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Exercises 10 - Solutions

1. a) Suppose X is a non-empty space and suppose x ∈ X is fixed. For every path
component Xα of X which does not contain x choose a point yα ∈ Xα. Prove that
the set

{yα − x | α ∈ A}

is a free basis for the group H̃0(X). Here A is a set of all path components of X
that do not contain x.

b) Let S0 = {−1, 1} be a discrete space with exactly two points. Show that
H̃0(S

0) ∼= Z.

Solution: We know that H̃0(X) = Ker ε∗ where ε∗ : H0(X) → Z is a map-
ping induced by the homomorphism ε : C0(X) → Z. The mapping ε is defined by
ε(x) = 1 for basis elements x ∈ Sing0(X), which are points of X (we regard simpli-
cial 0-simplices f : ∆0 → X as points of X , identifying such a mapping f with its
imagepoint f(∆0)).

We start by noticing that for every α ∈ A

ε∗(yα − x) = ε(yα − x) = ε(yα)− ε(x) = 1− 1 = 0.

Thus indeed yα − x ∈ H̃0(X) for every α ∈ A. Next we show that the set

{yα − x | α ∈ A}

is free. Suppose n1, . . . , nk ∈ Z and α1, . . . , αk ∈ A are such that

k∑

i=1

ni(yαi
− x) = 0 ∈ H̃0(X).

This is equivalent to
k∑

i=0

niyi = 0 ∈ H0(X),

where y0 = x, n0 = −(n1 + . . .+ nk) and yi = yαi
for all i = 1, . . . , n. By Corollary

12.5 (or rather its proof)
{yα | α ∈ A} ∪ {x}

is a basis for H0(X). Hence in particular this set is free, so
n0 = n1 = . . . = nk = 0. This implies that the set

{yα − x | α ∈ A}

is free.

Next we show that this set generates the group H̃0(X).
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Suppose z ∈ H̃0(X). Since we know that

{yα | α ∈ A} ∪ {x}

is a basis for H0(X), there exist representation

z =
k∑

i=0

niyi,

where y0 = x and yi = yαi
for some αi ∈ A, i = 1, . . . , k. On the other hand we are

assuming that z ∈ H̃0(X) = ker ε∗, so

k∑

i=0

ni = εz = 0.

This implies that n0 = −(n1 + . . .+ nk), so

z =

k∑

i=1

niyi − (

k∑

i=1

ni)x =

k∑

i=1

ni(yi − x).

We have shown that the set
{yα − x | α ∈ A}

also generates the group H̃0(X). The proof is complete.

b) We apply a) to the space X = {1,−1}. This space has exactly two path-
components {1}, {−1} so choosing x = −1 we obtain by a) that H̃0(S

0) is a free
group based on one element 1− (−1), in particular isomorphic to Z.

Remark: The result of b) is essential in the calculation of (reduced) homology
groups of the sphere Sn that is done using excision by induction on n in the lecture
notes (pages 205-206, Part III). The case n = 0 is initial step of this proof. Now in
this exercise we have shown that H̃0(S

0) ∼= Z. Using Corollary 12.3 and the fact
that for n 6= 0 we have H̃n(X) = Hn(X) we get that for n 6= 0

H̃n(S
0) = Hn(S

0) ∼= Hn({1})⊕Hn({−1}) ∼= 0⊕ 0 = 0,

where we have also used Proposition 12.9 (we know how to calculate homology
groups of any singleton space!). Thus now we can regard the inductive calculation
of reduced homology of the sphere Sn ,presented on pages 205-206, to be complete.

If we would have in our disposal more facts about abelian groups we could also
conclude that H̃0(S

0) ∼= Z using the equation

H0(X) ∼= H̃0(X)⊕ Z
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proved in lecture notes in regard to reduced groups. Namely from Corollary 12.3
we know that H0(S

0) ∼= Z⊕ Z, so for X = S0 this equation becomes

Z⊕ Z ∼= H̃0(S
0)⊕ Z.

If we would know that in such an equation common factor Z can be ”cancelled” out,
we would get the result needed immediately. It is indeed true that such cancelling
out works in this case, but the proof of that requires more information about abelian
groups that we have in this course. It would be enough to know that the subgroup
of a free abelian group is also free, which is true, but not exactly trivial (in this
case it would be enough to do it for Z ⊕ Z, which is probably much simpler than
the general case). Then we would know that H̃0(S

0) is free (as a subgroup of free
group H0(S

0)) so the equation above becomes

Z⊕ Z ∼= Z
(A) ⊕ Z.

Using Lemma 8.17. one arrives at H̃0(S
0) = Z

(A) ∼= Z.

2. Suppose X 6= ∅ is a topological space and x ∈ X . Prove that

Hn(X, x) ∼= H̃n(X)

for all n ∈ Z.

Solution: We use the long exact reduced homology sequence of the pair (X, {x}
the part of which is an exact sequence

H̃n({x}) // H̃n(X) // Hn(X, x) // H̃n−1({x})

By Proposition 12.9. H̃n({x}) = H̃n−1({x}) = 0 for all n ∈ Z. Thus we obtain
exact sequence

0 // H̃n(X)
j∗

// Hn(X, x) // 0.

By exactness Ker j∗ = Im0 = 0 and Im j∗ = Ker 0 = Hn(X, x), so j∗ is both
injection and surjection i.e. isomorphism.

3. a) Suppose f : X → Y is a continuous mapping between non-empty path-connected
spaces X , Y . Prove that f∗ : H0(X) → H0(Y ) is an isomorphism.
b) Suppose (X,A) is a topological pair such that A and X are both path-connected
and non-empty. Let j : X → (X,A) be the inclusion of pairs. Show that

j∗ : H1(X) → H1(X,A)

is surjective. Is the assumption that X is path-connected necessary? Is the as-
sumption that A is path-connected necessary?

Solution: a) Since X and Y are path-connected, H0(X) ∼= Z ∼= H0(Y ) (Corollary
12.5). Moreover as the only basis element of H0(X) one can choose a homology
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class x of any fixed point x ∈ X and as the basis element of H0(Y ) one can choose
a homology class y of any fixed point y ∈ Y .

We choose a fixed point x ∈ X and as y ∈ Y we choose a point y = f(x). Then

f∗(x) = f(x) = y.

In other words f∗ maps the basis element of H0(X) ∼= Z to the basis element of
H0(Y ) ∼= Z. This implies that f∗ is an isomorphism. In fact, choosing isomorphisms
α : Z → H0(X), β : Z → H0(Y ), α(n) = nx, β(n) = nf(x) we obtain commutative
diagram

Z
id //

α
��

Z

β
��

H0(X)
f∗

// H0(Y ).

which implies that with respect to isomorphisms α and β the isomorphism f∗ ”looks
like ” identity mapping of Z.

b) The simplest way is to use the reduced long exact homology sequence of the pair
(X,A), the part of which looks like

H1(X)
j∗

// H1(X,A)
∆ // H̃0(A)

i∗ // H̃0(X).

Since A is assumed path-connected, by Proposition 12.6 H̃0(A) = 0, so ∆∗ = 0. By
exactness Im∗ = Ker∆∗ = H1(X,A), which proves precisely that j∗ is surjective.
This proof also shows that the assumption that X is path-connected is not needed
- we did not use it. Instead the assumption about A being path-connected cannot
be in general dropped. In fact, by exactness of the sequence above shows that j∗
is surjective if and only if ∆∗ is zero mapping. On the other hand, by exactness at
H̃0(A), ∆∗ = 0 if and only if Ker i∗ = Im∆∗ = 0. Thus j∗ is surjective if and only if
i∗H̃0(A) : H̃0(X) is injective. The same conclusion follows if one uses ordinary long
exact homology sequence

H1(X)
j∗

// H1(X,A) ∆ // H0(A)
i∗

// H0(X).

Since we know the exact nature of groups H0(A) and H0(X) by Corollary 12.5, we
can actually calculate i∗ in any general case. For any A the group H0(A) has a
basis {xα}, where xα is exactly one chosen point from every path component α of
A. Similarly for X . The mapping i∗ maps xα to the corresponding path component
of xα of X . Thus i∗ maps generators of H0(A) to generators of H0(X), but it
might map different generators to the same - if two different path components of
A intersect the same path component of X , then the mapping i∗ is not injective,
otherwise it is. In particular it is not injective if and only if Xα ∩ A is not path-
connected for some path component Xα of X . The simplest example is when X is
path component while A is not, for instance X = [0, 1], A = {0, 1}. This example
shows that in general the assumption ”A is path-connected” is essential.
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4. a) Suppose f : (X,A) → (Y,B) is a mapping of pairs such that both f : X → Y
and f |A : A → B are homotopy equivalences. Prove that

f∗ : Hn(X,A) → Hn(Y,B)

is an isomorphism for all n ∈ Z.
b) Deduce that the inclusion of pairs i : (B

n
, Sn−1) → (B

n
, B

n
\ {0}) induces iso-

morphisms in homology for all n ∈ Z.
c) Assuming known that Hm(B

n
, Sn−1) 6= 0 for at least one m ∈ Z, show that there

does not exist homotopy equivalence of pairs (B
n
, Sn−1) → (B

n
, B

n
\ {0}) (Hint:

show that the homotopy inverse of such a mapping would map everything into Sn−1

and obtain a contradiction).

Solution: a) By Corollary 13.11 both f∗ : Hn(X) → Hn(Y ) and (f |)∗ : Hn(A) →
Hn(B) are isomorphisms for all n ∈ N. Consider the diagram

Hn(A) //

(f |)∗
��

Hn(X) //

f∗
��

Hn(X,A) //

��

Hn−1(A)

(f |)∗
��

// Hn−1(K)

f∗
��

Hn(B) // Hn(Y ) // Hn(Y,B) // Hn−1(B) // Hn−1(Y )

which we know to be commutative. Rows are (part of) long exact homology se-
quences of pairs (X,A) and (Y,B), in particular exact. All vertical mappings,
except for the mapping in the middle, are known to be isomorphisms. By Five
Lemma 11.14 the mapping in the middle is also an isomorphism. This proves the
claim.

b) The inclusion i : (B
n
, Sn−1) → (B

n
, B

n
\{0}) satisfies assumptions of a). Indeed

as a mapping i : B
n
→ B

n
is just identity, so certainly homotopy equivalence. As a

mapping i : Sn−1 → B
n
\ {0} this mapping is known to be homotopy equivalence,

its inverse is the mapping j : B
n
\ {0} → Sn−1, j(x) = x/|x| (Exercise 5.7.2). Thus

by a) i : (B
n
, Sn−1) → (B

n
, B

n
\ {0}) induces isomorphisms in homology in all di-

mensions.

There is also completely different way to prove b), without using a). We use long
exact sequence of the triple (B

n
, B

n
\ {0}, Sn−1), the part of which is

Hn(B
n
\ {0}, Sn−1) // Hn(B

n
, Sn−1)

i∗
// Hn(B

n
, B

n
\ {0}) // Hn−1(B

n
\ {0}, Sn−1)

Notice that the mapping i∗ : Hn(B
n
, Sn−1) → Hn(B

n
, B

n
\ {0}) which we want

to prove to be an isomorphism is a part of this sequence. If we can show that
Hn(B

n
\ {0}, Sn−1) = 0 for all n ∈ Z, then the sequence above becomes

0 // Hn(B
n
, Sn−1)

i∗ // Hn(B
n
, B

n
\ {0}) // 0

which by exactness means precisely that

i∗ : Hn(B
n
, Sn−1) → Hn(B

n
, B

n
\ {0})
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is an isomorphism. It remains to show that Hn(B
n
\ {0}, Sn−1) = 0 for all n ∈ Z.

This follows from long exact homology sequence

Hn(S
n−1)

k∗ // Hn(B
n
\ {0})

j∗
// Hn(B

n
\ {0}, Sn−1)

∆ // Hn−1(S
n−1)

k∗ // Hn−1(B
n
\ {0})

of the pair (B
n
\ {0}, Sn−1). The mapping k∗ in this diagram is induced by the

inclusion k : Sn−1 → B
n
\ {0}, which we know to be homotopy equivalence. By

Corollary 13.11 k∗ is isomorphism in all dimensions. By exactness above we have
that Ker j∗ = Im k∗ = Hn(B

n
\ {0})

(k∗ is surjection!), so j∗ : Hn(B
n
\ {0}) → Hn(B

n
\ {0}, Sn−1) is a zero mapping.

On the other hand Im∆ = Ker k∗ = 0, so ∆: Hn(B
n
\ {0}, Sn−1) → Hn−1(S

n−1) is
also a zero mapping. The part of the diagram is thus of the form

G1
01 // Hn(B

n
\ {0}, Sn−1)

02 // G2

where both mappings are zero homomorphism. But, this sequence is exact, so

Hn(B
n
\ {0}, Sn−1) = Ker 02 = Im01 = 0.

This proves that Hn(B
n
\ {0}, Sn−1) = 0 for all n ∈ Z and we are done. In general

if the pair (X,A) is such that the inclusion i : A → X induces isomorphisms in
homology for all dimensions, then Hn(X,A) = 0 for all n ∈ Z.

c) Suppose f : (B
n
, Sn−1) → (B

n
, B

n
\ {0}) is a homotopy equivalence. Let

g : (B
n
, B

n
\{0}) → (B

n
, Sn−1) be its homotopy inverse. Then in particular g(B

n
\

{0}) ⊂ Sn−1. Since g is continuous this implies that

g(B
n
\ {0}) ⊂ Sn−1 = Sn−1,

but B
n
\ {0} = B

n
, so g actually maps everything into Sn−1. More intuitive and

elementary way to see the same - origin 0 is clearly a limit point of some sequence
xn that lies in B

n
\ {0}. Since g(xn) ∈ Sn−1, by continuity also g(0) ∈ Sn−1.

Thus, if we denote by k : (Sn−1, Sn−1) → (B
n
, Sn−1), we see that g can be decom-

posed as the composition g = k ◦ g1, where g1 : (B
n
, B

n
\ {0}) → (Sn−1, Sn−1) is

defined by g1(x) = g(x), x ∈ B
n
. Thus g∗ = k∗ ◦ (g1)∗ decomposes through the

group Hm(S
n−1, Sn−1), for all m ∈ Z,

Hm(B
n
, B

n
\ {0})

g∗
//

(g1)∗

))SS
SS

SS
SS

SS
SS

SS

Hm(B
n
, Sn−1)

Hm(S
n−1, Sn−1

k∗

66lllllllllllll

.

Now, the complex C(X,X) = C(X)/C(X) is zero complex (all groups are trivial),
for any topological space X , so its homology is also trivially zero in all dimensions.
Thus g∗ factors through the trivial group Hm(S

n−1, Sn−1), which implies that is
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must be zero mapping.

A less fancy down-to-earth way to get the same conclusion is to argue that for any
n-geometrical simplex σ in B

n
its image under g♯ i.e. g ◦ σ maps inside Sn−1 so g♯

maps everything to C(Sn−1), hence becomes zero mapping when considered as a
mapping C(B

n
, B

n
\ {0}) → C(B

n
, Sn−1).

Nevertheless in the end we have shown that g∗ : Hm(B
n
, B

n
\{0}) → Hm(B

n
, Sn−1)

must be zero mapping. On the other hand being inverse of homotopy equivalence,
g is itself homotopy equivalence, so induced mapping
g∗ : Hm(B

n
, B

n
\ {0}) → Hm(B

n
, Sn−1) is an isomorphism (Corollary 13.11). The

only possibility when zero homomorphism A → B is also an isomorphism is obvi-
ously when A = 0 = B. Hence the existence of g implies that Hm(B

n
, Sn−1) = 0 for

all m ∈ Z. This contradicts the assumption we are allowed to make in this exercise.
This assumption is indeed true - using long exact reduced homology sequence of the
pair (B

n
, Sn−1) and the fact that B

n
is contractible, so its reduced homology groups

are all trivial, it follows that ∆: Hm(B
n
, Sn−1) → H̃m−1(S

n−1) for all m ∈ Z. The
later is non-zero for m = n (Theorem 14.2).

5. Suppose K is a finite n-dimensional ∆-complex. For every geometrical n-simplex
σ of K choose exactly one point xσ ∈ Int σ (simplicial interior). Let

U = |K| \ {xσ | σ geometrical n simplex of K}.

a) Prove that U is open in |K| and that the inclusion |Kn−1| →֒ U is a homotopy
equivalence. Here Kn−1 is (n− 1)-skeleton of K.
If the continuity issue of some homotopy starts to look difficult, you may try to
apply the following general topological result: Suppose f : X → Y is a quotient
mapping and let U ⊂ Y be open. Then the restriction f |f−1U : f−1U → U is also
a quotient mapping.

b) Deduce that the inclusion of pairs j : (|K|, |Kn−1|) → (|K|, U) induces isomor-
phisms in homology i.e.

j∗ : Hn(|K|, |Kn−1|) → Hn(|K|, U)

is an isomorphism for all n ∈ Z.

Solution: a) Recall that |K| is defined as a certain quotient space of the disjoint
union

Z =
⊔

σ∈K

σ.

Let p : Z → |K| be the canonical projection. The subset U is open in |K| if and
only if p−1U is open in Z. Since Z is a disjoint topological union this is true if and
only if p−1U ∩ σ is open in σ for all σ ∈ K. Obviously p−1U ∩ σ is either the whole
simplex σ or σ minus a point, so open in σ in any case. This proves that U is open
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in |K|.

To prove that the inclusion |Kn−1| →֒ U is a homotopy equivalence we construct the
mapping H : U × I → |Kn−1| as follows. The geometrical idea is fairly simple - in
every ”punctured” simplex σ \ {xσ} we let H to be the standard ”radial projection
to the boundary”, which draws a point to the boundary along a line that starts at
the ”centre-point” xσ. On the boundary and outside all n-simplices, i.e. in the set
|Kn−1| homotopy stays identity mapping. In a nutshell, this is just a straightforward
generalization of the standard radial homotopy B

n
\ {0}× I → Sn−1 (see Example

5.7.2).

The actual construction of homotopy and verification of its continuity are rather
technical, because |K| is defined as a quotient space.

For x ∈ |Kn−1|, t ∈ I we put H(x, t) = x. Let σ ∈ Kn/ ∼ be a geometrical n-
simplex of K, let ∆ be a (real) simplex of Kn that defines this geometrical simplex
and let fσ : ∆ → σ be a (restriction of) projection to quotient. Then (Proposition
6.13) fσ is actually a quotient mapping. Let b = b∆ be an element of ∆ such that
fσ(b) = xσ. Then b is surely an element of interior.

Since ∆ is an n-simplex, it is homeomorphic to B
n
, via the homeomorphism α that

maps simplicial boundary Bd∆ to Sn−1 and α(b) = 0 (see the proof of Theorem
3.20). We know that there exists homotopy J : B

n
\ {0} × I → B

n
\ {0} such that

J(x, 0) = x, J(x, 1) ∈ Sn−1, for all x ∈ B
n
and J(x, t) = x if x ∈ Sn−1, for all t ∈ I

(see Example 5.7.1). Using this fact and homeomorphism α we derive the existence
of the homotopy K : ∆\{b}×I → ∆\{b}×I with properties K(x, 1) ∈ Bd∆, for
all x ∈ ∆ and K(x, t) = x if x ∈ Bd∆, for all t ∈ I. Putting all these homotopies
together, we can define a homotopy H ′ : Z ′ × I → Z ′, where Z ′ is a subset of Z
obtained by taking away all points b∆, where ∆ runs through all n-simplices of K.
As above we easily see that Z ′ is open in Z. The mapping H ′ defined as K on every
n-simplex and as identity for every t on simplices of dimension smaller than n.

Now, let p : Z → |K| be canonical projection, that defines the topology of the
polyhedron |K| (as a quotient space). Consider the mapping q = p× id : Z × I →
|K| × I. Then q−1(U × I) = Z ′ × U . There exists a mapping H : U × I → U that
makes the diagram

Z ′ × I

q

��

H′

// Z ′

p

��

U × I
H // U
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commutative. Indeed we just define by H([x], t) = p(H ′(x, t)) for every class [x]
in U . Since all the identifications in |K| happen in |K|n−1, where H ′ is identity for
every t, mapping H defines like this is well-defined. Now all we need to know is
that q is a quotient mapping. By the characteristic property of quotient mappings
(Lemma 6.2.), this would then imply that H is continuous. We’ll get back to the
question why q is a quotient mapping shortly, but let us first end the proof. Once
we know that H is continuous, H becomes a homotopy between identity mapping
id×U ×U of U and a certain mapping j = (·, 1) : U ×U , which has a property that
j(U) = |K|n−1. Hence we can also think of it as a mapping j : U → |K|n−1. Then
H is a homotopy between i ◦ j and id. Conversely, by the way H is constructed,
we have j||Kn−1| = id, so j ◦ i = id. In other words j : U → |Kn−1| is homotopy
equivalence, and we are done.

The only problem remains is how to show that q is quotient mapping. This is
not trivial. First of all q is a restriction of the form f |f−1U → U of the mapping
f = p× id : Z× I → |K|× I. If we would know that such a restriction of a quotient
mapping is always quotient (that was given as a hint), we could derive the claim
that q is quotient from the claim that p× id is quotient. Now, it is true in general
that if p : X → Y is a quotient mapping and W is a locally compact Hausdorff
space, then p × id : X × W → Y × W is also quotient, but this is a non trivial
topological result, that we did not really mention (let alone prove) in the lecture
material. We’ll try to come with simpler and more elementary proof for this case.
Since we are assuming that K is finite, the finite disjoint union Z of compact spaces
is compact, hence also product Z × I is compact. We know that every continuous
surjection from compact space to Hausdorff space is quotient mapping (Lemma
6.4.), so in the end it is enough to verify that |K| × I is Hausdorff. Clearly for that
it is enough to show that |K| is Hausdorff.

All in all, it remains to prove the following two claims.

Claim 1: Suppose f : X → Y is a quotient mapping and let U ⊂ Y be open. Then
the restriction f |f−1U : f−1U → U is also a quotient mapping.

Claim 2: The polyhedron |K| of a finite ∆-complex K is Hausdorff.

Proof of Claim 1: Suppose V ⊂ U is such that f |−1V is open in f−1U . Now in
this case f |−1V = f−1V and f−1U is open in X (since f is continuous and U is
open), so f−1V is open in X . Since f is quotient, this implies that V is open in
Y , in particular open in smaller subset U . The surjectivity of f | follows from its
definition and surjectivity of f . This proves the claim.

Remark: Similar claim is true if we substitute assumption ”U is open” with as-
sumption ”U is closed”. Surprisingly the claim is not i general true if U is just
arbitrary subset, but it is true for all subsets U ⊂ Y if we assume that f is open or
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closed. Then the restriction f |f−1U : f−1U → U is even open(closed).

Proof of Claim 2: By induction on n = dimK. Polyhedron |K| of a zero-
dimensional complex K is a discrete space, and such a space is always Hausdorff.
Suppose |K| is n-dimensional and the claim is true for (n − 1)-dimensional com-
plexes. Then |K|n−1 is Hausdorff, by inductive asumption.

We use the mapping j : U → |Kn−1| defined as above. Its continuity, of course,
follows from the continuity of the whole homotopy H , we have constructed, but
right now we are trying to finish the proof of the continuity of H , so we cannot
use it, otherwise we would commit circular thinking. Since we need continuity of j,
we will prove it now separately. Indeed since j = H(·, 1) is a restriction of H , the
diagram 5 above implies the existence of diagram

Z ′

p|
��

k // Z ′

p

��

U
j

// U,

where k = H ′(·, 1). Since p is quotient and U is open in |K|, the claim 1 we already
proved implies that p| is quotient, so continuity of j follows from Lemma 6.2., as
usual.

Now we are ready to prove that |K| is Haudorff. Suppose x, y ∈ |K|, x 6= y. Suppose
first that x, y ∈ |K|n−1. Since by inductive assumption |K|n−1 is Hausdorff, there
exist disjoint neighbourhoods A,B of x and y in |K|n−1. By continuity of j the
sets j−1A and j−1B are open in U and since U is open in |K|, they are open in
|K|. Thus they are open neighbourhoods of x and y in |K|n. Also they are disjoint,
since

j−1A ∩ j−1B = j−1(A ∩B) = j−1∅ = ∅.

Next we suppose x ∈ |K|n−1 and y /∈ |K|n−1. This means that y belongs to simpli-
cial interior of unique geometrical n-simplex σ in K. We can find a neighbourhood
B of y in Int σ such that B ⊂ B (any small enough neighbourhood will do, after
all Int σ is homeomorphic to Bn and open in |K|, b y maximality of σ). It is clear
that A = |K| \ B is open, neighbourhood of y and do not intersect B, which is a
neighbourhood of x.

The last case is when both x, y /∈ |K|n−1. If they belong to interiors of different
n-simplices σ and σ′, then Int σ and Int σ′ are non-intersecting neighbourhoods of x
and y in |K| (remember, the simplicial interior of a simplex in K is in general not
open in polyhedron, but it is if simplex is maximal!). If x and y belong to Int σ for
same σ, then we know that Int σ is open and homeomorphic to Bn, which certainly
is Hausdorff, so we can find disjoint neighbourhoods of x and y in Int σ, which will
be also disjoint open neighbourhoods in |K|. We have shown that in any case two
different points of |K| have disjoint neighbourhoods and now we are finally done.
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6. Suppose C ′, C,D,D′ are chain complexes, f, g, h : C → D, k,m : D → D′, l : C ′ →
C are chain mappings.
a) Let H be a chain homotopy between f to g and H ′ a chain homotopy between
g to h. Prove that H +H ′ is a chain homotopy between f to h. Deduce that the
relation ”f and g are chain homotopic” is an equivalence relation in the set of all
chain mappings C → D.
b) Prove that k ◦H is a chain homotopy between k ◦f and k ◦ g and H ◦ l is a chain
homotopy from f ◦ l to g ◦ l.
c) Suppose H ′′ is a chain homotopy between k and m. Prove that H ′′ ◦ f +m ◦H
and k ◦H +H ′′ ◦ g are both chain homotopies from k ◦ f to m ◦ g.

Solution: ) Assumptions mean precisely that for all n ∈ Z equations

d′n+1Hn +Hn−1dn = fn − gn,

d′n+1H
′
n +H ′

n−1dn = gn − hn

hold. Here by d we denote boundary operators in C and by d′ boundary operators
in D. Adding equations together we obtain

d′n+1(Hn +H ′
n) + (Hn−1 +H ′

n−1)dn = (fn − gn) + (gn − hn) = fn − hn,

which means precisely that H+H ′ is a chain homotopy between f to h. Incidentally
this also implies that relation ”f and g are chain homotopic” defined in the set of
all chain mappings C → D is transitive.

It remains to show that the relation is also reflexive and symmetric. Suppose
f : C → D is a chain mapping. Since trivially fn − fn = 0 for all n ∈ Z, as a chain
homotopy H between f and f we can choose zero mapping, Hn = 0. Then

d′n+10 + 0dn = fn − fn

trivially. This shows that the relation is reflexive, f is always chain homotopic to
itself.

Suppose H be a chain homotopy between f to g, which means that

d′n+1Hn +Hn−1dn = fn − gn

for all n ∈ Z. Multiplying this equation by (−1) and using the fact that all maps
involved are homomorphisms, we obtain

d′n+1(−Hn) + (−Hn−1)dn = gn − fn.

Thus −H is a chain homotopy between g and f , so relation is symmetric.

b)Basically, we need to show that

d′′n+1(k ◦H)n + (k ◦H)n−1dn = (k ◦ f)n − (k ◦ g)n,
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for all n ∈ Z. Here d′′ is a boundary operator of D′. We start with equation

d′n+1Hn +Hn−1dn = fn − gn.

Since both sides of the equation is a mapping Cn → Dn, we can compose it (from
the left) with k : D → D′, to obtain

(kn ◦ d
′
n+1) ◦Hn + kn ◦ (Hn−1dn) = (k ◦ f)n − (k ◦ g)n.

Notice that the fact that kn is a homomorphism is also used. Since k is a chain
mapping, we have that

kn ◦ d
′
n+1 = d′′n+1kn.

Hence, substituting kn ◦ d′n+1 with d′′n+1kn above, we obtain what we wanted and
the first claim if proved.The fact that H ◦ l is a chain homotopy from f ◦ l to g ◦ l
is proved similarly composing from the right with ln.

c) The fastest way to do this is to combine results of a) and b). Indeed by b)
H ′′ ◦ f is a chain homotopy between k ◦ f and m ◦ f . Also by b) m ◦H is a chain
homotopy between m◦f and m◦g. Finally, by a) (the way we proved transitivity!)
H ′′ ◦ f +m ◦H is a chain homotopy from k ◦ f to m ◦ g.

The fact that k ◦ H + H ′′ ◦ g is a chain homotopy from k ◦ f to m ◦ g is proved
similarly.
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