Department of Mathematics and Statistics

Introduction to Algebraic topology, fall 2013
Exercise session 10 (for the exercise session Tuesday 19.11.)

1. a) Suppose X is a non-empty space and suppose $x \in X$ is fixed. For every path component X_{α} of X which does not contain x choose a point $y_{\alpha} \in X_{\alpha}$. Prove that the set

$$
\left\{\overline{y_{\alpha}-x} \mid \alpha \in \mathcal{A}\right\}
$$

is a free basis for the group $\tilde{H}_{0}(X)$. Here \mathcal{A} is a set of all path components of X that do not contain x.
b) Let $S^{0}=\{-1,1\}$ be a discrete space with exactly two points. Show that $\tilde{H}_{0}\left(S^{0}\right) \cong \mathbb{Z}$.
2. Suppose $X \neq \emptyset$ is a topological space and $x \in X$. Prove that

$$
H_{n}(X, x) \cong \tilde{H}_{n}(X)
$$

for all $n \in \mathbb{Z}$.
3. a) Suppose $f: X \rightarrow Y$ is a continuous mapping between non-empty path-connected spaces X, Y. Prove that $f_{*}: H_{0}(X) \rightarrow H_{0}(Y)$ is an isomorphism.
b) Suppose (X, A) is a topological pair such that A and X are both path-connected and non-empty. Let $j: X \rightarrow(X, A)$ be the inclusion of pairs. Show that

$$
j_{*}: H_{1}(X) \rightarrow H_{1}(X, A)
$$

is surjective. Is the assumption that X is path-connected necessary? Is the assumption that A is path-connected necessary?
4. a) Suppose $f:(X, A) \rightarrow(Y, B)$ is a mapping of pairs such that both $f: X \rightarrow Y$ and $f \mid A: A \rightarrow B$ are homotopy equivalences. Prove that

$$
f_{*}: H_{n}(X, A) \rightarrow H_{n}(Y, B)
$$

is an isomorphism for all $n \in \mathbb{Z}$.
b) Deduce that the inclusion of pairs $i:\left(\bar{B}^{n}, S^{n-1}\right) \rightarrow\left(\bar{B}^{n}, \bar{B}^{n} \backslash\{0\}\right)$ induces isomorphisms in homology for all $n \in \mathbb{Z}$.
c) Assuming known that $H_{m}\left(\bar{B}^{n}, S^{n-1}\right) \neq 0$ for at least one $m \in \mathbb{Z}$, show that there does not exist homotopy equivalence of pairs $\left(\bar{B}^{n}, S^{n-1}\right) \rightarrow$ $\left(\bar{B}^{n}, \bar{B}^{n} \backslash\{0\}\right)$ (Hint: show that the homotopy inverse of such a mapping would map everything into S^{n-1} and obtain a contradiction).
5. Suppose K is a finite n-dimensional Δ-complex. For every geometrical n-simplex σ of K choose exactly one point $x_{\sigma} \in \operatorname{int} \sigma$ (simplicial interior). Let

$$
U=|K| \backslash\left\{x_{\sigma} \mid \sigma \text { geometrical } n \text { simplex of } K\right\} .
$$

a) Prove that U is open in $|K|$ and that the inclusion $\left|K^{n-1}\right| \hookrightarrow U$ is a homotopy equivalence. Here K^{n-1} is $(n-1)$-skeleton of K.
If the continuity issue of some homotopy starts to look difficult, you may try to apply the following general topological result: Suppose $f: X \rightarrow Y$ is a quotient mapping and let $U \subset Y$ be open. Then the restriction $f \mid f^{-1} U: f^{-1} U \rightarrow U$ is also a quotient mapping.
b) Deduce that the inclusion of pairs $j:\left(|K|,\left|K^{n-1}\right|\right) \rightarrow(|K|, U)$ induces isomorphisms in homology i.e.

$$
j_{*}: H_{n}\left(|K|,\left|K^{n-1}\right|\right) \rightarrow H_{n}(|K|, U)
$$

is an isomorphism for all $n \in \mathbb{Z}$.
6. Suppose $C^{\prime}, C, D, D^{\prime}$ are chain complexes, $f, g, h: C \rightarrow D, k, m: D \rightarrow$ $D^{\prime}, l: C^{\prime} \rightarrow C$ are chain mappings.
a) Let H be a chain homotopy between f to g and H^{\prime} a chain homotopy between g to h. Prove that $H+H^{\prime}$ is a chain homotopy between f to h. Deduce that the relation " f and g are chain homotopic" is an equivalence relation in the set of all chain mappings $C \rightarrow D$.
b) Prove that $k \circ H$ is a chain homotopy between $k \circ f$ and $k \circ g$ and $H \circ l$ is a chain homotopy from $f \circ l$ to $g \circ l$.
c) Suppose $H^{\prime \prime}$ is a chain homotopy between k and m. Prove that $H^{\prime \prime} \circ f+m \circ H$ and $k \circ H+H^{\prime \prime} \circ g$ are both chain homotopies from $k \circ f$ to $m \circ g$.

Bonus points for the exercises: $25 \%-2$ point, $40 \%-3$ points, $50 \%-4$ points, $60 \%-5$ points, $75 \%-6$ points.

