 0 < t < 1}.
The boundary of a triangle i.e. a 2-simplex consists of three boundary

lines.

Boundary of a 2-simplex
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3 Topology

So far we have not say almost anything about topology, despite of the fact
that the course is actually concerned with algebraic methods in general topol-
ogy. Thus we will now recall basic definitions and facts of the general topol-
ogy. We assume the reader is familiar with most of this material.

Let X be a set. A topology in the set X is a collection τ of (some) subsets
of X , which satisfy the following conditions.

• Empty set ∅ and the whole setX are elements of topology, i.e. ∅, X ∈ τ .

• Topology is closed under arbitrary unions i.e. if Uj ∈ τ , j ∈ J , then

⋃

j∈J

Uj ∈ τ.

• Topology is closed under finite intersection i.e. if U1, . . . , Un ∈ τ , then

n⋂

j=1

Uj ∈ τ.

The set X equipped with its certain topology τ is called a topological
space. Elements of τ are then called open subsets of X . Subset F ⊂ X is
closed if its complement X \ F is open.

Suppose (X, τ) is a topological space and x ∈ X . A subset N ⊂ X is
called a neighbourhood of x if there exists open U ⊂ X such that

x ∈ U ⊂ N.

Note that in this course we do not assume that a neighbourhood N itself
must be open. An open neighbourhood is a neighbourhood, which is open.
Every neighbourhood of a point contains an open neighbourhood of a point
and the set U is open if and only if it is a neighbourhood of every point x ∈ U .

Topological space X is called Hausdorff if distinct points have non-
intersecting neighbourhoods. More precisely this means that if x, y ∈ X, x 6=
y, then there exist a neighbourhood U of x and a neighbourhood V of y such
that U ∩ V = ∅.
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Examples 3.1. Standard topology on the set of real numbers R is defined as
following. Suppose U ⊂ R. We say that U is open if for every x ∈ U there
exists ε > 0 such that

]x− ε, x+ ε[⊂ U.

Open intervals are open with respect to this topology and closed intervals are
closed. Half-open intervals [a, b[ are neither open or closed. A set A ⊂ R is
a neighbourhood of r ∈ R if and only if there exists open interval ]a, b[ such
that x ∈]a, b[⊂ A.

More generally one can define the standard topology in the Euclidean space
Rn as following. Suppose U ⊂ Rn. We say that U is open if for every
x = (x1, . . . , xn) ∈ U there exists ε > 0 such that for every y = (y1, . . . , yn)
condition |yi − xi| < ε implies that y ∈ U .

Open n-cube ]0, 1[n is open with respect to this topology, closed n-cube
[0, 1]n is closed. Open ball B(x, r) of any radius or centre-point is open and
corresponding closed ball B

n
(x, r) is closed.

Standard topology on Rn is Hausdorff.

Suppose X, Y are topological spaces and f : X → Y mapping between
corresponding sets. Suppose x ∈ X . We say that f is continuous at x if for
every neighbourhood V of f(x) in Y there exists a neighbourhood U of x in
X such that f(U) ⊂ V . If f is continuous at every point x ∈ X , we say that
f is continuous.
This definition of continuity is ”local” in nature. There are also important
”global” characterizations of continuity, given in the following Lemma.

Lemma 3.2. Suppose X, Y are topological spaces and f : X → Y mapping.
Then the following conditions are equivalent.

(i) f is continuous.

(ii) Suppose V ⊂ Y is open. Then the inverse image

f−1V = {x ∈ X | f(x) ∈ V }

is an open subset of X.

(iii) Suppose F ⊂ Y is closed. Then the inverse image

f−1F = {x ∈ X | f(x) ∈ F}

is a closed subset of X.
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One must be careful - the image f(U) of open set is not necessarily open,
if f is continuous. If continuous mapping f : X → Y has this property it’s
called open mapping. Likewise, an image of a closed set is not necessarily
closed. If it always is, the mapping is called closed.

Identity mapping f : X → X is trivially continuous for any topological
space X . If f : X → Y and g : Y → Z are continuous, also the composite
mapping g ◦ f : X → Z is continuous.

Examples 3.3. Addition +: R2 = R × R → R and multiplication · : R2 =
R× R → R of real numbers are continuous mappings.

Suppose L : Rn → Rm is a linear mapping. Then L is continuous.

A continuous mapping f : X → Y is called a homeomorphism if it is a con-
tinuous bijection and its inverse f−1 : Y → X is also continuous. Homeomor-
phisms are ”isomorphisms” of topological objects - homeomorphic spaces are
”the same” from the point of view of topology.4 Identity mapping id: X → X
is a trivial homeomorphism for any topological space X . If f : X → Y and
g : Y → Z are homeomorphisms, also the composite mapping g ◦ f : X → Z
is a homeomorphism.

It is important to remember that a simple continuous bijection f : X → Y
is not necessarily a homeomorphism, since an inverse might not be contin-
uous. This illustrates important distinction between topology and algebra
- for instance in linear algebra the inverse of a linear bijection is always a
linear bijection itself.

As an example let τ be the standard topology in R and let υ be the dis-
crete topology in R. In discrete topology every subset is open. Now identity
mapping id : (R, υ) → (R, τ) is continuous, since inverse image of every τ -
open subset is trivially υ-open. Also id is clearly a bijection, in fact inverse
of yourself (as a mapping). However a mapping between topological spaces
id : (R, τ) → (R, υ) in other direction is not continuous - it is actually dis-
continuous at every point.

In general a continuous bijection is a homeomorphism if and only if it is
open (or closed) mapping.

4A well-known joke asserts that topologist is a person who does not see the difference
between a cup of coffee and a doughnut, since they are homeomorphic as topological
spaces.
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One of the main problems in topology is to decide whether two given topo-
logical spaces X and Y are homeomorphic or not. This might be surprisingly
difficult. For instance the problem whether Rn and Rm are homeomorphic
for given n 6= m is non trivial. The intuitive answer ”no” is correct, but
it takes methods of algebraic topology or equally complicated machinery to
solve this or other similar problems precisely.

The core of the problem lies within the fact that there is ”a lot” of different
continuous mappings f : Rn → Rm, most of which cannot be classified into
simple categories of mappings with ”nice” properties. For instance it is trivial
to see that there cannot be a linear homeomorphism f : Rn → Rm, n 6= m,
since it would be in particular a linear isomorphism between vector spaces
Rn and Rm. This is known to be impossible. This simple reasoning can easily
be generalized to differentiable mappings f : Rn → Rm with no singularities.
It goes as following. The inverse g of a differentiable mapping f with no
singularities is also differentiable and for differentials Dg,Df (at some point)
we have

id = D id = D(g ◦ f) = Dg ◦Df

and similarly Df ◦Dg = id. But differential is by definition a linear mapping,
so we obtain a linear isomorphism Df : Rn → Rm. This is already known to
be impossible if n 6= m.

Unfortunately it can be shown that there exist a lot of surjective contin-
uous mappings f : Rn → Rm which are not differentiable at any point, even
when n < m. Such examples show that the question whether Rn and Rm

can be homeomorphic, is not particularly simple. We will be able to give
a precise proof that they cannot be homeomorphic after singular homology
theory is developed.

Subspaces.
Suppose (X, τ) is a topological space and A ⊂ X arbitrary subset. We
can regard A a topological space equipped with natural relative topology τA
defined by

τA = {U ∩ A | U ∈ τ}.
In other words subset V of A is open in A if one can write it in the form
V = U ∩ A, where U is some open subset of X . Closed subsets of A are
respectively sets of the form F ∩ A, where F is a closed subset of X . When
we consider subsets of Euclidean spaces, we are usually considering them to
be endorsed with the relative topology induced by the standard topology of
Rn.
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One should be careful - open subsets of A are not necessarily open in
the whole space X and closed subsets of A are not necessarily closed in X .
However, if A is open (closed) in X , every open (closed) subset of A is also
open(closed) in X .

For example the interval [0, 1/2[ is open in [0, 1[ because

[0, 1/2[=]− 1, 1/2[∩[0, 1]

and ]− 1, 1/2[ is open in R. However as a subset of R the set [0, 1/2[ is not
open. Similarly [1/3, 1[ is closed in [0, 1[, although it is not closed in R.

Suppose X is a topological space and A ⊂ X is equipped with a relative
topology. Then the canonical embedding i : A → X , i(a) = a for all a ∈ A is
a continuous mapping.

Suppose f : X → Y is a continuous mapping. The restriction of f onto
A is a mapping f |A = f ◦ i : A → Y . As a composition of two continuous
mappings it is also continuous.

Suppose Y ′ ⊂ Y is any subset of Y such that f(X) ⊂ Y ′. Then f defines
a mapping f ′ : X → Y ′ in a natural way - this is ”the same” mapping i.e.
f ′(x) = f(x) for all x ∈ X , just the target space is exchanged. Now, Y ′ has
relative topology induced by the topology of Y . In this situation we have
the following simple but useful result - f : X → Y is continuous if and only
if f ′ : X → Y ′ is continuous.

Mapping f : X → Y is called an embedding if the induced mapping
f ′ : X → f(X) is a homeomorphism. An embedding is clearly a continuous
injection, but converse is not true - a continuous injection is not necessarily
an embedding. The trivial example of an embedding is a canonical embed-
ding i : A → X , where A ⊂ X is equipped with a relative topology. Another
important example is a canonical embedding ι : Rm →֒ Rn, m < n, which we
already defined in the first section,

ι(x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0).

Hence Rm is not only vector subspace of Rn but also a topological subspace
in a natural sense.

Let X be a topological space. A collection (Xi)i∈I of subsets of X is
called covering if ⋃

i∈I

Xi = X.
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This means precisely that every point of X belongs to some Xi. Usually a
covering is not disjoint i.e. a point x ∈ X can belong to many elements of a
covering.

In many cases a natural situation arises, in which one wishes to de-
fine a continuous mapping f : X → Y by defining first its restrictions fi =
f |Xi : Xi → Y to the elements of some fixed covering (Xi)i∈I of X . Then one
”glues” these mappings together by defining f(x) = fi where Xi is such that
x ∈ Xi. However obviously in general this won’t work. First of all this might
not even define a mapping. If some x ∈ X belongs to different elements
Xi, Xj of the covering and fi(x) 6= fj(x), we cannot define f(x) as above.
The second obstacle is that even if no such problem arises, the resulted map-
ping might not be continuous, despite of the fact that all restrictions fi are
continuous.

Suppose (Xi)i∈I is a covering ofX and a collection of continuous mappings
fi : Xi → Y , where Y is a fixed topological space. We say that the family
(fi)i∈I is compatible if

fi|Xi ∩Xj = fj |Xi ∩Xj .

In other words family (fi)i∈I is compatible if whenever x ∈ X belongs to the
different elements of the covering Xi and Xj we always have fi(x) = fj(x).
Clearly family (fi)i∈I is compatible if and only if the rule

f(x) = fi(x) if x ∈ Xi

defines a mapping f : X → Y .
In general this mappings will not necessarily be continuous. The impor-

tant special case when it always is given in the following lemma. Covering
(Xi)i∈I is said to be closed if Xi is closed for every i ∈ I.

Lemma 3.4. Suppose (X1, . . . , Xn) is a finite and closed covering of X.
Suppose we are given continuous mappings fi : Xi → Y , i = 1, . . . , n, which
are compatible. Then f defined by

f(x) = fi(x) if x ∈ Xi

is continuous.

Proof. Suppose F ⊂ Y is closed. We have to show that f−1F is closed in X .
First observe that

f−1F =

n⋃

i=1

(f |Xi)
−1(F ).

34



Since f |Xi = fi is continuous as a mapping f : Xi → Y , (f |Xi)
−1(F ) is closed

in Xi. Since Xi is closed in X this implies that (f |Xi)
−1(F ) is closed in X

(closed subset of a closed subset is closed). Hence f−1F is closed as a finite
union of closed sets.

Products.
Suppose X1, . . . , Xn are topological spaces. Consider the Cartesian product

X =
n∏

i=1

Xi = X1 ×X2 × . . .×Xn.

Elements of X are n-tuples (x1, . . . , xn).
There exist canonical projection mappings pri : X → Xi defined by

pri(x1, . . . , xi, . . . , xn) = xi

for every i = 1, . . . , n.
Product topology in X = X1×X2× . . .×Xn is the smallest topology of X

with respect to which all canonical projections pri : X → Xi are continuous.
Direct definition of the product topology goes as following. Suppose U ⊂ X .
Then U is open if and only if, assuming x = (x1, . . . , xn) ∈ U , for every
i = 1, . . . , n there exists Ui ⊂ Xi open in Xi such that xi ∈ U and

U1 × . . .× Un ⊂ U.

Subset of the form U1×. . .×Un ⊂ X , where Ui is open inXi for all i = 1, . . . , n
is called a product of open sets. Such a subset is always open with respect
to the product topology. If U ⊂ X is open and x ∈ U , there exists an open
neighbourhood V of x which is a product of open sets and V ⊂ U .

It is easy to verify that the standard topology of Rn is the same as product
topology if one thinks of Rn as the product of n copies of R,

Rn = R× . . .× R︸ ︷︷ ︸
n times

.

More generally if n1, . . . , nk ∈ N and n = n1 + . . . + nk, then the standard
topology of Rn is the same as a product topology in

Rn =
k∏

i=1

Rni.

Metric spaces
Important subclass of topological spaces form so-called metrizable spaces.
Metric in a set X is a function d : X × X → R that has the following
properties.
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1) Non-negativity: d(x, y) ≥ 0 for all x, y ∈ X .

2) Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .

3) Symmetricity: d(x, y) = d(y, x) for all x, y ∈ X .

Set X equipped with its metric d is called metric space. Every metric
space has a natural structure of a topological space. Suppose U ⊂ X . Then
we say that U is open in X if for every x ∈ U there exists ε > 0 such that
open ball centred in x and radius ε

B(x, r) = {y ∈ X | d(y, x) < r}

is a subset of U , B(x, r) ⊂ U . Different metrics can produce the same topol-
ogy. Topological space X topology of which is induced by some metric of X
is called metrizable.

Every open ball in a metric space is open subset. Similarly every closed
ball

B(x, r) = {y ∈ X | d(y, x) ≤ r}
is closed in X . Also the sphere

S(x, r) = {y ∈ X | d(y, x) = r}

is closed for all x ∈ X, r > 0. Metric space is always Hausdorff.

Recall that the diameter of the subset A of a metric space X is defined
by

diamA = sup{d(x, y) | x, y ∈ A},
where d is the metric in X .

Standard topology of Rn is defined by the metric d in Rn defined by

d(x,y) =

√√√√
n∑

i=1

(xi − yi)2.

For the open/closed balls and spheres in Rn will be denoted by

Bn(x, r) = {y ∈ Rn | d(y, x) < r},

B
n
(x, r) = {y ∈ Rn | d(y, x) ≤ r},
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Sn−1(x, r) = {y ∈ Rn | d(y, x) = r}.
In case x = 0 and r = 1, we denote

Bn(0, 1) = Bn,

B
n
(0, 1) = B

n
,

Sn−1(0, 1) = Sn−1.

The reason sphere in Rn is denoted Sn−1, not Sn, is that from the point of
view of the general theory of topological dimension the sphere Sn−1 is exactly
(n−1)-dimensional. In this course we don’t have intention to familiarize our-
selves with this theory. In case of Sn−1 the easiest way to justify notation is
to notice that Sn−1 is locally homeomorphic to Rn−1. Precisely this means
that for every x ∈ Sn−1 there exists a neighbourhood U of x in Sn−1, which
is homeomorphic to Rn−1. Thus, one can say that locally sphere Sn−1 ”looks
like” (n− 1)-dimensional Euclidean space, so it is natural to regard Sn−1 as
(n − 1)-dimensional object. Notice that affine dimension of Sn−1, which we
defined in the previous section, is exactly n. Hence affine dimension is, in
generally, not a good way to measure dimension of the object, at least from
the topological point of view. For the convex subsets of finite-dimensional
vector spaces affine dimension has the same value as a topological dimen-
sion. This is one of the reasons affine dimension is usually considered only
for convex sets.

Normed spaces.
Suppose V is a vector space. A function | · | : V → R is called norm in V if
it has the following properties.

1) Non-negativity: |x| ≥ 0 for all x ∈ V .

2) Triangle inequality: |x+ y| ≤ |x|+ |y| for all x,u ∈ V .

3) Homogeneity: |rx| = |r||x| for all x ∈ V , r ∈ R.
Here |r| on the right side is the usual norm of r in R, known also as
the absolute value.

Vector space V equipped with some norm | · | in V is called normed space.
Every norm induce a metric d in a natural way, defined by

d(x,y) = |x− y|.

Since a metric induces a topology, every normed vector space has a topology
induced by its norm. Norms (defined in the same vector space) that induce
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the same topology are called equivalent.

Standard metric in Rn is actually defined by a standard norm of Rn

defined by

|x|2 =

√√√√
n∑

i=1

x2
i .

Vector space Rn has other natural norms, for instance

|x|1 =
n∑

i=1

|xi|,

|x|∞ = max{|xi| | i = 1, . . . , n}.
All these norms are equivalent i.e. define the standard topology in Rn. In
fact the following general proposition is true.

Proposition 3.5. Suppose V is finite-dimensional vector space. Then all
norms of V are equivalent. The topology defined by any (hence all) norms
of V are called the standard topology of V . Every finite-dimensional vec-
tor space has a (unique) standard topology. Algebraic structure is compat-
ible with standard topology in a following sense - both addition of vectors
+: V ×V → V and scalar multiplication · : R×V → V are continuous when
V and R are equipped with their standard topology.

If V,W are finite-dimensional vector spaces and L : V → W is a linear
mapping, then L is continuous with respect to the standard topologies of V
and W .

Corollary 3.6. Every linear isomorphism Φ: V → W between finite-dimensional
vector spaces V and W is a homeomorhism. In particular every n-dimensional
vector space V is homeomorphic to Rn (via linear homeomorphism).

The standard topology of an n-dimensional vector space V is easy to
describe directly, by using one has a concrete linear isomorphism Φ: V → Rn.
Simply define U ⊂ V to be open if Φ(V ) is open with respect to the standard
topology of Rn. Then the topology on V defined like this will be precisely
standard topology. We could define standard topology on V in this way, in
which case one has to verify that topology so defined does not depend on the
choice of a linear isomorphism Φ: V → Rn.

In practise this is exactly how the topological questions in any abstract
finite-dimensional vector space V are resolved - using a linear isomorphism
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Φ: V → Rn one first translates the problem into ”familiar” topological world
of Rn. We will see many examples of this approach.

For example let w be a fixed vector in a finite-dimensional vector space.
Consider the translation mapping fv : V → V defined by

fw(v) = v +w.

”Translating” this mapping to Rn (where n = dimV ) via (some) linear iso-
morphism Φ: V → Rn yields a translation gv : Rn → Rn defined by

gy(x) = x + y,

where y = Φ(w). The precise connection between f and g is that f =
Φ−1 : g : Φ. Clearly any translation Rn → Rn is continuous with respect to
the standard topology of Rn, so also f is continuous. In other words we have
shown that every translation mapping in a finite-dimensional vector space
is continuous (with respect to the standard topology of the space). Since
every translation mapping is a bijection and the inverse of fv is in fact the
translation f−v, every translation is even a homeomorphism.

Now suppose W ⊂ V is an affine subset of a finite dimensional vector
space V . Then W has a natural topology, which is a its relative topology as
a subset of V (equipped with standard topology). By Lemma 2.4 we have
an equation

W = v + U,

where U is a vector subspace of V . The translation fv : V → V is a homeo-
morphism (by above) which maps finite-dimensional vector space U onto W .
Hence we have the following result.

Corollary 3.7. Suppose W ⊂ V is an affine subset of a finite dimensional
vector space V and suppose the affine dimension of W is k. Then W is
homeomorphic to Rk (via the composition of a translation and a linear home-
omorphism).

The proposition 3.5 is not true for infinite-dimensional vector spaces. On
such a space one usually has a lot of different, non-equivalent norms. The
theory of infinite-dimensional vector spaces, equipped with natural topolo-
gies, is studied by the field of mathematics knows as ”Functional Analysis”.

Example 3.8. Suppose x ∈ Sn. Then the ”punctured sphere” Sn \ {x} is
homeomorphic to Rn.
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This claim can be proved by using so-called ”stereographic projection”.
First of all it is enough to consider the case x = en+1 = (0, . . . , 0, 1).
This is because for every x ∈ Sn there exists an orthogonal linear mapping
O : Rn → Rn that maps x → en+1. This is known from Linear Algebra. Since
O is orthogonal, it maps Sn to itself. Hence O induces a homeomorphism
Sn \ {x} → Sn \ {en+1}.

Next, we define ”stereographic projection” p : Sn \ {en+1} → Rn by the
following simple geometrical rule. Take y ∈ Sn,y 6= en+1. Then the unique
line ℓ that goes through y and en+1 intersects the subset of Rn+1

Rn = {x ∈ Rn+1 | xn+1 = 0}

in exactly one point, which we denote p(y). The exact formula for p is

p(y) =
1

1− yn+1

(y1, . . . ,yn).

The inverse of p is given by the formula

q(y) =
1

|y|2 + 1
(2y + (|y|2 − 1)en+1).

Straightforward calculations show that both mappings are well-defined, con-
tinuous and indeed inverses of each other

Topology on simplices.
If V is a finite-dimensional vector space every simplex σ ⊂ V has a natural
(relative) topology as a subspace. In case V is not finite-dimensional it does
not have a priori any natural topology. However there is a natural way to
define a standard topology on any simplex σ ⊂ V .

Suppose σ ⊂ V is a simplex in a vector space V and let v0, . . . , . . . ,vm

be its vertices. The subspace W ⊂ V generated by the vectors v0, . . . ,vm

is finite-dimensional, hence have a natural standard topology. We give σ
relative topology as a subset of W . This topology will be referred to as a
standard topology on σ.

It is clear that if V was finite-dimensional to begin with, this topology
coincides with the relative topology on σ inherited from the standard topol-
ogy of V . More generally if, instead of W , we take any finite-dimensional
vector subspace W ′ of V with the property W ⊂ W ′, then the topology on σ
inherited from the standard topology W ′ is the same as the topology defined
above.
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More generally we can take asW not a vector subspace, but an affine hull
aff(σ). If σ is m-dimensional, W is homeomorphic to Rm (Corollary 3.7). If
we define a topology in σ as a relative topology as a subset of W = aff(C),
we obtain the same standard topology again.

Proposition 3.9. Suppose σ ⊂ V is an m-dimensional simplex with ver-
tices v0, . . . ,vm and suppose V ′ is a finite-dimensional vector space. Let
w0, . . . ,wm ∈ V ′. Then the unique affine mapping f : σ → V ′ such that
f(vi) = wi for all i = 0, . . . , m (given by Lemma 2.15) is continuous (with
respect to standard topologies of σ and V ′).

Proof. By the proof of Lemma 2.15 mapping f is given by the formula

f(x) = t0w0 + t1w1 + . . .+ tmwm,

where
x = t0v0 + t1v1 + . . .+ tmvm ∈ σ

is represented in the form of a convex combination. Let W be a vector
subspace of V generated by the vectors v0,v1, . . . ,vm and let W ′ = aff σ be
the affine hull of the simplex σ. Since σ ⊂ W andW is affine, W ′ ⊂ W . Since
W is finite-dimensional, it has a standard topology, hence we can also equip
W ′ with its relative topology as a subset of W and regard it as a topological
space. Every vector y of W ′ has a unique representation in the form

y = t0v0 + t1v1 + . . .+ tmvm,

where t0 + t1 + . . . + tn = 1 (Lemmas 2.7 and 2.10) and we can define a
mapping g : W ′ → V ′ by the formula

g(y) = t0w0 + t1w1 + . . .+ tmwm.

The original mapping f is a restriction of this mapping, hence it is enough
to prove that g is continuous.

By Lemma 2.4
W ′ = v0 + U

for some finite-dimensional vector subspace U of V . The mapping α : U →
W ′ defined by

α(u) = v0 + u

is a homeomorphism, since it is a translation. Hence it is enough to show
that a composite mapping g′ = g ◦ α : U → W ′ is continuous. Lemma 2.10
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easily implies that the sequence u = v1−v0,u2 = v2−v0, . . . ,um = vm−v0

is a basis of U as a vector space. One easily sees, that if

u = t1u1 + . . .+ tmum,

then
g′(u) = t0w0 + t1w1 + . . .+ tmwm,

where t0 = 1−(t1+ . . .+ tm). The linear isomorphic correspondence Rn → U
given by

(t1, . . . , tn) 7→ t1u1 + . . .+ tmum

is a homeomorphism (with respect to standard topologies of finite dimen-
sional vector spaces). With respect to this homeomorphism the mapping g′

”looks like ” the mapping Rn → W ′ given by the formula

(t1, . . . , tn) 7→ (1− (t1 + . . .+ tm))w0 + t1w1 + . . .+ tmwm.

This mapping is continuous, because algebraic operations (scalar multipli-
cation and addition of vectors) are continuous in the vector space V ′. This
concludes the proof.

Corollary 3.10. Suppose σ ⊂ V is an m-dimensional simplex in a vec-
tor space V and let v0, . . . ,vm be its vertices. Suppose σ′ ⊂ V ′ is an m-
dimensional simplex in a vector space V ′ and let v′

0, . . . ,v
′
m be its vertices.

Then the simplicial isomorphism f : σ → σ′, given by Lemma 2.15, for
which f(vi) = v′

i, i = 0, . . . , m is a homeomorphism.

In particular every m-simplex is homeomorphic to ∆m (via simplicial
homeomorhism).

Proof. Exercise (follows directly from the previous Lemma).

In practice the standard topology on the simplex σ with vertices (v0, . . . ,vm)
can be thus defined as a unique topology for which the unique simplicial
isomorphism f : σ → ∆n with f(vi) = ei is a homeomorphism. Just like
with vector spaces, you can solve topological problems regarding simplices
by translating them as topological problems formulated for standard sim-
plices ∆n which lie in Rn.

If you define standard topology on a simplex like this, you should notice
that definition uses a particular order of vertices, so in that case you will
have to show that the topology does not depend on the choice of ordering of
vertices (which is not difficult).

42



Compactness.

Let X be a topological space and let (Xi)i∈I be a covering of X . The
subcollection (Xj)j∈J , where J ⊂ I, is called a subcovering of the covering
(Xi)i∈I , if it is a covering on its own.

Covering (Xi)i∈I is called open if Xi is open in X for all i ∈ I.

Topological space X is called compact if every open covering of X has
a finite subcovering.

In the following proposition we shall list some important properties of
compact spaces, known from the basic topology courses. Recall that a subset
A of a normed vector space V is called bounded if there exists R ∈ R such
that

|x| ≤ R

for all x ∈ A.

Proposition 3.11. (i) A subset of a finite-dimensional space V is com-
pact (relative to standard topology) if and only if it is closed and bounded
(with respect to any norm of V ).

(ii) Suppose C is a compact space, Y any topological space and f : C → Y
is continuous. Then f(C) is also compact. If Y is Hausdorff, then f
is a closed mapping.

(iii) A closed subset of a compact space is compact. A compact subset of a
Hausdorff space is always closed.

(iv) Finite union of compact subsets C1, . . . , Cn ⊂ X is compact.

(v) Suppose X is a compact metric space and suppose (Ui)i∈I is an open
covering of X. Then there exists ε > 0 (so-called Lebesgue’s number
of the covering) such that for any subset A ⊂ X with diamA < ε there
exists i ∈ I such that A ⊂ Ui.

Corollary 3.12. Every simplex σ is a compact Hausdorff space with respect
to standard topology.

Proof. By Corollary 3.10 σ is homeomorphic to ∆n for n = dim σ. Hence it
is enough to show that ∆n is compact Hausdorff. The space ∆n is a subspace

∆n = {(x1, . . . , xn) ∈ Rn | xi ≥ 0 for all i,
n∑

i=1

xi ≤ 1}
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of standard Euclidean space Rn. By the previous Proposition, it is enough
to show that ∆n is closed and bounded in Rn. This is left as an exercise to
the reader.

Connectedness.

A topological space X is connected if it cannot be written as a union
X = A ∪ B, where A,B ⊂ X are both open, non-empty and disjoint (i.e.
A ∩ B = ∅). Such a representation is called a separation of X . Hence space
is not connected if and only if it has a separation. Equivalently space X is
connected if the only if its only subspaces that are both open and closed are
∅ and X itself.

Proposition 3.13. (1) A subset of R is connected if and only if it is in-
terval (open, closed or half-open, possibly infinite in one or both direc-
tions). Here we consider empty set and every singleton as an interval.

(2) Suppose A ⊂ X is connected and f : X → Y a continuous mapping.
Then f(C) is a connected subset of Y .

(3) Bolzano’s theorem: suppose f : X → R is continuous, where X is a
connected topological space. Suppose f(x) = a ∈ R, f(x′) = b ∈ R and
a < c < b for some x, x′ ∈ X, a, b, c ∈ R. Then there exists y ∈ X such
that f(y) = c.

(4) Any topological space X is a disjoint union of its components, which
are maximal (with respect to inclusion of sets) connected subsets of X.
Every component is closed, but not necessarily open. A component of
a point x ∈ X is the unique component of X that contains x.

Important subclass of connected spaces is formed by path-connected spaces.
A path in a topological space is a continuous mapping α : I → X where
I = [0, 1] ⊂ R is a unit interval (obviously any closed bounded interval [a, b]
would serve as well). A path α : I → X connects the points α(0) and α(1)
in X . Space X is path-connected if for every pair of points x, y ∈ X there
exists a path α : I → X such that α(0) = x, α(1) = y.

Every path-connected space is connected. Converse is not true - there
exists connected spaces which are not path-connected.

Lemma 3.14. Every convex subset of a finite-dimensional vector space is
path-connected. In particular every simplex is path-connected and any closed
or open ball in Rn is path-connected.
Also the sphere Sn−1(x, r) is path-connected when n ≥ 2.
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Proof. Exercise.

Notice that S0 = {1,−1} ⊂ R is not even connected, since it is not an
interval. Another way to see that is to use the definition - both singletons
{1} and {−1} are open and closed in S0, disjoint from each other and their
union is the whole space S0.

Just like any space can be divided into non-intersecting connected com-
ponents, it can also be divided into path-components. These are defined as
following. Suppose x ∈ X . The path-component of x is the subspace

P (x) = {y ∈ X | there exists a path α in X that connects x and y}.

Then P (x) is a maximal path-connected subset of X that contains x. Differ-
ent path-components are disjoint and their union is the whole space. Unlike
components, path-components do not need to be closed.

Lemma 3.15. Suppose A ⊂ X is path-connected and f : X → Y a continu-
ous mapping. Then f(A) is a path-connected subset of Y .

The theory of connectedness enables to give a simple proof for the special
case of the ”invariance of domain” problem.

Proposition 3.16. R is not homeomorphic to Rn if n > 1.

Proof. Suppose f : Rn → R is a homeomorphism and let r = f(0). Then f
induces a homeomorphism between spaces X = Rn \ {0} and Y = R \ {r}.
Space Y is not connected - it has exactly two components ] − ∞, r[ and
]r,∞[. On the other hand X is connected, even path-connected (exercise).
Thus X and Y cannot be homeomorphic. Contradiction proves that the
initial assumption was wrong and R is not homeomorphic to Rn, n > 1.

The method of proof presented in the previous proposition does not work
directly for case of Rn and Rm when n,m > 1. Taking away one point from
both spaces leaves them connected, so proves nothing. One might try to
generalize the method as following. A point is a ”zero-dimensional object”.
What we did in the proof above is that we took away a zero-dimensional
object from one-dimensional R, which makes it non connected, and then
we took away zero-dimensional object from two- or more-dimensional space,
which remain connected in that operation. The natural generalization of this
method is to notice that if we take away (n− 1)-dimensional object from n-
dimensional space , the compliment would be non connected, while if we take
away (n − 1)-dimensional object from m-dimensional space, where m > n,
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the object will remain connected. For instance let us try to prove that R2

and R3 are not homeomorphic, using that approach. This time, instead of
taking away a point, we take away a line, for instance y-axis, which is 1-
dimensional, from R2. The space obtained so is not connected, which is easy
to show. Now, the complement of a line in R3 IS connected, but the problem
is that an arbitrary hypothetical homeomorphism H : R2 → R3 between R2

and R3 need not to map a line into a line - the image of the line can be
in general a weird complicated subspace, so one does not see a contradiction
directly. In case of the point method works since the image of a point is
always point, but in general things tend to be much more complicated.

The homology theory will provide us with a sort of the way to use the
argument of the Proposition 3.16 in the general case, in another direction -
by generalizing notion of connectedness. We will be able to measure some
sort of ”n-dimensional connectedness” of spaces and use that measure to see
the difference between spaces. 0-dimensional connectedness corresponds, in
this context, to the ordinary connectedness5.

Closure, interior and boundary.

Let X be a topological space and let A ⊂ X . Suppose x ∈ X . We say
that x is an interior point of A, if there exists a neighbourhood U of x in
X such that U ⊂ X . The point x is a closure point if every neighbourhood
U of x in X intersects A, i.e. U ∩ A 6= ∅. Finally, x is said to be boundary
point of A if it is a closure point but not interior point. Equivalently x is a
boundary point of A if every neighbourhood U of x in X intersects both A
as well as its complement X \ A.
The set of interior points is denoted intA and called an interior of A. The
set of closure points is denoted A and the set of boundary points is denoted
∂A. Notice that by definition every interior point of A is in particular a point
of A. Closure point and boundary point of A on the other hand need not to
belong to A.

The basic properties of interior, closure and boundary are summarized in
the following Proposition.

5Of course you should bare in mind that these considerations are intuitive analogues,
not precise notions. From the point of view of exact mathematics it is homotopy theory,
not homology theory, that formalizes the notions of n-connectedness. Nevertheless it does
make sense to interpret the precise result, we shall obtain later, using that kind of informal
language.
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Proposition 3.17. (1) Interior intA is the biggest (with respect to inclu-
sion of sets) open subset of A. A is open if and only if intA = A.

(2) Closure A is the smallest closed subset of X that contains A. In other
words A is closed, A ⊂ A and if A ⊂ F , where F is closed, then A ⊂ F .
A is closed if and only if A = A.

(3) Boundary ∂A and interior intA do not intersect. The union of the
boundary of A and the interior of A is exactly the closure of A,

∂A ∪ intA = A.

(4) For any A,B ⊂ X
A ∪ B = A ∪B.

(5) A mapping f : X → Y is continuous if and only if

f(A) ⊂ fA

for any A ⊂ X.

(6) Suppose A ⊂ X is connected, C ⊂ X and A ∩ C 6= ∅ 6= A \ C. Then
A ∩ ∂C 6= ∅. In other words if a connected set intersect a subset and
its complement, it also must pass through its boundary at some point.

It is extremely important to understand the difference between topological
notions of interior/boundary and simplicial interior/boundary of a simplex we
have defined in a previous section. There is a connection between them (see
Lemma 3.18 below) but the important essential difference is that topological
notions are relative while simplicial notions are absolute. This means that
topological notions of interior and boundary depend relative to which bigger
space we take them. For instance if we take X = σ, then σ is open and
closed in itself, so its topological interior with respect to itself is the whole
σ and its topological boundary is empty. On the other hand if we consider,
for instance a 1-simplex [0, 1] = ∆1 as a subset of R2, its interior would be
empty and its boundary would be the whole simplex ∆1.

Simplicial interior and boundary, on the other hand, are defined in terms
of the set σ itself, so do not depend on what space we embed σ into.

Lemma 3.18. Suppose σ is a simplex in a vector space V and let W = aff σ
be its affine hull (which is a subset of some finite-dimensional vector space,
so can be given a natural standard topology). Then the topological interior
int σ of σ with respect to W is the same as its simplicial interior Int σ
and the topological boundary ∂σ of σ with respect to W is the same as its
simplicial boundary Bd σ
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Proof. Since affine homeomorphisms preserve both topological and simplicial
notions of interior and boundary, it is enough to consider the special case
σ = ∆n, where W = Rn. We leave the exact proof of this special case to the
reader.

We conclude this section with the proof of the fact that all bounded
convex sets of the same affine dimension are, in fact, homeomorphic. First
we prove the following technical result, which will be used also later.

Lemma 3.19. Suppose C ⊂ V is a bounded closed convex subset, where V
is a finite-dimensional vector space and suppose x ∈ intC. Then for every
z ∈ C, z 6= x there exist unique y ∈ ∂C and unique scalar t ∈]0, 1] such
that

z = (1− t)x + ty.

Proof. By translating (i.e. applying mapping z 7→ z − x), we may assume
that x = 0 and V = Rk, where k = dimV . Hence it is enough to prove
that if 0 is an interior point of a closed convex set C ⊂ Rk, then every point
z ∈ C, z 6= 0 can be written in the form

z = ty

for the unique y ∈ ∂C and the unique t ∈]0, 1].

b

b

b

x

z y

Lz

Fix a point z ∈ C \ {0} and consider the half-line

Lz = {rz | r ≥ 0} ⊂ Rk

starting at origin and passing through z. The subset Lz is convex, hence
connected. The lemma is proved once we will show that the half-line Lz
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intersects ∂C in precisely one point y.

The subset Lz intersects the set C at least in the point 0. On the other
hand Ly is unbounded, while C by assumption is. This means that Lz must
also intersect the complement of C. Hence it also must intersect the boundary
∂C of C (claim (6) in 3.17).

But actually we can do better than this. We need to show that the
half-line Lz intersects ∂C in precisely one point y. Let

r0 = sup{r | rz ∈ C}.

Then r0 > 0, since 0 is an interior point of C, and r0 is certainly exists as a
finite real number, since C is bounded.

Suppose y = r0z. Notice that the half-line

Ly = {ry | r ≥ 0}

defined by y is the same as the half-line Lz. In particular z lies on that
half-line and can be written in the form z = ry for r > 0 (this is obvious,
actually, since we can simply take r = 1/r0).

Because scalar multiplication is continuous, by the definition of supremum
every neighbourhood of y contains points of C of the form rz. On the other
hand for the same reason every neighbourhood of y contains points of the
form rz, where r > r0. By definition of r0 such a point is not in C, so every
neighbourhood of y also contains a point not in C. Hence y ∈ ∂C.

Next we show that ry /∈ ∂C for r < 1 and ry /∈ C for r > 1. The second
claim is clear by the definition of r0. To prove the first claim define

W =
⋃

0≤r<1

(1− r)U + ry,

where U is an open neighbourhood of 0 contained in C (which exists since
0 is an interior point of C). The set W is in fact a union of all ”half-open
intervals” of the form [u,y[, connecting the set U with y. Geometrically it
looks like a ”cone” (see the picture below).
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W

Since C is convex, W ⊂ C. Also W is open in Rk, since it is the union
of open sets. Moreover, the half-open interval [0,y[ is also contained in W .
Hence ry ∈ intC and consequently not a boundary point for all r < 1. This
proves that ry /∈ ∂C for r < 1.

Notice that we have also shown that ry ∈ intC for all r ∈ [0, 1[.

Now, since z ∈ C lies on the half-line Ly and, as we have shown, points
of the form ry are not in C for r > 1, z must be of the form

z = ty

for t ∈ [0, 1[. Moreover, the above proof clearly suggests that this is the only
way z can be written in such a form, for y ∈ ∂C, since such a point lies on
the half-line Lz and we have shown that this half-line contains exactly one
point from the the boundary.

Theorem 3.20. Suppose C ⊂ V is a bounded non-empty closed convex sub-
set, where V is a n-dimensional vector space. Then C is homeomorphic to

the closed ball B
k
for 0 ≤ k ≤ n (where k = dimaff(C)) via a homeomor-

phism which maps boundary of C (with respect to aff C) to ∂Bk = Sk−1 and
interior of C (with respect to aff C) to the open ball Bk.

Proof. First one proves that C has an interior point x with respect to aff(C).
This is seen as follows. First choose a maximal affinely independent sequence
v0, . . . ,vm containing in C. By Lemma 2.11 such a sequence exists and in
fact m + 1 = dim aff C. This implies that the simplex σ spanned by the
vectors v0, . . . ,vm exists, is m-dimensional, and aff σ = aff C. Since C is
convex and contains all vertices v0, . . . ,vm of σ, it contains σ as a subset.
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By Lemma 3.18 σ has non-empty interior with respect to aff C. In particular
this means that some vector x ∈ σ has an aff C-neighbourhood U ⊂ σ ⊂ C.
Hence C has non-empty interior with respect to aff C.

By translating, we may assume that x = 0 and aff(C) = Rk, where
k = dimaff(C). Hence it is enough to prove that if 0 is an interior point of
a closed convex set C ⊂ Rk, then C is homeomorphic to B

n
via the homeo-

morphism that maps interior to interior and boundary to the boundary.

We start by defining a mapping f : ∂C → Sk−1 by f(x) = x/|x|. This is
well-defined and continuous, since 0 is not a boundary point of C (interior
and boundary do not intersect). The mapping f is illustrated in the picture
below, where we assume that Sk−1 lies completely ”inside” C (which of course
may not be the case).

b

0

b

b

x

f(x)

Sk−1

Fix a point y ∈ Sk−1 and consider the half-line

Ly = {ty | t ≥ 0} ⊂ Rk

starting at origin and passing through y. Notice that f(x) = y if and only
if x is both a point of the boundary ∂C and the point on the half-line Ly.

Since 0 is the interior point of C, for t > 0 small enough we have that
ty = z ∈ C. By the previous lemma the half-line Lz, which is the same as
the half-line Ly, contains exactly one point belonging to ∂C. This fact is
precisely the same as the claim that f is a bijection.

We have shown that f is continuous bijection. Since both ∂C and Sk−1

are compact and Hausdorff spaces, f is a homeomorphism.
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To complete the proof we extend this homeomorphism to the interior of
C. This is now just scaling - for every boundary point x we map the interval
[0, x] to the corresponding interval [0, x/|x|] in a linear manner. It is actually

easier to do it the other way around. Define G : B
k → C by

G(t) = |t| ·
(
f−1 t

|t|
)
if t 6= 0

and G(0) = 0. We leave the verification that G is a homeomorphism to the

reader as an exercise. Since both B
k
and C are compact Hausdorff spaces,

it is enough to show that G is a continuous bijection.

The last part of the claim of the previous proposition above is, in fact

redundant - it turns out that every homeomorphism f : B
k → B

k
must map

interior Bk to itself and boundary Sk−1 to itself. This fact, related to the
”Inavariance of Domain”, seems obvious, but is not as easy to prove, just as
the fact that Euclidean spaces of different dimension are non-homeomorphic.
Both are consequences of the invariance of the domain theorem, which we
will prove later in this course.

Since any n-simplex σ is a closed convex set that has interior points
(namely the interior of a simplex, defined above) with respect to n-dimensional
affine set aff σ we obtain the following result.

Corollary 3.21. Suppose σ is an n-simplex. Then there exists a homeomor-
phism σ → B

n
that maps Int σ to Bn and Bd σ to Sn−1.

4 Simplicial complexes

One of the reasons simplicies were originally invented and successfully used in
the earlier days of topological research, is that many topological spaces that
arise naturally can be build out of simplices ”glued” together by their bound-
aries in a regular manner. For example a square is not a simplex (can you
come up with an easy argument why not?) but if you cut it along the diago-
nal, you will see that it is obtained from two triangles i.e. two 2-dimensional
simplices which have a common side - namely the diagonal itself. This is
illustrated in the picture below - U and V are right-angled triangles with one
common side.
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U

V

Of course a square is homeomorphic to a simplex anyway, since it is a
bounded closed convex set, so this representation might be too trivial and
somehow useless. However it serves to illustrate the idea, which can be
successfully generalized to many other spaces, such as the sphere Sk, the
torus, Mobius strip etc.

To give a slightly more interesting example consider the boundary Bd σ
of a 2-simplex σ i.e. the boundary of a triangle with vertices {v0,v1,v2}
(see the picture below). This space is not homeomorphic to a simplex (by
now we can’t quite prove it exactly yet, but we will later and it seems very
believable anyway). But, just as with square above, one can think of this
boundary as the union of three 1-simplices (a, b and c in the picture), such
that two of them always intersect at a vertex (and every vertex is a common
face of precisely two 1-simplices).

v0

v1

v2

a b

c
The spaces obtained in such a way are called polyhedrons. Since every

simplex is determined by a finite set of its vertices, in this fashion we obtain
a purely combinatorial, ”discrete ” representation of a topological space in
question - sort of like a ” skeleton ” of the space. Indeed, if the space is
represented as a union of simplices that intersect along their faces, to describe
a space completely it is enough to tell what is the dimension of each simplex
and how different simplices intersect. Let us now switch to formal definitions.

Definition 4.1. Suppose V is a vector space (not necessarily finite-dimensional).
A collection K = {σi}i∈I of simplices in V is called a (geometric) simpli-
cial complex if the following conditions are satisfied:
1) For every simplex σi ∈ K, every face of σi also belongs to a collection K.
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2) For every pair σi, σj of simplices in K their intersection σi ∩ σj is either
empty set or is a common face of both σi and σj.

The union of all simplices in the simplicial complex K is denoted

|K| =
⋃

i∈I

σi.

It is called a polyhedron of the complex K.

The following picture illustrates the property 2) from the definition of a
simplicial complex. The intersection of simplices σ1 and σ2 in Figure 1 is a
common face of both simplices, so this figure shows a situation which could
be a part of a simplicial complex.

Figures 2 and 3 on the other hand show situations which are not allowed
in simplicial complexes. In fugure 2 the intersection of σ1 and σ2 is a face of
σ2 but not a face of σ2 - only a part of it. In the figure 3 the intersection is
not even a part of the boundary of the both simplices.

σ1

σ2

Figure 1

σ1

σ2

Figure 2

σ1

σ2

Figure 3

A useful alternative definition of a simplicial complex is formulated in the
following lemma.

Lemma 4.2. Suppose V is a vector space. A collection K = {σi}i∈I of sim-
plices in V is a simplicial complex if and only if
1) For every simplex σi ∈ K, every face of σi also belongs to a collection K.

2’) For every x ∈ |K| there is a unique index i ∈ I such that x is an
interior point of the simplex σi. In other words

|K| =
⋃

σ∈K

Int σ

and the union on the right side is disjoint.
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Proof. Suppose K is a simplicial complex. We have to show that

|K| =
⋃

σ∈K

Int σ

and that the union is disjoint. For the easy part let x ∈ |K|. By definition
there exists σ ∈ K such that x ∈ σ. Let v0, . . . ,vm be the vertices of σ.
Then

x = t0v0 + . . .+ tmvm

for some (unique) scalars ti, i = 0, . . . , m, ti ≥ 0, t0 + . . . + tm = 1. Let
i0 < i1 < . . . < ik be exactly those indices i for which ti > 0 (they must
exist, since t0 + . . . + tm = 1). Then x ∈ int σ′, where σ′ is the face of σ
spanned by the vertices vi1, . . . ,vik . In particular

|K| =
⋃

σ∈K

int σ.

Next we show that this union is disjoint. Suppose σ, σ′ ∈ K are such that
int σ ∩ int σ′ 6= ∅. Then in particular σ ∩ σ′ 6= ∅, hence by the definition of
the simplicial complex

σ ∩ σ′ = σ′′,

where σ′′ is some common face of both σ and σ′. By our assumption this face
intersects both (simplicial) interiors of σ and σ′. But the only face of the
simplex, that have points in common with its interior, is the simplex itself.
Hence σ = σ′′ = σ′ and we are done.

Conversely suppose the collection of simplices K satisfy conditions 1) and
2’) above. We have to show that K is a simplicial complex. It is enough to
prove the condition 2).

Suppose σ, σ′ ∈ K are arbitrary. We have to show that σ ∩ σ′ is ei-
ther empty or some common face of both σ and σ′. Let the vertices of σ be
v0, . . . ,vk,uk+1, . . . ,un, and let the vertices of σ′ be v0, . . . ,vk,wk+1, . . . ,wm.
Here we choose the order of vertices so that v0, . . . ,vk are exactly the com-
mon vertices of both simplices. If there are no common vertices, then k = −1.
Let σ′′ be the simplex with vertices v0, . . . ,vk, or an empty set, if k = −1.
By construction we have that σ′′ ⊂ σ∩σ′,so it is enough to prove the opposite
inclusion σ ∩ σ′ ⊂ σ′′.

Suppose x ∈ σ ∩ σ′. Then we can represent this vector in convex forms

x = t0v0 + . . .+ tkvk + tk+1uk+1 + tnun,

x = s0v0 + . . .+ skvk + sk+1wk+1 + smwm.
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If at least one of the scalars tk+1, . . . , tn is positive, we immediately obtain
from here that x is an interior point of at least two different simplices of K.
Hence tk+1 = . . . = tn, so x ∈ σ′′.

A subcollection L of K, which is a simplicial complex on its own is called
a simplicial subcomplex of K. Notice that for any subset L of K the
condition 2) in the definition above is satisfied automatically. Hence L ⊂ K
is a subcomplex of K if and only if it satisfies condition 1) i.e. if
for every simplex σi ∈ L, every face of σi also belongs to a collection L.

If case L is a subcomplex of a simplicial complex K, we call the pair
(K,L) a pair of simplicial complexes or simply a simplicial pair. .

Examples 4.3. 1 As we already pointed out in the beginning of this
section, a square can be represented as a polyhedron of a simplicial
complex that contains two 2-dimensional simplices with one common
side and all their faces. For instance if the vertices of the square
are points (0, 0), (0, 1), (1, 0), (1, 1) in the plane R2, then as a suit-
able simplicial complex we can take a complex consisting of 2-simplices
{(0, 0), (0, 1), (1, 0)}, {(0, 1), (1, 0), (1, 1)}, 1-simplices {(0, 0), (0, 1)}, {(0, 0), (1, 0)},
{(1, 0), (0, 1)}, {(1, 1), (0, 1)}, {(1, 1), (1, 0)} and 0-simplices
{(0, 0)}, {(0, 1)}, {(1, 0)}, {(1, 1)}.

Of course there are many other ways to represent a square as a poly-
hedron of a simplicial complex. For example one could use another
diagonal to subdivide the square into triangles or even both diagonals
to subdivide it into a polyhedron of a simplicial complex with four 2-
dimensional simplice, see the picture below.

2) Suppose σ is n-dimensional simplex in a vector space V . Then the
collection

K(σ) = {σ′ | σ′ ≤ σ}
of all faces of σ (including σ itself) is a simplicial complex. The poly-
hedron of this complex is the simplex σ itself,

|K(σ)| = σ.
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3) Suppose σ is n-dimensional simplex in a vector space V . Then the
collection

K(Bd σ) = {σ′ | σ′ < σ}
of all proper faces of σ is a simplicial complex. The polyhedron of this
complex is the boundary of σ, σ itself,

|K(Bd σ)| = Bd σ.

The complex K(Bd σ) is a subcomplex of the complex K(σ). The pair
(K(σ), K(Bd σ)) is a simplicial pair.

4) Suppose K is a simplicial complex and let n ∈ N be a fixed natural
number. The collection of all simplices of K with dimension ≤ n is
clearly a subcomplex of K, which we denote by Kn and call the n’th
skeleton of K.
The elements of |K0| are called the vertices of the simplicial complex
K.

The simplicial complex K is called finite-dimensional if K = Kn for
some n ∈ N. The smallest n that satisfies this condition is then called
the dimension of K. If K is not finite-dimensional, we say that it is
infinite dimensional.

Suppose K is a simplicial complex in a vector space V . We address the
issue of giving its polyhedron |K| a ”suitable” topology. In case V is finite-
dimensional, the corresponding polyhedron |K|, of course, has a relative
topology inherited from the standard topology of V , but this is not neces-
sarily the topology we are interested in. In case V is not finite-dimensional,
we don’t even have any canonical topology in V , that could define a relative
topology on the polyhedron |K|, but in fact we don’t need one. There is a
standard way to define a topology on any polyhedron.

We start off by noticing that our polyhedron is a union of simplices any-
way, and every simplex has its standard topology. All we need to do is to be
able to ”glue together” this topologies to obtain a natural topology on |K|.
For this we need the following general topological result.

Proposition 4.4. Suppose X is a set and (Xi)i∈I is a collection of its sub-
sets and assume every subset Xi is given a topology τi. Suppose also that
(1) For all pairs i, j ∈ I the relative topologies induced on Xi ∩Xj by τi and
τj coincide.
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(2) For all pairs i, j ∈ I the intersection Xi ∩Xj is closed (open) in Xi with
respect to the topology τi.

Then, there exists a unique topology τ on X, such that a subset A ⊂ X is
open/closed with respect to τ if and only if A∩Xi is open/closed in (Xi, τi).
Moreover the relative topology induced by τ on Xi coincides with τi and Xi

is closed (open) in X for every i ∈ I.

Proof. A topology τ described by the condition A ⊂ X is open/closed in
(X, τ) if and only if A ∩ Xi is open/closed in (Xi, τi) always exists and
unique. We leave the verification of this fact as an exercise to a reader -
one only has to prove that the collection defined by this condition satisfies
axioms for topology. In case you are familiar with the concept of ”induced
topology”, this is an example of one - we are talking about the topology
induced by all the inclusions Xi →֒ X , i ∈ I.

All we need to prove is that this topology satisfies the other conditions.
First of all by condition (2) the subset Xi is closed (open) in X by the very
definition of induced topology τ .

Suppose A ⊂ Xi is closed (open) with respect to τi. For every j ∈ J the
set A ∩Xj is closed (open) in Xi ∩Xj with respect to the relative topology
induced by τi, hence also closed(open) with respect to the relative topology
induced by τj . Since Xi ∩ Xj is closed (open) in (Xj , τj), it follows that
A∩Xj is closed(open) in Xj. Hence A is closed(open) in X and in particular
in relative topology of Xi induced by τ .

Conversely suppose A ⊂ Xi is closed (open) with respect to the relative
topology induced by τ . Since Xi is closed (open ) in (X, τ) it follows that A
is closed(open) in (X, τ). By the definition of τ this means that in particular
A = A ∩Xi is closed(open) in (X, τi).

The topology on the set X is called coherent with a family (Xi)i∈I of
subsets of X if a subset A ⊂ X is open (closed) in X if and only if A∩Xi is
open (closed) in Xi for every i ∈ I(with respect to relative topology).

Let K be a simplicial complex in a vector space V . The collection of
all simplices σi ∈ K, each equipped with its standard topology, satisfies the
conditions of Proposition 4.4 for the set X = |K|. Namely, the intersection
of two simplices σi, σj ∈ K is either empty or is a common face. In the latter
case, the standard topologies of σi, σj clearly induce on the intersection sim-
plex σi∩σj the standard topology of this simplex. Moreover this intersection
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is closed in both σ and σ′ - for instance because it is compact and every
compact subspace of a Hausdorff space is compact. Hence Proposition 4.4
implies the following.

Proposition 4.5. Suppose K is a simplicial complex. Then there exists the
unique topology in the polyhedron |K|, which is coherent with standard topolo-
gies of all simplices σi ∈ K. This topology will be called the weak topology
of the polyhedron |K|.

The relative topology induced by the weak topology on every simplex σ ∈ K
is the same as the standard topology of σ. Moreover every simplex σ ∈ K is
closed in |K|.

A subset F of |K| is closed in |K| if and only if F ∩ σ is closed in σ
(with respect to the standard topology) for every simplex σ ∈ K. Similar
characterization can be given to the open subsets of |K|.

From now on, whenever we talk about the polyhedron |K| of a simplicial
complex K, we assume that it is equipped with the weak topology. Notice
that even if the underlying vector space V is finite-dimensional, in which case
|K| has a relative topology as a subset of V , this topology is NOT necessarily
the same as the weak topology of K.

Example 4.6. Suppose K is a simplicial complex, every simplex of which is
0-dimensional i.e., a singleton. The induced topology on the polyhedron |K|
is discrete, i.e. every subset of |K| is open and closed. This is because the
intersection of any subset A ⊂ |K| with any simplex is either empty or the
whole simplex, so certainly open and closed in that simplex.

We can take as K any collection of points in any vector space V , and the
corresponding polyhedron will be discrete with respect to the weak topology. If
V is a finite-dimensional, |K| will usually be non-discrete with respect to the
standard topology.

For instance consider the set {0} ∪ {1/n | n ∈ N, n 6= 0} ⊂ R. We can
think of this set as a simplicial complex consisting of 0-simplices. A weak
topology on this set is discrete . However in the relative topology as a subset
of R this set is not discrete, since {0} is not open.
As even more extreme, but totally not interesting trivial example one could
even take as a set of 0-simplexes the whole n-dimensional vector space Rn,
thus obtaining 0-dimensional polyhedron with discrete topology, whose under-
lying set is Rn.
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We will be mainly interested in finite simplicial complexes, for which no
such problem can arise (Proposition 4.8 below).

Suppose L is a subcomplex of a simplicial complex K. Then its polyhe-
dron |L| is subset of the polyhedron |K|, so |L| has two natural topologies.
One is the weak topology it has as a polyhedron of a simplicial complex L
and the other is relative topology of a subset of |K|, which is equipped with
its weak topology as a polyhedron of a simplicial complex K. These two
topologies turn out to be exactly the same.

Lemma 4.7. Suppose L is a subcomplex of a simplicial complex K. Then
the inclusion i : |L| → |K| is a topological embedding with respect to weak
topologies of both polyhedrons |L|, |K|. In other words weak topology on L is
the same as the relative topology of |L| as a subset of |K|, equipped with its
weak topology.

Moreover |L| is closed in |K| with respect to the weak topology.

Proof. It is enough to prove the following claim. Let F ⊂ |L| be an arbi-
trary subset. Then F is closed in |L| (with respect to the weak topology)
if and only if F is closed in |K|, as a subset of |K| equipped with its weak
topology. This fact would immediately imply that the inclusion i : |L| → |K|
is a closed embedding to its image, in particular an embedding. Moreover
choosing F = |L| (which is trivially closed in |L|), we see that |L| is closed
in |K|.

Suppose F ⊂ |L| and suppose that F is closed in |K|. By Proposition
4.5 this is equivalent to the claim that F ∩ σ is closed in σ for every simplex
σ ∈ K. Since L ⊂ K, F ∩ σ is closed in σ for every simplex σ ∈ L. By the
same Proposition 4.5 this implies that F is closed in |L|.

Conversely suppose F is closed in |L|. By Proposition 4.5 this is equiva-
lent to the claim that F ∩ σ is closed in σ for every simplex σ ∈ L. We have
to show (Proposition 4.5) that F ∩ σ is closed in σ for every simplex σ ∈ K.
Let σ be a simplex of K. First we show that σ ∩ |L| is a finite union of the
simplices of L, i.e.

σ ∩ |L| =
n⋃

i=1

τi

for some τi ∈ L, i = 1, . . . , n and τi is a face of σ. To show this let x ∈ σ∩|L|.
Then, by Lemma 4.2, there exists unique simplex τ ∈ L, such that x ∈ Int τ .
On the other hand x ∈ σ, so x ∈ σ ∩ τ , which is, since K is a simplicial
complex, a common face τ ′ of both σ in τ . In particular τ ′ ≤ τ . But on the
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other hand τ ′ contains a point x from the interior of τ . The only way a face
of the simplex can intersect an interior of a simplex, is that it is a simplex
itself. In other words

σ ∩ τ = τ ′ = τ,

which implies that τ is actually a face of σ. Since any simplex σ has a finite
amount of faces, we have shown that

σ ∩ |L| =
n⋃

i=1

τi,

where τi are exactly those faces of σ, which are also in L.
Now let’s get back to the proof. Let σ be a simplex in K. Then

σ ∩ |L| =
n⋃

i=1

τi

for some τi ∈ L, i = 1, . . . , n, τi is a face of σ. Hence, since F ⊂ |L|, we have
that

F ∩ σ = F ∩ (|L| ∩ σ) =

n⋃

i=1

(F ∩ τi).

By assumption F ∩ τi is closed in τi for every i = 1, . . . , n. Since τi is a face
of σ and every face of σ is closed in σ, it follows that F ∩ τi is closed in σ
for every i = 1, . . . , n. Thus F ∩ σ =

⋃n

i=1(F ∩ τi) is closed in σ, as a finite
union of closed sets. Claim is proved.

Proposition 4.8. Suppose K is a simplicial complex in a vector space V .
Suppose C ⊂ |K| is compact. Then there exists a finite subcomplex L ⊂ K
such that C ⊂ |L|. In particular |K| is compact with respect to the weak
topology if and only if K is finite.

If K is finite and V is finite dimensional, then the weak topology in |K|
coincides with the relative topology of |K| as the subspace of V .

Proof. Suppose C ⊂ K is compact. Let

L0 = {σ ∈ K | Int σ ∩ C 6= ∅}.

First we show that L0 is finite. For every σ ∈ L0 choose exactly one point
xσ ∈ Int σ ∩ C. Consider the set

A = {xσ | σ ∈ L0} ⊂ C
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of points chosen so. Let B ⊂ A be arbitrary. Recall that by the Lemma
4.2 interiors of different simplices in K do not intersect. Hence any σ ∈ K
intersects only interiors of its own faces, which are finite in number. It follows
that σ ∩ B is finite, in particular closed in σ. By the definition of a weak
topology, B is closed in |K|.

Thus, every subset of A is closed in |K|, in particular closed in A. This
implies that A is discrete, as a topological space, and closed itself. On the
other hand A is a subset of a compact C. Every closed subset of a compact
space is compact itself. Thus A is compact and discrete. But the only way
a space can be discrete and compact at the same time is that it is finite
(consider an open covering of such space consisting only of all singletons).
Hence A is finite. This implies immediately then L0 is finite, which is what
we wanted to prove.

Now, L0 is not necessarily a subcomplex since it may not contain faces
of its simplices. However this problem is easy to fix. We define

L = {σ | σ ≤ σ′ for some σ′ ∈ L0}.

In other words we ”complete” L0 by adding all the faces of its simplices to
it. Every simplex has only finite amount of faces, and L0 is finite, hence L
is a finite union of finite sets, i.e. finite itself. Also, it is a subcomplex. By
Lemma 4.2 every point of C belongs to some simplex of L0, in particular

C ⊂ |L0|.

This implies that every simplicial complex K which has a compact poly-
hedron |K| must be finite. Conversely, since every simplex is compact, a
finite simplicial complex is compact, as a finite union of compact spaces.

For the last claim it is enough to notice the following. Suppose X is a
topological space which is a finite union of closed subsets A1, . . . , An. Then
the topology ofX is coherent with the family (Ai). This is proved in Topology
II (or prove it yourself).

The last part of the previous result assures us that in the case of finite
complex that lies in a finite-dimensional vector space, its weak topology is
the same as familiar standard topology.

A triangulation of a topological space X is a pair (K, f) where K is a
simplicial complex and f : X → |K| is a homeomorphism. A space that has
a triangulation is called a (topological) polyhedron. If Y is a subset of a
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topological space X , we call the pair (X, Y ) a pair of topological spaces.
A pair (X, Y ) is called a polyhedron pair if there exists a triangulation
f : X → |K| and a subcomplex L of K such that f−1|L| = Y . In this case
the restriction f ||L| : |L| → Y is a homeomorhism (Y has relative topology),
hence Y is also a polyhedron.

Examples 4.9. 1 The square I2 is a topological polyhedron, since it is
actually a polyhedron |K| of a simplicial complex (see example 4.3, 1).

2) On the other hand there is a simplier way to think of I2 as a topological
polyhedron - since it is a convex bounded subset of R2, that has inte-
rior points with respect to R2, it is, by Theorem 3.20, homeomorphic
to any 2-dimensional simplex σ2, for example to a standard 2-simplex
∆2. This simplex is a polyhedron of a simplicial complex K(σ2).

In fact Theorem 3.20 implies that any convex closed bounded subset C
of a finite dimensional vector space is a topological polyhedron homeo-
morphic to K(σ), where σ is a simplex, whose dimension is the affine
dimension of C.

In particular a closed ball B(x, r) is a polyhedron for any x ∈ Rn and
r > 0.

3) The theorem 3.20 tells us even more - if C is a bounded convex closed
subset of a finite dimenisonal vector space, there exists homeomor-
phism of pairs f : (C, ∂C) → (|K(σ)|, |K(Bdσ)| i.e. a homeomorphism
f : C → σ that maps ∂C onto Bd σ. Here σ is n-dimensional sim-
plex, where n = dimaff C and ∂C is the boundary with respect to aff C.
Hence (C, ∂C) is a polyhedron pair and ∂C is a polyhedron.

In particular we see that Sn−1 is a polyhedron and the pair (Bn, Sn−1)
is a polyhedron pair.

4) Open ball Bn, and in general, every open subset of Rn is a polyhedron,
but this claim is much more difficult to prove than the similar claim for
the closed ball. We omit the proof. A simplicial complex K such that
Bn ∼= |K| must be infinite, since Bn is not compact.

5) Every polyhedron of a 0-dimensional simplicial complex K is discrete.
Conversely every discrete space X is homeomorphic to a polyhedron of
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a 0-dimensional simplicial complex K. To prove this exactly one only
needs to find big enough vector space to contain enough points, in case
X is ”big”. For example vector space

V = {f : X → R}

of all real-valued functions would work.

Remark 4.10. Suppose K is a simplicial complex and suppose σ ∈ K is a
simplex. Then σ and its boundary Bd σ are closed in a polyhedron |K|. The
common, but very serious mistake is to claim by analogy that the simplicial
interior Int σ is open in |K|. In general this is not true at all! For example
consider a 1-simplex i.e. an interval ∆1 = [0, 1]. This is a polyhedron of
a simplicial complex K(∆1) consisting of three simplices - ∆1 itself and its
0-dimensional faces {0} and {1}. Of course the interior Int∆1 =]0, 1[ is
open in [0, 1], but the interiors of {0} and {1} are the singletons {0} and
{1} themselves and certainly not open in [0, 1]. In general in a polyhedron
|K(σ)|, where σ is a simplex, only the interior of σ itself is open, the interi-
ors of its faces certainly are not. That is why it is important to understand
the difference between simplicial interior and topological interior.

One can easily prove the following general result (exercise) - in a poly-
hedron |K| the interior Int σ of σ ∈ K is open if and only if σ is so-called
maximal simplex i.e. not a proper face of any bigger dimensional simplex.

Subdivisions.
One of the most important reasons simplicial methods and triangulations
work so well is the fact that any space, which admits a triangulation (i.e. a
polyhedron) always admits ”arbitrary small” triangulations. Later we will
use this property to prove so-called ”Excision theorem” of the singular homol-
ogy theory. This theorem and its consequences make the actual computations
of homology groups relatively simple.

Definition 4.11. A simplicial complex K ′ is a subdivision of a simplicial
complex K if the following conditions are satisfied
1) Every simplex of K ′ is a subset of some simplex of K.
2) Every simplex of K is a finite union of some simplices of K ′.

If K ′ is a subdivision of K it follows straight from the definition that
|K ′| = |K|. Moreover, the weak topologies induced by K ′ and K on the set
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|K| = |K ′| are the same (exercise).

The important canonical subdivision of any given simplicial complex is
the so-called barycentric division. It is constructed as follows.

Suppose K is a simplicial complex. Let σ ∈ K be an n-simplex with
vertices {v0, . . . ,vn}. The point b(σ) defined by

b(σ) =
1

n + 1
(v0 + v1 + . . .+ vn) ∈ σ

is called a barycentre of the simplex σ.

Lemma 4.12. Let σ0 < σ1 < . . . < σn be a linearly ordered finite chain of
simplices belonging to a simplicial complex K. Here σi is a face of σj for
i < j.
Then the set of all barycentres {b(σ0),b(σ1), . . . ,b(σn)} is affinely indepen-
dent, hence defines an n-simplex σ′, which is a subset of σn. Moreover

Int σ′ ⊂ Int σn.

Proof. We prove the claim by induction on n. For n = 0 the set of vertices is
a singleton {b(σn)}, which is affinely independent and spans a simplex con-
sisting only of a barycentre of σn. Since barycentre belongs to the interior of
a simplex, also the second claim is clear.

Next let n > 0 and suppose

(4.13) r0b(σ0) + r1b(σ1) + . . .+ rnb(σn) = 0,

where r0 + . . . + rn = 0. By Lemma 2.10 we have to show that r0 = . . . =
rn = 0. It is enough to prove that rn = 0, since all the other claims follow
then by inductive assumption.

Let {v0, . . . ,vm} be the set of vertices of σn. We may assume that σn−1

(hence also σi for all i < n) is a face of a simplex spanned by the vertices
{v0, . . . ,vm−1}. For every i = 0, . . . , n the barycentre b(σi) can be written
as a convex combination

b(σi) = ai0v0 + ai1v1 + . . .+ aimvm,

where
∑m

j=0 a
i
j = 1 and aim = 0 when i < n. Substituting this expression in

the equation 4.13, we obtain the equation

r′0v0 + . . .+ r′mvm, where
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r′j =
n∑

i=0

ria
i
j .

Notice that r′m = rna
n
j = rn

k+1
, where k = dim σn.

Simple computation implies that

m∑

j=0

r′j =

m∑

j=0

n∑

i=0

ria
i
j =

n∑

i=0

ri

m∑

j=0

aij =

n∑

i=0

ri = 0.

Since {v0, . . . ,vm} is affinely independent, this implies that r′j = 0 for all
j = 0, . . . , m. In particular r′m = 0. But on the other hand

r′m =
rn

k + 1
,

hence rn = 0 and the first claim follows now by induction.

The proof of the second claim uses similar calculations. Indeed, suppose

x = r0b(σ0) + r1b(σ1) + . . .+ rnb(σn)

is the interior point of the simplex σ′ spanned by the set {b(σ0),b(σ1), . . . ,b(σn)}.
Then

∑n
i=0 ri = 1 and ri > 0 for all i = 1, . . . , n. Once again, using the fact

that
b(σi) = ai0v0 + ai1v1 + . . .+ aimvm,

where
∑m

j=0 a
i
j = 1 and aim = 0 when i < n, we can write this as

x = r′0v0 + . . .+ r′mvm, where

r′j =

n∑

i=0

ria
i
j .

Here {v0, . . . ,vm} are vertices of σn. Now, for every j = 1, . . . , m there exists
at least one index i such that aij 6= 0 - in fact anj > 0 for all j = 1, . . . , m.
Since ri > 0 for all i, we see that r′j > 0 for all j = 0, . . . , m. This means
that x is the interior point of σ, which is what we wanted to prove.

Proposition 4.14. Suppose K is a simplicial complex. Define K ′ is a col-
lection of simplices conv({b(σ0),b(σ1), . . . ,b(σn)}), where σ0 < σ1 < . . . <
σn ∈ K. Notice that these are all simplices by the previous Lemma.

Then K ′ is a simplicial complex.
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Proof. The definition of K ′ shows directly that a face of a simplex of K ′ is
also a simplex of K ′. Hence, by Lemma 4.2, it is enough to prove that every
point of

|K ′| =
⋃

σ∈K ′

σ

is an interior point of the unique simplex σ ∈ K ′.

Suppose x ∈ |K ′|. It is clear that x is an interior point of some simplex

σx = conv({b(σ0),b(σ1), . . . ,b(σn)}).

This means that

x =

n∑

i=0

aib(σi),

where
∑n

i=0 ai = 1 and ai > 0 for all i = 0, . . . , n. Suppose that x is also an
interior point of some other simplex

σ′
x = conv({b(σ′

0),b(σ
′
1), . . . ,b(σ

′
k)}).

By Lemma 4.12 x ∈ Int σn and x ∈ Int σ′
k. Since both σn and σ′

k are simplices
of the simplicial complex K, this implies (Lemma 4.2) that σn = σ′

k.

We proceed the proof by induction on n.

When n = 0 the point x is a barycentre of a simplex σ0 = σ′
k in K and,

as we already noticed, belongs to the interior of σ0 = σ′
k. On the other hand

it is, by our assumption, an interior point of

σ′
x = conv({b(σ′

0),b(σ
′
1), . . . ,b(σ

′
k)}),

which has x = b(σ′
k) as one of its vertices of. The vertex can be an interior

point of a simplex only if simplex is 0-dimensional. Hence

σ′
x = conv{b(σ′

n)} = σx

and the claim is proved for n = 0.

Suppose n > 0. By our assumption

x =

n∑

i=0

aib(σi),
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where
∑n

i=0 ai = 1 and ai > 0 for all i = 0, . . . , n. On the other hand we also
assume that

x =
k∑

j=0

a′jb(σ
′
j),

where
∑n

j=0 a
′
i = 1 and a′j > 0 for all j = 0, . . . , k. Above we have shown

that σn = σ′
k. Since n > 0, an 6= 1 and a′n 6= 1. Thus we can write both

equations in the forms

x = (1− an)y + anb(σn), and

x = (1− a′n)y
′ + anb(σn).

where

y =

∑n−1
i=0 aib(σi)

1− an
and

y′ =

∑k−1
j=0 a

′
jb(σj)

1− a′n
.

Here by construction y ∈ σn−1 and y ∈ σ′
k−1. In particular both are boundary

points of the simplex σn = σ′
k.

By the Lemma 3.19, since b(σn) is the interior point of the simplex σn, we
know that such an expression is unique. Hence an = a′n and y = y′. Also no-
tice that y is the interior point of the simplex conv({b(σ0), b(σ1), . . . , b(σn−1)})
ofK ′ while y′ is the interior point of the simplex conv({b(σ′

0), b(σ
′
1), . . . , b(σ

′
k−1)}).

But we have just proved that y = y′ and, by induction (since n − 1 < n),
we know that y is the interior point of the unique simplex in K ′.Hence
{b(σ0), b(σ1), . . . , b(σn−1)} = {b(σ′

0), b(σ
′
1), . . . , b(σ

′
k−1)}, which concludes the

proof.

Definition 4.15. Suppose K is a simplicial complex. A simplicial complex
K ′ defined in the previous proposition is called the first barycentric divi-
sion of K.

To justify the use of terminology we shall show next that K ′ is indeed a
subdivision of K.

Proposition 4.16. SupposeK is a simplicial complex. Then the first barycen-
tric subdivision K ′ is a subdivision of K.

Proof. Let σ ∈ K be an arbitrary m-simplex with vertices {v0, . . . ,vm}.
First we prove by induction on the dimension m that σ is a finite union of
all the possible simplices of K ′, which have the form

conv({b(σ0),b(σ1), . . . ,b(σk)}),
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where σk is a face of σ. Clearly

conv({b(σ0),b(σ1), . . . ,b(σk)}) ⊂ σk ⊂ σ.

for σk ≤ σ. Hence it is enough to show that every point x ∈ σ belongs to
some simplex of the form conv({b(σ0),b(σ1), . . . ,b(σk)}), where σk ≤ σ. For
m = 0 this claim is trivial, since them σ consists of the only point, which is
its barycentre. In general the claim is clear for the barycentre x = b(σ).

Now suppose m > 0. By induction the claim is true for any proper face
σ′ < σ. Let x ∈ σ be arbitrary. By the Lemma 3.19 we know that x is either
a barycentre b(σ), in which case the claim needed is trivially clear, or there is
a unique y ∈ Bd σ such that x is on the interval between the barycentre and
y. In other words, in case x is not a barycentre, there are unique y ∈ Bd σ
and r ∈]0, 1] such that

x = rb(σ) + (1− r)y.

Since y is a point of the boundary, it belongs to a proper face σ′ < σ. By
inductive assumption

y ∈ conv({b(σ0),b(σ1), . . . ,b(σk)}),

where σk is a face of σ′. The equation

x = rb(σ) + (1− r)y.

implies that x ∈ conv({b(σ0),b(σ1), . . . ,b(σk),b(σ)}, hence we are done.
We have shown that every simplex of K is a finite union of simplices of

K ′. Since
conv({b(σ0),b(σ1), . . . ,b(σn)}) ⊂ σn,

by convexity, every simplex of K ′ is a subset of a simplex of K.

The following picture illustrates the barycentric subdivision of 1 and 2
simplices as well as the part of the barycentric subdivision of a 3 simplex,
where only subdivision of two front faces and lines from the barycentre to the
visible vertices are shown. The barycentre of the whole simplex is denoted b.
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The construction can be iterated in a natural way. Suppose K ′ is the first
barycentric division of K and let K ′′ be the first barycentric division of K ′.
Then K ′′ is called the second barycentric division of K.
This can be continued by induction. Suppose (n− 1)’th barycentric division
K(n−1) of K is defined. We define the n-th barycentric division K(n) to
be the first barycentric division of K(n−1). Hence the notation K(1) will be
used for the first barycentric division. For convenience we also use notation
K(0) = K.

The following picture illustrates the second barycentric subdivision of a
1-simplex and a 2-simplex. You can see, how simplices are getting smaller
with each subdivision.

b

b
b

b

b
b

Barycentric divisions are most useful for finite simplicial complexes. To
formulate and prove next results we need the concept of the diameter of a
simplex, hence the concept of the linear metric on a simplex. Of course every
finite simplicial complex can be considered a simplicial complex in a finite-
dimensional space V which can be identified with Rm, and hence given a
linear metric. This metric will depend on the chosen identification V = Rm.
For our purposes it is enough to consider simplicial complex which already
are complexes in some Rm, hence have natural metric.

70



Lemma 4.17. Suppose σ is a simplex in Rm, with vertices {v0, . . . ,vn}.
Then

diam σ = max{|vi − vj | | i, j = 0, . . . , m},
where | · | is a standard norm on Rm.

Proof. Exercise.

Lemma 4.18. Suppose K is a finite simplicial complex in Rm. Let σ′ be a
simplex in the first barycentric divisionK ′, with vertices {b(σ0),b(σ1), . . . ,b(σn)},
where

σ0 < . . . < σn = σ ∈ K

. Then

diam σ′ ≤ k

k + 1
diam σ,

where k = dim σ.

Proof. Exercise.

For a finite simplicial complex K such that |K| ⊂ Rm we define its mesh
by

meshK = max{diam σ | σ ∈ K}.
The diameter here is taken with respect to the standard metric of Rm.

Corollary 4.19. Suppose K is a finite simplicial complex in Rm. Then for
every ε > 0 there exists n ∈ N such that

meshK(n) < ε.

Proof. Since all simplices of K lie in Rm, their dimensions are bounded above
by the dimension m of the space. The inequalities

k

k + 1
≤ m

m+ 1
< 1

holds for every k ≤ m (check!). This implies that there exists n ∈ N such
that ( m

m+ 1

)n

·meshK < ε.

Iteration of the result of the previous lemma shows that for the simplicial
complex Kn we have that

diam σ ≤
( m

m+ 1

)n

meshK

71



for all σ ∈ Kn. This implies that

meshKn < ε.

Now we can finally prove the important result, according to which a
compact polyhedron has ”arbitrary fine” triangulations. To formulate this
precisely we need the notion of a star of a vertex.

According to the Lemma 4.2 every point x ∈ |K| of a polyhedron |K|
is an interior point of a unique simplex of K. This simplex is called the
carrier of the point x and will be denoted by car(x).
The star of x is defined to be the set

St(x) =
⋃

{Int σ | x ∈ σ}.

Lemma 4.20. Suppose x ∈ |K| be an arbitrary point of a given polyhedron.
Denote the vertices of car(x) by v0, . . . ,vn. Then

a) St(x) is an open neighbourhood of x in |K|.

b)

St(x) =
⋃

{Int σ | car(x) < σ} =
⋃

{Int σ | v0, . . . , vn are vertices of σ}.

c)

St(x) =

n⋂

i=0

St(vi).

Proof. Exercise.

Suppose K is a simplicial complex and U is an open covering of the poly-
hedron |K|. We say that K is finer then the covering U if for every vertex v
of K there exists U ∈ U such that St(v) ⊂ U .

Generally suppose U is an open covering of the topological polyhedron
X . We say that the triangulation (K, f) of a polyhedron X is finer then the
open covering U if covering

{f−1(St(v)) | v is a vertex of K}

is a refinement of U . This means that for every vertex v of K there exists
U ∈ U such that

f−1(St(v)) ⊂ U.
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Proposition 4.21. Suppose K is a finite simplicial complex and U is an
open covering of |K|. Then there exists n ∈ N such that the n’th barycentric
division K(n) is finer then U .
Proof. Since K is finite, affine subspace that vertices of its simplices gener-
ate, is finite-dimensional, so we might as well assume that K is a subset of
finite-dimensional vector space V . By inducing metric on V via some linear
homeomorphism V ∼= Rm we might actually assume that K is a simplicial
complex in Rm for some m ∈ N.

Since |K| is compact (lemma 4.8), an open covering U of |K| has the
Lebesque’s number ε > 0. By definition of a Lebesgue’s number this means
that any subset A ⊂ |K| with diamA < ε is contained in some U ∈ U .

According to the Lemma 4.19 there exists n ∈ N such that

meshKn < ε/2.

Now let v be a vertex of K(n). Suppose x,y ∈ St(v). Then there exist
simplices σ, σ′ ∈ Kn such that x ∈ Int σ,y ∈ Int σ′ and v ∈ σ ∩ σ′. The
application of the triangle inequality then shows that

|x− y| ≤ |x− v|+ |y− v| < 2meshKn < ε.

Hence, by the definition of the Lebesgue’s number, St(v) ⊂ U for some U ∈ U
and the proposition is proved.

Corollary 4.22. Suppose X is a compact polyhedron and U an open covering
of X. Then there exists triangulation of X which is finer then U .
Proof. Obvious from the previous proposition.

Previous corollary is actually true for arbitrary polyhedron, but the proof
is more difficult. In this general case the barycentric division will not neces-
sarily work, so one has to be more clever.

In the next section we will see important applications of the previous
result.

5 Simplicial mappings and simplicial approx-

imations

So far we haven’t study continuous mappings between polyhedra6.

6”Polyhedra” is a plural of ”polyhedron”
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Lemma 5.1. Suppose X is a topological space whose topology is coherent with
the family (Xi)i∈I of its subsets and suppose Y is an arbitrary topology space.
Let f : X → Y be an arbitrary mapping between sets. Then f is continuous
if and only if for any i ∈ I the restriction f |Xi : Xi → Y is continuous.

Proof. The restriction of the continuous mapping to any subset is continuous
with respect to the relative topology, so the ”only if” part is trivial.

Suppose f : X → Y is such that f |Xi : Xi → Y is continuous for all i ∈ I.
Suppose U ⊂ X be an arbitrary open subset of X . In order to show that
f is continuous we need to show that the inverse image f−1U is open in X .
Since the topology of X is coherent with the family (Xi)i∈I , it is enough to
show that f−1U ∩Xi is open in Xi for all i ∈ I. But

f−1U ∩Xi = (f |Xi)
−1U

is the inverse image of U under the restriction f |Xi : Xi → Y . Since we
assume this mapping to be continuous, (f |Xi)

−1U is open in Xi. The proof
is complete.

Corollary 5.2. Suppose K is a simplicial complex, X an arbitrary topological
space and f : |K| → X is a mapping betweeen sets. Then f is continuous if
and only if for any σ ∈ K the restriction f |σ : σ → X is continuous (with
respect to the standard topology of the simplex).

Suppose K,K ′ are simplicial complexes and g : |K| → |K ′| is a mapping.
Mapping g is called simplicial if for every σ ∈ K there exists σ′ ∈ K ′ such
that g(σ) ⊂ σ′ and g|σ : σ → σ′ is simplicial. Recall that this means that
1)g|σ : σ → σ′ is affine i.e. preserves convex combinations, and
2) g(v) is a vertex of σ′ for every vertex v of σ.

By Lemma 2.15 an affine mapping g|σ : σ → σ′ between simplices σ, σ′ is
completely determined once we the images g(vi) of the vertices of σ. More-
over this mapping is simplicial if and only if these images are all vertices of
σ′. Hence we obtain immediately the following result.

Proposition 5.3. Suppose K,K ′ are simplicial complexes. As usual we de-
note the set of vertices of K by K0 and the set of vertices of K ′ by K ′

0.
Suppose h : K0 → K ′

0 is a mapping that satisfies the following condition.
(*) Whenever v0, . . . ,vm are vertices of a simplex σ in K, the vertices
h(v0), . . . , h(vm) span a simplex σ′ in K ′.
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Then there exists unique simplicial mapping g : |K| → |K ′| such that
g|K0 = h.

Conversely if g : |K| → |K ′| is a simplicial mapping, then g|K0 = h is a
mapping K0 → K ′

0 that satisfies the condition (*) above.

Every simplicial mapping g : |K| → |K ′| is continuous with respect to
weak topologies. This follows straight from the fact that an affine mapping
between simplices is always continuous (Lemma 3.9) and Lemma 5.2.

Definition 5.4. Suppose K,K ′ are simplicial complexes and f : |K| → |K ′|
is a continuous mapping. A simplicial mapping g : |K| → |K ′| is called a
simplicial approximation of f if
f(x) ∈ Int σ implies g(x) ∈ σ, for every x ∈ |K|.

Homotopy

One of the main reasons simplicial approximations are considered, is
the Simplicial Approximation Theorem, which asserts that every continuous
mapping between finite polyhedra is homotopic to some simplicial mapping.
Let us recall the notion of homotopy and its basic properties.

Recall that (continuous) mappings f, g : X → Y (where X and Y are
topological spaces) are called homotopic if there exists a continuous map-
ping F : X × I → Y such that F (x, 0) = f(x) and F (x, 1) = g(x). Such an
F is called a homotopy from f to g. If there exists a homotopy between f
and g, we denote this as f ≃ g.

If A ⊂ X is such that F (x, t) = f(x) = g(x) for all t ∈ I, then F is
called a homotopy relative to A and f and g are said to be homotopic
relative to A (f ≃ g rel A).

Homotopic relations between mappings have several natural properties.

Lemma 5.5. Suppose f, g, h : X → Y and k, l : Y → Z. Then

1) f ≃ f ,

2) if f ≃ g then g ≃ f ,

3) if f ≃ g and g ≃ h, then f ≃ h,

4) if f ≃ g and k ≃ l, then (k ◦ f) ≃ (l ◦ g).

Similar claims are true for the homotopies relative to subsets.
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Proof. 1)A mapping define defined by F (x, t) = f(x) is a homotopy between
f and f .

2)Suppose F : X× I → Y is a homotopy between f and g. Then G : X×
I → Y defined by

G(x, t) = F (x, 1− t)

is a homotopy between g anf f .

3) Suppose F : X×I → Y is a homotopy between f and g andG : X×I →
Y is a homotopy between g and h. Then H : X × I → Y defined by

H(x, t) =

{
F (x, 2t), when 0 ≤ t ≤ 1/2,

G(x, 2t− 1), when 1/2 ≤ t ≤ 1

is a well-defined homotopy between f and h. Notice that both definitions
for H(x, 1/2) give the same result and that the continuity of H follows by
Lemma 3.4.

4) Exercise.

Conditions 1)-3) of the previous lemma say precisely that the homotopy
relation≃ in the set of continuous mappingsX → Y is an equivalence relation
i.e. devides the set of all continous mapping X → Y into non-intersecting
homotopy classes. We will denote the set of all homotopy classes of all
continuous mappings f : X → Y by [X, Y ]

A mapping f : X → Y is homotopically trivial if f is homotopic to a
constant mapping. If the identity mapping id: X → X is homotopically
trivial, the space X is called contractible. This means that there is a point
x0 ∈ X and a continuous mapping F : X × I → X such that

F (x, 0) = x for all x ∈ X,

F (x, 1) = x0.

If the homotopy F also has the property

F (x0, t) = x0

for all t ∈ I i.e. if F is homotopy relative to a singleton {x0}, we call the
pair (X, x0) contractible.
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Examples 5.6. (1) Suppose C ⊂ V is a convex subset of a finite-dimensional
vector space V . Let X be an arbitrary topological space and suppose
f, g : X → C are continuous. Then f ≃ g relative to the subspace

A = {x ∈ X|f(x) = g(x)}.

This is seen by considering so-called linear homotopy F : X × I → C,

F (x, t) = (1− t)f(x) + tg(x).

In particular every mapping f : X → C is homotopically trivial and
[X,C] is a singleton. By choosing f = idX we obtain that every convex
subset of a finite-dimensional subspace is contractible. Hence in partic-
ular every simplex σ, every closed or open ball in Rn and Rn itself are
contractible.

(2) The sphere Sn is not contractible for any n ∈ N. We will be able to
prove this extremely important result only later using homology theory.

(3) So-called ”topological comb” is the subset of R2 defined as

X =
⋃

n∈N+

{1/n} × I ∪ {0} × I ∪ I × {0}.

One can easily prove that X is contractible, but the pair (X, x0) is
not contractible for x0 = (0, 1). Proofs of these claims are left as an
exercise.

(4) Suppose f : X → Sn is a mapping from an arbitrary topological space
to the sphere Sn and assume that f is not surjective. Then f is ho-
motopically trivial.

This is seen as follows. Since f is not surjective, there exists x ∈ Sn

such that f maps onto subset Sn \ {x}. By Example 3.8 Sn \ {x} is
homeomorphic to Rn. By 1) above any mapping X → Sn \ {x} = Rn

is homotopically trivial, hence in particular f is.

A mapping f : X → Y between topological spaces is called a homotopy
equivalence if there exists g : Y → X such that f ◦g ≃ idY and g ◦f ≃ idX .
Mapping g is then called a homotopy inverse of f . By the symmetry of
definition g is also a homotopy equivalence. The spaces X and Y are said
to have the same homotopy type if there exists homotopy equivalence
f : X → Y .
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Homeomorphic spaces are obviously of the same homotopy type - any
homeomorphism f is a homotopy equivalence, since we can choose the in-
verse of f as a homotopy inverse. Converse is not true - there exist non-
homeomorphic spaces which has the same homotopy type. For instance Rn

and Rm are of the same homotopy type for all n,m ∈ N. Thus homotopy
type is a weaker type of classification for spaces then the actual classification
up to an isomorphism. Most constructions of algebraic topology give, in fact,
the same invariants for the spaces of the same homotopy type. The singu-
lar homology theory, which we will study later is not an exception. Singular
homology groups of the spaces Rn are all the same, so you cannot distin-
guish different Euclidean spaces up to a homeomorphism simply by looking
at homology groups.

Reader might feel confused now. Haven’t we promise that we will be
able to prove that Rn is not homeomorphic to Rm using homology theory?
The answer is that we will, but not directly. What we will be able to see
directly by looking at homology groups is that the spheres Sn and Sm are
not homeomorphic or even of the same homotopy type when n 6= m. Next we
use the fact that the ”puctured space” Rn \{x} has the same homotopy type
as Sn−1 (see examples below) for any x ∈ Rn. This would imply that Rn\{x}
and Rm \ {y} are not of the same homotopy type for any x ∈ Rn, y ∈ Rm,
n 6= m. In particular these spaces are not homeomorphic. Now, if there
would be a homeomorphism f : Rn → Rm, it would induce a homeomorphism
between Rn \ {x} and Rm \ {f(x)}. Hence such a homeomorphism cannot
exist.

Thus a conclusion is the following. In order to prove that Rn is not
homeomorphic to Rm, when n 6= m, it is enough to show that the spheres
Sn and Sm have different homotopy types when n 6= m. In the end of this
section we will also see that in order to prove that it would be enough to
know that Sn is not contractible for any n ∈ N.

Example 5.7. 1) Rn has the same homotopy type as B
n
, Bn or a sin-

gleton {x}. In fact all contractible space have the same homotopy type
- a homotopy type of a singleton. In particular all non-empty convex
subsets of finite dimensional vector spaces have the homotopy type of a
singleton space. As a special case - Rn and Rm have the same homotopy
type.

The proof is simple. Fix x0 ∈ C and define j : {x0} → C, f : C → {x0}
by the formulas

j(x0) = x0,

f(x) = x0 for all x ∈ C.
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Hence j is a natural inclusion and f is the only possible mapping C →
{x0}. Now f ◦j it the identity mapping of a singleton space {x0}, while
j ◦ f : C → C is a constant mapping which is homotopic to the identity
mapping of C by the linear homotopy (Example 5.6, 1).

2) Punctured n-dimensional Euclidean space Rn \ {0}, the sphere Sn−1, a
punctured closed ball B

n \ {0} and a punctured open ball B
n \ {0} all

have the same homotopy type. We’ll prove that Rn \{0} and the sphere
Sn−1 have the same homotopy type, other cases are similar.

Let j : Sn−1 → Rn \ {0} be an inclusion and let f : Rn \ {0} → Sn−1 be
the mapping defined by

f(x) =
x

|x| .

Then f ◦ j = id and the mapping F : Rn \ {0} × I → Rn \ {0} defined
by

F (x, t) = (1− t)(j ◦ f)(x) + tx

is a well-defined homotopy between j ◦ f and the identity mapping of
Rn \ {0}. Of course one has to verify that this mapping is indeed well-
defined i.e. F (x, t) 6= 0 for all (x, t) ∈ Rn \ {0}. This is left as an
exercise to the reader.

Now let us get back to the simplicial world. First we establish the rela-
tionship between simplicial approximations and the notion of homotopy.

Lemma 5.8. Suppose simplicial mapping g : |K| → |K ′| is a simplicial ap-
proximation to f : |K| → |K ′|, where K is a finite simplicial complex. Denote
A = {x ∈ |K| | f(x) = g(x)}. Then f and g are homotopic relative to A.

Proof. By the definition of the approximating mapping f(x) and g(x) belong
to the same simplex σ of K ′ for every x ∈ |K|. Hence the line segment
between f(x) and g(x) lies entirely within (a simplex of) |K ′|, so the mapping
F : |K| × I → |K ′|,

F (x, t) = tf(x) + (1− t)g(x)

is well-defined.

We have to show that F is continuous. Since we assume K to be finite,
we can write it in the form

K = {σ1, . . . , σn}.
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It follows that (σi × I)ni=1 is a finite closed covering of |K| × I. By Lemma
3.4 it is enough to establish the continuity of restriction F : σi× I → |K ′| for
every i = 1, . . . , n. But that’s clear from the definition, since operations of
addition and scalar multiplication are continuous in finite-dimensional spaces
- F is practically a linear homotopy of every simplex.

The previous result is equally true for arbitrary, not necessarily finite
simplices K, but the proof is much harder. The problem is to establish con-
tinuity of F . It is clearly continuous on every subset of the form σ×I, where
σ ∈ K, but, if K is not finite, the closed covering (σ × I)σ∈K is not finite
anymore, so we cannot use Lemma 3.4.

The following is the alternative characterization of a simplicial approxi-
mation, which is useful for the technical reasons. Notice in particular that
in this formulation the mapping g, defined on the set of vertices of K is not
assumed to be simplicial a priori, which can be very convenient in practice.

Lemma 5.9. Suppose f : |K| → |K ′| is continuous and a mapping g defined
on the set of vertices of K with values in the set of vertices of K ′ is given.
Then g can be extended to a simplicial approximation of f (in a unique way)
if and only if

f(St(v)) ⊂ St(g(v))

for every vertex v ∈ K.

Proof. The proof that simplicial approximation satisfies the condition is left
as an exercise).

Suppose g satisfies the condition. Let us first prove that g can be extended
to a simplicial mapping i.e. satisfies the condition (*) of Lemma 5.3.

Suppose {v0, . . . ,vn} is a set of vertices of a simplex σ ∈ K. We need to
show that the set {g(v0), . . . , g(vn)} spans a simplex in K ′.

Let b be the barycentre of σ. Then b ∈ St(vi) for all i = 0, . . . , n. By
assumption it follows that

c = f(v) ∈ ∩n
i=0 St(g(vi)).

Let σ′ be the unique simplex of K ′ that contains c as an interior point. By
the definition of star and the fact that interiors of different simplices do not
intersect, it follows that g(vi) is a vertex of σ′ for every i = 0, . . . , n. In
particular {g(v0), . . . , g(vn)} are vertices of a simplex in K ′ (which is some
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face of σ′).

Hence g can be extended to a simplicial mapping h : |K| → |K ′| in a
unique way. It remains to show that h is a simplicial approximation of f .

Suppose f(x) ∈ Int σ for some simplex σ ∈ K ′. Let {v0, . . . ,vn} be the
set of vertices of the unique simplex of K, that contains x as an interior
point. Then x ∈ St(vi) for all i = 0, . . ., so f(x) ∈ St(g(vi)). In the same
way as above we see that g(vi) is a vertex of σ for every i = 0, . . . , n. Since
g is simplicial, it follows that g(x) is a convex combination of g(vi), hence
belongs to the simplex σ as well. The claim is proved.

Now we can state and prove the final main result of this section known
as ”the simplicial approximation theorem”.

Theorem 5.10. Suppose K is a finite simplicial complex, K ′ is an arbitrary
simplicial complex and f : |K| → |K ′| is continuous. Then there exists n ∈ N
such that f has a simplicial approximation g : |K(n)| → |K ′|.

Proof. Consider the open covering

U = {f−1(St(v′) | v′ is a vertex of K ′}

of |K|. By the proposition 4.21 there exists n ∈ N such that K(n) is finer
than the open covering U . This means that for every vertex v of K(n) there
exists a vertex g(v) of K ′ such that

f(St(v)) ⊂ St(g(v)).

By the previous lemma g can be extended to a simplicial approximation of
f . This proves the theorem.

Corollary 5.11. Suppose X and Y are compact polyhedra. Then the set
[X, Y ] of homotopy classes is countable7.

Proof. Choose finite simplicial complexes K,K ′ such that X = |K|, Y = |K ′|
(up to a homeomorphism). Let f : X → Y be an arbitrary continuous map-
ping. By the Theorem 5.10 there exists n ∈ N such that f has a simplicial
approximation g : |Kn| → |K ′|. By the lemma 5.8 g is homotopic to f .

7Recall that the set S is countable if there exists a surjection N → S. An equivalent
way to express that is to say that we can ”count” elements of the countable set S using
natural numbers. The set of all rational numbers Q is countable, but the set of all real
numbers R is uncountable
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For every fixed n ∈ N there exists only a finite amount of simplicial map-
pings g : |K(n)| → |K ′|, since such a mapping is completely determined by
the way it maps vertices to vertices, and there is only a finite amount of
vertices in both complexes.

Since the countable union of finite sets is countable, the claim follows.

Examples 5.12. 1) Later we will prove that [Sn, Sn] is infinitely count-
able for every n > 0, in particular not finite. Fix a particular trian-
gulation K of Sn. For every fixed m ∈ N complexes K(m) and K are
finite, so there exists only a finite amount of possible simplicial map-
pings g : |K(m)| → |K|.

Since [|K|, |K|] is infinite, for every fixed m ∈ N there must be a con-
tinuous mapping f : |K(m)| → |K| which does not have a simplicial
approximation g : |K(m)| → |K|. Hence it is necessary to consider ar-
bitrary m ∈ N in the proposition 5.10.

2) Consider the boundary of the equilateral triangle σ as a 2-simplex with
vertices v0,v2,v4. For odd i = 1, . . . 5 we denote by vi the barycentre
of the 1-simplex [vi−1,vi+1]. Here we identify v6 = v0 (see the picture
below).

Let K = K(Bd σ) and let f : |K| → |K| be the unique simplicial map-
ping f : |K ′| → |K ′| defined by f(vi) = vi+1. Mapping f can be in-
terpreted in a natural way as a 60 ◦ ”rotation” (under the canonical
projection homeomorphism to the sphere).

b b

b

b

b b

v0

v1

v2

v3

v4

v5
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As a mapping f : |K| → |K| f does not have a simplicial approxima-
tion. As a mapping f : |K1| → |K| f has exactly 8 simplicial appoxima-
tions - under any approximation g the barycentres vi (where i is odd)
must be mapped to vi+1 and for even indices i there are exactly two
choices for g(vi) - either vi or vi+1. The verification of these claims is
left as an exercise.

Using simplicial approximation-theorem one can easily prove the following
interesting topological result.

Theorem 5.13. Suppose m < n. Then [Sm, Sn] is a singleton. In particular
every continuous f : Sm → Sn homotopically trivial.

Proof. We triangulate Sm as a boundary |K| of an m-simplex σm and Sn

as a boundary |K ′| of an n-simplex σm. Suppose f : Sm → Sn is a continu-
ous. We prove that f is homotopically trivial. By Theorem 5.10 there exists
k ∈ N such that f has a simplicial approximation g : |Kk| → |K ′|. Since
f ≃ g (Lemma 5.8), it is enough to prove that g is homotopically trivial.
But g is simplicial, so maps m-dimensional simplicial complex Km into the
m-skeleton of K ′. Since K ′ is n dimensional and m < n, g cannot be surjec-
tive. But any non-surjective mapping g : Sm → Sn is homotopically trivial
(Example 5.6, 4)).

We have shown that every mapping is homotopic to a constant mapping.
It remains to show that all constant mappings Sm → Sn are homotopic to
each other. That follows from the fact that Sn is path-connected (exercise).

Suppose we are able to show that Sn is not contractible for any n ∈ N.
Then, using previous theorem, we can prove that Sm and Sn are not of the
same homotopy type when m 6= n, which, as we have seen above, is enough
in order to prove that Rm is not homeomorphic to Rn, m 6= n.

The proof goes as following. Suppose f : Sm → Sn is a homotopy equiv-
alence. We may assume that m < n. By the previous result f is homotopic
to a constant map g. It is easy to see that a mapping homotopic to a homo-
topy equivalence is also homotopy equivalence. Hence there exists a mapping
g : Sm → X , where X is a singleton, such that g is a homotopy equivalence.
But this means that Sm is contractible.

By the previous theorem any continuous mapping f : Sm → Sn is homo-
topically trivial if m < n. What about the case m ≥ n? As we already
mentioned, it can be shown (and we will later) that [Sn, Sn] is infinite and
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countable for n > 0. When m > n, the question is in general surprisingly
difficult. When m > 1 all mappings f : Sm → S1 are homotopically triv-
ial, but for n 6= 1 there usually exist homotopically non-trivial mappings
f : Sm → Sn. One famous example is so-called Hopf fibration p : S3 → S2.
The set [S3, S2] turns out to be infinite and countable, but for instance
[S4, S2] has 2 elements, [S6, S2] has 12 elements and [S10, S4] has 72 ele-
ments! In fact the exact nature of the set [Sm, Sn] (and its size) is still not
known for all m,n ∈ N - it is an open problem. Only the partial results are
known.

The subfield of algebraic topology that studies these kind of problems
is called the homotopy theory. So-called homotopy groups πm(X) are
examples of important algebraic invariants in topology. They are in general
more complicated then homology groups we will study as the main objec-
tive of this course. The sets [Sm, Sn] mentioned above are actually exactly
homology groups πm(S

n)8.

6 ∆-complexes

In the previous sections we have familiarized ourselves with the elements of
the theory of simplices and simplicial methods in topology. It is possible
to develop these methods further to make it possible to actually prove in-
variance of domain, non-contractibilty of the sphere or Brouwer’s fixed point
theorem using simplicial methods alone. This is how these classical results
were actually established for the first time. However, since this is a course in
algebraic, not combinatorial topology, we won’t do that, but instead we will
switch to algebraic methods at this point, more precisely to the homology
theory. Before we do that, let us take a brief look at the useful generaliza-
tion of the concept of simplicial complex, which we will use later for some
concrete calculations.

Simplicial complexes provide a classical way to study polyhedrons, which
is useful both theoretically as well as in practice. However, in some circum-
stances the simplicial approach is ”too regular” and rigid. Many spaces that
occur in practice can be triangulated, but the triangulation might be too
complicated and ”unnatural” for practical purposes. The ”problem” is that
we demand that each piece of the triangulation is a real simplex and that we
demand that two pieces intersect strictly along the common face.

8Precisely speaking homology groups are homotopy classes relative to a chosen base-
point, but in the case of spheres there is no difference.
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In order to loosen those strict rules we briefly introduce the notion of ∆-
complexes 9), which is more flexible, ”modern” way to divide a given space
into simplicial pieces.

Before we’ll dive into formalities, let us first grasp the idea via simple ex-
amples. Let us start with the same square I2 as above, which we triangulated
by dividing it into 2 triangules, which intersect along the diagonal.

U

V

a

a
This is an excellent way to triangulate a square, but suppose we ”glue”

together horizontal sides of the square (both indicated by the letter ’a’ in the
picture), thus obtaining a hollow tube. It is very tempting to represent this
space as a sort of a simplicial complex build in the same way as the complex
for a square - with 2 triangles that have not only diagonal of a square in
common, but also sides ’a’ as well. Now, this won’t be a simplicial complex
in a strict sense we have defined it, since this complex has two triangles,
whose intersection is not a common side, but rather a union of two common
sides. Nevertheless it provides a very simple combinatorial description of the
tube. We could come up with a ”subdivision” of this ”complex” that would
be an honest simplicial complex representing the tube - see the picture below.
However this description is more complicated and have more simplices. Also,
the simple geometrical intuition and naturality would be lost.

a

a
Quotient spaces

9pronounced: ”Delta-complex”
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Before we proceed with the precise definition of Delta-complexes, let’s
review the notion of quotient space in general topology. The intuitive idea
of obtaining new spaces by ”gluing” points of the given space together is
formalized in mathematics by the notion of equivalence relation.

An equivalence relation ∼ in the set X is a relation in X i.e. a subset of
X ×X which is
(i) reflexive i.e. x ∼ x for all x ∈ X ,
(ii) symmetric i.e. if x ∼ y, then also y ∼ x,
(iii) transitive i.e. whenever x ∼ y and y ∼ z, then x ∼ z.

Suppose ∼ is an equivalence relation in a set X and let x ∈ X . The
subset

x = {y ∈ X | x ∼ y}
consisting of all elements y ∈ X that are in relation ∼ with x is called the
(equivalence) class of x. The fundamental property of equivalence classes is
the following (known from the basic courses in set theory or discrete mathe-
matics).

Lemma 6.1. Equivalence classes with respect to a given equivalence relation
∼ in the set X form a partion of the set X. Precisely this means that

X =
⋃

x∈X

x

and different classes do not intersect. Equivalently put - if x ∩ y 6= ∅, then
x = y.

The collection of equivalence classes x under an equivalence relation ∼ in
the set X is denoted X/ ∼ and called a quotient set of X (with respect to
relation ∼). An element x is called a representative of the class A ∈ X/ ∼ if
A = x. Every element of the class is its representative.

The canonical projection mapping p : X → X/ ∼ is defined by mapping
an element to its class,

p(x) = x.

By definition canonical projection is always a surjection.
Now suppose X is a topological space and ∼ is an equivalence relation

in X . We define the quotient topology in the quotient set X/ ∼ by asserting
that

U ⊂ X/ ∼ is open if and only if p−1U is open in X.
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This defines topology in X/ ∼ and p is clearly continuous with respect to this
topology. It can be shown that this topology is actually the largest topology
of X/ ∼ with respect to which the canonical projection p : X → X/ ∼ is
continuous.

In fact p is not only continuous, it has even stronger property - it is so-
called quotient mapping.

Suppose f : X → Y is a mapping between topological spaces X, Y . We
say that f is a quotient mapping if it is surjection and has the property

U ⊂ Y is open if and only if f−1U is open in X.

The most important property of quotient mappings is the following.

Lemma 6.2. Suppose f : X → Y is a quotient mapping and g : Y → Z is a
mapping (not assumed to be continuous). Then g is continuous if and only
if the composition mapping g ◦ f : X → Z is continuous.

Proof. Exercise.

The claim of the Lemma implies that in the diagram

X

  @
@@

@@
@@

@

f
��
Y

g // Z

if we want to prove g to be continuous it is enough to ”lift” it to X and
instead prove the continuity of the ”lifted mapping” g ◦ f .

Lemma 6.3. An open or closed continuous surjection f : X → Y is a quo-
tient mapping.

Proof. Any continuous mapping f : X → Y satisfies the property ”if U is
open in Y , then the inverse image f−1U is open in X”, this is one of the
ways to characterize continuous mappings (Lemma 3.2). Hence to prove
that a continuous surjection f : X → Y is a quotient it is enough to show
that whenever U ⊂ Y is such that f−1U is open in X , U is open in X .

Thus suppose U ⊂ Y is such that f−1U is open inX . Since f is surjection,
we have, by the standard set theory, that

f(f−1U) = U
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(surjectivity of f is important here!). Since we are assuming that f is open,
this implies that U is open.

The case of the closed surjection is proved similarly, by using the compli-
ments.

Lemma 6.4. Suppose X is a compact space and Y is a Hausdorff space.
Then any continuous mapping f : X → Y is closed. In particular any con-
tinuous surjection f : X → Y is a quotient mapping.

Proof. The first claim is a standard general topology - any mapping between
compact and Hausdorff spaces is closed (Proposition 3.11, (ii)). The second
claim follows from this and previous lemma.

All quotient mappings are ”essentially” canonical projections to quotient
spaces, up to a homeomorphism. We will review more general result. Suppose
f : X → Y is any continuous mapping between topological spaces X, Y . The
canonical equivalence relation ∼f induced by f is defined by the rule

x ∼f y if and only if f(x) = f(y).

The equivalence classes of this relation are exactly inverse images f−1(y) of
the elements of Y . The mapping f̃ : X/ ∼f→ Y defined by

f̃(x) = f(x), x ∈ X

is well-defined. Indeed, if x = x i.e. if we use another representative y for
the class x, we get f̃(y) = f(y) = f(x) = f̃(x) by the very definition of the
relation ∼f . In general when we construct a mapping X/ ∼→ Y we can do
it by using representatives, provided we show that the end result actually
does not depend on the choice of representatives.

By definition induced mapping f̃ satisfies the equation f̃ ◦ p = f . Since
canonical projection p is quotient and f is assumed to be continuous, Lemma
6.2 implies that f̃ is continuous. It is easy to see that f̃ is an injection and
f̃(X) = f(X).

Hence we can define a surjective mapping X/ ∼f→ f(X) by the same
formula. We denote this mapping by f̃ also. By above mapping f̃ : X/ ∼f→
f(X) is a continuous bijection.

Proposition 6.5. Suppose f : X → Y is a continuous mapping between
topological spaces X, Y . Then there is a canonical decomposition f = j◦f̃ ◦p,
where
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p : X → X/ ∼f is a canonical projection,
f̃ : X/ ∼→ f(X) is a continuous bijection defined by

f̃(x) = f(x),

and j : f(X) → Y an imbedding of the subset.

Moreover f̃ is a homeomorphism if and only if f is a quotient mapping.

Proof. Only the last claim needs a proof at this point. If f̃ is a homeomor-
phism, then j = id and f = f̃ ◦ p. Any homeomorphism is trivially a quo-
tient mapping, so f is a quotient mapping as a composition of two quotient
mappings (it is easy to verify that the composition of quotient mappings is a
quotient mapping). Hence if f̃ is a homeomorphism, f is a quotient mapping.

Conversely suppose f is a quotient mapping. Then f is surjection, which
implies that f̃ : X/ ∼→ Y is a bijection. Any bijective quotient mapping
is a homeomorphism (check!), so it is enough to prove that f̃ is a quotient
mapping. This is left as an exercise.

Corollary 6.6. Suppose X and Y are topological spaces and f : X → Y a
quotient mapping. Then Y is homeomorphic to a quotient space X/ ∼f (via
homeomorphism f̃).

Corollary 6.7. Suppose X is a compact space,Y is a Hausdorff space and
f : X → Y is a continuous surjection. Then Y is homeomorphic to a quotient
space X/ ∼f (via homeomorphism f̃).

In practise when defining equivalence relation one often do not describe
the relation completely but rather gives only some ”necessary” relations i.e.
a subset A ⊂ X ×X and defines the equivalence relation ∼ by saying that
it is generated by A. Precisely this means the following.

Suppose A ⊂ X ×X . Consider all equivalences relations that contain A.
Such exist since for instance trivial relation X × X (all elements identified
with each other) is equivalence relation. Hence we can form the intersection
of all equivalence relations in X that contain A, let us denote this intersec-
tion by ∼A. It is easy to verify that intersection of equivalence relations is
an equivalence relation itself. By construction ∼A is thus the smallest equiv-
alence relation in X that contains A. We call ∼A the equivalence relation
generated by A.

It is possible to characterize ∼A in terms of elements of A.
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Lemma 6.8. Suppose A ⊂ X×X. The pair (x, y) belongs to ∼A if and only if
x = y or there exists a finite sequence (a0, a1), (a1, a2), . . . , (ai−1, ai), (ai, ai+1), . . . , (an, an+1)
where a0 = x, an+1 = y and for all i = 0, . . . , n either (ai, ai+1) ∈ A or
(ai+1, ai) ∈ A.

Examples 6.9. 1. Suppose X is a topological space and Y ⊂ X is a
subset. Then Y × Y ⊂ X × X generates an equivalence relation ∼Y

in X. This relation identifies all points of Y to one point, leaving
other points untouched. Equivalence classes are precisely the set Y and
singletons {x}, x ∈ X \ Y .

It is customary to denote the quotient space X/ ∼Y simply by X/Y .

2. The sphere S1 is homeomorphic to the quotient space I/{0, 1} of the
unit interval I. This is seen as following. Define the mapping f : I →
S1 by

f(x) = (cos(2πx), sin(2πx).

It is well-known that f is a continuous surjection. Since I is compact
and S1 is Hausdorff, f is a quotient mapping. Hence induced mapping
f̃ : I/ ∼f→ S1 is a homeomorphism (Corollary 6.2). It is easy to see
that f(x) = f(y) for x 6= y if and only if {x, y} = {0, 1}. Hence ∼f

only identifies together points 0 and 1, so I/ ∼f= I/{0, 1}.

The geometric intuition behind this result is very simple - if you take a
wire and bend it so that both ends meet, you will obtain a round circle.

3. More generally the quotient space B
n
/Sn−1 is homeomorphic to Sn.

Again, since B
n
is compact and Sn is Hausdorff, it is enough to con-

struct a continuous surjection f : B
n → Sn such that ∼f= B

n
/Sn−1.

One natural way to do it is to map a sphere Sn−1(0, r), 0 ≤ r ≤ 1 onto
the ”slice”

Sr = {(x1, . . . , xn, xn+1) ∈ Sn | xn+1 = 2r − 1}

in a consistent manner. As r goes from 0 to 1, expression 2r− 1 takes
all values from −1 to 1 exactly once. Moreover Sr and Sn−1(0, r) are
homeomorphic. One only needs to choose homeomorphisms between
them for all r so that put together they give a continuous mapping.
This leads to a mapping f : B

n → Sn defined by

f(x1, . . . , xn) = (ax1, ax2, . . . , axn, 2|x| − 1),
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where

a = 2

√
1− |x|
|x| .

For x = 0 this is not defined, so we simply assert f(0) = (0, . . . , 0,−1).
The continuity of f is clear except in 0, where it can also be established
by a direct calculation. The details are left to the reader. Notice that
Sn−1 indeed maps to a single point (0, . . . , 0, 1) (so-called ”north pole”
of the sphere).

The geometric idea behind the result (for n = 2) can be visualised by
imagining that you peel the skin of an orange from the north pole down.
If the pieces you peel into are ”infinitely small”, you will arrive at the
inverse of the homeomorpism we have constructed.

4. Important non-trivial set of examples of quotient spaces is formed by
projective spaces RP n. There are several equivalent ways to define
projective space. One is to define it as a quotient space Sn/ ∼1, where
∼1 is generated by relations {x,−x}, x ∈ Sn. This is the one that is
used the most. Another way is to define it as a quotient space B

n
/ ∼2,

where ∼2 is generated by the relations x ∼ −x for all x ∈ Sn−1 (notice,
identifications only on the boundary!). Lastly, third commonly used
construction is to to define RP n as the quotient space of Rn+1 \ {0}
with respect to equivalence relation ∼3 defined by x ∼3 y if and only if
x = ty for some scalar t ∈ R. Notice that the equivalence classes are
exactly lines going through origin (minus the origin itself).

The exact proof of the claim that all these construction define the same
space (up to a homeomorphism) is left as an exercise (or we might come
back to this later, in case we will need this).

Let us get back to the square I2 represented as a simplicial complex with
two triangles intersecting at the diagonal of the square.
In the example above we obtained a hollow tube X by gluing together op-
posite points on the horizontal sides of the square. Exactly put, this is
the equivalence relation on the square generated by relations of the form
(0, t) ∼ (1, t), for all t ∈ [0, 1]. Let f : I → S1 be the mapping that induces a
homeomorphism I/{0, 1} → S1. We have constructed such a mapping in the
Example 6.9, 2) above. The mapping g : I2 → S1× I, g(x, y) = (f(x), y) has
the property ∼g=∼. Hence g̃ is a homeomorphism I2/ ∼→ S1 × I. In other
words hollow tube is homeomorphic to S1×I, which is geometrically obvious.
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Let us continue with the same ideas based on the identifications of the
sides of a square. If we again glue together horizontal sides but changing
direction of the one of them, we obtain a famous space known as the Mobius
strip. Mobius strip is the quotient space I2/ ∼, where ∼ is generated by the
relations (0, t) ∼ (1, 1− t), 0 ≤ t ≤ 1.

Once again, we can think of this space as the union of two triangles with
two common sides - this time identification of sides is just slightly different,
”with a twist”.

U

V

a

a
In case of cylinder and the Mobius strip, we have glued together only

one pair of opposite sides, leaving the other pair untouched. Next, we glue
both pairs together. if you do it in the ”straight” manner, without the twist,
you obtain the torus T 2. Formally torus is a quotient space I2/ ∼, with
∼ generated by the relations (0, t) ∼ (1, t), 0 ≤ t ≤ 1 and the relations
(s, 0) ∼ (s, 1), 0 ≤ s ≤ 1. Notice that all four ”corner points” of the square
are being identified to a single point. You can think of the torus as being
constructed in two stages - first we glue one pair of opposite sides, obtaining
cylinder S1 × I, as before, and then gluing together the top and the bottom
of the cylinder, obtaining something that looks like a (surface of a) dough-
nut. It is not hard to see (and is quite obvious from the explanation above),
that the torus is actually homeomorphic to the product S1×S1 of two circles.

Since torus is obtained from the square by identifying some sides, we can
once more think of it as a complex with two triangles - this time the intersec-
tion of two triangles consists of their mutual boundary with some interesting
identifications. All four vertices of the triangles are now identified together to
a single point and ”1-simplices” of this complex form 3 circles glued together
in a single point (which corresponds to the glued vertices).
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Finally, before we proceed with a formal theory of ∆-complexes, let us
go through two more example. In case of torus we identified both pairs of
opposite pairs without the twist.

In the next example we ”twist” one of the pair of sides, leaving the other
one ”straight”, we obtain the Klein’s bottle. Precisely Klein’s bottle is a
quotient space I2/ ∼, where ∼ is generated by the relations (0, t) ∼ (1, t),
0 ≤ t ≤ 1 and the relations (s, 0) ∼ (1− s, 1), 0 ≤ s ≤ 1.
Once again all vertices are being identified to a single point and ”1-skeleton”
consists of 3 circles glued together at this point.

U

V

a

a

bb

It can be shown that one cannot embed Klein’s bottle in the three-
dimensional space R3. For us humans it means that it is impossible to
visualise Klein’s bottle precisely and we cannot draw it just as easily as in
the case of torus. In the literature and on the internet one can find pictures
of Klein’s bottle, but they are all in fact self-intersecting projections to the
three-dimensional space.

Finally as the last example we identify both pairs of sides of the square
”with a twist”. It turns out (exercise) that the resulted quotient space is
actually (homeomorphic to) the projective space RP 2.
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These examples should have convinced us, that by loosing up strict rules
of simplicial complexes a little, we obtain simple a natural combinatorial de-
scriptions of some interesting and well-known spaces.

For the technical reasons we choose to formalise the notion of ∆-complex
in terms of ordered simplices. We denote an ordered simplex with vertices
v0 < v1 < . . . < vn by an n + 1-tuple (v0, . . . ,vn) formed by its vertices
taken in the chosen order.

Suppose (v0, . . . ,vn) and (w0,w1, . . . ,wn) are both ordered simplices
of the same dimension (not necessarily lying in the same vector space).
Then, by Lemma 2.15 there exists unique affine mapping f : (v0, . . . ,vn) →
(w0,w1, . . . ,wn) that ”preserves the ordering of vertices”, i.e. the one that
has the property f(vi) = wi for all i = 0, . . . , n. This mapping is then
necessarily a homeomorphism (Lemma 3.10). We call this mapping the or-
dered homeomorphism between ordered simplices (v0, . . . ,vn) and
(w0,w1, . . . ,wn).

We also adopt the following notation. In case (v0, . . . ,vn) is an ordered
simplex as above, its i’th face (v0, . . . , v̂i, . . .vn) will be denoted di(σ).

Definition 6.10. A ∆-complex K consists of the following data.

(1) A collection {σj}j∈I of ordered simplices, such that every face (with
induced natural order) of a simplex in K is also a simplex in K. It is
not required that all simplices lie in the same vector space.

(2) An equivalence relation ∼n defined on the set Kn of ordered n-simplices
of K, for every n ∈ N. We assume that these relations respect faces in
a natural way, meaning that if σ ∼ σ′, then also di(σ) ∼ di(σ′) for all
i = 0, . . . , dim σ.

Of course what we are really interested in is the space obtained from this
data.
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First recall the general notion of a the disjoint (topological) union. Sup-
pose (Xi)i∈I is a collection of sets. We want to form the union of this sets,
but so that different subsets Xi and Xj do not intersect in this union, for
i 6= j. The usual union

⋃
i∈I Xi won’t do, since intersection Xi ∩ Xj might

be non-empty. To form a disjoint union, which is denoted

⊔

i∈I

Xi

we take the union of non-intersecting copies of sets Xi. One easy way to
ensure copies won’t intersect is, for instance, to substitute each Xi with its
copy Xi × {i}. Hence we might adopt the following formal definition of the
disjoint union, ⊔

i∈I

Xi =
⋃

i∈I

Xi × {i}.

The exact definition is not important - the main thing is that disjoint union is
a union of non-intersecting ”copies” of original sets. In practice one identifies
these copies with original sets, so we will think of each set Xi as a subset of⊔

i∈I Xi, instead of Xi×{i}. Formally this identification is done with the aid
of a canonical embedding ιi : Xi → X , defined by ιi(x) = (x, i).

In case each Xi is a topological way, there is a natural way to define a
topology in the disjoint union X =

⊔
i∈I Xi. We assert that U ⊂ X is open if

and only if U ∩Xi = ι−1
i (U) is open in the original topology of Xi, for every

i ∈ I. This is actually topology coherent with topologies of subsets Xi. For
every i ∈ I the mapping ι : Xi → X is a topological embedding, thus Xi can
be regarded also as a topological subspace of X . The subspace is both open
and closed in X , for every i ∈ I.

Suppose K is a ∆-complex. We construct a polyhedron |K| of K as
follows. First we form the disjoint topological union of all simplices of K,

Z =
⊔

j∈I

σj .

Next we do in the space Z the identifications of two types.
1) If σ′ < σ we identify σ′ with its copy in σ (one of the faces), in an obvious
way.
2) If σ ∼ σ′ in K are identified, let f : σ → σ′ be the unique ordered sim-
plicial homeomorphism between simplices σ and σ′. In this case we identify
x ∈ σ and f(x) ∈ σ′.
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These identifications define an equivalence relation ∼ on Z, the smallest
equivalence relation that contains identifications of the types 1) and 2) above.
Notice that we the same symbol ∼ for both this relation and the original
equivalence relation between simplices, which is a part of the structure of
the complex K, slightly abusing the notation. A compact way to describe
this equivalence relation is given in the following Lemma.

Lemma 6.11. Suppose x,x′ ∈ Z, where

Z =
⊔

σ∈K

σ

is a disjoint union of simplices of the ∆-complex K. Let σ and sigma′ be the
unique simplices of K such that, where x ∈ σ,x′σ′. Then x ∼ x′ in Z if and
only there exist τ ≤ σ, τ ′ ≤ σ′, with dim τ = dim τ ′, τ ∼ τ ′ in K and

x′ = f(x),

where f : σ → σ′ be the unique ordered simplicial homeomorphism between τ
and τ ′.

Proof. Exercise.

The polyhedron |K| of the ∆-complex K is defined to be the quotient
space

|K| = Z/ ∼,

equipped with a quotient topology. More generally we could say that a space
X is a polyhedron if it is homeomorphic to a polyhedron of some ∆-complex.
This is not in contradiction with our previous terminology - it can be proved
that every ∆-complex is a polyhedron in the ”old” sense, i.e. can always be
triangulated as a polyhedron of a simplicial complex, although we will skip
the proof of this fact. Hence we don’t obtain new spaces, but we do obtain
more economical and efficient way to describe trianguable spaces using com-
binatorial approach.

For every simplex σ in a ∆-complex K we define a mapping gσ : σ → |K|
to be the composition gσ = p◦ ισ, where ισ : σ → Z is a canonical embedding
to a disjoint union and p : Z → |K| is a canonical projection to a quotient
space. Since we can regard σ as a subset of Z, g is essentially simply the
restriction of the canonical projection p : Z → |K| to a subset σ.
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Lemma 6.12. The topology of the polyherdon |K| is co-induced by the col-
lection of mappings

{gσ}σ∈K .
This means that a subset U ⊂ |K| is open in |K| if and only if its inverse
image f−1

σ (U) is open in the simplex σ, for every σ ∈ K.
Similar characterization exists for closed subsets of |K|.

Proof. This follows from the definition of the quotient topology and the topol-
ogy of disjoint topological union. More exactly, let p : Z → |K| be the canon-
ical projection. Then for any subset U ⊂ |K| we have that U is open is |K|
if and only if its inverse image p−1U is open in Z. But, on the other hand

Z =
⊔

σ∈K

σ

is defined to be disjoint topological union, which means that its subset p−1U
would be open in Z if and only

ι−1
σ (p−1U)

is open in σ for every simplex σ ∈ K. Since

ι−1
σ (p−1U) = (p ◦ ισ)−1U = g−1

σ U,

the claim is proved.

The image of the form gσ(σ) = [σ], which is a subset of |K| will be
called a geometrical n-simplex of K. If the simplex σ is represented as an
ordered sequence of its vertices i.e. σ = (v0, . . . ,vn) ∈ K, the corresponding
geometrical simplex will be denoted also

[v0, . . . ,vn].

Notice that topologically a geometrical simplex looks like a simplex, but
possibly with some identifications on the boundary, so it is not necessarily
homeomorphic to a simplex, despite of the terminology. In the Proposition
below we will prove exactly that a geometrical simplex is (homeomorphic to)
a certain quotient space of the simplex.

For example the circle S1 can be represented as a geometrical 1-simplex
[v,v] with its end points glued together (see examples below). This space is
not homeomorphic to an honest 1-simplex (can you think of an easy proof of
this claim?).
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Suppose σ ∼ σ′ in the ∆-complex K. Let f : σ → σ′ be the unique
ordered simplicial homeomorphism, which identifies the points of σ with the
points of σ′ in the ∆-complex K. Then ι′σ ◦ f = ισ (check), hence

gσ′ ◦ f = p ◦ ισ′ ◦ f = p ◦ ισ = gσ.

Since f is a bijection, it follows that gσ′ and gσ have exactly the same image.
In other words in this case [σ] = [σ′], the corresponding geometrical simplices
of K are the same. Conversely, if the simplices σ, σ′ in K are not identified,
then the geometrical simplices [σ] and [σ′] are different. This follows from
Proposition 6.13 below.

Thus it is important to understand the difference between simplices of
the ∆-complex and the geometrical simplices of the ∆-complex. The set of
simplices is a part of the abstract structure of the complex. Geometrical
simplices are subsets of the polyhedron |K| and need not to be simplices
in a strict sense. From the previous paragraph it follows that the set of n-
dimensional geometrical simplices of a given ∆-complex K is essentially the
same as the quotient set Kn/ ∼n (geometrical simplices that correspond to
different simplices are the same if and only if the corresponding simplices are
identified in K), so we will often denote it in that way.

Suppose σ is a simplex in a ∆-complexK. The image gσ(Int σ) = Int[σ] of
the (simplicial) interior of σ under the mapping gσ is called the (simplicial)
interior of the geometrical simplex [σ] ⊂ |K|.

Proposition 6.13. Suppose K is a ∆-complex and σ is a simplex of K.
Then
(1) gσ : σ → |K| is a closed mapping. In particular it is a quotient mapping
when restricted to its image i.e. when thought of as a mapping gσ : σ → [σ].
(2) The geometrical simplex [σ] is closed in |K|.
(3) The restriction gσ| Intσ : Int σ → Int[σ] to the simplicial interior of σ is a
homeomorphism to its image. Every simplicial interior of an n-dimensional
geometrical simplex is thus homeomorphic to the interior of an n-dimensional
simplex or to the open ball Bn.

Proof. We start by proving the claim (1). Claims (2) and (3) actually follow
from the claim (1).

Let F ⊂ σ be a closed subset of a simplex σ. To prove that gσ(F ) is
closed in |K| we need to, by Lemma 6.12, prove that

g−1
τ (gσ(F ))
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is closed in τ , for every simplex τ in K. Let x be a point of the simplex
τ ∈ K. Then x ∈ g−1

τ (gσ(F )) if and only if there exist y ∈ F ⊂ σ such that

p(x) = g(x) = g(y) = p(y).

This means precisely that x ∼ y. By Lemma 6.11 this is equivalent to x ∈ τ ′,
y ∈ σ′, where τ ′ is a face of τ , σ′ is a face of σ and τ ′ ∼ σ′. It follows that
g−1
τ (gσ(F )) is a finite union of the sets of the form τ ′ ∩ fτ ′,σ′(F ), where τ ′

is a face of τ which is equivalent to some face σ′ of σ and fτ ′,σ′ : σ′ → τ ′ is
the unique order preserving simplicial homeomorphism. The union of finite,
since both τ and σ have only finitely many faces. Since f is homeomorphism
and F is closed, each set τ ′ ∩ fτ ′,σ′(F ) is closed in a face τ ′, hence in partic-
ular in a simplex τ . Since g−1

τ (gσ(F )) is a finite union of these sets, it is also
closed. The claim (1) is proved.

Claim (2) follows trivially from (1), since σ is certainly closed in itself.

To prove the claim (3) we first show that the restriction of gσ onto Int σ
is an injection and

g−1
σ (Int[σ]) = Int σ.

Both claim follow from Lemma 6.11. Indeed, suppose x ∈ Int σ, y ∈ σ are
identified in |K|, i.e. p(x) = p(y). We will show that then x = y. Both claims
follow from this. By Lemma 6.11 x ∈ σ′ and y ∈ σ′′, where σ′, σ′′ are both
faces of σ that are identified. But the only face of σ which intersects interior
is σ itself, so σ′ = σ. Also, identified simplices have the same dimension.
The only face of σ which has the same dimension as σ is σ itself. Hence also
σ′′ = σ. The unique order preserving simplicial homeomorphism σ → σ is
the identity mapping, so x = y. It follows that the restriction of gσ onto
Int σ is indeed injective and that

g−1
σ (Int[σ]) = Int σ,

i.e. no point on the boundary of σ can be identified with a point from the
interior of σ.

Since gσ| Intσ : Int σ → Int[σ] is a continuous bijection, to prove that
it is a homeomorphism, it is enough to show that it is a closed mapping.
This follows from the general topological fact, the proof of which we leave
to the reader as an exercise. Suppose f : X → Y is a closed mapping and
A ⊂ Y is an arbitrary subset. Then the restriction f |f−1A → A is also a
closed mapping. By applying this fact to the mapping gσ : σ → [σ], which
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we already proved to be closed and a subset A = Int[σ], we obtain that the
restriction gσ : g

−1
σ (Int[σ]) → Int[σ] is a closed mapping. Since we also know

that g−1
σ (Int[σ]) = Int σ,, the claim follows.

Lemma 6.14. A polyhedron |K| of a ∆-complex is, as a set the disjoint
union of the interiors of geometrical simplices of K i.e. every point of |K|
belongs to the interior of the unique geometrical simplex.

Interiors Int[σ] and Int[σ′] intersect (hence are the same) if and only if
σ ∼ σ′.

Proof. Exercise.

It is extremely important to understand that, just as in case of a sim-
plicial complex, polyhedron |K| is a disjoint union of simplicial interiors of
geometric simplices only as a set, not in a topological sense. Topological
interiors of geometrical simplices are usually not open in |K|.

Every polyhedron of a simplicial complex K can be considered as a poly-
hedron of a ∆-complex in a natural way. We do need to order every simplex
in a consistent way though, but this can be always done - just choose some
linear ordering on the set of all vertices of K. You might need an Axiom
of Choice for large sets, but you do believe in the Axiom of Choice, don’t
you? Also, one needs to verify that the weak topology on |K|, considered as
a polyhedron of the simplicial complex is the same as the topology we have
defined on the polyhedron of the ∆-complex K. This is always true, proof
left as an exercise.

It follows that all constructions made for ∆-complexes work for simplicial
complexes as well, in particular a simplicial homology, defined in the next
section.

A ∆-subcomplex L of K is defined in an obvious manner. It is a subcol-
lection of simplices of K which is closed under faces and identifications. In
other words L ⊂ K is a subcomplex if
1) in case σ ∈ L and σ′ ≤ σ, also σ′ ∈ L,
2) in case σ ∈ L and σ ∼ σ′ for some σ′ ∈ K, then also σ′ ∈ L.

It can be proven that whenever L is a subcomplex of K, the polyhedron
|L| embeds as a subspace of |K| in an obvious way. Moreover |L| is always
closed in |K|. The proof of both claims is left as an exercise.
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Suppose K is a ∆-complex and n ∈ N. By Kn we denote a subcomplex
of K consisting of all simplices of K with dimension smaller or equal to n.
Obviously this set is closed under faces and identifications, so it really is a
subcomplex. It is called the n-skeleton of K. Corresponding subspace |Kn|
of |K| is called the n-skeleton of |K|.

It is clear that K0 is just a collection of 0-simplices, which are isolated
points, so |K0| is also a disjoint union of isolated points (some of which might
be identified but this does not affect the conclusion). In other words K0 is a
descrete space. The elements of |K0| are called the vertices of the polyhe-
dron |K|. 1-simplices of |K| are called the edges.

Whenever one attempts to represent a given space as a polyhedron of a
∆-complex, it is important to pay attention to the ordering of vertices. You
should remember that all simplices must be ordered and whenever you want
to identify two faces of different simplices, the identification must preserve
ordering.

Example 6.15. Let us illustrate this with the example of hollow tube from
the beginning of this section. Now we can represent this space precisely as a
polyhedron of the ∆-complex generated by two 2-simplices and with a suitable
identification of faces.

All we have to do is to choose the ordering of the vertices of the both tri-
angles, so that it is compatible with the identifications we want. The picture
below shows one possibility. The ordering of vertices is indicated by an arrow
on every 1-simplex, which goes from the smaller vertex to the greater vertex.

U

V

a

a

cb d

x y

w = yz = x

Suppose the corners of the square I2 are denoted x = (0, 0),y = (1, 0), z =
(0, 1),w = (1, 1). Then the ∆-complex we have constructed consists of two 2-
simplices U and V with ordering of vertices V = (y, z, x) and U = (w, y, z),
and all their faces. There are two identifications. The interesting one is
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the one that glues the opposite sides of the square together. In terms of our
definition it means that 1-simplices (y, x) and (w, z) are identified.

But there is also another identification. Namely, it is necessary to iden-
tify the face (y, z) of the simplex U with ”the same face” (y, z) of the simplex
V . In the picture this is the common side, the diagonal of the square. It is
easy to overlook this ”obvious” identification, since the both sides are ”the
same”. However, if you look at the way the polyhedron is constructed from
the ∆-complex, you will realise, that the construction ”does not know” any-
thing about the way simplices are originally situated in the vector spaces, they
are taken from. All it does is it takes disjoint copies of simplices and glues
their faces only if we tell it to do so. From the point of view of the definition
U and V are just two abstract 2-simplices, and the definition does not see
that originally they had the common side. So you have to tell it that.

To avoid this confusion let us switch to more abstract and formal notation,
which does not take the geometrical picture in the account. Namely, we define
K to consist of two ordered 2-simplices σ and τ , with ordering of vertices
σ = (v0,v1,v2) and τ = (w0,w1,w2), and all their faces. There are no
identifications between 2-simplices. The 1-simplices (v0,v1) and (w1,w2) are
identified (this corresponds to the diagonal of the square). Also 1-simplices
(v0,v2) and (w0,w2) are identified. Corresponding geometrical 1-simplex is
denoted by ’a’ in the picture. This automatically forces the identifications of
vertices i.e. 0-simplices - v0 is identified both with w1 and with w0. Vertex v1

is identified with both w2 and v2. There are no other identifications. Hence,
due to identifications, there are only two vertices.

Example 6.16. Let us look at another example from the beginning of this
section and describe a way to represent a torus as a polyhedron of a ∆-
complex. We start of with the same picture of a square, which we divided into
two triangles. We put arrows on the sides of triangles in order to describe
possible choice of ordering, which should be consistent for faces, that will be
identified.

U

V

a

a

bb
c

Now all we have to do is to come up with a suitable ordering of vertices
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of simplices U and V . Easiest way is to use arrows as an indicator of direc-
tion - arrow goes from smaller index to a bigger one. One possibility is the
following,

U

V

a

a

bb
c

v0 = w0v1

w1v2 = w2

This is by no means the only way. By choosing another directions for
some arrows one can arrive at another ways, for instance the following.

U

V

a

a

bb
c

v0 = w1v2

w0v1 = w2

Remember - the arrows are put in the picture simply for convenience. The
only think which is important about the choice of their direction is that the
faces which will be glued together must have the same order.

As a further exercise reader should come up with the possible ways to
describe Mobius strip, projective plane or Klein’s bottle as a polyhedron of
a ∆-complex with two triangles.

Examples 6.17. 1) As already mentioned before, a natural way to repre-
sent S1 as a polyhedron of a ∆-complex is to take a complex consisting
of a single 1-simplex (v0,v1), with both vertices identified. This cor-
responds to the way of obtaining a circle from an interval by gluing
together its end points.
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b

v0 = v1

2) Another way to obtain S1 is to take two 1-simplices (v0,v1) and (w0,w1)
and identify their corresponding end points, i.e. identify 0-simplex v0

with w0 and 0-simplex v1 with w1. This representation corresponds to
thinking of a circle as consisting of an upper and lower semicircles glued
together by their corresponding end points. The ordering we introduced
is not the only possible. You might as well identify v0 with w1 and
v1 with w0. Geometrically this choice might look even ”more natural”,
since it would correspond to a continuous way to go around the circle
”clockwise” (or ”counterclockwise”, depending on the way you look at
it).

bb

v0 = w0

v1 = w1 bb

v0 = w1

v1 = w0

Notice that the both ways - a complex with one 1-simplex, or a complex
with two 1-simplices - does not produce a simplicial complex, since a
simplex either cuts itself or two simplices have more than one face in
common.
It is possible to generalize the same idea by representing S1 as a poly-
hedron of a complex generated by n amount of 1-simplices - for any
n ∈ N+. It is done by taking n ordered simplices σ1 = (v1,w1), . . .,
σi = (vi,wi),. . ., σn = (vn,wn) and identifying the vertex wj with the
vertex vj+1 for every j = 1, . . . , n (where we assert vn+1 = v1). When
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n ≥ 3, this is an honest good old-fashioned simplicial complex. For
n = 3 this is also a complex Bd(σ2) consisting of faces of a 2-simplex
σ2 (if you ignore ordering).

3) Consider a ∆-complex K with two n-simplices σ and τ and their faces.
For every i = 0, . . . , n we identify the face diσ with the corresponding
face diτ . This forces automatically identifications of lower-dimensional
faces. No other identifications are made.

The polyhedron |K| is essentially two simplices glued along their bound-
ary. It is easy to see that this space is in fact (homeomorphic to) the
sphere Sn.

Of course another way to triangulate Sn is to represent it as a boundary
of a single (n + 1)-dimensional simplex.

Example 6.18. As examples above suggest there are usually many different
ways to triangulate a given space as a polyhedron of a ∆-complex. They might
be so different that is can be difficult to ”recognise” familiar spaces under
”exotic disguise”. In such instances a well-known ”cut and glue” method
proves to be useful. The idea of the method is that we cut the space into
pieces, rearrange them and then glue them back.

The best way to illustrate how it is done in practise is through an example.

Consider a ∆-complex generated by a single ordered triangle [v0,v1,v2]
in which we identify faces [v0,v1] and [v1,v2], preserving the ordering, as
usual.

a
a

It is not immediately obvious from the definition and the picture, but the
polyhedron of this complex is actually a Mobius strip! Let’s see how it is
possible to arrive at this conclusion.

First we cut the triangle into two smaller triangles using the median from
the vertex v1. This gives us another ∆-complex with the same polyhedron,
consisting of two triangles, with sides a and b identified, as in the picture
below.
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a ab b

Here side a correspond to the original identification and side b - to the
median of the original triangle.

Next, we rotate and reflect triangles and then glue them together by the
common side a. You have to be careful to make the right identification (this
is what arrows are for).

a
b

b a

After identification along the common side a we are left with square
equipped with additional identification on opposite sides b. But now they
are ”upside down” with respect to each other, so the result is precisely the
Mobius strip.

b

b

Example 6.19. Consider a ∆-complex which consists of a single 2-simplex
(v0,v1,v2), but with all three vertices identified together. For obvious reasons
the polyhedron of this complex is called a parachute space.
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