Department of Mathematics and Statistics

 Introduction to Algebraic topology, fall 2013Exerciss 7 (for the exercise session Tuesday 29.10.)

1. For $n \geq 1, i=0, \ldots, n$ we define $\varepsilon_{n}^{i}: \Delta^{n-1} \rightarrow \Delta^{n}$ to be the unique affine mapping such that

$$
\begin{gathered}
\varepsilon_{n}^{i}\left(\mathbf{e}_{k}^{n-1}\right)=\mathbf{e}_{k}^{n}, \text { if } k<i, \\
\varepsilon_{n}^{i}\left(\mathbf{e}_{k}^{n-1}\right)=\mathbf{e}_{+1}^{n}, \text { if } k \geq i
\end{gathered}
$$

a) Suppose $n>1$ and $0 \leq j<i \leq n$. Show that

$$
\varepsilon_{n}^{i} \circ \varepsilon_{n-1}^{j}=\varepsilon_{n}^{j} \circ \varepsilon_{n-1}^{i-1} .
$$

b) Suppose X is a topological space. Suppose $n>1$ and $0 \leq j<i \leq n$. Let $f: \Delta_{n} \rightarrow X$ be a singular simplex in X. Show that

$$
d_{n-1}^{j}\left(d_{n}^{i} f\right)=d_{n-1}^{i-1}\left(d_{n}^{j} f\right)
$$

2. Suppose $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is a basis of a free abelian group $G, n \geq 2$.
a) Prove that $\left\{a_{1} \pm a_{2}, a_{2}, \ldots, a_{n}\right\}$ is also a basis of G.
b) Is set $\left\{a_{1}+a_{2}, a_{1}-a_{2}, \ldots, a_{n}\right\}$ linearly independent? Is it a basis of G ?
3. Let $m, n \geq 1$ be fixed positive integers. For every $k \in \mathbb{Z}$ we define an abelian group C_{k} as following,

$$
C_{k}=\left\{\begin{array}{l}
\mathbb{Z}, \text { for } k=1,2 \\
\mathbb{Z}_{n}, \text { for } k=0 \\
0, \text { otherwise }
\end{array}\right.
$$

We also define boundary operators $\partial_{k}: C_{k} \rightarrow C_{k-1}$ for every $k \in \mathbb{Z}$ as following. $\partial_{2}: \mathbb{Z} \rightarrow \mathbb{Z}$ is a mapping given by $\partial_{2}(x)=m x, x \in \mathbb{Z}$. $\partial_{1}: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ is a canonical projection to a quotient group. All other mappings ∂_{k} are zero homomorphisms.

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{\cdot m} \mathbb{Z} \xrightarrow{p} \mathbb{Z}_{n} \longrightarrow 0
$$

a) Prove that the system of group $C=\left(C_{k}\right)_{k \in \mathbb{Z}}$ and homomorphisms $\partial_{k}: C_{k} \rightarrow C_{k-1}, k \in \mathbb{Z}$ is a chain complex if and only if m is divisible by n.
b) Suppose m is divisible by n, so C is a chain complex. Calculate homology groups $H_{k}(C)$ for all $k \in \mathbb{Z}$.
4. Consider a chain complex $C=\left(C_{n}\right)_{n \in \mathbb{Z}}$ with $C_{2}=(\mathbb{Z},+), C_{1}=(\mathbb{R},+)$, $C_{0}=\left(\mathbb{C}^{*}, \cdot\right)$ and $C_{n}=0$ for $n \neq 0,1,2$. Boundary operators $\partial_{n}: C_{n} \rightarrow$ C_{n-1} are defined by $\partial_{2}: \mathbb{Z} \rightarrow \mathbb{R}$ is the mapping given by $\partial_{2}(n)=2 n$ for all $n \in \mathbb{Z}, \partial_{1}: \mathbb{R} \rightarrow \mathbb{C}^{*}$ is complex-exponential mapping

$$
\partial_{1}(x)=(\cos 2 \pi x, \sin 2 \pi x), x \in \mathbb{R}
$$

and $\partial_{i}=0$ is a trivial mapping for $n \neq 1,2$.

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{R} \xrightarrow{\exp } \mathbb{C}^{*} \longrightarrow 0
$$

a) Prove that C really is a chain complex.
b) Prove that for homology groups of C we have that

$$
H_{n}(C) \cong\left\{\begin{array}{l}
\mathbb{Z}_{2}, \text { for } n=1 \\
\left(\mathbb{R}_{+}, \cdot\right), \text { for } n=0 \\
0, \text { otherwise }
\end{array}\right.
$$

5. In Exercise 5.5. you were asked to define a Δ-complex K, which represents Klein's bottle, based on the standard way to divide a square into two triangles.

Calculate singular homology groups $H_{1}(K)$ and $H_{2}(K)$.
6. Let K be a Delta-complex consisting of all faces of a triangle σ, with all three vertices identified to a single point (and no other identifications, so-called 'parachute space'). Calculate $H_{1}(K)$.

