Department of Mathematics and Statistics

Introduction to Algebraic topology, fall 2013

Exercise session 12 (for the exercise session Tuesday 3.12.)

1. a) Suppose $(X ; U, V)$ and $(A ; B, C)$ are proper triads such that $A \subset X, B \subset U$, $C \subset V$. Prove the existence of long exact Mayer-Vietoris sequence

$$
\ldots \longrightarrow H_{n+1}(X, A) \longrightarrow H_{n}(U \cap V, B \cap C) \longrightarrow H_{n}(U, B) \oplus H_{n}(V, C) \longrightarrow H_{n}(X, A) \longrightarrow \ldots
$$

b) Suppose $(X ; U, V)$ is a proper triad such that $U \cap V \neq \emptyset$. Show that there exists long exact reduced Mayer-Vietoris sequence

$$
\ldots \longrightarrow \widetilde{H}_{n+1}(X) \longrightarrow \widetilde{H}_{n}(U \cap V) \longrightarrow \widetilde{H}_{n}(U) \oplus \widetilde{H}_{n}(V) \longrightarrow \widetilde{H}_{n}(X) \longrightarrow,
$$

2. By $S^{n} \wedge S^{m}$ we denote the quotient space obtained from disjoint (topological) union of S^{n} and S^{m} by identifying points $\mathbf{e}_{n+1} \in S^{n}$ and $\mathbf{e}_{m+1} \in S^{m}$ to the same point (and no other identifications). Calculate homology groups $H_{k}\left(S^{n} \wedge S^{m}\right)$ for all $k \in \mathbb{Z}, n, m>0$.
3. a) Prove Brouwer's fixed point theorem in the case $n=1$ by using elementary results from basis calculus courses.
b) Construct the concrete formula for the mapping $g: \bar{B}^{n} \rightarrow S^{n-1}$ that is used in the proof of Brouwer fixed point theorem 17.1. and use it to show that g is welldefined and continuous. Also show that your formula implies that $g(\mathbf{x})=\mathbf{x}$ for all $\mathrm{x} \in S^{n-1}$.
4. Suppose C is a compact subset of a topological space X, let $j: C \rightarrow X$ is inclusion. Suppose that $y \in H_{n}(C)$ is such that $j_{*}(y)=0$ in $H_{n}(X)$ (for some $n \in \mathbb{Z}$). Prove that there exists compact $D \subset X$ such that $C \subset D$ and $j_{*}^{\prime}(y)=0$, where $j^{\prime}: C \rightarrow D$ is inclusion.
5. Let $f: S^{n-1} \rightarrow Y$ be continuous mapping (Y arbitrary topological space). Prove that the following statements are equivalent.
(a) There exists continuous extension $g: \bar{B}^{n} \rightarrow Y$ of f to the ball \bar{B}^{n}.
(b) Suppose $\mathbf{p} \in S^{n-1}$ is arbitrary. Then f is homotopic to a constant mapping relative to $\{\mathbf{p}\}$.
(c) f is nullhomotopic.
(Hint: Exercise 5.3. might come in handy. You do not need algebraic topology or any other fancy stuff).
6. Let $n \in \mathbb{N}$. Show "elementary" (i.e. not using algebraic topology or any other fancy stuff) that the following statements are equivalent.
(a) Brouwer's fixed point theorem - every continuous mapping $f: \bar{B}^{n+1} \rightarrow \bar{B}^{n+1}$ has a fixed point.
(b) S^{n} is not a retract of \bar{B}^{n+1}.
(c) S^{n} is not contractible.
(d) The pair $\left(S^{n}, \mathbf{p}\right)$ is not contractible for any $\mathbf{p} \in S^{n}$.
7.* Suppose $(X ; U, V)$ is a proper triad. Then $(X ; V, U)$ is also proper triad, why? Let $\Delta: H_{n}(X) \rightarrow H_{n-1}(U \cap V)$ be the boundary homomorphism in the MayerVietoris sequence of the proper triad $(X ; U, V)$ and let $\Delta^{\prime}: H_{n}(X) \rightarrow H_{n-1}(U \cap V)$ be the boundary homomorphism in the Mayer-Vietoris sequence of the proper triad $(X ; V, U)$.
a) Show that $\Delta^{\prime}=-\Delta$.
b) Use a)-to prove that for the mapping $i: S^{n} \rightarrow S^{n}, i\left(x_{1}, \ldots, x_{n+1}\right)=\left(x_{1}, \ldots,-x_{n+1}\right)$ we have that $i_{*}(x)=-x$, for all $x \in H_{n}\left(S^{n}\right)$. Advice: You can use the fact that $\left(S^{n} ; B_{+}, B_{-}\right)$is a proper triad.

Bonus points for the exercises: $25 \%-2$ point, $40 \%-3$ points, $50 \%-4$ points, $60 \%-$ 5 points, $75 \%-6$ points.

