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Exercise session 9 Solutions

1. Suppose

0 // C ′
f // C

g // C // 0

is a short exact sequence of chain complexes and chain mappings, n ∈
Z and let ∆n : Hn(C) → Hn−1(C

′) be the boundary homomorphism
induced in homology.
a) Prove that

Ker∆n ⊂ Im g∗.

Here g∗ : Hn(C) → Hn(C) is a mapping induced by the chain mapping
g in homology.
b) Prove that

Ker f∗ = Im∆n.

Here f∗ : Hn−1(C
′) → Hn−1(C) is a mapping induced by the chain map-

ping g in homology.

Solution: a) Suppose x ∈ Hn(C) belongs to the kernel of ∆n, which
means that ∆n(x) = 0 ∈ Hn−1(C

′). Here x ∈ Zn(C
′) is a cycle in C ′

n,
which means that dn(x) = 0 ∈ C ′

n−1.

By the construction of the boundary operator ∆n we have that

∆n(x) = z ∈ Hn−1(C
′)

where z ∈ Zn−1(C
′) is such an element that

fn−1(z) = dn(y),

where y ∈ Cn has the property gn(y) = x. Now, if ∆n(x) = z = 0 in
the homology group Hn−1(C

′) that means that z ∈ Bn−1(C
′), so there

exists w ∈ C ′

n such that d′n(w) = z. Since f is a chain mapping we
have that

dnfn(w) = fn−1d
′

n(w) = fn−1(z) = dny,

where y ∈ Cn has the property gn(y) = x. It follows that
dn(y − fn(w)) = 0, so

y′ = y − fn(w)
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is a cycle in C, in particular the homology class y′ ∈ Hn(C) exists.
Now

g∗(y′) = gn(y′) = gn(y − fn(w)) = gn(y)− gn(fn(w)) = gn(y) = x.

Notice that gn(fn(w)) = 0 by exactness. We have shown that x ∈ Im g∗,
which was the goal.

b) First we prove that
Ker f∗ ⊂ Im∆n.

Suppose z ∈ Hn−1(C
′) is a class of a cycle z ∈ Zn(C

′) such that f∗(z) =
fn−1(z) = 0 in Hn−1(C

′). This means that fn−1(z) is a boundary
element of Cn−1 i.e. there exists y ∈ Cn such that dn(y) = fn−1(z). We
claim that x = gn(y) is a cycle in C̄n i.e. d̄n(x) = 0. Indeed, since g is
a chain mapping

d̄n(x) = d̄n(gn(y)) = gn−1(dn(y)) = gn−1(fn−1(z)) = 0,

where the last equation is true by exactness. Since x is a cycle, the
homology class x ∈ Hn(C̄) exists. Since fn−1(z) = dn(y), where gn(y) =
x, by the definition of the boundary operator ∆n it follows that

∆n(x) = z.

In particular z ∈ Im∆n.

It remains to prove the inclusion

Im∆n ⊂ Ker f∗

which is equivalent to
f∗ ◦∆n = 0.

Suppose x ∈ Hn(C̄) is an equivalence class of the cycle x ∈ Zn(C̄).
Then ∆n(x) = z where z ∈ Zn−1(C

′) is such that fn−1(z) = dn(y) for
an element y ∈ Cn that has the property gn(y) = x. Thus

f∗ ◦∆n(x) = f∗(z) = fn−1(z) = dn(y) = 0

by the definition of the homology group Hn−1(C) (the element dn(y) is
a boundary!). This proves the claim.
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2. Suppose

0 // C ′
f //

α

��

C
g //

β

��

C //

γ
��

0

0 // D′
f ′

// D
g′ // D // 0

is a commutative diagram of chain complexes and chain mappings with
exact rows.

Prove that the diagram

Hn(C)
∆n //

γ∗

��

Hn−1(C
′)

α∗

��
Hn(D)

∆n // Hn−1(D
′)

is commutative. Here ∆n : Hn(C) → Hn−1(C
′) on the upper row is the

boundary homomorphism induces by the short exact sequence

0 // C ′
f // C

g // C // 0

and ∆n : Hn(D) → Hn−1(D
′) in the lower row is the boundary homo-

morphism induces by the short exact sequence

0 // D′
f ′

// D
g′ // D // 0

Solution: We need to show that

α∗ ◦∆n = ∆′

n ◦ γ∗ : Hn(C) → Hn−1(C
′).

Let z ∈ Hn(C) be the homology class of a cycle z ∈ Zn(C). We choose
y ∈ Cn such that gn(y) = z and x ∈ Zn−1(C

′) such that fn−1(x) = dny.
Then ∆n(z) = x by the definition of ∆n, hence

α∗ ◦∆n = α∗(x) = αn−1(x).

On the other hand γ∗(z) = γn(z). By commutativity

g′(βn(y)) = γn(g(y)) = γn(z) = z′,

so β(y) = y′ ∈ Dn is an element with the property g′(y′) = z′. Also, by
commutativity

f ′

n−1(αn−1(x)) = βn−1(fn−1(x)) = βn−1(dny) = dnβn(y) = dny
′.
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Thus x′ = αn−1(x) is an element of D′

n−1 such that f ′

n−1(x
′) = dny

′

where g′n(y
′) = z′. By definition of ∆′

n

∆′

n(z
′) = x′ = αn−1(x) = α∗(x).

Since here z′ = γn(z) = γ∗(z) and x = ∆n(z, we obtain the equation

α∗ ◦∆n(z) = ∆′

n ◦ γ∗(z)

which is exactly what we had to prove.

3. Suppose f : C → D is a chain mapping between the chain complexes
C and D. By C̄ we denote the cone of f defined in Exercise 8.4. By
C ′ we denote the chain complex defined by

C ′

n = Cn−1, d
′

n = −dn−1,

where d is the boundary homomorphism of C.
a) Show that

0 // D
j // C̄

p // C ′ // 0

is a short exact sequence of chain complexes and chain mappings. Here
j : D → C̄ is the mapping j(b) = (0, b) and p : C̄ → C ′ is the mapping
p(a, b) = a.
b) By a) there exists long exact homology sequence induced by the short
exact sequence in a). Let ∆n+1 : Hn+1(C

′) → Hn(D) be the boundary
operator of this long exact sequence, n ∈ Z. Prove that there exists a
commutative diagram of the form

Hn+1(C
′)

∆n+1 //

∼=

��

Hn(D)

∼=

��
Hn(C)

f∗ // Hn(D)

in which both vertical mappings are isomorphisms. What these map-
pings are?
c) Deduce the existence of the long exact sequence of the form

. . . // Hn+1(C̄) // Hn(C)
f∗ // Hn(D) // Hn(C̄) // . . .

Solution: ) In the proof of Exercise 8.4. we have shown that j is a
chain mapping that is injective in every dimension. We have also shown
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that p is a chain mapping (notice: in the official solution for Exercise
8.4. the complex C ′ was denoted E). Since pn : Cn−1 ⊕Dn → Cn−1 is
a projection mapping, it is surjective for every n ∈ Z. Finally

Ker pn = {(a, b) ∈ Cn−1 ⊕Dn | a = 0} = jn(Dn).

We have shown that the sequence

0 // Dn

jn // C̄n

pn // C ′

n
// 0

is short exact for every n ∈ Z and since all mappings involved are also
known to be chain mappings we obtain the short exact sequence

0 // D
j // C̄

p // C ′ // 0

of chain complexes and chain mappings.

b) By Theorem 11.8 the short exact sequence

0 // D
j // C̄

p // C ′ // 0

induces long exact sequence in homology

. . . // Hn+1(C̄)
p∗ // Hn+1(C

′)
∆n+1 // Hn(D)

j∗ // Hn(C̄)
p∗ // Hn(C

′)
∆n // Hn−1(D) //

Let us investigate how the boundary homomorphism ∆n+1 : Hn+1(C
′) →

Hn(D) is defined. Suppose x ∈ Zn+1(C
′) is a cycle, which means that

d′n+1(x) = −dn(x) = 0, so dn(x) = 0 and x is a cycle in Cn. As an
element y ∈ C̄n+1 = Cn ⊕ Dn+1 with the property pn(y) = x we can
clearly choose an element y = (x, 0). Then

d̄(y) = (−(−dn(x)), f(x) + d(0)) = (0, f(x))

(we denote the boundary operator in D also by d here). Now

j(f(x)) = (0, f(x)) = d̄(y),

so, by the algorithm that defines ∆n+1 we have that

∆n+1(x) = f(x).

By the proof of Exercise 8.4. we actually have

Hn+1(C
′) = Hn(C),
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so it follows that ∆n+1 : Hn+1(C
′) → Hn(D) is nothing but a mapping

f∗ : Hn(C) → Hn(D). This fact can also be written as commutative
diagram

Hn+1(C
′)

∆n+1 //

∼=

��

Hn(D)

∼=

��
Hn(C)

f∗ // Hn(D)

where both vertical mappings are simply identities, so isomorphisms.

c) Substituting Hn+1(C
′) with Hn(C) and ∆n+1 : Hn+1(C

′) → Hn(D)
with f∗ : Hn(C) → Hn(D) in the exact sequence

. . . // Hn+1(C̄)
p∗ // Hn+1(C

′)
∆n+1 // Hn(D)

j∗ // Hn(C̄)
p∗ // Hn(C

′)
∆n // Hn−1(D) //

gives us the exact sequence of the form

. . . // Hn+1(C̄) // Hn(C)
f∗ // Hn(D) // Hn(C̄) // . . .

Remark: One of the benefits of the result obtained is that now we have
an algebraic object (a certain exact sequence) that contains information
about the induced mapping f∗ for any chain mapping f : C → D. The
long exact homology sequence induced by the short exact sequence

0 // C ′
f // C

g // C // 0

does contain information about induced mappings f∗ and g∗, but it
exists only when f is injective in every dimension and g is surjective
in every dimension, which is usually too much to ask for. The result
we have got work for any chain mapping. Because of that the cone
construction has a lot of applications in homological algebra and al-
gebraic topology (which are unfortunately mainly beyond the scope of
this course.

4. Suppose (X,A,B) is a topological triple. By ∆ we denote the boundary
operator of the long exact homology sequence of the pair (X,A) and
by ∆′ we denote the boundary operator of the triple (X,A,B). Prove
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that the diagram

Hn(A)

i∗

��

Hn+1(X,A)

∆

77ooooooooooo

∆′

''OO
OO

OO
OO

OO
O

Hn(A,B)

commutes. Here i : A → (A,B) is the inclusion of pairs (remember
that A can be considered a pair (A, ∅)).

Solution: We use the naturality of long exact homology sequence,
namely the claim in Exercise 2 (Lemma 11.6 in the lecture material).
Consider the following diagram of topological pairs and mappings

A //

i

��

X //

��

(X,A)

id

��
(A,B) // (X,B) // (X,A)

in which all mappings are inclusions of pairs (we consider any space Y as
a topological pair (Y, ∅)). This diagram obviously commutes, since all
possible compositions of inclusions are inclusions again. Hence taking
singular chain complexes and ♯-induced chain mappings of this diagram
produces commutative diagram

C(A) //

i♯

��

C(X) //

��

C(X,A)

id

��
C(A,B) // C(X,B) // C(X,A)

of chain complexes and chain mappings. Moreover we know that both
rows of this diagram are actually short exact sequences of chain com-
plexes and chain mappings, and, in fact, exactly the rows that induce
standard long exact homology sequence of, respectively, the pair (X,A)
and the triple (X,A,B). Thus, by naturality (Propisition 11.9) com-
mutative diagram

0 // C(A) //

i♯

��

C(X) //

��

C(X,A)

id

��

// 0

0 // C(A,B) // C(X,B) // C(X,A) // 0
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induces commutative diagram

Hn(X,A)
∆n //

id∗

��

Hn−1(A)

i∗
��

Hn(X,A)
∆′

n // Hn−1(A,B)

Since id∗ = id, this amounts to the claim we had to prove.

5. Prove the second part of the Five Lemma: Suppose

G1

α1 //

f1
��

G2

α2 //

f2
��

G3

α3 //

f3
��

G4

α4 //

f4
��

G5

f5
��

H1

β1 // H2

β2 // H3

β3 // H4

β4 // H5

is a commutative diagram of abelian groups and homomorphisms with
exact rows. Suppose f5 is injective and f2, f4 are surjective. Prove that
f3 is surjective.

Solution: We do diagram chasing. Suppose y ∈ H3. We need to show
the existence of x ∈ G3 such that f3(x) = y.

Advice: To make the following of the proof (or the proof itself) easier,
draw the diagram on paper and chase around it.

Since f4 is surjective, there exists z ∈ G4 such that f4(z) = β3(y). By
commutativity and the exactness of the lower row (betas) we have

f5(α4(z)) = β4(f4(z)) = β2β3(z) = 0.

Since f5 is injective this means that α4(z) = 0 i.e.

z ∈ Kerα4 = Imα3.

Thus there exists u ∈ G3 such that z = α3(u). By commutativity

β3(f3(u)) = f4(α3(u)) = f4(z) = β3(y).

This implies that β3(f3(u)− y) = 0, so by exactness

y − f3(u) ∈ Ker β3 = Im β2.
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Hence there exists v ∈ H2 such that β2(v) = y − f3(u). Since f2 is
assumed surjective there exists w ∈ G2 such that f2(w) = v. Now by
commutativity

f3(α2(w)) = β2(f2(w)) = β2(v) = y − f3(u).

Thus
f3(α2(w) + u) = y,

in particular y ∈ Im f3, which is what had to be shown.

Remark: Notice that the first square of the diagram, i.e. mappings
f1, α1, β1 as well as the groups G1, H1 play no role in the proof of this
part of Five Lemma, so in a way this partial result is a sort of a certain
”Four Lemma”. If you investigate the proof of the other part of Five
Lemma given in lecture notes (part a) of Lemma 11.14, you can notice
that that part does not use the last square, so can also be regarded
as a certain Four Lemma. Thus Five Lemma is a corollary of two
Four Lemmas. It is also a good exercise to go through the proofs and
investigate if all the exactness assumptions were used in full extend.
For example the proof of b) above only uses the exactness in H3 in the
form Ker β3 ⊂ Im β2 and the other inclusion Im β2 ⊂ Ker β3 not needed
there. Can you construct counterexamples that show the necessity of
all assumptions that were actually used in the proof?

6. a) Suppose

0 // A
f // C

g // B // 0

is a short exact sequence of abelian groups. Suppose that there exists
a homomorphism g′ : B → C such that g ◦ g′ = id. Prove that the
sequence splits.

b) Suppose B is a free abelian group. Prove that any short exact
sequence

0 // A
f // C

g // B // 0

of abelian groups splits. Hint: a) and Lemma 8.4.

Solution: a) Consider a mapping β : A⊕ B → C defined by

β(a, b) = f(a) + g′(b).
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Then β is a homomorphism and

β ◦ i(a) = β(a, 0) = f(a) for all a ∈ A and

g ◦ β(a, b) = g(f(a) + g′(b)) = g(f(a)) + g(g′(b)) = 0 + b = p(b),

by exactness and assumptions. Here i : A → A⊕B is the canonical inclusion
and p : A⊕B → B is canonical projection. In other words the diagram

C
g

##G
GG

GG
GG

GG

0 // A

f
;;wwwwwwwww

i

##G
GG

GG
GG

GG
B // 0

A⊕B

p
;;wwwwwwwww

β

OO

commutes. Writing this diagram ”upside down” in the form

0 //

id

��

A
i //

id

��

A⊕B
p //

β
��

B //

id

��

0

0 // A
f // C

g // B // 0

and applying Five Lemma 11.4 (identity mappings are obviously isomor-
phisms) we see that β we have constructed is an isomorphism. If we denote
α = β−1 : C → A ⊕ B, then the commutativity of the diagram above easily
implies (check!) the commutativity of the diagram

C
g

##G
GG

GG
GG

GG

α

��

0 // A

f
;;wwwwwwwww

i

##G
GG

GG
GG

GG
B // 0

A⊕B

p
;;wwwwwwwww

By definition this proves that the sequence splits.

Remark 1: In general the similar application of Five Lemma shows
that the relation ”short exact sequence

0 // A
f // C

g // B // 0

is isomorphic to the exact sequence

0 // A
f ′

// C ′
g′ // B // 0
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is the strict sense ” is symmetric - does not matter if we show the existence
of the homomorphism α : C → C ′ that makes the diagram

C

α

��

g

  A
AA

AA
AA

A

0 // A

f
>>}}}}}}}}

f ′

  A
AA

AA
AA

B // 0

C ′

g′
>>}}}}}}}

commutative, or the existence of the homomorphism β : C ′ → C that makes
the diagram

C
g

  A
AA

AA
AA

A

0 // A

f
>>}}}}}}}}

f ′

  A
AA

AA
AA

B // 0

C ′

g′
>>}}}}}}}

β

OO

commutative.
Remark 2: A good exercise is to try to prove the bijectivity of β : A⊕

B → C defined above by β(a, b) = f(a) + g′(b) ”by hands” - by showing
injectivity and surjectivity.

b) Let B′ be a basis of B. For every b ∈ B′ we choose exactly one element
cb = g′(b) ∈ C with the property g(cb) = b. Such an element exists since g

is a surjection. By Lemma 8.4. this selection can be extended to the unique
homomorphism g′ : B → C. For every basis element b ∈ B′ we have

(g ◦ g′)(b) = g(g′(b)) = g(cb) = b = id(b).

Since g ◦ g′ and id are both homomorphisms B → B where B is free, by
uniqueness part of Lemma 8.4. we have that g ◦ g′ = id. By a) sequence
splits.

Remark 1: Simplest example of the short exact sequence that does not
split is the sequence

0 // Z
f // Z

p // Zn
// 0

where f(x) = nx is multiplication by integer n ∈ N and p is the projection to
the quotient. If this sequence would split then in particular we would have
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Z ∼= Z⊕Zn which is impossible since Z⊕Zn has non-trivial torsion elements
while Z does not.

Remark 2: It can be shown that for a fixed abelian group B it is true
that every short exact sequence

0 // A
f // C

g // B // 0

splits if and only if B is free.
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