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Exercise session 13 Solutions

1. Suppose M is an m-manifold and N is an n-manifold.
a) Suppose m = n and M has no boundary. Prove that any continuous
injection f : M → N is an open embedding, i.e. is a homeomorphism
to its image f(M), which is open in N .
b) Suppose m > n. Prove that there are no continuous injections
f : M → N .

Solution: a) It is enough to prove that every x ∈ M has a neighbour-
hood U inM such that f(U) is open in N and restriction f | : U → f(U)
is a homeomorphism. Since N is an n-manifold there exists open neigh-
bourhood V of f(x) which is homeomorphic to a subset of Rn (open in
R

n or Hn, does not matter at this point). Since M is an n-manifold and
f is continuous, there exists an open neighbourhoodW of x inM which
is homeomorphic to an open subset of Rn (here is where we need as-
sumption that M has no boundary). Since Rn is locally compact, there
exist neighbourhood U of x in W such that U ⊂ W and U is compact.
This can be seen directly - choose r > 0 such that B(x, r) ⊂ W , then
U = B(x, r/2) is such that U ⊂ W and U is compact.
It is enough to prove that the restriction f |U : W → V is an open em-
bedding.

The restriction f | : U → V is a continuous injection from compact space
to Hausdorff space(V is Hausdorff, since it is homeomorphic to subset
of Rn). By a well-known general topological fact f | is homeomorphism
to the image f(U). Hence also its restriction f : U → f(U) to smaller
subset U is a homeomorphism to the image f(U) which is now a subset
of Rn. By invariance of domain theorem (version for Rn) 17.6 the image
f(U) is open. We have shown that every x ∈ M has a neighbourhood
U in M such that f(U) is open in N and restriction f | : U → f(U) is
a homeomorphism.

b) Suppose f : M → N is a continuous injection.

Interior intM of any manifold is non-empty (we assume manifolds to
be non empty). Indeed suppose x ∈ M . If x ∈ intM , we are done.
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Otherwise x has a chart f : U → f(U) where U can be assumed to be
of the form

B(y, r) ∩Hm = {(y1, . . . , ym) ∈ B(y, r) | y ≥ 0}.

Then M contains an open set that is homeomorphic to

{(y1, . . . , ym) ∈ B(y, r) | y > 0},

which is a non-empty open subset of M .

Hence we may fix x ∈ intM . Let V be a neughbourhood of f(x) which
is homeomorphic to the subset of Rn. Since x ∈ intM we can find a
small neighbourhood U of x which is homeomorphic to an open sub-
set of Rn f(U) ⊂ V . Since V is a subset of Rn and n < m, V can
be considered a subset of Rm, since we have agreed to consider R

n a
subset of Rm (vectors with m−n last coordinates equal to zero). Thus
we consider a restriction f | : U → V as a mapping f : U → R

m. Now
U is an open neighbourhood of Rm and f is a continuous injection.
Since U is an open neighbourhood of Rm, it is an m-manifold without
boundary (strictly speaking we need a) of the next exercise to know
that), so by a) f : U → R

m is an open embedding to the image. But
this is contradiction, since f(U) is a subset of Rn, which has no interior
in R

m, so cannot be open in R
m. Thus f cannot exist.

Remark: In fact we have proved a) under assumption ”every point
of M belongs to the interior i.e. has a neighbourhood homeomorphic
to the open subset of Rn”, which is certainly true for any open subset
U of Rn. Hence we do not need results of the next exercise (which tells
us, among other things, that assumption ”every point of M belongs to
the interior” is equivalent to ”has no boundary”.

2. Suppose M is an n-manifold.
a) Prove that boundary ∂M and interior intM are disjoint.
b) Prove that the interior intM is open inM and itself is an n-manifold
without boundary.
c) Prove that the boundary ∂M is closed in M and is an (n − 1)-
manifold without boundary.

Solution: a) Let us make a counter-assumption - there exists x ∈ M
which both interior and boundary point. Then there exists a chart
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f : U → f(U), where U is open neighbourhood of Rn and x ∈ f(U) as
well as a chart g : V → f(V ), where U is open neighbourhood of Hn

and x = g(y) for some

y ∈ V ∩ {z ∈ R
n | zn = 0}.

Both f(U) and g(V ) are neighbourhoods of x in M , so their inter-
section W = f(U) ∩ g(V ) is also a neighbourhood of x. Restrictions
f | : f−1(W ) → W and g| : g−1(W ) → W are homeomorphisms, so
g|−1 ◦f | : f−1W → g−1W is also a homeomorphism, between open sub-
set f−1W of Rn and a subset g−1W of Rn. By invariance of domain
17.6. (version for Rn) subset g−1W must also be open in R

n. But it is
not - it is a subset of

Hn = {x ∈ R
n|xn ≥ 0}

and contains at least one point y (defined above) that lies on the topo-
logical boundary

{z ∈ R
n | zn = 0}

of g−1W (w.r.t to R
n). Thus we obtain a contradiction.

b) Suppose x belongs to intM . Then, by definition x, has a neighbour-
hood U homeomorphic to an open subset of Rn. But then all points
of U also have a neighbourhood, namely U , which is homeomorphic to
an open subset of Rn. Hence U ⊂ intM . Since this is true for every
x ∈ intM , intM is open in M . Also, since U above is subset of intM ,
we see that every point of intM has a neighbourhood U homeomorphic
to an open subset of Rn. Thus intM is itself n-manifold, such that ev-
ery its point belongs to its interior. By a) this is equivalent to intM
not having boundary, as a manifold.

c) By a) boundary of M is the complement of intM and by b) intM
is open in M , so ∂M is closed, being a compliment of an open set.

Suppose x ∈ ∂M . Let f : U → f(U) be a chart around x, such that
x = f(y), where

y ∈ U ∩ {z ∈ R
n | zn = 0}.

Let V = U ∩ {z ∈ R
n | zn = 0} = U ∩ R

n−1. Then V is open in R
n−1.

For every w ∈ f(V ) the chart f : U → f(U) is a chart around w such
that w = f(v) for some

v ∈ U ∩ {z ∈ R
n | zn = 0}.
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Hence f(V ) ⊂ f(U) ∩ ∂M .

Conversely, a point w ∈ f(U)\f(V ) = f(U \V ) belongs to the interior
of M , since U \ V is an open subset of Rn, so f | : U \ V → f(U \ V ) is
a chart of any point w that shows that w ∈ intM . By a), this implies
that f(U) \ f(V ) do not intersect ∂M .

Thus f(V ) = f(U) ∩ ∂M . Since f(U) is open in M , this implies that
f(V ) is open in ∂M .

We have shown that the restriction f | : V → f(V ) is a homeomorphism
from an open subset of Rn−1 to f(V ), which is an open neighbourhood
of x in ∂M . This proves that ∂M is (n − 1)-dimensional manifold
and all its points belong to its manifold-interior. In other words the
boundary ∂M is an (n− 1)-manifold without boundary.

3. a) Suppose V is path-connected open subset of Rn, n ≥ 2, x ∈ V .
Prove that V \ {x} is path-connected by calculating H0(V \ {x}) (or
H̃0(V \ {x})).
b) Prove the Jordan-Brouwer separation theorem in R

n, n ≥ 2: Sup-
pose B ⊂ R

n is homeomorphic to Sn−1. Then R
n \ B has exactly

two path-components U and V , which are both open in R
n. Moreover

∂U = B = ∂V , where boundary is taken with respect to R
n.

Solution: a) Consider a portion of long exact reduced homology se-
quence of the pair (V, V \ {x}),

(0.1) H1(V, V \ {x}) ∆
// H̃0(V \ {x}) // H̃0(V )

Here H̃0(V ) = 0, since V is path-connected (Corollary 12.6). Since V
is open, by exercise 11.1(a)

H1(V, V \ {x}) ∼= H1(B
n
, B \ {0}).

By long exact reduced homology sequence of the pair (B
n
, B

n
\ {0})

(where B
n
is contractible) and the fact that B

n
\ {0} has the same

homology groups as Sn−1 (they are of the same homotopy type) we
have that

H1(B
n
, B \ {0}) ∼= H̃0(B \ {0}) ∼= H̃0(S

n−1) = 0.
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Here in the last conclusion it is important to have n ≥ 2, because for
n = 1 the space S0 is not path-connected.

Hence H1(V, V \ {x}) = 0. Thus both end groups in exact sequence
(0.1) are trivial, so, by exactness, H̃0(V \ {x}) = 0. By Corollary 12.6.
the space V \ {x} is path-connected.

If we use ordinary long exact homology sequence

(0.2) H1(V, V \ {x}) ∆
// H0(V \ {x})

i∗
// H0(V )

we can no longer say thatH0(V ) = 0, because it is not, it is (isomorphic
to) Z. But the group H1(V, V \ {x}) is still trivial, so, by exactness,
i∗ is injection, so H0(V \ {x}) is (isomorphic to) a subgroup of Z. All
(non trivial) subgroups of Z are isomorphic to Z, so H0(V \ {x}) ∼= Z,
which, by Corollary 12.5., implies that V \ {x} is path-connected.

b) Rn is homeomorphic to Sn\{x}, for any x ∈ R
n (example 3.8). This

means that
1) we can always regard R

n as an open subset of Sn and regard any
problem in R

n as a problem in an open subset of Sn.
1) any proper open subset V of Sn is (homeomorphic to) an open sub-
set of Rn.

Suppose f : Sn−1 → R
n is a homeomorphism to the image f(Sn−1) = B.

By thinking R
n = Sn \ {x}, we get B ∼= Sn−1 a subset of Sn, so by

Jordan-Brouwer Theorem in Sn (Theorem 17.5)

Sn \B = U ∪ V,

where union is disjoint, U and V are both open and path-connected
and ∂U = B = ∂V , where boundary is with respect to Sn. A point
x ∈ Sn which we choose so that Rn = Sn \ {x} cannot belong to B, so
it belongs to U or V . We may assume that x ∈ V . Then U is a subset
of Rn and taking away a point x as above we obtain

R
n \B = U ∪W,

where W = V \ {x}. Then U and W are open (open set minus a
point is open) in R

n, we know that U is path-connected and W is
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path-connected by a). Hence U and W are disjoint path components
of Rn \ B. It remains to show that ∂U = B = ∂W , where boundary
is with respect to R

n. By clX(A) we denote the closure of subset
A ⊂ X with respect to the space X . Then

∂XA = clX A \ intX A,

in particular, since U and W are both open in R
n, we see that

∂RnU = clRn U \ U,

∂RnW = clRn W \W.

From general topology it is known that if X ⊂ Y , then clX A = clY A∩
X , so in particular, for every subset A of Rn, we have that

clRn A = clSn A ∩ R
n.

By Jordan-Brouwer in Sn we know that clSn U = U ∪ B and clSn V =
V ∪B. Now

∂RnU = clRn U \ U = (clSn U ∩ R
n) \ U = (U ∪B) \ U = B

(which is half of what we had to show) and

∂RnW = clRn W \W = (clSn W ∩ R
n) \W.

We claim that in Sn

clSn W = W ∪B ∪ {x} = V ∪ B.

Recall that W = V \ {x}. To prove that clSn W ⊂ V ∪ B it is enough
to notice that V ∪B = Sn \U is closed in Sn and W ⊂ V ⊂ V ∪B, so
also clSn W ⊂ V ∪ B (closure is the smallest closed set that contains
a given set!). Conversely suppose y ∈ V or y ∈ B. We need to show
that y ∈ clSn W . If y ∈ W , this is trivial. Other possibilities are that
y ∈ B or y = x. Suppose y ∈ B. Then y 6= x. Let A be an arbitrary
open neighbourhood of y. Then A \ {x} is also a neighbourhood of y,
hence, since ∂SnV = B, contains a point in V . This point cannot be
x, so neighbourhood A intersects V \ {x} = W . We have shown that
arbitrary neighbourhood of y intersects W , which is what we wanted.
The remaining case is y = x. But x ∈ V so all ”small enough ” neigh-
bourhoods (in Sn) of x contain in V . Since {x} is not open in Sn, all
neighbourhoods of xmust intersect V \{x} = W . Thus also x ∈ clSn W .
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We have shown that

clSn W = W ∪ B ∪ {x},

so now we can return to the calculation of ∂RnW and finnish it. We
have that

∂RnW = (clSn W ∩ R
n) \W,

where
clSn W ∩ R

n = (W ∪ B ∪ {x}) ∪ R
n = W ∪ B,

and the last union is disjoint. Hence ∂RnW = (W ∪ B) \W = B and
we are done.

4. Provide the details and missing arguments in the following sketch of
the original proof Brouwer presented for his fixed point theorem.

Suppose f : B
n
→ B

n
is continuous and let B+ and B− be, as usual, up-

per and lower (closed) hemispheres of Sn. Using the fact that both B+

and B− are homeomorphic to B
n
we construct a continuous mapping

g : Sn → Sn that sends both B+ and B− to B− via f (up to homeomor-
phisms mentioned above). If f do not have fixed points, deg g must be
(−1)n+1. For some reason(?) this is a contradiction.

Solution: The idea is the following. We start by choosing homeo-
morphisms f1 : B+ → B

n
and f2 : B− → B

n
. Then we define mapping

g : Sn → Sn by

g(x) =

{

f−1
2 ◦ f ◦ f1(x), if x ∈ B+,

f−1
2 ◦ f ◦ f2(x), if x ∈ B−.

The immediate problem after that is the question is g well-defined
i.e. do both formulas give the same result on B+ ∩ B− = Sn−1?. If
f1, f2 are chosen randomly as just some homeomorphisms, g will not
be well-defined. Obviously, from the definition of g it is clear that
it will be well-defined it f1(x) = f2(x) for all x ∈ Sn−1. Because
of that we proceed as follows. Let i : Sn → Sn be the mapping de-
fined by i(x1, . . . , xn+1) = (x1, . . . ,−xn+1). This mapping is inverse
of each other, in particular a homeomorphism. Moreover i(B−) =
B+, so i restricts to a homeomorphism i : B− → B+. Thus first we
choose any homeomorphism f1 : B+ → B

n
. For example simple pro-

jection f1(x1, . . . , xn+1) = (x1, . . . , xn) will do, its inverse is mapping
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(x1, . . . , xn) 7→ (x1, . . . , xn,
√

1−
∑n

i=1
x2
i ). Then, as f2 we define the

mapping f2 = f1 ◦ i : B− → B
n
. As a composition of homemorphisms

it is a homeomorphism. Moreover, i(x) = x for all x ∈ Sn−1, so
f1(x) = f2(x) for all x ∈ Sn−1. Thus if we know define g : Sn → Sn by

g(x) =

{

f−1
2 ◦ f ◦ f1(x), if x ∈ B+,

f−1
2 ◦ f ◦ f2(x), if x ∈ B−.

using these f1 and f2, that will give us well-defined continuous mapping
g : Sn → Sn. By construction g maps everything to the lower hemi-
sphere B−, so in particular g is not a surjection. This immediately
implies that deg g = 0 (Proposition 18.2.4).

Suppose f did not have any fixed points. Then g also do not have fixed
points - this follows from the definition of g. Indeed if x /∈ B−, then
g(x) ∈ B− so equation g(x) = x is impossible. On the other hand if
x ∈ B− and g(x) = x, then f−1

2 ◦ f ◦ f2(x) = x, which implies that
f(f2(x)) = f2(x), so f2(x) is a fixed point of f , which contradicts our
assumptions.

Thus g do not have fixed points. This means that g(x) 6= id(x),
which can also be written as g(x) 6= −(h(x)), for all x ∈ Sn. Here
h : Sn → Sn is an antipodal mapping h(x) = −x. By Lemma 18.3.
g and h are homotopic, so, by Proposition 18.2.3/6 we have that
deg g = deg h = (−1)n+1. This is impossible since we already know
that deg g = 0.

Actually we did not even have to know such a fancy fact that deg h =
(−1)n+1. It is enough to notice that since h is a homeomorphism its
degree must be ±1, which still cannot be zero.

5. Suppose f : Sn → Sn is an even mapping i.e. such that f(x) = f(−x)
for all x ∈ Sn.
Prove that deg f is an even integer. Moreover, if n is even, deg f = 0.

Solution: Since f(x) = f(−x) for all x ∈ Sn we can factor f through
the projective plane RP n, since it is defined as a quotient space Sn/ ∼,
where ∼ is generated by relations of the form x ∼ −x, x ∈ Sn. Hence
there exists f̄ : RP n → Sn such that f̄ ◦ p = f (i.e. f̄(x̄) = f(x) for
all x ∈ Sn). Here p : Sn → RP n is a quotient projection mapping. By
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the characteristic property of quotient mappings (Lemma 6.2.) f̄ is
continuous. Taking n-th homology we obtain commutative diagram

Hn(S
n)

f
//

p

&&M
MM

MM
MM

MM
M

Hn(S
n)

Hn(RP
n)

f̄
88qqqqqqqqqq

Now let us pay our attention to the result of exercise 16.10, which tells
us precisely what groupHn(RP

n) and mapping p : Hn(RP
n) → Hn(S

n)
are. We have the following facts:
1) If n is even the group Hn(RP

n) = 0 is trivial. In this case the
diagram above implies that f∗ = f̄∗ ◦ p∗ must also be zero.
2) If n is odd the group Hn(RP

n) ∼= Z. Moreover we can choose
generators α of Hn(S

n) and β of Hn(RP
n)such that p∗(α) = 2β. In

this case
f∗(α) = f̄∗ ◦ p∗(α) = f̄∗(2β) = 2f̄∗(β).

Since f̄∗(β) belongs to the group Hn(S
n), it is of the form mα for some

m ∈ Z. It follows that in this case

f∗(α) = 2mα,

so deg f = 2m is even.

6. a) Suppose U, V are open and path-connected subsets of Rn such that
U ∪ V = R

n. Prove that U ∩ V is path-connected (using homology).
b) Have a cup of coffee (or a doughnut) and reflect for a moment would
it be easy to prove the claim of a) ”elementary”, without algebraic
topology.
c) Take a moment to appreciate the awesomeness of homology.

Solution: a) Since U and V are open in R
n and their union is Rn, it

follows that (Rn;U, V ) is a proper triad, so there exists (a portion of)
exact reduced Mayer-Vietoris sequence

H̃1(R
n) // H̃0(U ∩ V ) // H̃0(U)⊕ H̃0(V )

In this sequence H̃1(R
n) = 0, since R

n is contractible, and H̃0(U) ⊕
H̃0(V ) = 0 since U and V are assumed path-connected. Hence, by
exactness H̃0(U ∩ V ) = 0, so U ∩ V is path-connected.
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Strictly speaking the proof above only works if U∩V 6= ∅ (since reduced
groups are not defined for empty space), but this special case is triv-
ial - empty space is path-connected. In fact intersection U ∩ V cannot
be empty anyway, since that would contradict the connectedness of Rn.

b)/c) It seems that it would be quite hard to prove the claim directly
using topology. Take x, y ∈ U ∩ V . In order to prove that U ∩ V is
path connected we need to construct a path f : I → U ∩ V that joins
x and y. We know that such a path exists in U or in V but how do
we choose the one that lies in both? There may be an ”elementary”
proof, but it must be quite difficult. The homological proof we pre-
sented in a) on the other hand is ridiculously simple. Also, it allows
all sorts of generalizations. For example U and V need not to be open,
only form ”proper triad” w.r.t. R

n. Also the space need not to be
R

n - it is enough to have a space X instead of Rn with the property
H1(X) = 0. Actually it would be enough to have that the mapping
∆: H1(X) → H̃0(U ∩V ) is trivial. Hence the same property is true for
example for X = Sn when n ≥ 2. It is not true for X = S1, however,
simple counter-example would be U = S1\{(0, 1)}, V = S1\{(0,−1)}.
Hence, it also follows that if we want to come up with ”elementary”
topological proof, we need to use some special properties of the space,
which are hard to formulate without using singular homology.

This exercise serves to show how powerful homological methods can be.
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