Department of Mathematics and Statistics

 Introduction to Algebraic topology, fall 2013
Exerciss 7. Solutions

1. For $n \geq 1, i=0, \ldots, n$ we define $\varepsilon_{n}^{i}: \Delta^{n-1} \rightarrow \Delta^{n}$ to be the unique affine mapping such that

$$
\begin{gathered}
\varepsilon_{n}^{i}\left(\mathbf{e}_{k}^{n-1}\right)=\mathbf{e}_{k}^{n}, \text { if } k<i, \\
\varepsilon_{n}^{i}\left(\mathbf{e}_{k}^{n-1}\right)=\mathbf{e}_{k+1}^{n}, \text { if } k \geq i .
\end{gathered}
$$

a) Suppose $n>1$ and $0 \leq j<i \leq n$. Show that

$$
\varepsilon_{n}^{i} \circ \varepsilon_{n-1}^{j}=\varepsilon_{n}^{j} \circ \varepsilon_{n-1}^{i-1} .
$$

b) Suppose X is a topological space. Suppose $n>1$ and $0 \leq j<i \leq n$. Let $f: \Delta_{n} \rightarrow X$ be a singular simplex in X. Show that

$$
d_{n-1}^{j}\left(d_{n}^{i} f\right)=d_{n-1}^{i-1}\left(d_{n}^{j} f\right)
$$

Solution: Both mappings $\varepsilon_{n}^{i} \circ \varepsilon_{n-1}^{j}$ and $\varepsilon_{n}^{j} \circ \varepsilon_{n-1}^{i-1}$ are affine mappings $\Delta_{n-2} \rightarrow \Delta_{n}$ (as compositions of affine mappings). Since Δ_{n-2} is a simplex with vertices $\left\{\mathbf{e}_{0}^{n-2}, \ldots, \mathbf{e}_{n-2}^{n-2}\right\}$, by Lemma 2.15 it is enough to show that

$$
\left(\varepsilon_{n}^{i} \circ \varepsilon_{n-1}^{j}\right)\left(\mathbf{e}_{k}^{n-2}\right)=\left(\varepsilon_{n}^{j} \circ \varepsilon_{n-1}^{i-1}\right)\left(\mathbf{e}_{k}^{n-2}\right)
$$

for all $k=0, \ldots, n-2$. We go through different cases.

Case 1: Suppose $k<j$. Then, since $j<i$, we have that $j \leq i-1$, so we also have that $k<i-1$ and $k<i$. In this case

$$
\left(\varepsilon_{n}^{i} \circ \varepsilon_{n-1}^{j}\right)\left(\mathbf{e}_{k}^{n-2}\right)=\varepsilon_{n}^{i}\left(\mathbf{e}_{k}^{n-1}\right)=\mathbf{e}_{k}^{n}
$$

and

$$
\left(\varepsilon_{n}^{j} \circ \varepsilon_{n-1}^{i-1}\right)\left(\mathbf{e}_{k}^{n-2}\right)=\varepsilon_{n}^{j}\left(\mathbf{e}_{k}^{n-1}\right)=\mathbf{e}_{k}^{n} .
$$

Case 2: Suppose $j \leq k<i-1$. Then $k+1<i$ and $k<i$. In this case

$$
\left(\varepsilon_{n}^{i} \circ \varepsilon_{n-1}^{j}\right)\left(\mathbf{e}_{k}^{n-2}\right)=\varepsilon_{n}^{i}\left(\mathbf{e}_{k+1}^{n-1}\right)=\mathbf{e}_{k+1}^{n}
$$

and

$$
\left(\varepsilon_{n}^{j} \circ \varepsilon_{n-1}^{i-1}\right)\left(\mathbf{e}_{k}^{n-2}\right)=\varepsilon_{n}^{j}\left(\mathbf{e}_{k}^{n-1}\right)=\mathbf{e}_{k+1}^{n} .
$$

Case 3: Suppose $j<i \leq k$. Then $k+1<i$ and $k<i$. In this case

$$
\left(\varepsilon_{n}^{i} \circ \varepsilon_{n-1}^{j}\right)\left(\mathbf{e}_{k}^{n-2}\right)=\varepsilon_{n}^{i}\left(\mathbf{e}_{k+1}^{n-1}\right)=\mathbf{e}_{k+2}^{n}
$$

and

$$
\left(\varepsilon_{n}^{j} \circ \varepsilon_{n-1}^{i-1}\right)\left(\mathbf{e}_{k}^{n-2}\right)=\varepsilon_{n}^{j}\left(\mathbf{e}_{k+1}^{n-1}\right)=\mathbf{e}_{k+2}^{n} .
$$

The claim is true in every case so we are done.
b) Suppose X is a topological space. Suppose $n>1$ and $0 \leq j<i \leq n$.

Let $f: \Delta_{n} \rightarrow X$ be a singular simplex in X. Then, using a),

$$
\begin{aligned}
d_{n-1}^{j}\left(d_{n}^{i} f\right)= & d_{n-1}^{j}\left(f \circ \varepsilon_{n}^{i}\right)=\left(f \circ \varepsilon_{n}^{i}\right) \circ \varepsilon_{n-1}^{j}=f \circ\left(\varepsilon_{n}^{i} \circ \varepsilon_{n-1}^{j}\right)=f \circ\left(\varepsilon_{n}^{j} \circ \varepsilon_{n-1}^{i-1}\right)= \\
& =\left(f \circ \varepsilon_{n}^{j}\right) \circ \varepsilon_{n-1}^{i-1}=d_{n-1}^{i-1}\left(f \circ \varepsilon_{n}^{j}\right)=d_{n-1}^{i-1}\left(d_{n}^{j} f\right) .
\end{aligned}
$$

Notice how the associativity of the composition of functions

$$
(\alpha \circ \beta) \circ \gamma=\alpha \circ(\beta \circ \gamma)
$$

plays an essential role in the calculation.
2. Suppose $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is a basis of a free abelian group $G, n \geq 2$.
a) Prove that $\left\{a_{1} \pm a_{2}, a_{2}, \ldots, a_{n}\right\}$ is also a basis of G.
b) Is set $\left\{a_{1}+a_{2}, a_{1}-a_{2}, \ldots, a_{n}\right\}$ linearly independent? Is it a basis of G ?

Solution: a) It is enough (by Lemma 8.7) to show that every element b of G has unique representation in the form

$$
b=m_{1}\left(a_{1} \pm a_{2}\right)+m_{2} a_{2}+\ldots+m_{n} a_{n}
$$

where $m_{1}, \ldots, m_{n} \in \mathbb{Z}$. Uniqueness (and existence) mean, of course, uniqueness and existence of integer coefficients $m_{1}, \ldots, m_{n} \in \mathbb{Z}$.
Since $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, there exists unique integers $k_{1}, \ldots, k_{n} \in \mathbb{Z}$ so that

$$
b=k_{1} a_{1}+k_{2} a_{2}+\ldots+k_{n} a_{n} .
$$

Since for any choice of integers $m_{1}, \ldots, m_{n} \in \mathbb{Z}$ we have that

$$
m_{1}\left(a_{1} \pm a_{2}\right)+m_{2} a_{2}+\ldots+m_{n} a_{n}=m_{1} a_{1}+\left(m_{2} \pm m_{1}\right) a_{2}+\ldots+m_{n} a_{n}
$$

it is enough to show that the system of equations

$$
\left\{\begin{array}{l}
m_{1}=k_{1} \\
m_{2} \pm m_{1}=k_{2} \\
\vdots, \\
m_{n}=k_{n}
\end{array}\right.
$$

have unique solution. Here k_{1}, \ldots, k_{n} are known fixed integers and m_{1}, \ldots, m_{n} are "unknowns". But it is easy to that if m_{1}, \ldots, m_{n} satisfy this system, then $m_{1}=k_{1}, m_{2}=k_{3}, \ldots, m_{n}=k_{n}$ and $m_{2}=k_{2} \mp k_{1}$. Conversely these values clearly satisfy the system. Hence the solution exists and is unique, which proves the claim.
b) The set $\left\{a_{1}+a_{2}, a_{1}-a_{2}, \ldots, a_{n}\right\}$ is linearly independent but it is not a basis of G. Indeed suppose m_{1}, \ldots, m_{n} are integers. Then
$m_{1}\left(a_{1}+a_{2}\right)+m_{2}\left(a_{1}-a_{2}\right)+\ldots+m_{n} a_{n}=\left(m_{1}+m_{2}\right) a_{1}+\left(m_{1}-m_{2}\right) a_{2}+\ldots+m_{n} a_{n}$.
Hence if

$$
m_{1}\left(a_{1}+a_{2}\right)+m_{2}\left(a_{1}-a_{2}\right)+\ldots+m_{n} a_{n}=0,
$$

then, since the original sequence $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is linearly independent, we have that

$$
m_{1}+m_{2}=m_{1}-m_{2}=\ldots=m_{n}=0
$$

which easily implies that $m_{1}=m_{2}=\ldots=m_{n}=0$. On the other hand if

$$
b=m_{1}\left(a_{1}+a_{2}\right)+m_{2}\left(a_{1}-a_{2}\right)+\ldots+m_{n} a_{n},
$$

then

$$
b=k_{1} a_{1}+k_{2} a_{2}+\ldots+k_{n} a_{n},
$$

where in particular $k_{1}=m_{1}+n_{1}, k_{2}=m_{1}-m_{2}$. Then we have that $k_{1}+k_{2}=2 m 1_{1}$ is even. In particular no element b of G with the sum of coefficients $k_{1}+k_{2}$ odd can be generated by the set $\left\{a_{1}+a_{2}, a_{1}-\right.$ $\left.a_{2}, \ldots, a_{n}\right\}$. Such elements exist, for example $b=a_{1}$.

Remark 1: It can be shown that the subgroup H of G generated by the set $\left\{a_{1}+a_{2}, a_{1}-a_{2}, \ldots, a_{n}\right\}$ consists precisely of the elements of the form

$$
b=k_{1} a_{1}+k_{2} a_{2}+\ldots+k_{n} a_{n},
$$

for which $k_{1}+k_{2}$ is even, which is the same as $k_{1} \equiv k_{2}(\bmod 2)$.

Remark 2: Notice the difference between linear algebra and the algebra of abelian groups, that manifests itself in this case. Namely if V is a finite-dimensional vector space with basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$, then any free subset of V with $n=\operatorname{dim} V$ elements must be linearly independent. No proper subspace W of V can be n-dimensional. None of these facts are true for abelian groups, as the exercise clearly demonstrates.
3. Let $m, n \geq 1$ be fixed positive integers. For every $k \in \mathbb{Z}$ we define an abelian group C_{k} as following,

$$
C_{k}=\left\{\begin{array}{l}
\mathbb{Z}, \text { for } k=1,2 \\
\mathbb{Z}_{n}, \text { for } k=0 \\
0, \text { otherwise }
\end{array}\right.
$$

We also define boundary operators $\partial_{k}: C_{k} \rightarrow C_{k-1}$ for every $k \in \mathbb{Z}$ as following. $\partial_{2}: \mathbb{Z} \rightarrow \mathbb{Z}$ is a mapping given by $\partial_{2}(x)=m x, x \in \mathbb{Z}$. $\partial_{1}: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ is a canonical projection to a quotient group. All other mappings ∂_{k} are zero homomorphisms.

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{\cdot m} \mathbb{Z} \xrightarrow{p} \mathbb{Z}_{n} \longrightarrow 0
$$

a) Prove that the system of group $C=\left(C_{k}\right)_{k \in \mathbb{Z}}$ and homomorphisms $\partial_{k}: C_{k} \rightarrow C_{k-1}, k \in \mathbb{Z}$ is a chain complex if and only if m is divisible by n.
b) Suppose m is divisible by n, so C is a chain complex. Calculate homology groups $H_{k}(C)$ for all $k \in \mathbb{Z}$.

Solution: a) The given system is a chain complex if and only if

$$
\partial_{k-1} \circ \partial_{k}=0
$$

for all $k \in \mathbb{Z}$. This equation is clearly true for $k \neq 2$, since then either ∂_{k-1} or ∂_{k} is a zero mapping. Hence the system is a complex if and only if

$$
\partial_{1} \circ \partial_{2}=0 .
$$

Suppose m is divisible by n i.e. there exists $k \in \mathbb{Z}$ such that $m=\ln$. Then for every $x \in \mathbb{Z}$ we have that

$$
\partial_{1} \circ \partial_{2}(x)=\partial_{1}(m x)=m x+n \mathbb{Z}=n(l x)+n \mathbb{Z}=n \mathbb{Z}=0
$$

in \mathbb{Z}_{n}. Hence $\partial_{1} \circ \partial_{2}=0$ in this case.
Suppose that m is not divisible by n. Then for $x=1 \in \mathbb{Z}$ we have that

$$
\partial_{1} \circ \partial_{2}(x)=\partial_{1}(m)=m+n \mathbb{Z} \neq n \mathbb{Z}=0
$$

since m is not divisible by n. Thus in this case $\partial_{1} \circ \partial_{2} \neq 0$.
b) For $k \neq 0,1,2$ the group C_{k} is trivial, so its subgroup $Z_{k}(C)$ is trivial, thus also the quotient group $H_{k}(C)=Z_{k}(C) / B(C)$ is trivial. For $k=2$ we have that $B_{2}(C)=\partial_{3}\left(C_{3}\right)=0$ and

$$
Z_{2}(C)=\operatorname{Ker} \partial_{2}=0,
$$

since ∂_{2} is clearly injective. Hence we have also that $H_{2}(C)=0$.

For $k=1$ we have that $B_{1}(C)=\operatorname{Im} \partial_{2}=m \mathbb{Z}$ and $Z_{1}(C)=\operatorname{Ker} \partial_{1}=$ $n \mathbb{Z}$. Hence

$$
H_{1}(C)=n \mathbb{Z} / m \mathbb{Z}
$$

We claim that then

$$
H_{1}(C) \cong \mathbb{Z}_{l},
$$

where $l=m / n$ (is integer, since we are assuming that m divides n). Consider a mapping $f: \mathbb{Z} \rightarrow n \mathbb{Z}$ defined by $f(x)=n x$. Then f is surjective homomorphism (actually isomorphism) of abelian groups. Let $p: n \mathbb{Z} \rightarrow n \mathbb{Z} / m \mathbb{Z}$ be the canonical projection to the quotient group. Mapping p is also a surjective homomorphism. Hence the composition $g=p \circ f: \mathbb{Z} \rightarrow n \mathbb{Z} / m \mathbb{Z}$ is a surjective homomorphism, so by isomorphism theorem of abelian groups (Corollary 7.9) g induces isomorphism

$$
\bar{g}: \mathbb{Z} / \operatorname{Ker} g \cong n \mathbb{Z} / m \mathbb{Z}=H_{1}(C) .
$$

It remains to calculate $\operatorname{Ker} g$. Suppose $x \in \mathbb{Z}$. Then $g(x)=0$ if and only if $f(x)=n x \in m \mathbb{Z}$ i.e. if and only if there exists $y \in \mathbb{Z}$ such that

$$
n x=m y=n l y .
$$

Since $n \neq 0$ by assumptions, cancelling n yields equivalent condition $x=l y$ for some $y \in \mathbb{Z}$, which is equivalent to $x \in l \mathbb{Z}$. Hence $\operatorname{Ker} g=l \mathbb{Z}$, so

$$
H_{1}(C) \cong \mathbb{Z} / l \mathbb{Z}=Z_{l}
$$

For $k=0$ we have that $B_{0}(C)=\partial_{1}\left(C_{1}\right)=C_{0}$, since ∂_{1} is surjective (projection always is) and also $Z_{0}(C)=\operatorname{Ker} \partial_{0}=\operatorname{Ker} 0=C_{0}$. Hence

$$
H_{0}(C)=C_{0} / C_{0}=0 .
$$

4. Consider a chain complex $C=\left(C_{n}\right)_{n \in \mathbb{Z}}$ with $C_{2}=(\mathbb{Z},+), C_{1}=(\mathbb{R},+)$, $C_{0}=\left(\mathbb{C}^{*}, \cdot\right)$ and $C_{n}=0$ for $n \neq 0,1,2$. Boundary operators $\partial_{n}: C_{n} \rightarrow$
C_{n-1} are defined by $\partial_{2}: \mathbb{Z} \rightarrow \mathbb{R}$ is the mapping given by $\partial_{2}(n)=2 n$ for all $n \in \mathbb{Z}, \partial_{1}: \mathbb{R} \rightarrow \mathbb{C}^{*}$ is complex-exponential mapping

$$
\partial_{1}(x)=(\cos 2 \pi x, \sin 2 \pi x), x \in \mathbb{R}
$$

and $\partial_{i}=0$ is a trivial mapping for $n \neq 1,2$.

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{R} \xrightarrow{\exp } \mathbb{C}^{*} \longrightarrow 0
$$

a) Prove that C really is a chain complex.
b) Prove that for homology groups of C we have that

$$
H_{n}(C) \cong\left\{\begin{array}{l}
\mathbb{Z}_{2}, \text { for } n=1 \\
\left(\mathbb{R}_{+}, \cdot\right), \text { for } n=0 \\
0, \text { otherwise }
\end{array}\right.
$$

Solution: a) We need to show that

$$
\partial_{k-1} \circ \partial_{k}=0
$$

for all $k \in \mathbb{Z}$. This equation is clearly true for $k \neq 2$, since then either ∂_{k-1} or ∂_{k} is a zero mapping. Hence the system is a chain complex if and only if

$$
\partial_{1} \circ \partial_{2}=0
$$

Direct calculation shows that for any $n \in \mathbb{Z}$

$$
\partial_{1} \circ \partial_{2}(n)=\partial_{1}(2 n)=(\cos 4 \pi n, \sin 4 \pi n)=(1,0)=1 .
$$

1 is the zero element of the group \mathbb{C}^{*} (multiplicative notation), so this is exactly what we wanted.
b) For $n \neq 0,1,2$ the group C is trivial, so its subgroup $Z_{n}(C)$ is trivial, thus also the quotient group $H(C)=Z(C) / B_{n}(C)$ is trivial.

For $n=2$ we have that $Z_{2}(C)=\operatorname{Ker} \partial_{2}=0$, since ∂_{2} is injective, so also $H_{2}(C)$ must be zero.

For $n=1$ we have that $B_{1}(C)=\partial_{2}\left(C_{2}\right)=2 \mathbb{Z}$ and $Z_{1}(C)=\operatorname{Ker} \partial_{1}=\mathbb{Z}$. Hence

$$
H_{1}(C)=\mathbb{Z} / 2 \mathbb{Z}=\mathbb{Z}_{2} .
$$

For $n=0$ we have that $B_{0}(C)=\partial_{1}\left(C_{1}\right)=S^{1}$, and $Z_{0}(C)=\operatorname{Ker} \partial_{0}=$ Ker $0=C_{0}=\mathbb{C}^{*}$. Hence

$$
H_{0}(C)=\mathbb{C}^{*} / S^{1} .
$$

It remains to show that the quotient group \mathbb{C}^{*} / S^{1} is isomorphic to the group $\left(\mathbb{R}_{+}, \cdot\right)$, which is a group of positive real numbers equipped with the multiplication. Let $f: \mathbb{C}^{*} \rightarrow \mathbb{R}_{+}$be the norm mapping $f(z)=|z|$ (standard norm in the plane). It is a well-known fact that this mapping is a homomorphism with respect to multiplications of complex and real numbers, since for all complex numbers $z, z^{\prime} \in \mathbb{C}$ we have that

$$
\left|z z^{\prime}\right|=|z|\left|z^{\prime}\right|
$$

(look it up, if this does not look familiar). This mapping is clearly a homomorphism, since $f(x)=x$ for every $x \in \mathbb{R}_{+} \subset \mathbb{R} \subset \mathbb{C}^{*}$. Moreover, by definition, the kernel of this mapping is precisely

$$
S^{1}=\left\{z \in \mathbb{C}^{*}| | z \mid=1\right\} .
$$

Hence by Isomorphism Theorem (Corollary 7.9) f induces isomorphism between $H_{0}(C)=\mathbb{C}^{*} / S^{1}$ and \mathbb{R}_{+}, which is what we had to prove.

Remark: The group $\left(\mathbb{R}_{+}, \cdot\right)$ is actually isomorphic to the group of all real numbers \mathbb{R} equipped with addition (Example 7.6.3).
5. In Exercise 5.5. you were asked to define a Δ-complex K, which represents Klein's bottle, based on the standard way to divide a square into two triangles.

Calculate singular homology groups $H_{1}(K)$ and $H_{2}(K)$.

Solution: We order simplices of K according to the following scheme:

We start by calculating ∂_{2}, first for basis elements U, V,

$$
\begin{gathered}
d_{2}(U)=d^{0} U-d^{1} U+d^{2} U=a-c+b, \\
d_{2}(V)=d^{0} V-d^{1} V+d^{2} V=c-b+a=a-b+c .
\end{gathered}
$$

It follows that for all $n, m \in \mathbb{Z}$ we have that

$$
d_{2}(n U+m V)=n(a-c+b)+m(a-b+c)=(n+m) a+(n-m) b+(m-n) c .
$$

First part of this equation implies that

$$
B_{1}(C(K))=\operatorname{Im} d_{2}=\{n(a-c+b)+m(a-b+c) \mid n, m \in \mathbb{Z}\}
$$

is a group generated by elements $a-c+b$ and $a-b+c$. On the other hand, using the second part of the equation above we can easily see that d_{2} is injective and that the set $\{a-c+b, a-b+c\}$ is free. Indeed, if $d_{2}(n U+m V)=0$, then by equation above $n+m=n-m=0$, which implies that $n=m=0$. Thus in particular $Z_{2}(C(K))=\operatorname{Ker} d_{2}=0$, so also $H_{2}(K)=0$. This calculation also implies that the set $\{a-c+$ $b, a-b+c\}$ is free, so $B_{1}(C(K))=\operatorname{Im} d_{2}$ is actually a free abelian group with basis $\{a-c+b, a-b+c\}$ i.e.

$$
B_{1}(C(K))=\mathbb{Z}[a+b-c] \oplus \mathbb{Z}[a-b+c] .
$$

Next we calculate d_{1}, first for basis elements a, b, c. One easily sees that K has only one vertex, all the vertices are identified. Thus

$$
d_{1}(a)=0=d_{1}(b)=d_{1}(c),
$$

so $d_{1}=0$ is a zero homomorphism. In particular

$$
Z_{1}(C(K))=\operatorname{Ker} d_{1}=C_{1}(K)=\mathbb{Z}[a] \oplus \mathbb{Z}[b] \oplus \mathbb{Z}[c] .
$$

On the other hand $B_{1}(C(K))=\operatorname{Im} d_{2}$ is a free abelian group with basis $\{a-c+b, a-b+c\}$. Thus, by definition,
$H_{1}(K)=Z_{1}(C(K)) / B_{1}(C(K))=(\mathbb{Z}[a] \oplus \mathbb{Z}[b] \oplus \mathbb{Z}[c]) /(\mathbb{Z}[a+b-c] \oplus \mathbb{Z}[a-b+c])$.
To simplify this equation we attempt to use Exercise 2. The goal is to bring basis $\{a, b, c\}$ (of the "denominator") and $\{a-c+b, a-b+c\}$ (of "nominator") "close" enough so that both would contain same elements or at least elements that are easy to compare.
First we apply Exercise 2 to basis $\{a-c+b, a-b+c\}$ by putting $a_{1}=a-c+b, a_{2}=a-b+c$. That gives us a new basis $\{(a-c+b)+$ $(a-b+c), a-b+c\}=\{2 a, a-b+c\}$ for $B_{1}(C(K))$. Next we apply Exercise 2 to the basis $\{a, b, c\}$ twice. First we put $a_{1}=c, a_{2}=a$ to obtain new basis $\{a, b, a+c\}$. Next we apply Exercise 2 to this new basis by putting $a_{1}=a+c, a_{2}=b$. This gives us basis $\{a, b, a+c-b\}$. Thus

$$
H_{1}(K)=\frac{\mathbb{Z}[a] \oplus \mathbb{Z}[b] \oplus \mathbb{Z}[a-b+c]}{\mathbb{Z}[2 a] \oplus \mathbb{Z}[a-b+c]} \cong \mathbb{Z}[a] / \mathbb{Z}[2 a] \oplus \mathbb{Z}[b] \cong \mathbb{Z}_{2} \oplus \mathbb{Z}
$$

Hence $H_{1}(K) \cong \mathbb{Z} \oplus \mathbb{Z}_{2}$.
6. Let K be a Delta-complex consisting of all faces of a triangle σ, with all three vertices identified to a single point (and no other identifications, so-called 'parachute space'). Calculate $H_{1}(K)$.

Solution: We denote the faces of σ by $a=d^{0} \sigma, b=d^{1} \sigma, c=d^{2} \sigma$. The only vertex of K we denote by x. For every $n \in \mathbb{Z}$ we have that

$$
d_{2}(n \sigma)=n(a-b+c),
$$

hence $B_{2}(C(K))=\operatorname{Im} d_{2}$ is a subgroup $\mathbb{Z}[a-b+c] \cong \mathbb{Z}$ which is a free abelian group generated by an element $a-b+c \neq 0$. On the other hand

$$
d_{1}(a)=x-x=0=\partial(b)=\partial(c),
$$

so $d_{1}=0$ (if it is zero on the generators it must be zero everywhere), hence

$$
Z_{1}(C(K))=C_{1}(K)=\mathbb{Z}[a] \oplus \mathbb{Z}[b] \oplus \mathbb{Z}[c] .
$$

Hence, by definition,

$$
H_{1}(K)=(\mathbb{Z}[a] \oplus \mathbb{Z}[b] \oplus \mathbb{Z}[c]) / \mathbb{Z}[a-b+c] .
$$

In order to simplify this we use exercise 2 . We want to switch from the basis $\{a, b, c\}$ of $C_{1}(K)$ to the basis that would contain an element $a-b+c$ as one of the generators. We apply exercise 2 twice. First we apply it for $a_{1}=b, a_{2}=c$, obtaining that $\{a, b-c, c\}$ is a basis of $C_{1}(K)$. Next we apply it to this new basis and for $a_{1}=1$ and $a_{2}=b-c$, obtaining that $\{a-(b-c), b, c\}=\{a-b+c, b, c\}$ is a basis for $C_{1}(K)$. Hence

$$
C_{1}(K)=\mathbb{Z}[a-b+c] \oplus \mathbb{Z}[b] \oplus \mathbb{Z}[c]
$$

and standard algebraic results give us

$$
H_{1}(K)=(\mathbb{Z}[a-b+c] \oplus \mathbb{Z}[b] \oplus \mathbb{Z}[c]) / \mathbb{Z}[a-b+c] \cong \mathbb{Z}[b] \oplus \mathbb{Z}[c] \cong \mathbb{Z} \oplus \mathbb{Z}=\mathbb{Z}^{2}
$$

