Department of Mathematics and Statistics Introduction to Algebraic topology, fall 2013

Exercise session 13 (Last) (for the exercise session Tuesday 10.12)

- Suppose M is an m-manifold and N is an n-manifold.
 a) Suppose m = n and M has no boundary. Prove that any continuous injection f: M → N is an open embedding, i.e. is a homeomorphism to its image f(M), which is open in N.
 - b) Suppose m > n. Prove that there are no continuous injections $f: M \to N$.
- 2. Suppose M is an n-manifold.
 - a) Prove that boundary ∂M and interior int M are disjoint.
 - b) Prove that the interior int M is open in M and itself is an n-manifold without boundary.

c) Prove that the boundary ∂M is closed in M and is an (n-1)-manifold without boundary.

3. a) Suppose V is path-connected open subset of \mathbb{R}^n , $n \geq 2$, $x \in V$. Prove that $V \setminus \{x\}$ is path-connected by calculating $H_0(V \setminus \{x\})$ (or $\tilde{H}_0(V \setminus \{x\})$).

b) Prove the Jordan-Brouwer separation theorem in \mathbb{R}^n , $n \geq 2$: Suppose $B \subset \mathbb{R}^n$ is homeomorphic to S^{n-1} . Then $\mathbb{R}^n \setminus B$ has exactly two path-components U and V, which are both open in \mathbb{R}^n . Moreover $\partial U = B = \partial V$, where boundary is taken with respect to \mathbb{R}^n .

4. Provide the details and missing arguments in the following sketch of the original proof Brouwer presented for his fixed point theorem.

Suppose $f: \overline{B}^n \to \overline{B}^n$ is continuous and let B_+ and B_- be, as usual, upper and lower (closed) hemispheres of S^n . Using the fact that both B_+ and B_- are homeomorphic to \overline{B}^n we construct a continuous mapping $g: S^n \to S^n$ that sends both B_+ and B_- to B_- via f (up to homeomorphisms mentioned above). If f do not have fixed points, deg g must be $(-1)^{n+1}$. For some reason(?) this is a contradiction.

5. Suppose f: Sⁿ → Sⁿ is an even mapping i.e. such that f(x) = f(-x) for all x ∈ Sⁿ.
Prove that deg f is an even integer. Moreover, if n is even, deg f = 0. (Fat hint: you are allowed to use the results obtained in the exercise 16.10, in particular the information about H_n(ℝPⁿ) and the mapping p_{*}: H_n(Sⁿ) → H_n(ℝPⁿ) induced by projection Sⁿ → ℝPⁿ.)

6. ¹ a) Suppose U, V are open and path-connected subsets of \mathbb{R}^n such that $U \cup V = \mathbb{R}^n$. Prove that $U \cap V$ is path-connected (using homology).

b) Have a cup of coffee (or a doughnut) and reflect for a moment would it be easy to prove the claim of a) "elementary", without algebraic topology.

c) Take a moment to appreciate the awesomeness of homology.

Bonus points for the exercises: 25% - 2 point, 40% - 3 points, 50% - 4 points, 60% - 5 points, 75% - 6 points.

¹Suggested by Rami Luisto