Department of Mathematics and Statistics

Introduction to Algebraic topology, fall 2013
Exercise session 9 (for the exercise session Tuesday 12.11.2013.)

1. Suppose

$$
0 \longrightarrow C^{\prime} \xrightarrow{f} C \xrightarrow{g} \bar{C} \longrightarrow 0
$$

is a short exact sequence of chain complexes and chain mappings, $n \in$ \mathbb{Z} and let $\Delta_{n}: H_{n}(\bar{C}) \rightarrow H_{n-1}\left(C^{\prime}\right)$ be the boundary homomorphism induced in homology.
a) Prove that

$$
\operatorname{Ker} \Delta_{n} \subset \operatorname{Im} g_{*} .
$$

Here $g_{*}: H_{n}(C) \rightarrow H_{n}(\bar{C})$ is a mapping induced by the chain mapping g in homology.
b) Prove that

$$
\operatorname{Ker} f_{*}=\operatorname{Im} \Delta_{n} .
$$

Here $f_{*}: H_{n-1}\left(C^{\prime}\right) \rightarrow H_{n-1}(C)$ is a mapping induced by the chain mapping g in homology.
2. Suppose

is a commutative diagram of chain complexes and chain mappings with exact rows.

Prove that the diagram

is commutative. Here $\Delta_{n}: H_{n}(\bar{C}) \rightarrow H_{n-1}\left(C^{\prime}\right)$ on the upper row is the boundary homomorphism induces by the short exact sequence

and $\Delta_{n}: H_{n}(\bar{D}) \rightarrow H_{n-1}\left(D^{\prime}\right)$ in the lower row is the boundary homomorphism induces by the short exact sequence

$$
0 \longrightarrow D^{\prime} \xrightarrow{f^{\prime}} D \xrightarrow{g^{\prime}} \bar{D} \longrightarrow 0
$$

3. Suppose $f: C \rightarrow D$ is a chain mapping between the chain complexes C and D. By \bar{C} we denote the cone of f defined in Exercise 8.4. By C^{\prime} we denote the chain complex defined by

$$
C_{n}^{\prime}=C_{n-1}, d_{n}^{\prime}=-d_{n-1},
$$

where d is the boundary homomorphism of C.
a) Show that

$$
0 \longrightarrow D \xrightarrow{j} \bar{C} \xrightarrow{p} C^{\prime} \longrightarrow 0
$$

is a short exact sequence of chain complexes and chain mappings. Here $j: D \rightarrow \bar{C}$ is the mapping $j(b)=(0, b)$ and $p: \bar{C} \rightarrow C^{\prime}$ is the mapping $p(a, b)=a$.
b) By a) there exists long exact homology sequence induced by the short exact sequence in a). Let $\Delta_{n+1}: H_{n+1}\left(C^{\prime}\right) \rightarrow H_{n}(D)$ be the boundary operator of this long exact sequence, $n \in \mathbb{Z}$. Prove that there exists a commutative diagram of the form

in which both vertical mappings are isomorphisms. What these mappings are?
c) Deduce the existence of the long exact sequence of the form

$$
\ldots \longrightarrow H_{n+1}(\bar{C}) \longrightarrow H_{n}(C) \xrightarrow{f_{*}} H_{n}(D) \longrightarrow H_{n}(\bar{C}) \longrightarrow \ldots
$$

4. Suppose (X, A, B) is a topological triple. By Δ we denote the boundary operator of the long exact homology sequence of the pair (X, A) and by Δ^{\prime} we denote the boundary operator of the triple (X, A, B). Prove that the diagram

commutes. Here $i: A \rightarrow(A, B)$ is the inclusion of pairs (remember that A can be considered a pair $(A, \emptyset))$.
5. Prove the second part of the Five Lemma: Suppose

is a commutative diagram of abelian groups and homomorphisms with exact rows. Suppose f_{5} is injective and f_{2}, f_{4} are surjective. Prove that f_{3} is surjective.
6. a) Suppose

$$
0 \longrightarrow A \xrightarrow{f} C \xrightarrow{g} B \longrightarrow 0
$$

is a short exact sequence of abelian groups. Suppose that there exists a homomorphism $g^{\prime}: B \rightarrow C$ such that $g \circ g^{\prime}=\mathrm{id}$. Prove that the sequence splits.
b) Suppose B is a free abelian group. Prove that any short exact seuquence

$$
0 \longrightarrow A \xrightarrow{f} C \xrightarrow{g} B \longrightarrow 0
$$

of abelian groups splits. Hint: a) and Lemma 8.4.
Bonus points for the exercises: $25 \%-2$ point, $40 \%-3$ points, $50 \%-4$ points, $60 \%-5$ points, $75 \%-6$ points.

