Department of Mathematics and Statistics Introduction to Algebraic topology, fall 2013

Exercises 8 (for the exercise session Tuesday 5.11.)

1. a) Suppose $f: X \to Y$ is a continuous mapping between topological spaces X and Y. Show that the collection of mappings $f_{\sharp}: C_n(X) \to C_n(Y)$ defined in Example 10.1. is a chain mapping.

b) Suppose $f: C \to D$ is a chain mapping between chain complexes C, D. Suppose $f_n: C_n \to D_n$ is a bijection for every $n \in \mathbb{Z}$. Show that f is an isomorphism of chain complexes.

2. Suppose that $f: C \to D$ is a chain mapping between chain complexes C, D.

a) Show that Ker f is a subcomplex of C, Im f is a subcomplex of D. b) Suppose C' is a subcomplex of C. We denote by $p: C \to C/C'$ the canonical projection to the quotient complex. Show that there exists a chain mapping $\overline{f}: C/C' \to D$ such that $\overline{f} \circ p = f$ if and only if $C' \subset \operatorname{Ker} f$.

3. Let K be Δ -complex whose polyhedron is the projective plane $\mathbb{R}P^2$, given in the example 9.7.

Let L be the subcomplex consisting of 1-simplex c and its vertices. Calculate homology groups $H_n(K, L)$ for all $n \in \mathbb{Z}$ directly from definition.

4. Suppose $f: C \to D$ is a chain mapping between chain complexes C, D. We define a complex \overline{C} (called the cone of f) as following. For every $n \in \mathbb{Z}$ we assert

$$\bar{C}_n = C_{n-1} \oplus D_n,$$

 $\bar{d}_n(a,b) = (-d_{n-1}(a), f(a) + d'_n(b))$

Prove that \overline{C} equipped with boundary operators \overline{d}_n is a chain complex. Is the collection of subgroups

$$C'_{n} = \{(a, 0) \mid a \in C_{n}\}, n \in \mathbb{Z}$$

a subcomplex of \bar{C} ?

5. Suppose f: C → D is a chain mapping between chain complexes C, D and let C be a cone of f defined in the previous exercise. We define j_n: D_n → C

_n by j_n(b) = (0, b) for every b ∈ D_n and every n ∈ Z.
a) Show that j_n is injective for all n ∈ Z and that the collection of mappings j_n is a chain mapping j: D → C

.

b) For every $n \in \mathbb{Z}$ let $p_n : \overline{C}_n \to C_{n-1}$ be the mapping defined by $p_n(a,b) = a$. Is the diagram

commutative? If not how can it be easily fixed to be commutative? c) By a) we can identify D with the subcomplex j(D) of \overline{C} . Show that for the quotient complex \overline{C}/D we have for every $n \in \mathbb{Z}$ that

$$(\bar{C}/D)_n \cong C_{n-1}$$
 and
 $H_n(\bar{C}/D) \cong H_{n-1}(C).$

Is quotient complex \overline{C}/D isomorphic to the complex C?

6. Suppose A and B are abelian groups. Show that the sequence

$$0 \longrightarrow A \xrightarrow{i} A \oplus B \xrightarrow{q} B \longrightarrow 0,$$

is a short exact sequence. Here $i: A \to A \oplus B$ and $q: A \oplus B \to B$ are defined by i(q) = (q, 0)

$$i(a) = (a, 0)$$
$$q(a, b) = b.$$

Bonus points for the exercises: 25% - 2 point, 40% - 3 points, 50% - 4 points, 60% - 5 points, 75% - 6 points.