Department of Mathematics and Statistics Introduction to Algebraic topology, fall 2013

Exercise session 11 (for the exercise session Tuesday 26.11)

1. a) Suppose U is an open subset of \mathbb{R}^n and let $x \in U$. Use excision to prove that

$$H_k(U, U \setminus \{x\}) \cong H_k(B'', B'' \setminus \{0\})$$

for all $k \in \mathbb{Z}$.

b) Suppose $U \neq \emptyset$ is an open subset of \mathbb{R}^n , V is an open subset of \mathbb{R}^m and suppose there exists $f: U \to V$ is a homeomorphism. Use a) to prove that n = m.

- 2. Suppose $f: \overline{B}^n \to \overline{B}^n$ is a homeomorphism. Prove that $f(B^n) = B^n$ and $f(S^{n-1}) = S^{n-1}$ (advice: remove a point).
- 3. Suppose X is a non-empty set. We define the chain complex CX by asserting CX_n to be a free abelian group generated by the cartesian product X^{n+1} , $n \ge 0$ and $X_n = 0$ for n < 0. The boundary operator $d_n: CX_n \to CX_{n-1}, n \ge 1$, are defined as the unique homomorphism with the property

$$d_n(x_0, \dots, x_n) = \sum_{i=0}^n (-1)^i (x_0, \dots, \hat{x}_i, \dots, x_n)$$

for basis elements $(x_0, \ldots, x_n) \in X^{n+1}$ (and $d_n = 0$ for n < 1). You do not have to prove that CX is a chain complex (but you are certainly welcome to think about it).

Complex CX has a natural augmentation $\varepsilon \colon CX_0 \to \mathbb{Z}$ defined by $\varepsilon(x) = 1$ for basis elements $x \in X$.

Let $a \in X$ be a fixed element. We define, for every $n \in \mathbb{N}$, a homomorphism $B: CX_n(D) \to CX_{n+1}(D)$ by

$$B(x_0,\ldots,x_n)=(a,x_0,\ldots,x_n)$$

on the basis elements. For n < 0 we define $B: LC_n(D) \to LC_{n+1}(D)$ to be an obvious zero mapping. Prove that for all $z \in CX_n$ the equation

$$(d_{n+1}B + Bd_n)(z) = \begin{cases} z, \text{ if } n \neq 0, \\ z - \varepsilon(z)a, \text{ if } n = 0 \end{cases}$$

is true.

4. Let

$$B_{+} = \{ x \in S^{n} \mid x_{n+1} \ge 0 \}$$

and

$$B_{-} = \{ x \in S^{n} \mid x_{n+1} \le 0 \}$$

Prove that the inclusions of pairs $(B_+, S^{n-1}) \to (S^n, B_-)$ and $(B_-, S^{n-1}) \to (S^n, B_+)$ induce isomorphisms in homology for all dimensions.

5. In the course of the proof of the excision property we have defined, for every $n \in \mathbb{Z}$, a barycentric subdivision operator $S_n: LC_n(D) \to LC_n(D)$ and the mapping $H_n: LC_n(D) \to LC_{n+1}(D)$. We have also shown that S is a chain mapping and H is a chain homotopy between identity mapping id: $LC(D) \to LC(D)$ and S. Here D is a convex set of a finite-dimensional vector space.

a) Suppose X is a topological space and let $f: \Delta_n \to X$ be a singular *n*-simplex in X i.e. a basis element of $C_n(X)$. We define

$$T_n(f) = f_{\sharp}(S_n(\mathrm{id}_{\Delta_n})),$$
$$G(f) = f_{\sharp}(H_n(\mathrm{id}_{\Delta_n})),$$

where $S_n: LC_n(\Delta_n) \to LC_n(\Delta_n)$ and $H_n: LC_n(\Delta_n) \to LC_{n+1}(\Delta_n)$ as above. We extend T_n and G_n to unique homomorphisms $C_n(X) \to C_n(X)$ and $C_n(X) \to C_{n+1}(X)$. Prove that for all $n \in \mathbb{Z}$ we have

$$d_{n+1}G_n + G_{n-1}d_n = \mathrm{id} - T_n.$$

b) Let $m \ge 1$. Prove that

$$\sum_{0 \le i < m} GT^i$$

is a chain homotopy between the chain mappings id and T^m .

6. Suppose A is a retract of X. Prove that for all $n \in \mathbb{Z}$

$$H_n(X) \cong H_n(A) \oplus H_n(X, A).$$

7.* By "the boundary" dM of the Mobius Band we mean the union of sides b and c as a subset of M as in the picture below

By investigating groups $H_n(M, dM)$ (or other methods) prove the following facts:

a) dM is not a retract of M

b) $H_1(M) \cong H_1(dM) \cong \mathbb{Z}$ and it is possible to choose generators in groups $H_1(M)$, $H_1(dM)$ so that the mapping $i_* \colon H_1(dM) \to H_1(M)$ induced by inclusion $i \colon dM \to M$ can be thought of as a mapping $\mathbb{Z} \to \mathbb{Z}, n \mapsto 2n$.

(Hint: simplicial homology)

Bonus points for the exercises: 25% - 2 point, 40% - 3 points, 50% - 4 points, 60% - 5 points, 75% - 6 points.