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Exerciss 7. Solutions

1. For n ≥ 1, i = 0, . . . , n we define εin : ∆
n−1 → ∆n to be the unique

affine mapping such that

εin(e
n−1
k ) = enk , if k < i,

εin(e
n−1
k ) = enk+1, if k ≥ i.

a) Suppose n > 1 and 0 ≤ j < i ≤ n. Show that

εin ◦ ε
j
n−1 = εjn ◦ ε

i−1
n−1.

b) Suppose X is a topological space. Suppose n > 1 and 0 ≤ j < i ≤ n.
Let f : ∆n → X be a singular simplex in X . Show that

djn−1(d
i
nf) = di−1

n−1(d
j
nf).

Solution: Both mappings εin ◦ ε
j
n−1 and εjn ◦ ε

i−1
n−1 are affine mappings

∆n−2 → ∆n (as compositions of affine mappings). Since ∆n−2 is a
simplex with vertices {en−2

0 , . . . , en−2
n−2}, by Lemma 2.15 it is enough to

show that
(εin ◦ ε

j
n−1)(e

n−2
k ) = (εjn ◦ ε

i−1
n−1)(e

n−2
k )

for all k = 0, . . . , n− 2. We go through different cases.

Case 1: Suppose k < j. Then, since j < i, we have that j ≤ i − 1,
so we also have that k < i− 1 and k < i. In this case

(εin ◦ ε
j
n−1)(e

n−2
k ) = εin(e

n−1
k ) = enk

and
(εjn ◦ ε

i−1
n−1)(e

n−2
k ) = εjn(e

n−1
k ) = enk .

Case 2: Suppose j ≤ k < i − 1. Then k + 1 < i and k < i. In this
case

(εin ◦ ε
j
n−1)(e

n−2
k ) = εin(e

n−1
k+1) = enk+1

and
(εjn ◦ ε

i−1
n−1)(e

n−2
k ) = εjn(e

n−1
k ) = enk+1.

Case 3: Suppose j < i ≤ k. Then k + 1 < i and k < i. In this case

(εin ◦ ε
j
n−1)(e

n−2
k ) = εin(e

n−1
k+1) = enk+2

1



and
(εjn ◦ ε

i−1
n−1)(e

n−2
k ) = εjn(e

n−1
k+1) = enk+2.

The claim is true in every case so we are done.

b) Suppose X is a topological space. Suppose n > 1 and 0 ≤ j < i ≤ n.
Let f : ∆n → X be a singular simplex in X . Then, using a),

djn−1(d
i
nf) = djn−1(f◦ε

i
n) = (f◦εin)◦ε

j
n−1 = f◦(εin◦ε

j
n−1) = f◦(εjn◦ε

i−1
n−1) =

= (f ◦ εjn) ◦ ε
i−1
n−1 = di−1

n−1(f ◦ εjn) = di−1
n−1(d

j
nf).

Notice how the associativity of the composition of functions

(α ◦ β) ◦ γ = α ◦ (β ◦ γ)

plays an essential role in the calculation.

2. Suppose {a1, a2, . . . , an} is a basis of a free abelian group G, n ≥ 2.
a) Prove that {a1 ± a2, a2, . . . , an} is also a basis of G.
b) Is set {a1+ a2, a1− a2, . . . , an} linearly independent? Is it a basis of
G?

Solution: a) It is enough (by Lemma 8.7) to show that every element
b of G has unique representation in the form

b = m1(a1 ± a2) +m2a2 + . . .+mnan,

where m1, . . . , mn ∈ Z. Uniqueness (and existence) mean, of course,
uniqueness and existence of integer coefficients m1, . . . , mn ∈ Z.
Since {a1, a2, . . . , an}, there exists unique integers k1, . . . , kn ∈ Z so
that

b = k1a1 + k2a2 + . . .+ knan.

Since for any choice of integers m1, . . . , mn ∈ Z we have that

m1(a1 ± a2) +m2a2 + . . .+mnan = m1a1 + (m2 ±m1)a2 + . . .+mnan,

it is enough to show that the system of equations






















m1 = k1,

m2 ±m1 = k2,
...,

mn = kn
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have unique solution. Here k1, . . . , kn are known fixed integers and
m1, . . . , mn are ”unknowns”. But it is easy to that if m1, . . . , mn sat-
isfy this system, then m1 = k1, m2 = k3, . . . , mn = kn and m2 = k2∓k1.
Conversely these values clearly satisfy the system. Hence the solution
exists and is unique, which proves the claim.

b) The set {a1 + a2, a1 − a2, . . . , an} is linearly independent but it is
not a basis of G. Indeed suppose m1, . . . , mn are integers. Then

m1(a1+a2)+m2(a1−a2)+. . .+mnan = (m1+m2)a1+(m1−m2)a2+. . .+mnan.

Hence if

m1(a1 + a2) +m2(a1 − a2) + . . .+mnan = 0,

then, since the original sequence {a1, a2, . . . , an} is linearly indepen-
dent, we have that

m1 +m2 = m1 −m2 = . . . = mn = 0,

which easily implies that m1 = m2 = . . . = mn = 0. On the other hand
if

b = m1(a1 + a2) +m2(a1 − a2) + . . .+mnan,

then
b = k1a1 + k2a2 + . . .+ knan,

where in particular k1 = m1 + n1, k2 = m1 −m2. Then we have that
k1 + k2 = 2m11 is even. In particular no element b of G with the sum
of coefficients k1 + k2 odd can be generated by the set {a1 + a2, a1 −
a2, . . . , an}. Such elements exist, for example b = a1.

Remark 1: It can be shown that the subgroup H of G generated by
the set {a1 + a2, a1 − a2, . . . , an} consists precisely of the elements of
the form

b = k1a1 + k2a2 + . . .+ knan,

for which k1 + k2 is even, which is the same as k1 ≡ k2(mod2).

Remark 2: Notice the difference between linear algebra and the
algebra of abelian groups, that manifests itself in this case. Namely if
V is a finite-dimensional vector space with basis {v1, . . . ,vn}, then any
free subset of V with n = dimV elements must be linearly independent.
No proper subspace W of V can be n-dimensional. None of these facts
are true for abelian groups, as the exercise clearly demonstrates.
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3. Let m,n ≥ 1 be fixed positive integers. For every k ∈ Z we define an
abelian group Ck as following,

Ck =











Z, for k = 1, 2,

Zn, for k = 0,

0, otherwise .

We also define boundary operators ∂k : Ck → Ck−1 for every k ∈ Z

as following. ∂2 : Z → Z is a mapping given by ∂2(x) = mx, x ∈ Z.
∂1 : Z → Zn is a canonical projection to a quotient group. All other
mappings ∂k are zero homomorphisms.

0 // Z
·m

// Z
p

// Zn
// 0

a) Prove that the system of group C = (Ck)k∈Z and homomorphisms
∂k : Ck → Ck−1, k ∈ Z is a chain complex if and only if m is divisible
by n.
b) Suppose m is divisible by n, so C is a chain complex. Calculate
homology groups Hk(C) for all k ∈ Z.

Solution: a) The given system is a chain complex if and only if

∂k−1 ◦ ∂k = 0

for all k ∈ Z. This equation is clearly true for k 6= 2, since then either
∂k−1 or ∂k is a zero mapping. Hence the system is a complex if and
only if

∂1 ◦ ∂2 = 0.

Suppose m is divisible by n i.e. there exists k ∈ Z such that m = ln.
Then for every x ∈ Z we have that

∂1 ◦ ∂2(x) = ∂1(mx) = mx+ nZ = n(lx) + nZ = nZ = 0

in Zn. Hence ∂1 ◦ ∂2 = 0 in this case.

Suppose that m is not divisible by n. Then for x = 1 ∈ Z we have that

∂1 ◦ ∂2(x) = ∂1(m) = m+ nZ 6= nZ = 0

since m is not divisible by n. Thus in this case ∂1 ◦ ∂2 6= 0.
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b) For k 6= 0, 1, 2 the group Ck is trivial, so its subgroup Zk(C) is
trivial, thus also the quotient group Hk(C) = Zk(C)/B(C) is trivial.
For k = 2 we have that B2(C) = ∂3(C3) = 0 and

Z2(C) = Ker ∂2 = 0,

since ∂2 is clearly injective. Hence we have also that H2(C) = 0.

For k = 1 we have that B1(C) = Im ∂2 = mZ and Z1(C) = Ker ∂1 =
nZ. Hence

H1(C) = nZ/mZ

We claim that then
H1(C) ∼= Zl,

where l = m/n (is integer, since we are assuming that m divides n).
Consider a mapping f : Z → nZ defined by f(x) = nx. Then f is sur-
jective homomorphism (actually isomorphism) of abelian groups. Let
p : nZ → nZ/mZ be the canonical projection to the quotient group.
Mapping p is also a surjective homomorphism. Hence the composition
g = p ◦ f : Z → nZ/mZ is a surjective homomorphism, so by isomor-
phism theorem of abelian groups (Corollary 7.9) g induces isomorphism

ḡ : Z/Ker g ∼= nZ/mZ = H1(C).

It remains to calculate Ker g. Suppose x ∈ Z. Then g(x) = 0 if and
only if f(x) = nx ∈ mZ i.e. if and only if there exists y ∈ Z such that

nx = my = nly.

Since n 6= 0 by assumptions, cancelling n yields equivalent condition
x = ly for some y ∈ Z, which is equivalent to x ∈ lZ. Hence Ker g = lZ,
so

H1(C) ∼= Z/lZ = Zl.

For k = 0 we have that B0(C) = ∂1(C1) = C0, since ∂1 is surjective
(projection always is) and also Z0(C) = Ker ∂0 = Ker 0 = C0. Hence

H0(C) = C0/C0 = 0.

4. Consider a chain complex C = (Cn)n∈Z with C2 = (Z,+), C1 = (R,+),
C0 = (C∗, ·) and Cn = 0 for n 6= 0, 1, 2. Boundary operators ∂n : Cn →
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Cn−1 are defined by ∂2 : Z → R is the mapping given by ∂2(n) = 2n for
all n ∈ Z, ∂1 : R → C∗ is complex-exponential mapping

∂1(x) = (cos 2πx, sin 2πx), x ∈ R

and ∂i = 0 is a trivial mapping for n 6= 1, 2.

0 // Z
·2

// R
exp

// C∗
// 0

a) Prove that C really is a chain complex.
b) Prove that for homology groups of C we have that

Hn(C) ∼=











Z2, for n = 1,

(R+, ·), for n = 0,

0, otherwise .

Solution: a) We need to show that

∂k−1 ◦ ∂k = 0

for all k ∈ Z. This equation is clearly true for k 6= 2, since then either
∂k−1 or ∂k is a zero mapping. Hence the system is a chain complex if
and only if

∂1 ◦ ∂2 = 0.

Direct calculation shows that for any n ∈ Z

∂1 ◦ ∂2(n) = ∂1(2n) = (cos 4πn, sin 4πn) = (1, 0) = 1.

1 is the zero element of the group C
∗ (multiplicative notation), so this

is exactly what we wanted.

b) For n 6= 0, 1, 2 the group C is trivial, so its subgroup Zn(C) is trivial,
thus also the quotient group H(C) = Z(C)/Bn(C) is trivial.

For n = 2 we have that Z2(C) = Ker ∂2 = 0, since ∂2 is injective, so
also H2(C) must be zero.

For n = 1 we have that B1(C) = ∂2(C2) = 2Z and Z1(C) = Ker ∂1 = Z.
Hence

H1(C) = Z/2Z = Z2.
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For n = 0 we have that B0(C) = ∂1(C1) = S1, and Z0(C) = Ker ∂0 =
Ker 0 = C0 = C∗. Hence

H0(C) = C
∗/S1.

It remains to show that the quotient group C∗/S1 is isomorphic to the
group (R+, ·), which is a group of positive real numbers equipped with
the multiplication. Let f : C∗ → R+ be the norm mapping f(z) = |z|
(standard norm in the plane). It is a well-known fact that this mapping
is a homomorphism with respect to multiplications of complex and real
numbers, since for all complex numbers z, z′ ∈ C we have that

|zz′| = |z||z′|

(look it up, if this does not look familiar). This mapping is clearly a
homomorphism, since f(x) = x for every x ∈ R+ ⊂ R ⊂ C

∗. Moreover,
by definition, the kernel of this mapping is precisely

S1 = {z ∈ C
∗ | |z| = 1}.

Hence by Isomorphism Theorem (Corollary 7.9) f induces isomorphism
between H0(C) = C∗/S1 and R+, which is what we had to prove.

Remark: The group (R+, ·) is actually isomorphic to the group of all
real numbers R equipped with addition (Example 7.6.3).

5. In Exercise 5.5. you were asked to define a ∆-complex K, which repre-
sents Klein’s bottle, based on the standard way to divide a square into
two triangles.

U

V

a

a

bb

Calculate singular homology groups H1(K) and H2(K).

Solution: We order simplices of K according to the following scheme:
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U

V

a

a

bb

v0 v1/w0

w1v2/w2

c

We start by calculating ∂2, first for basis elements U , V ,

d2(U) = d0U − d1U + d2U = a− c+ b,

d2(V ) = d0V − d1V + d2V = c− b+ a = a− b+ c.

It follows that for all n,m ∈ Z we have that

d2(nU+mV ) = n(a−c+b)+m(a−b+c) = (n+m)a+(n−m)b+(m−n)c.

First part of this equation implies that

B1(C(K)) = Im d2 = {n(a− c+ b) +m(a− b+ c) | n,m ∈ Z}

is a group generated by elements a− c+ b and a− b+ c. On the other
hand, using the second part of the equation above we can easily see
that d2 is injective and that the set {a− c+ b, a− b+ c} is free. Indeed,
if d2(nU+mV ) = 0, then by equation above n+m = n−m = 0, which
implies that n = m = 0. Thus in particular Z2(C(K)) = Ker d2 = 0,
so also H2(K) = 0. This calculation also implies that the set {a− c+
b, a − b + c} is free, so B1(C(K)) = Im d2 is actually a free abelian
group with basis {a− c+ b, a− b+ c} i.e.

B1(C(K)) = Z[a + b− c]⊕ Z[a− b+ c].

Next we calculate d1, first for basis elements a, b, c. One easily sees that
K has only one vertex, all the vertices are identified. Thus

d1(a) = 0 = d1(b) = d1(c),

so d1 = 0 is a zero homomorphism. In particular

Z1(C(K)) = Ker d1 = C1(K) = Z[a]⊕ Z[b]⊕ Z[c].
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On the other hand B1(C(K)) = Im d2 is a free abelian group with basis
{a− c+ b, a− b+ c}. Thus, by definition,

H1(K) = Z1(C(K))/B1(C(K)) = (Z[a]⊕Z[b]⊕Z[c])/(Z[a+b−c]⊕Z[a−b+c]).

To simplify this equation we attempt to use Exercise 2. The goal is to
bring basis {a, b, c} (of the ”denominator”) and {a− c+ b, a− b+ c} (of
”nominator”) ”close” enough so that both would contain same elements
or at least elements that are easy to compare.

First we apply Exercise 2 to basis {a − c + b, a − b + c} by putting
a1 = a− c+ b, a2 = a− b+ c. That gives us a new basis {(a− c+ b) +
(a− b + c), a− b + c} = {2a, a− b + c} for B1(C(K)). Next we apply
Exercise 2 to the basis {a, b, c} twice. First we put a1 = c, a2 = a to
obtain new basis {a, b, a + c}. Next we apply Exercise 2 to this new
basis by putting a1 = a+ c, a2 = b. This gives us basis {a, b, a+ c− b}.
Thus

H1(K) =
Z[a]⊕ Z[b] ⊕ Z[a− b+ c]

Z[2a]⊕ Z[a− b+ c]
∼= Z[a]/Z[2a] ⊕ Z[b] ∼= Z2 ⊕ Z.

Hence H1(K) ∼= Z⊕ Z2.

6. Let K be a Delta-complex consisting of all faces of a triangle σ, with all
three vertices identified to a single point (and no other identifications,
so-called ’parachute space’). Calculate H1(K).

Solution: We denote the faces of σ by a = d0σ, b = d1σ, c = d2σ.
The only vertex of K we denote by x. For every n ∈ Z we have that

d2(nσ) = n(a− b+ c),

hence B2(C(K)) = Im d2 is a subgroup Z[a− b+ c] ∼= Z which is a free
abelian group generated by an element a − b + c 6= 0. On the other
hand

d1(a) = x− x = 0 = ∂(b) = ∂(c),

so d1 = 0 (if it is zero on the generators it must be zero everywhere),
hence

Z1(C(K)) = C1(K) = Z[a]⊕ Z[b]⊕ Z[c].

Hence, by definition,

H1(K) = (Z[a]⊕ Z[b]⊕ Z[c])/Z[a− b+ c].
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In order to simplify this we use exercise 2. We want to switch from
the basis {a, b, c} of C1(K) to the basis that would contain an element
a − b + c as one of the generators. We apply exercise 2 twice. First
we apply it for a1 = b, a2 = c, obtaining that {a, b − c, c} is a basis of
C1(K). Next we apply it to this new basis and for a1 = 1 and a2 = b−c,
obtaining that {a− (b− c), b, c} = {a− b+ c, b, c} is a basis for C1(K).
Hence

C1(K) = Z[a− b+ c]⊕ Z[b]⊕ Z[c]

and standard algebraic results give us

H1(K) = (Z[a−b+c]⊕Z[b]⊕Z[c])/Z[a−b+c] ∼= Z[b]⊕Z[c] ∼= Z⊕Z = Z
2.
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