
Department of Mathematics and Statistics
Introduction to Algebraic topology, fall 2013

Exercise session 12 Solutions

1. a) Suppose (X ;U, V ) and (A;B,C) are proper triads such that A ⊂ X , B ⊂ U ,
C ⊂ V . Prove the existence of long exact Mayer-Vietoris sequence

. . . // Hn+1(X,A) // Hn(U ∩ V,B ∩ C) // Hn(U,B)⊕Hn(V, C) // Hn(X,A) // . . . .

b) Suppose (X ;U, V ) is a proper triad such that U ∩V 6= ∅. Show that there exists
long exact reduced Mayer-Vietoris sequence

. . . // H̃n+1(X) // H̃n(U ∩ V ) // H̃n(U)⊕ H̃n(V ) // H̃n(X) // . . . ,

Solution: a) We start off with exact sequences

0 // Cn(B) ∩ Cn(C)
h|

// Cn(B)⊕ Cn(C)
q|

// Cn(B) + Cn(C) // 0

and

0 // Cn(U) ∩ Cn(V )
h

// Cn(U)⊕ Cn(V )
q

// Cn(U) + Cn(V ) // 0

where h : Cn(U) ∩ Cn(V ) → Cn(U) ⊕ Cn(V ) is defined by h(x) = ((i1)♯,−(i2)♯),
q : Cn(U) ⊕ Cn(V ) → Cn(U) + Cn(V ) is defined by q(x, y) = (k1)♯(x) + (k2)♯(y).
Here i1 : U ∩ V → U , i1 : U ∩ V → V , k1 : U → X , k2 : V → X are inclusions. Also
notice that Cn(U) ∩Cn(V ) = Cn(U ∩ V ) and both (k1)♯(x), (k2)♯ both clearly map
their domains into Cn(U) + Cn(V ), so mappings in the sequence are well-defined.
Similarly defined mappings in the first sequence are then just restrictions of h and q
from the second sequence, that is why we have already denoted them as restrictions
above. From the general theory (see the beginning of chapter 16) we know that these
sequences are both short exact sequences. Since (X ;U, V ) and (A;B,C) are both
proper triads, these sequence actually induces long exact Mayer-Vietoris sequences

. . . // Hn+1(A) // Hn(B ∩ C) // Hn(B)⊕Hn(C) // Hn(A) // . . . ,

and

. . . // Hn+1(X) // Hn(U ∩ V ) // Hn(U)⊕Hn(V ) // Hn(X)
∆

// . . . .

Since A ⊂ X , B ⊂ U , C ⊂ V , the sequence (1) is a ”subsequence” of the sequence
(1), i.e. they fit in the commutative diagram

0

��

0

��

0

��

0 // Cn(B ∩ C)
h|
//

��

Cn(B)⊕ Cn(C)
q|

//

��

Cn(B) + Cn(C) //

��

0

0 // Cn(U ∩ V )
h
// Cn(U)⊕ Cn(V )

q
// Cn(U) + Cn(V ) // 0
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with exact columns. Here vertical mappings from the groups of the sequence (1) to
the corresponding groups of the sequence (1) are inclusions, in particular injections.
The commutativity of diagram is pretty clear (but if it is not think about it). It
follows that we can ”quotient out” to obtain a third row consisting of quotient
groups and induced homomorphisms,

0

��

0

��

0

��

0

��

0

��

0 //

��

Cn(B ∩ C)
h|

//

��

Cn(B)⊕ Cn(C)
q|

//

��

Cn(B) + Cn(C) //

��

0

��

0 //

��

Cn(U ∩ V )
h

//

��

Cn(U)⊕ Cn(V )
q

//

��

Cn(U) + Cn(V ) //

��

0

��

0 //

��

Cn(U ∩ V,B ∩C)
h̄

//

��

Cn(U,B)⊕ Cn(V,C)
q̄

//

��

(Cn(U) + Cn(V ))/(Cn(B) + Cn(C)) //

��

0

��

0 0 0 0 0.

The fact that induced mappings h̄ and q̄ exist and well-defined follow in standard
way by factorization theorem 7.8. All columns of this diagram are short exact
sequences by construction. Middle and upper row are exact. Hence, by Proposition
11.11 also the lower sequence is exact. Thus we have deduced the existence of short
exact sequence

0 // Cn(U ∩ V,B ∩ C)
h̄

// Cn(U,B)⊕ Cn(V, C)
q̄

// En
// 0.

Here by En we denote Cn(U) + Cn(V ))/(Cn(B) + Cn(C)).
The sequence is exact for all n ∈ Z. Moreover mappings h̄ and q̄ are chain mappings,
since h and q are (formal justification - factorization theorem for chain complexes
and chain mappings, which was proved in the exercise 8.2.). Thus there exists short
exact sequence

0 // C(U ∩ V,B ∩ C)
h̄

// C(U,B)⊕ C(V, C)
q̄

// E // 0

of chain complexes and chain mappings. Here we denote by E the quotient complex
(C(U) +C(V ))/(C(B) +C(C)).As usual (Theorem 11.8) there exists induced long
exact sequence in homology

. . . // Hn+1(E) // Hn(U ∩ V,B ∩ C) // Hn(U,B)⊕Hn(V, C) // Hn(E) // . . . ,

It remains to show that we can substitute Hn(E) withHn(X,A). Since C(B)+C(C)
is a chain subcomplex of C(A), there exists chain mapping ī : E → C(X,A) induced
by inclusion i : (C(U) + C(V )) → C(X). It is enough to show that this mapping
induce isomorphisms in homology.

Notice that so far we did not actually use the assumptions (that triads are proper)
- the long exact homology sequence (1) we have obtained, exists in any case. Now
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we incorporate assumptions, which tell us that inclusion i : C(U) + C(V ) → C(X)
and its restriction (and also inclusion) i| : C(B) + C(C) → C(A) both induce iso-
morphisms in homology. Since ī : E → C(X,A) mentioned above is induced by
i : C(U) + C(V ) → C(X), we obtain the following commutative diagram

0 // C(B) + C(C) //

i|

��

C(C(U) + C(V )) //

i

��

E //

ī
��

0

0 // C(A)
h

// C(X) // Cn(X,A) // 0

that induces, by naturality (Proposition 11.9) the commutative relation between
corresponding long exact homology sequences. The part of this relation is a com-
mutative diagram

Hn(C(B) + C(C)) //

i∗

��

Hn(C(U) + C(V )) //

i∗

��

Hn(E) //

ī∗

��

Hn−1(C(B) + C(C))

i∗

��

// Hn−1(C(U) + C(V ))

i∗

��

Hn(A) // Hn(X) // Hn(X,A) // Hn−1(A) // Hn−1(X)

In this diagram all vertical mappings, except the middle one, are known to be
isomorphisms by assumptions. Hence, by Five Lemma 11.14. also the mapping
ī∗ : Hn((C(U) + C(V ))/(C(B) + C(C))) → Hn(X,A) is an isomorphism for all
n ∈ Z. Hence in the sequence 1 we can substitute E with (X,A) obtaining what
we wanted.

b) There are two ways to think about reduced groups H̃n(X).
1) Reduced groups are homology groups of the complex C̃(X) = Ker ε, where
ε : C(X) → Z is a standard augmentation of the singular complex C(X). Here Z

means chain complex with Z0 = Z and other groups trivial.
2) Reduced group H̃n(X) is a kernel of a homomorphism ε∗ : Hn(X) → (Z)n, which
is induced by the chain mapping ε : C(X) → Z.

We solve the problem using approach 1) first. We know that the sequence

0 // Cn(U ∩ V )
h
// Cn(U)⊕ Cn(V )

q
// Cn(U) + Cn(V ) // 0

is exact for all n ∈ Z. We want to show that the similar looking sequence of reduced
groups

0 // C̃n(U ∩ V )
h|
// C̃n(U)⊕ C̃n(V )

q|
// ˜Cn(U) + Cn(V ) // 0

is also exact. First one needs to check that this sequence makes sense, i.e. that h
indeed maps C̃n(U ∩ V ) into C̃n(U) ⊕ C̃n(V ) and q indeed maps C̃n(U) ⊕ C̃n(V )
into C̃n(U) + C̃n(V ). This actually follows from the commutativity of the diagram

0 // Cn(U ∩ V )
h
//

ε

��

Cn(U)⊕ Cn(V )
q

//

ε

��

Cn(U) + Cn(V ) //

ε

��

0

0 // (Z)n
α

// (Z)n ⊕ (Zn)
β

// (Z)n // 0,
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where α(x) = (x,−x) and β(x, y) = x+ y. For n 6= 0 there is nothing to prove and
when n = 0 the diagram is

0 // C0(U ∩ V )
h
//

ε

��

C0(U)⊕ Cn(V )
q

//

ε

��

C0(U) + C0(V ) //

ε

��

0

0 // Z
α

// Z⊕ Z
β

// Z // 0,

and it is easy to see directly from definitions that the diagram indeed commutes.

Adding kernels of vertical mappings in diagram (1) we obtain the diagram

0 //

��

C̃n(U ∩ V )
h
//

ε

��

C̃n(U)⊕ C̃n(V )
q

//

ε

��

˜Cn(U) + Cn(V ) //

ε

��

0

��

0 //

��

Cn(U ∩ V )
h
//

ε

��

Cn(U)⊕ Cn(V )
q

//

ε

��

Cn(U) + Cn(V ) //

ε

��

0

��

0 // (Z)n
α

// (Z)n ⊕ Z
β

// (Z)n // 0.

By construction all columns are exact. Also the middle row and the lower row are
exact. Indeed, the lower row

0 // (Z)n
α
// (Z)n ⊕ (Z)n

β
// Zn

// 0,

is just a special case of the general exact row

0 // A ∩ B
h

// A⊕ B
q

// A+B // 0,

that leads to the construction of Mayer-Vietoris sequence (see the beginning of the
section 16), in case A = B = G = (Z)n. Hence, by Proposition 11.11. there exists
short exact sequence

0 // C̃n(U ∩ V )
h|
// C̃n(U)⊕ C̃n(V )

q|
// ˜Cn(U) + Cn(V ) // 0.

As usual, this sequence induces long exact homology sequence

. . . // H̃n+1(Cn(U) + Cn(V )) // H̃n(U ∩ V ) // H̃n(U)⊕ H̃n(V ) // H̃n(Cn(U) + Cn(V )) // . . . ,

so, it remains to show that we can substitute H̃n(Cn(U) + Cn(V )) with H̃n(X).
This is five lemma again. First we construct the commutative diagram

0 // ˜C(U) + C(V ) //

��

C(U) + C(V )
ε

//

i

��

Z //

id

��

0

0 // C̃(X) // C(X) ε
// Z // 0,
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where non specified mappings are inclusions. This is a commutative diagram of
chain complexes and chain mappings (Z is considered chain complex here) with
exact rows (by definition of reduced complexes). Hence, by naturality, (Proposition
11.9) there exists commutative diagram

Hn(C(U) + C(V )) //

��

Hn(Z) //

id

��

H̃n(C(U) + C(V )) //

��

Hn−1(C(U) + C(V ))

��

// Hn−1(Z)

id

��

Hn(X) // Hn(Z) // H̃n(X) // Hn−1(X) // Hn−1(Z)

where all vertical mappings, except the middle one, are known to be isomorphisms.
By Five Lemma 11.14, the mapping in the middle is isomorphism and we are done.

The other way to do the exercise is to use the second characterization of reduced
homology groups, which is H̃n(X) = Ker ε∗. In this solution we start right away on
homology level with the diagram

. . . // Hn+1(X) //

ε∗

��

Hn(U ∩ V ) //

ε∗

��

Hn(U)⊕Hn(V ) //

ε∗⊕ε∗
��

Hn(X) //

ε∗

��

Hn−1(U ∩ V )

ε∗

��

// . . .

. . . // Hn+1(Z) // Hn(Z) // Hn(Z)⊕Hn(Z) // Hn(Z) // Hn−1(Z) // . . .

Here both rows are exact rows of ”Mayer-Vietoris” type - the upper row is the
ordinary Mayer-Vietoris of the proper triad (X ;U, V ) and the lower row is Mayer-
Vietoris induced by the short exact sequence

0 // Z
α
// Z⊕ Z

β
// Z // 0,

as above (here Z is a complex again). Of course in reality in the sequence

. . . // Hn+1(Z) // Hn(Z) // Hn(Z)⊕Hn(Z) // Hn(Z) // Hn−1(Z) // . . .

”almost all” groups are trivial, except the part with n = 0 looks like

. . . // 0 // Z
α
// Z⊕ Z

β
// Z // 0 // . . .

Now, all mappings ε∗ are surjective and adding up kernels in the picture we obtain
the commutative diagram

0

��

0

��

0

��

0

��

0

��

. . .

. . . // H̃n+1(X) //

��

H̃n(U ∩ V ) //

��

H̃n(U)⊕ H̃n(V ) //

��

H̃n(X) //

��

H̃n−1(U ∩ V )

��

// . . .

. . . // Hn+1(X) //

ε∗

��

Hn(U ∩ V ) //

ε∗

��

Hn(U)⊕Hn(V ) //

ε∗⊕ε∗
��

Hn(X) //

ε∗

��

Hn−1(U ∩ V )

ε∗

��

// . . .

. . . // Hn+1(Z) //

��

Hn(Z) //

��

Hn(Z)⊕Hn(Z) //

��

Hn(Z) //

��

Hn−1(Z) //

��

. . .

0 0 0 0 0 . . .
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Here all columns are short exact, middle and lower rows are exact, so another
application of Proposition 11.11 tells us that also the upper row is exact. This is
what we wanted to prove.

2. By Sn∧Sm we denote the quotient space obtained from disjoint (topological) union
of Sn and Sm by identifying points en+1 ∈ Sn and em+1 ∈ Sm to the same point
(and no other identifications). Calculate homology groups Hk(S

n ∧ Sm) for all
k ∈ Z, n,m > 0.

Solution: The simplest way to calculate Hk(S
n ∧ Sm) is through the suitable

triangulation of the space. Indeed let σ and τ be, respectively, n + 1- and m + 1-
dimensional simplices. We define a ∆-complex K that consists of their boundaries
Bd σ and Bd τ glued together by a single vertex. More precisely we choose a ver-
tex v0 of σ and a vertex w0 of τ and identify them in K. We know that Bd σ is
homeomorphic to Sn and Bd τ is homeomorphic to Sm. Moreover we can clearly
choose these homeomorphisms such that v0 maps to en+1 ∈ Sn and w0 maps to
em+1 ∈ Sm. Then the polyhedron of |K| defined as above is (homeomorphic to)
Sn ∧ Sm.

Clearly Bd σ and Bd τ are both subcomplexes of K, so by Proposition 16.12.
(|K|; |L1|, |L2|) is a proper triad. Since this triple is homeomorphic to the triple
(Sn ∧ Sm;Sn, Sm). Here we identify Sn and Sm with subsets of Sn ∧ Sm in an
obvious manner.

Thus, by Exercise 1b), there exists reduced Mayer-Vietoris sequence

. . . // H̃k(S
n ∩ Sm) // H̃k(S

n)⊕ H̃k(S
m) // H̃k(S

n ∧ Sm) // H̃k−1(S
n ∩ Sm) // . . . .

The intersection Sn ∩ Sm in Sn ∧ Sm is a singleton, so in particular contractible.
Hence all reduced homology groups H̃n(S

n ∩ Sm) are trivial, so by exactness we
obtain that

H̃k(S
n ∧ Sm) ∼= H̃k(S

n)⊕ H̃k(S
m),

for all k ∈ Z. We know that H̃k(S
n) = Z when k = n and zero otherwise. Similarly

H̃k(S
m) = Z when k = m and zero otherwise. Hence

H̃k(S
n ∧ Sm) ∼=

{
Z, if k = n 6= m ork = m 6= n,

Z⊕ Z if k = n = m.

For non-reduced groups we obtain from this

Hk(S
n ∧ Sm) ∼=

{
Z, if k = n 6= m or k = m 6= n,

Z⊕ Z if k = n, or k = 0.

3. a) Prove Brouwer’s fixed point theorem in the case n = 1 by using elementary
results from basis calculus courses.
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b) Construct the concrete formula for the mapping g : B
n
→ Sn−1 that is used in the

proof of Brouwer fixed point theorem 17.1. and use it to show that g is well-defined
and continuous. Also show that your formula implies that g(x) = x for all x ∈ Sn−1.

Solution: a) We need to show that every continuous mapping f : [−1, 1] → [−1, 1]
has a fixed point. Consider a mapping g : [−1, 1] → R defined by g(x) = f(x)− x.
Then g(−1) = f(−1) − (−1) = 1 − f(−1) ≥ 0, since |f(x)| ≤ 1 by assumption.
Similarly g(1) = f(1)− (1) = f(1)− 1 ≤ 0. By intermediate value theorem (a.k.a.
Bolzano’s Theorem) there must exist x ∈ [−1, 1] such that g(x) = 0 i.e. f(x) = x.

b) The assumption is that f : B
n
→ B

n
is a mapping without fixed points. The

geometrical idea was to define g(x) as a unique point on Sn−1 that lies on the open
half-line that starts at f(x) (not including) and goes through x. This half-line can
be described analytically as

A = {(1− t)f(x) + tx | t > 0}.

b

b

f(x)

x

g(x)

The reason we are excluding t = 0 is that if f(x) ∈ Sn−1, then f(x) is a point of
Sn−1 that lies on the closed half-line, but that is not a point we are looking for.
Thus we need to show that for every x ∈ B

n
there exists (unique?) t(x) > 0 such

that
g(x) = (1− t(x))f(x) + t(x)x ∈ Sn−1

and also show that x 7→ g(x) is continuous function of x that is identity when
x ∈ Sn−1.

The point (1− t)f(x) + tx = f(x) + t(x− f(x)) belongs to Sn−1 if and only if

|f(x) + t(x− f(x))|2 = 1.

Expressing norm in terms of the standard inner product · in Rn, we obtain equivalent
formulation

1 = (f(x)+t(x−f(x)))·(f(x)+t(x−f(x))) = |f(x)|2+2t((x−f(x))·f(x))+t2|x−f(x)|2.
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Since we are assuming that f do not have fixed points, this is a polynomial of the
2nd degree in t

|x− f(x)|2t2 + 2((x− f(x)) · f(x))t+ (|f(x)|2 − 1).

We are looking for positive real solutions of this equation. The discriminant of the
equation is

D = 4((x−f(x)·f(x))2−4(|x−f(x)|2)(|f(x)|2−1) = 4((x−f(x)·f(x))2+4(|x−f(x)|2)(1−|f(x)|2),

which is certainly non-negative, since |f(x)|2 ≤ 1 for all x ∈ B
n
. Moreover, since we

are assuming that f(x) 6= x ever, the discriminant is even positive, so the equation
has two solutions

t(x) =
((f(x)− x) · f(x))±

√
((x− f(x) · f(x))2 + 4(|x− f(x)|2)(1− |f(x)|2)

2|x− f(x)2|
.

We want to show that exactly one of those two solutions is strictly positive. Now, it
is a well-known fact from algebra that the product of two solutions of the equation
ax2+bx+c = 0 equals c/a (and the sum equals −b/a). In our case c = (|f(x)|2−1)
is non-positive (since |f(x)|2 ≤ 1) and a = |x− f(x)|2 is positive so the product of
two solutions c/a is non-positive. If it is negative, then one of the solutions must be
positive and the other must be negative, so we obtain what we wanted. If c/a = 0,
then one of the solutions is zero and c = |f(x)|2 − 1 = 0, so |f(x)| = 1 and the
second, non zero solution of equation is

t = 2(f(x)− x · f(x) = 2(|f(x)|1 − x · f(x)) = 2(1− x · f(x)).

By Schwartz inequality (see Exercise 2.4b)

|x · f(x)| ≤ |x||f(x)| = |x| ≤ 1.

since x, f(x) ∈ B
n
. Hence, in case one of the solutions is zero, the second solution

is non-negative, and since we know that equation always has two different solutions
(discriminant always positive), the second solution must be actually positive.

Investigating the formula

t(x) =
((f(x)− x) · f(x))±

√
((x− f(x) · f(x))2 + 4(|x− f(x)|2)(1− |f(x)|2)

2|x− f(x)2|

we see immediately that at least the solution corresponding to the positive sign is
always positive. Hence it is the only positive solution.

We have shown that for every x ∈ B
n
there exists precisely one t(x) > 0 such that

g(x) = (1− t(x))f(x) + t(x)x ∈ Sn−1.
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Moreover

t(x) =
((f(x)− x) · f(x)) +

√
((x− f(x) · f(x))2 + 4(|x− f(x)|2)(1− |f(x)|2)

2|x− f(x)2|
.

It follows from this formula that t, hence also g, are continuous in x. Thus we have
constructed continuous mapping g : B

n
→ Sn−1. It remains to prove that g is a

retract i.e. g(x) = x for all x ∈ Sn−1. This is equivalent to t(x) = 1 for x ∈ Sn−1.
But in this case t = 1 is a positive real number for which

x = (1− t(x))f(x) + t(x)x ∈ Sn−1,

and since we know that such t is unique, we must have t(x) = 1. The claim is
proved.

4. Suppose C is a compact subset of a topological space X , let j : C → X is inclusion.
Suppose that y ∈ Hn(C) is such that j∗(y) = 0 in Hn(X) (for some n ∈ Z). Prove
that there exists compact D ⊂ X such that C ⊂ D and j′∗(y) = 0, where j′ : C → D
is inclusion.

Solution: If j∗(y) = 0 in Hn(X), it means that j(y) ∈ Bn(X) i.e. there exist
z ∈ Cn+1(X) such that j(y) = dz. As an element of Cn+1(X) z can be written as a
finite linear combination

z =

n∑

i=1

kifi,

where fi : ∆n+1 → X are n + 1-dimensional singular simplices and ni are integers,
for all k ∈ Z.
Let

D = C ∪
n⋃

i=1

fi(∆n+1).

As a finite union of compact spaces D is compact and C ⊂ D by definition of D.
Element z can be thought of as an element of Cn+1(D). Since dz in Cn+1(X) and
in Cn+1(D) is calculated by the same formula, dz = j′(y) in C(D). In particular
j′(y) is a boundary element of Cn(X), so j′∗(y) = 0 in Hn(D).

5. Let f : Sn−1 → Y be continuous mapping (Y arbitrary topological space). Prove
that the following statements are equivalent.

(a) There exists continuous extension g : B
n
→ Y of f to the ball B

n
.

(b) Suppose p ∈ Sn−1 is arbitrary. Then f is homotopic to a constant mapping
relative to {p}.

(c) f is nullhomotopic.

Solution: (1)=⇒(2). Suppose f admits continuous extension g : B
n
→ Y . Fix

arbitrary p ∈ Sn−1. Then H : Sn−1 × I → Y defined by

H(x, t) = g((1− t)x+ tp)
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is a continuous homotopy from f = H0 to the constant mapping x 7→ f(p). More-
over

H(p, t) = g((1− t)p+ tp) = g(p) = f(p)

for all t ∈ I. Hence H is a homotopy between f and a constant mapping relative
to p.

(2)=⇒(3). Trivial.

(3)=⇒(1). Suppose f is nullhomotopic and let H : Sn−1 × I → Y be a homotopy
from f some constant mapping cy, cy(x) = y for all x ∈ Sn−1, y fixed element of Y .

In particular this means that H obtains the same value y in all points of the subset
Sn−1 × {1}. This implies that we can ”quotient” H through the quotient space
Sn−1 × I/Sn−1 × {1}, i.e. there exists well-defined mapping H̄ : Sn−1 × I/Sn−1 ×
{1} → Y defined by

H̄(x, t) = H(x, t), x ∈ Sn−1, t ∈ I.

The mapping H̄ is defined so that the diagram

Sn−1 × I
H

))TT
T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

p

��

Sn−1 × I/Sn−1 × {1} H̄
// Y

commutes. Here p : Sn−1 × I → Sn−1 × I/Sn−1 × {1} is the projection, which is
a quotient mapping. By the characteristic property of quotient mappings (Lemma
6.2.) the mapping H̄ is continuous, because H is.

Thus we have constructed a continuous mapping H̄ : Sn−1 × I/Sn−1 × {1} → Y
such that on the subset Sn−1 × {0} this mappings looks like f , i.e.

H̄(x, 0) = H(x, 0) = f(x)

for all x ∈ Sn−1. It remains to prove that the quotient space Sn−1 × I/Sn−1 × {1}
is homeomorphic to B

n
, via homeomorphism that takes points of the form (x, 0)

to the points x ∈ Sn−1. But this is actually ”old news” - we already did that in
Exercise 5.3. The quotient space Sn−1× I/Sn−1×{1} is the same thing as the cone

of the space Sn−1. In the course of the proof of Exercise 5.3. we have shown that
a mapping (x, t) 7→ (1 − t)x is a homeomorphism h : Sn−1 × I/Sn−1 × {1} → B

n
.

Moreover h((x, 0)) = x for all x ∈ Sn−1. It follows that g = H̄ ◦ h−1 : B
n
→ Y is a

continuous extension of f and we are done.

6. Let n ∈ N. Show ”elementary” (i.e. not using algebraic topology or any other fancy
stuff) that the following statements are equivalent.
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(a) Brouwer’s fixed point theorem - every continuous mapping f : B
n+1

→ B
n+1

has a fixed point.

(b) Sn is not a retract of B
n+1

.

(c) Sn is not contractible.

(d) The pair (Sn,p) is not contractible for any p ∈ Sn.

Solution: We start by applying the result of the previous exercise to the identity
mapping id: Sn → Sn. According to the previous exercise the following conditions
are equivalent:

a There exists continuous extension g : B
n+1

→ Sn of id : Sn → Sn.

b Suppose p ∈ Sn is arbitrary. Then id is homotopic to a constant mapping
relative to {p}.

c id is nullhomotopic.

These conditions are equivalent to conditions

2’ Sn is a retract of B
n+1

.

3’ The pair (Sn,p) is contractible for any p ∈ Sn.

4’ Sn is contractible.

Indeed retraction r : B
n+1

→ Sn is, by definition, the same thing as a continuous
extension of identity mapping id: Sn → Sn. Hence (a) is equivalent to (2’).

The space is contractible if and only if its identity mapping is nullhomotopic, by
definition. Thus (c) is the same thing (4’). Similarly, pair (Sn,p) is contractible is
and only if id is homotopic to a constant mapping relative to p. Thus (b) is the
same thing as (4’).
Thus claims (2’)-(4’) are all equivalent.

The opposite (i.e. negations) of equivalent claims are also equivalent. Hence the
claims (2)-(4) i.e. claims

2 Sn is not a retract of B
n+1

.

3 Sn is not contractible.

4 The pair (Sn,p) is not contractible for any p ∈ Sn.

are equivalent.

It remains to show that Brouwer’s fixed point theorem is equivalent to those claims.
Our proof of Brouwer’s Theorem (which we started in Theorem 17.1 and ended in
the exercise 3 above) shows that it follows from the fact that Sn is not a retract of

B
n+1

, i.e. (2).

Conversely we will prove that Sn is not a retract of B
n+1

assuming Brouwer’s fixed

point theorem. Suppose r : B
n+1

→ Sn is a retraction. We define a mapping
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g : B
n+1

→ B
n+1

by g(x) = −r(x). Then g is a continuous mapping B
n+1

→ B
n+1

,

so, if we assume Brouwer’s theorem is true, this mapping has a fixed point x ∈ B
n+1

.

But g cannot have fixed points. Indeed, g(x) ∈ Sn for all x ∈ B
n+1

, so a fixed point
must be a point of Sn. For x ∈ Sn, on the other hand, g(x) = −r(x) = −x, since
r is a retraction. Since x 6= −x for all x ∈ Sn, this implies that g has no fixed

points. This contradicts assumption that all mappings B
n+1

→ B
n+1

has fixed

points. Hence, if this assumption is true, no retraction r : B
n+1

→ Sn can exist.
We have shown that (1) implies (2).

7.* Suppose (X ;U, V ) is a proper triad. Then (X ;V, U) is also proper triad, why?
Let ∆: Hn(X) → Hn−1(U ∩ V ) be the boundary homomorphism in the Mayer-
Vietoris sequence of the proper triad (X ;U, V ) and let ∆′ : Hn(X) → Hn−1(U ∩ V )
be the boundary homomorphism in the Mayer-Vietoris sequence of the proper triad
(X ;V, U).
a) Show that ∆′ = −∆.
b) Use a)-to prove that for the mapping i : Sn → Sn, i(x1, . . . , xn+1) = (x1, . . . ,−xn+1)
we have that i∗(x) = −x, for all x ∈ Hn(S

n).

Solution: The claim ”(X ;U, V ) is a proper triad” means that the inclusion i : C(U)+
C(V ) → C(X) induce isomorphisms in homology. Clearly C(V ) +C(U) = C(U) +
C(V ), so in this case the triad (X ;V, U) is also a proper triad.

By definition boundary operator ∆: Hn(X) → Hn−1(U ∩ V ) is defined as follows.
The short exact sequence of chain complexes and chain mappings that defines ∆ is
the sequence

0 // C(U ∩ V )
h
// C(U)⊕ C(V )

q
// C(U) + C(V ) // 0

Here h(x) = (x,−x) and q(u, v) = u+ v (essentially).
More precisely, this sequence defines long exact homology sequence
(0.1)

. . . // Hn(C(U) + C(V ))
δ

// Hn−1(U ∩ V ) // Hn−1(U)⊕Hn−1(V ) // Hn−1(C(U) + C(V )) // . .

and, consequently, the boundary operator δ : Hn(C(U) + C(V )) → Hn−1(U ∩ V )
of that sequence. The operator ∆: Hn(X) → Hn−1(U ∩ V ) we are interested in is,
precisely put, the composition δ◦i−1

∗ : Hn(X) → Hn−1(U∩V ), where i∗ : Hn(C(U)+
C(V )) → Hn(X) is an isomorphism (precisely because (X ;U, V ) is a proper triad).

Now, let us investigate how δ is defined. Let z be a cycle in Cn(U) +Cn(V ). Then
z = u+ v, where u ∈ Cn(U) and v ∈ Cn(V ) and

0 = dz = du+ dv,

so dv = −du. Clearly q(u, v) = z. Now d(u, v) = (du, dv) = (du,−du) = h(du),
where du = −dv ∈ Cn−1(U ∩ V ). Thus

δ(z̄) = d̄u.

12



The mapping ∆′ : Hn(X) → Hn−1(U ∩ V ) is defined similarly, it is composition
δ′ ◦ i−1

∗ : Hn(X) → Hn−1(U ∩ V ), where δ′ : Hn(C(U) + C(V )) → Hn−1(U ∩ V ) is a
boundary operator defined in homology by the short exact sequence

0 // C(U ∩ V )
h′

// C(V )⊕ C(U)
q′

// C(V ) + C(U) // 0

Here h(x) = (x,−x) and q(v, u) = v + u (essentially). Notice especially the small
non-symmetry between the sequences corresponding to the triples (X ;U, V ) and
(X ;V, U). Now, suppose z is a cycle in Cn(V ) + Cn(U) = Cn(U) + Cn(V ). Then
z = u+ v, where u ∈ Cn(U) and v ∈ Cn(V ) are chosen the same as above. We still
have that

0 = dz = du+ dv,

so du = −dv. Clearly q′(v, u) = z. Now d(v, u) = (dv, du) = (dv,−du) = h′(dv),
where dv = −du ∈ Cn−1(U ∩ V ). Thus

δ′(z̄) = d̄v = −d̄u = −δ(z̄).

We have shown that δ′ = δ. This implies the claim.

b) By B+ and B− we denote, as usual, upper and lower closed hemispheres. By
Exercise 16.13 (and part a))(Sn;B+, B−) and (Sn;B−, B+) are proper triads. The
mapping i : Sn → Sn, i(x1, . . . , xn+1) = (x1, . . . ,−xn+1) maps B+ to B− and vise
versa, so can be thought of as a mapping of triads i : (Sn;B+, B−) → (Sn;B−, B+).
By naturality of reduced Mayer-Vietoris sequence (which we did not prove, but is is
easy to establish by standard homological technics) there is a commutative diagram

. . . // H̃n(B+)⊕ H̃n(B−) //

f |∗⊕f |∗
��

H̃n(S
n) ∆

//

i∗
��

H̃n−1(S
n−1) //

i|∗
��

H̃n−1(B+)⊕ H̃n−1(B−) //

i|∗⊕i|∗
��

. . .

. . . // H̃n(B−)⊕ H̃n(B+) // H̃n(S
n)

∆′

// H̃n−1(S
n−1) // H̃n−1(B−)⊕ H̃n−1(B+) // . . .

Since B+ and B− are contractible both ∆ and ∆′ are isomorphisms by exactness.
Since they are restrictions of ∆ and ∆′ for non-reduced case (this follows from the
proof of Exercise 1, for example), we know by a) that ∆′ = −∆. Also the restriction
i| : Sn−1 → Sn−1 is actually identity mapping id: Sn−1 → Sn−1, hence induces
identity mapping in homology as well. We end up with a simple commutative
diagram

H̃n(S
n)

∆∼=
//

i∗
��

H̃n−1(S
n−1)

id
��

H̃n(S
n)

∆′∼=
// H̃n−1(S

n−1)

which just says that

i∗ = ∆′−1∆ = ∆′−1(−∆′) = − id .

This is what we wanted to prove.
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