Department of Mathematics and Statistics

Introduction to Algebraic topology, fall 2013
Exercise session 11 (for the exercise session Tuesday 26.11)

1. a) Suppose U is an open subset of \mathbb{R}^{n} and let $x \in U$. Use excision to prove that

$$
H_{k}(U, U \backslash\{x\}) \cong H_{k}\left(\bar{B}^{n}, \bar{B}^{n} \backslash\{0\}\right)
$$

for all $k \in \mathbb{Z}$.
b) Suppose $U \neq \emptyset$ is an open subset of \mathbb{R}^{n}, V is an open subset of \mathbb{R}^{m} and suppose there exists $f: U \rightarrow V$ is a homeomorphism. Use a) to prove that $n=m$.
2. Suppose $f: \bar{B}^{n} \rightarrow \bar{B}^{n}$ is a homeomorphism. Prove that $f\left(B^{n}\right)=B^{n}$ and $f\left(S^{n-1}\right)=S^{n-1}$ (advice: remove a point).
3. Suppose X is a non-empty set. We define the chain complex $C X$ by asserting $C X_{n}$ to be a free abelian group generated by the cartesian product $X^{n+1}, n \geq 0$ and $X_{n}=0$ for $n<0$. The boundary operator $d_{n}: C X_{n} \rightarrow C X_{n-1}, n \geq 1$, are defined as the unique homomorphism with the property

$$
d_{n}\left(x_{0}, \ldots, x_{n}\right)=\sum_{i=0}^{n}(-1)^{i}\left(x_{0}, \ldots, \hat{x}_{i}, \ldots, x_{n}\right)
$$

for basis elements $\left(x_{0}, \ldots, x_{n}\right) \in X^{n+1}$ (and $d_{n}=0$ for $n<1$). You do not have to prove that $C X$ is a chain complex (but you are certainly welcome to think about it).
Complex $C X$ has a natural augmentation $\varepsilon: C X_{0} \rightarrow \mathbb{Z}$ defined by $\varepsilon(x)=1$ for basis elements $x \in X$.

Let $a \in X$ be a fixed element. We define, for every $n \in \mathbb{N}$, a homomorphism $B: C X_{n}(D) \rightarrow C X_{n+1}(D)$ by

$$
B\left(x_{0}, \ldots, x_{n}\right)=\left(a, x_{0}, \ldots, x_{n}\right)
$$

on the basis elements. For $n<0$ we define $B: L C_{n}(D) \rightarrow L C_{n+1}(D)$ to be an obvious zero mapping. Prove that for all $z \in C X_{n}$ the equation

$$
\left(d_{n+1} B+B d_{n}\right)(z)=\left\{\begin{array}{l}
z, \text { if } n \neq 0, \\
z-\varepsilon(z) a, \text { if } n=0
\end{array}\right.
$$

is true.
4. Let

$$
B_{+}=\left\{x \in S^{n} \mid x_{n+1} \geq 0\right\}
$$

and

$$
B_{-}=\left\{x \in S^{n} \mid x_{n+1} \leq 0\right\}
$$

Prove that the inclusions of pairs $\left(B_{+}, S^{n-1}\right) \rightarrow\left(S^{n}, B_{-}\right)$and $\left(B_{-}, S^{n-1}\right) \rightarrow$ (S^{n}, B_{+}) induce isomorphisms in homology for all dimensions.
5. In the course of the proof of the excision property we have defined, for every $n \in \mathbb{Z}$, a barycentric subdivision operator $S_{n}: L C_{n}(D) \rightarrow$ $L C_{n}(D)$ and the mapping $H_{n}: L C_{n}(D) \rightarrow L C_{n+1}(D)$. We have also shown that S is a chain mapping and H is a chain homotopy between identity mapping id: $L C(D) \rightarrow L C(D)$ and S. Here D is a convex set of a finite-dimensional vector space.
a) Suppose X is a topological space and let $f: \Delta_{n} \rightarrow X$ be a singular n-simplex in X i.e. a basis element of $C_{n}(X)$. We define

$$
\begin{aligned}
& T_{n}(f)=f_{\sharp}\left(S_{n}\left(\operatorname{id}_{\Delta_{n}}\right)\right), \\
& G(f)=f_{\sharp}\left(H_{n}\left(\operatorname{id}_{\Delta_{n}}\right)\right),
\end{aligned}
$$

where $S_{n}: L C_{n}\left(\Delta_{n}\right) \rightarrow L C_{n}\left(\Delta_{n}\right)$ and $H_{n}: L C_{n}\left(\Delta_{n}\right) \rightarrow L C_{n+1}\left(\Delta_{n}\right)$ as above. We extend T_{n} and G_{n} to unique homomorphisms $C_{n}(X) \rightarrow$ $C_{n}(X)$ and $C_{n}(X) \rightarrow C_{n+1}(X)$. Prove that for all $n \in \mathbb{Z}$ we have

$$
d_{n+1} G_{n}+G_{n-1} d_{n}=\mathrm{id}-T_{n} .
$$

b) Let $m \geq 1$. Prove that

$$
\sum_{0 \leq i<m} G T^{i}
$$

is a chain homotopy between the chain mappings id and T^{m}.
6. Suppose A is a retract of X. Prove that for all $n \in \mathbb{Z}$

$$
H_{n}(X) \cong H_{n}(A) \oplus H_{n}(X, A) .
$$

7.* By "the boundary" $d M$ of the Mobius Band we mean the union of sides b and c as a subset of M as in the picture below

By investigating groups $H_{n}(M, d M)$ (or other methods) prove the following facts:
a) $d M$ is not a retract of M
b) $H_{1}(M) \cong H_{1}(d M) \cong \mathbb{Z}$ and it is possible to choose generators in groups $H_{1}(M), H_{1}(d M)$ so that the mapping $i_{*}: H_{1}(d M) \rightarrow H_{1}(M)$ induced by inclusion $i: d M \hookrightarrow M$ can be thought of as a mapping $\mathbb{Z} \rightarrow \mathbb{Z}, n \mapsto 2 n$.
(Hint: simplicial homology)
Bonus points for the exercises: $25 \%-2$ point, $40 \%-3$ points, $50 \%-4$ points, $60 \%-5$ points, $75 \%-6$ points.

