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Exercises 8 Solutions

1. a) Suppose f : X → Y is a continuous mapping between topological
spaces X and Y . Show that the collection of mappings f♯ : Cn(X) →
Cn(Y ) defined in Example 10.1. is a chain mapping.

b) Suppose f : C → D is a chain mapping between chain complexes
C,D. Suppose fn : Cn → Dn is a bijection for every n ∈ Z. Show that
f is an isomorphism of chain complexes.

Solution: a) We first recall how (f♯)n : Cn(X) → Cn(Y ) is defined.
For n < 0 this is zero homomorphism (the only possible choice). If
n ≥ 0, then for basis elements g : ∆n → X of the group Cn(X) we
assert (f♯)n(g) = f ◦ g, which is a basis element (singular simplex) in
Cn(Y ). Then we extend this choice to the unique homomorphism, by
Lemma 8.4.

We need to show that for all n ∈ Z the diagram

Cn(X)
(f♯)n

//

dXn
��

Cn(Y )

dYn
��

Cn−1(X)
(f♯)n−1

// Cn−1(Y ).

commutes. Here dXn : Cn(X) → Cn−1(X) is the boundary operator of
the complex C(X), which is defined for basis elements g ∈ Singn(X)
by the formula

dXn (g) =

n
∑

i=0

(−1)ng ◦ εin.

Similarly dYn : Cn(Y ) → Cn−1(Y ) is the boundary operator of the com-
plex C(Y ), which is defined for basis elements h ∈ Singn(Y ) by the
formula

dXn (h) =
n

∑

i=0

(−1)nh ◦ εin.

The mappings εin, n ≥ 1, i = 0, . . . , n are certain affine mappings
∆n−1 → ∆n. If n ≥ 0, then Cn−1(X) = Cn−1(Y ) = 0, so the diagram
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commutes trivially.

Suppose n ≥ 1. To prove that

dYn ◦ (f♯)n = (f♯)n−1 ◦ d
X
n

it is enough to prove that for every basis element of Cn(X) i.e. for
every continous mapping g : ∆n → X we have

(dYn ◦ (f♯)n)(g) = ((f♯)n−1 ◦ d
X
n )(g).

This is a simple calculation that uses the definitions. First of all
(f♯)n(g) = f ◦ g is a continuous mapping ∆n → Y , i.e. a basis ele-
ment of the group Cn(Y ). Thus

(dYn ◦ (f♯)n)(g) = dYn (f ◦ g) =
n

∑

i=1

(−1)n(f ◦ g) ◦ εin.

Since the composition of mappings is associative, we have that

(f ◦ g) ◦ εin = f ◦ (g ◦ εin)

for all i = 0, . . . , n. Also, g ◦ εin is a continuous mapping ∆n−1 → X
i.e. a basis element of Cn−1(X), so

f ◦ (g ◦ εin) = (f♯)n−1(g ◦ ε
i
n).

Thus we obtain that

(dYn ◦ (f♯)n)(g) =
n

∑

i=1

(−1)n(f♯)n−1(g ◦ ε
i
n).

Since (f♯)n−1 is a homomorphism, we have that

n
∑

i=1

(−1)n(f♯)n−1(g◦ε
i
n) = (f♯)n−1(

n
∑

i=1

g◦εin) = (f♯)n−1(

n
∑

i=1

g◦εin) = (f♯)n−1◦d
X
n (g).

This is what we had to show.

b) Suppose f : C → D is a chain mapping between chain complexes
C,D, such that fn : Cn → Dn is a bijection for every n ∈ Z. We need
to show that f is an isomorphism of chain complexes. By definition we
need to prove that there exists a chain mapping g : D → C such that
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g ◦ f = idC and f ◦ g = idD.

Since fn : Cn → Dn is a bijection for every n ∈ Z, by standard algebra
results there exists inverse mapping f−1

n : Dn → Cn and this mapping
is also a homomorphism between abelian groups. We prove that the
collection

g = {f−1
n | n ∈ Z}

is a chain mapping D → C. This amounts to showing that for all n ∈ Z

we have
dn ◦ f

−1
n = f−1

n−1 ◦ d
′

n,

where dn : Cn → Cn−1 is a boundary operator of C and d′n : Dn → Dn−1

is a boundary operator of D.

We start with the similar equation for f

d′n ◦ fn = fn−1 ◦ dn,

which is true since f is a chain mapping. We compose both sides of
this equation by
1) f−1

n−1 : Dn−1 → Cn−1 from the left and
2) f−1

n : Dn → Cn from the right.

This gives us

f−1
n−1 ◦ d

′n = f−1
n−1 ◦ d

′

n ◦ fn ◦ f
−1
n = f−1

n−1 ◦ fn−1 ◦ dn ◦ f
−1
n = dn ◦ f

−1
n ,

which is exactly what we needed to show. Thus

g = {f−1
n | n ∈ Z}

is a chain mapping D → C. By construction one immediately gets that
g ◦ f = idC and f ◦ g = idD since this is true on the group level for
every n ∈ Z.

2. Suppose that f : C → D is a chain mapping between chain complexes
C,D.
a) Show that Ker f is a subcomplex of C, Im f is a subcomplex of D.
b) Suppose C ′ is a subcomplex of C. We denote by p : C → C/C ′ the
canonical projection to the quotient complex. Show that there exists
a chain mapping f̄ : C/C ′ → D such that f̄ ◦ p = f if and only if
C ′ ⊂ Ker f .
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Solution: By definition (Ker f)n = Ker fn. Suppose x ∈ (Ker f)n.
We need to show that dn(x) ∈ (Ker f)n−1. Since x ∈ (Ker f)n, we have
that fn(x), so also d′n ◦ fn(x) = 0. But since f is a chain mapping this
is the same as

fn−1 ◦ dn(x) = d′n ◦ fn(x) = 0.

This proves precisely that dn(x) is an element of Ker fn−1 = (Ker f)n−1.
Thus the collection of subgroups Ker f = {Ker fn | n ∈ Z} is a chain
subcomplex of C.

Next we prove that Im f = {Im fn | n ∈ Z} is a chain subcomplex of
D. Suppose y ∈ Im fn. We need to show that d′n(y) ∈ Im fn−1. Since
y ∈ Im fn, there exists x ∈ Cn such that fn(x) = y. Since f is a chain
mapping we have that

fn−1(dn(x)) = d′n(fn(x)) = d′ny.

This show that d′n(y) ∈ Im fn−1 thus we are done.

b) Suppose there exists a chain mapping f̄ : C/C ′ → D such that
f̄ ◦ p = f . Then for any fixed n ∈ Z the homomorphism of abelian
groups f̄n : (C/C

′)n = Cn/C
′

n → Dn is such that f̄n ◦ pn = fn. By the
regular Factorization Theorem for abelian groups (Proposition 7.8.)
this is possible if and only if for any n ∈ Z we have that C ′

n ⊂ Ker fn =
(Ker f)n. In particular, since Ker f is a chain complex by a), this im-
plies that C ′ is a subcomplex of Ker f .

Conversely suppose C ′ ⊂ Ker f , which means that for every n ∈ Z

C ′

n ⊂ Ker fn.

By Factorization Theorem (Proposition 7.8.) this implies that for ev-
ery n ∈ Z there exists a (unique) homomorphism of abelian groups
f̄n : Cn/C

′

n = (C/C ′)n → Ker fn = (Ker f)n such that

f̄n ◦ pn = fn, n ∈ Z.

All we need to show is that the collection

f̄ = {f̄n | n ∈ Z}

is a chain mapping f̄ : C/C ′ → D. This amounts to showing that for
all n ∈ Z the equation

f̄n−1 ◦ d̄n = d′n ◦ f̄n
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is true. Here d̄n : Cn/C
′

n → Cn−1/C
′

n−1 is a boundary operator of the
quotient complex C/C ′ induced by the boundary operator d : Cn →
Cn−1 i.e. given by the formula d̄n([x]) = [dn(x)], where [y] denotes the
equivalence class of an element y in whatever quotient context. Notice
also that a theoretical way to define d̄n is to say that it is the unique
homomorphism d̄n : Cn/C

′

n → Cn−1/C
′

n−1 which satisfies the equation
d̄n ◦ pn = pn−1 ◦ dn. The existence and uniqueness of such a mapping
is provided by the Factorization Theorem 7.8.

Direct approach: The mapping f̄n is defined by the formula

f̄n([x]) = fn(x),

x ∈ Cn and similarly for f̄n−1. This is just equation f̄n◦pn = fn written
on the level of elements. Thus

¯fn−1 ◦ d̄n = ¯fn−1([dn(x)]) = fn−1(dn(x)) = d′n(fn(x)) = d′n ◦ f̄n([x]).

Here we have used the fact that f is a chain mapping. Thus the col-
lection f̄ is a chain mapping.

Theoretical abstract approach: We are going to show that f̄ is a
chain mapping using only equations f̄n◦pn = fn and d̄n◦pn = pn−1◦dn,
the fact that f is a chain mapping and the fact that pn is surjective for
all n ∈ Z.
We do the following calculation:

f̄n−1 ◦ d̄n ◦ pn = f̄n−1 ◦ pn−1 ◦ dn = fn−1 ◦ dn = d′n ◦ fn = d′n ◦ f̄n ◦ pn.

Hence
(f̄n−1 ◦ d̄n) ◦ pn = (d′n ◦ f̄n) ◦ pn.

Since pn is surjective this implies (how?) that

f̄n−1 ◦ d̄n = d′n ◦ f̄n.

Remark: This approach is a typical example of ”categorical argu-
ment”. We prove the claim by only using formal ”outside” relationships
between mappings i.e. equations f̄n ◦ pn = fn and d̄n ◦ pn = pn−1 ◦ dn
proved to us by Factorization Theorem. We do not need to know how
the mappings look ”inside” i.e. how they are defined for elements. It
looks like we are using element-level when applying the fact that pn is
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surjective, but that is a property that is also possible to describe by
the ”outside” relations - a mapping f : X → Y is surjective if and only
if the equation g ◦ f = h ◦ f always implies g = h for all mappings
g, h : Y → Z (and any Z).

This is what in programming known as ”object-orientated approach”
and in mathematics as ”axiomatic approach”. The key idea is that
it is enough to know what properties object have, how does it be-
haviour looks from outside, so that what is inside the object, how it
is constructed and what is is inner structure plays no role. When this
approach is applied to mappings that is what Category Theory in math-
ematics is all about.

It is possible to study homology groups of topological space axiomat-
ically - by listing the axioms i.e. properties homology theory should
have and using only them. Of course the concrete construction of an
object with this properties - which is for instance the singular homology
- is essential, so that we know that such an object exists. But once it is
constructed, it is possible to do all calculations by using axioms only.

3. Let K be ∆-complex whose polyhedron is the projective plane RP 2,
given in the example 9.7.

U

V

a

a

bb

v0

v1v2

v3

c

Let L be the subcomplex consisting of 1-simplex c and its vertices.
Calculate homology groups Hn(K,L) for all n ∈ Z directly from defi-
nition.

Solution: For n < 0 or n > 2 both complexes K and L do not
have n-simplices, so Cn(K) = Cn(L) = 0, in parictular Cn(K,L) =
Cn(K)/Cn(L) = 0 and consequently Hn(K,L) = 0.

In dimension n = 2 the complex K has two simplices U, V and L has
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none. Thus C2(K) = Z[U ]⊕ Z[V ] while C2(L) = 0, so essentially

C2(K,L) = C2(K)/C2(L) = C2(K) = Z[U ]⊕ Z[V ].

In dimension n = 1 the complex K has three simplices a, b, c, while C
has only one simplex c. Thus

C1(K,L) = C1(K)/C1(L) = (Z[a]⊕ Z[b]⊕ Z[c])/Z[c] = Z[ā]⊕ Z[b̄],

where we denote by ā and b̄ the classes of corresponding elements in
the quotient C1(K,L). Now we can calculate d2 : C2(K,L) → C1(K,L),
first for generators U and V ,

d2(U) = [c+ a− b] = [a]− [b],

d2(V ) = [c− a+ b] = [b]− [a] = −([a]− [b]) = −d1(U).

Thus
d2(nU +mV ) = (n−m)([a]− [b]).

In particular

Z2(K,L) = Ker d1 = {nU +mV | n = m} = Z[U + V ] ∼= Z.

Since d3 = 0 we have that B1(K,L) = 0, so

H2(K,L) = Z2(K,L) ∼= Z

is a free abelian group generated by (the class of) U + V .

The calculation above also implies that

B1(K,L) = Im d2 = Z[a− b] ∼= Z.

To compute Z1(K,L) we need to know d1 : C1(K,L) → C0(K,L). In
dimension 0 complex K has two different 0-simplices x = [v0] = [v1]
and y = [v2] = [v3]. The vertex y is the only vertex of the complex K.
It follows that (essentially) C0(K,L) = Z[x]. Now

d1([a]) = [y]− [x] = −[x],

d2([b]) = [y]− [x] = −[x],

so
d1(k[a] + l[b]) = −(k + l)[x].
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It follows that

Z1(K,L) = {k[a] + l[b] | k + l = 0} = Z[a− b] = B1(K,L),

so it follows that H1(K,L) = Z1(K,L)/B1(K,L) = 0.

It remains to calculate H0(K,L). Since d0 = 0 (because C−1(K,L) =
0), we have that Z0(K,L) = C0(K,L) = Z[x]. On the other hand by
calculations above B0(K,L) = Im d1 = C0(K,L) = Z[x], so it follows
that H0(K,L) = Z0(K,L)/B0(K,L) = 0.

The results are as following:

Hn(K,L) ∼=

{

Z, n = 2,

0, otherwise .

4. Suppose f : C → D is a chain mapping between chain complexes C,D.
We define a complex C̄ (called the cone of f) as following. For every
n ∈ Z we assert

C̄n = Cn−1 ⊕Dn,

d̄n(a, b) = (−dn−1(a), f(a) + d′n(b)).

Prove that C̄ equipped with boundary operators d̄n is a chain complex.
Is the collection of subgroups

C ′

n = {(a, 0) | a ∈ Cn−1}, n ∈ Z

a subcomplex of C̄?

Solution: We need to show that

d̄n−1 ◦ d̄n = 0

for all n ∈ Z. Suppose (a, b) ∈ C̄n. Then

d̄n(a, b) = (−dn−1(a), f(a) + d′n(b)), so

d̄n−1d̄n(a, b) = d̄n−1(−dn−1(a), f(a) + d′n(b)) =

= (dn−2dn−1a, f(−dn−1(a)) + d′n−1(f(a) + d′n(b)) =

= (0,−fdn−1(a) + d′n−1f(a) + d′n−1d
′

n(b)) = (0, 0).
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Here we have used the identity dn−2dn−1 = 0 (because C is a complex),
d′n−1d

′

n = 0 (because D is a complex) and

fdn−1 = d′n−1f,

which is true because f is a chain mapping.

The collection of subgroups

C ′

n = {(a, 0) | a ∈ Cn−1}, n ∈ Z

a subcomplex of C̄ if and only if d̄n(C
′

n) ⊂ C ′

n−1 for all n ∈ Z. Suppose
a ∈ Cn−1, n ∈ Z. Then

d̄n−1(a, 0) = (−dn−1(a), f(a) + d′n(0)) = (−dn−1(a), f(a)) ∈ C ′

n−1

if and only if f(a) = 0. Thus we see that d̄n(C
′

n) ⊂ C ′

n−1 if and only
if fn = 0 for all n ∈ Z. If the mapping f is non-trivial in at least one
dimension, then the collection

C ′

n = {(a, 0) | a ∈ Cn−1}, n ∈ Z

is not a subcomplex of C̄.

5. Suppose f : C → D is a chain mapping between chain complexes C,D
and let C̄ be a cone of f defined in the previous exercise. We define
jn : Dn → C̄n by jn(b) = (0, b) for every b ∈ Dn and every n ∈ Z.
a) Show that jn is injective for all n ∈ Z and that the collection of
mappings jn is a chain mapping j : D → C̄.
b) For every n ∈ Z let pn : C̄n → Cn−1 be the mapping defined by
pn(a, b) = a. Is the diagram

C̄n

pn
//

d̄n
��

Cn−1

dn−1

��

C̄n−1
pn−1

// Cn−2.

commutative? If not how can it be easily fixed to be commutative?
c) By a) we can identify D with the subcomplex j(D) of C̄. Show that
for the quotient complex C̄/D we have for every n ∈ Z that

(C̄/D)n ∼= Cn−1 and

Hn(C̄/D) ∼= Hn−1(C).
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Is quotient complex C̄/D isomorphic to the complex C?

Solution: a) Suppose b ∈ Dn is such that jn(b) = (0, b) = 0 = (0, 0).
Then b = 0, so jn is injective.
Suppose b ∈ Dn is arbitrary. Then

d̄n◦jn(b) = d̄n(0, b) = (−dn−1(0), f(0)+d′n(b)) = (0, d′n(b)) = jn−1(d
′

n(b)) = jn−1d
′

n(b).

This proves that d̄n ◦ jn = jn−1d
′

n, so the collection (jn) is a chain map-
ping j : D → C̄.

b) Suppose (a, b) ∈ C̄n. Then

dn−1 ◦ pn(a, b) = dn1
(a),

pn−1 ◦ d̄n(a, b) = pn−1(−dn−1(a), f(a) + d′n(b)) = −dn−1(a).

So we see that in general the the diagram does not necessarily commute,
it commutes only if for all a ∈ Cn, n ∈ Z we have that

dn(a) = −dn(a)

(which does not necessarily mean that dn(a), for instance the equation
is always true if Cn = Z2!).

However it easy to ”fix” this diagram to be commutative, without alter-
ing essential constructions and results (for instance homology groups).
There are (at least) two natural ways to do that.

Way 1: We substitute every second pn with −pn, for instance we
define p′n = (−1)npn. Then (check!) the calculations above imply that
the diagram

C̄n

p′n
//

d̄n
��

Cn−1

dn−1

��

C̄n−1

p′n−1
// Cn−2.

is commutative for every n ∈ Z. The difference between pn and p′n is
not essential - for example both have exactly the same kernel and image.

Way 2: We redefine boundary operator in C by putting en = −dn.
Then the system (Cn)n∈Z equipped with operators en is still a chain
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complex and has, for example the same homology groups as C. Notice,
however that f : C → D is not necessarily chain mapping with respect
to boundary operators e anymore!

c) Inspired by b) we define the new chain complex E as follows. For
every n ∈ Z we put En = Cn−1 and en = −dn−1. Then (En) equipped
with operators en is clearly a chain complex. First we prove that the
quotient complex C̄/D is isomorphic, as a chain complex, to the com-
plex E.

Choosing way 2 in the proof of b) above, we see that p : C̄ → E is a
chain mapping. Moreover, it is surjective in every dimension (because
it is projection in every dimension). Also, the kernel of p is the com-
plex D. By Exercise 2 there exists unique chain mapping p̄ : C̄/D →
induces by p. Also, by the Isomorphism theorem for abelian groups
(Corollary 7.9) this induced mapping is actually bijective in every di-
mension. By exercise 1 p̄ is a chain isomorphism of chain complexes.
In particular Hn(C̄/D) ∼= Hn(E), because isomorphic chain complexes
have isomorphic homology groups.

Now, it is easy to see directly from definition that for the complex E
we have

Zn(E) = Zn−1(C), Bn(E) = Bn−1(C),

so consequently Hn(E) = Zn−1(C)/Bn−1(C) = Hn−1(C). Combining
this and the previous result we obtain that Hn(C̄/D) ∼= Hn−1(C).

Is it possible that the complex C̄/D) is isomorphic to the complex
C. Since C̄/D) is isomorphic to E, that would be equivalent to C
and E being isomorphic. That would mean in particular that Cn and
En = Cn−1 are isomorphic, as groups, for every n ∈ Z. This clearly
would imply that Cn and Cm are isomorphic for all n ∈ Z. Hence if
the complex C has at least two different non-isomorphic groups, the
complexes C and E cannot be isomorphic.

6. Suppose A and B are abelian groups. Show that the sequence

0 // A
i
// A⊕ B

q
// B // 0,

is a short exact sequence. Here i : A → A⊕ B and q : A⊕ B → B are
defined by

i(a) = (a, 0)
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q(a, b) = b.

Solution:

1) i is injective - clear (same argument as in exercise 5a) above).
2) q is surjective, as a projection mapping.
3)

Im i = {(a, 0) | a ∈ A},

ker q = {(a, b) | b = 0} = {(a, 0) | a ∈ A} = Im i.
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