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Introduction to Algebraic topology, fall 2013

Exercises 6. Solutions

1. An element x of an abelian group G is called torsion element if there
exists n ∈ Z, n > 0 such that nx = 0 (where 0 is a neutral element
of G). The set of all torsion elements of G is denoted Tor(G). If
Tor(G) = {0}, G is called torsion free.
a) Prove that Tor(G) is always a subgroup of G.
b) Show that quotient group G/Tor(G) is always torsion free.
c) Show that the torsion subgroup Tor(R/Z) of the quotient group R/Z
is Q/Z.

Solution:
a) Since 1 · 0 = 0 (or actually n · 0 = 0 for all n > 0), zero element of
G is a torsion element, so 0 ∈ Tor(G).

Suppose x, y ∈ Tor(G). Then there exist integers n,m > 0 such that
nx = 0 = my. It follows that for k = nm we have

k(x+y) = kx+ky = (nm)x+(nm)y = m(nx)+n(my) = m·0+n·0 = 0.

Notice that we are using a lot of ”obvious” algebraic laws that need to
be proven, like distributivity of multiplication by integers in the group,

k(x+ y) = kx+ ky

and ”associativity” (nm)x = n(mx). The exact proof of these is left
to the reader to verify. In this instance it is enough to know these for
positive integers only (but in general we will be using those laws a lot
for arbitrary integers). Also the commutativity of the multiplication of
integers is used between the lines.

Finally we need to show that whenever x ∈ Tor(G), then also −x ∈
Tor(G). Let n > 0 be such that nx = 0. Then

n(−x) = −nx = −0 = 0

in group G, so also −x is a torsion element. The formula n(−x) = −nx
is actually a consequence of the distributive law mentioned above, since

n(−x) + nx = n((−x) + x)) = n0 = 0.
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b) Since Tor(G) is a subgroup of G (and groups are abelian), we can
form the quotient group G/Tor(G). We need to show that the only
torsion element of this group is the neutral element, which in this group
is actually the class Tor(G).

Suppose ḡ = g+Tor(G) is a torsion element. This means that for some
n > 0 we have that

nḡ = n̄g = 0̄ = Tor(G).

This is equivalent to ng ∈ Tor(G). Since ng is a torsion element,
there exists m > 0 such that m(ng) = 0 in G. But this is the same as
(nm)g = 0 ∈ G and since k = nm is an integer, we see that g ∈ Tor(G),
so ḡ = 0̄ is a zero element of the group G/Tor(G). Hence the latter is
indeed torsion free.

c) Suppose x̄ ∈ R/Z is a class of x ∈ R. Then x̄ is a torsion element of
R/Z if and only if there exists n ∈ Z, n > 0 such that

nx̄ = n̄x = 0̄ = Z,

which is equivalent to nx ∈ Z. This is equivalent to the existence of
m ∈ Z such that nx = m. Hence we have shown that x̄ is a torsion
element if and only if

x =
m

n
for some m,n ∈ Z, n > 0. But this is equivalent to x ∈ Q. Hence
torsion element of R/Z are precisely elements of Q/Z.
Notice that the quotient group Q/Z is literally a subset of the quotient
group R/Z. Indeed, by definition element of Q/Z is a set of the form

q +Q = {q +m | m ∈ Z}

and such a set is in particular an element of R/Z (by definition of the
quotient group again).

The neutral element is 1 = (1, 0). The set of complex numbers of norm
1

S1 = {z ∈ C | |z| = 1}
is a subgroup of C∗. All elements of S1 can be represented in the form

(cosα, sinα)

where angle α is unique up to a multiply of 2π.
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2. For every n ∈ N, n > 0 we let

Cn = {z ∈ C | zn = 1}.

a) Show that Cn is isomorphic to Zn for all n > 0.
b) Show that

TorC∗ =
∪
n>0

Cn

c) Consider the mapping f : R → C∗,

f(x) = (cos 2πx, sin 2πx).

Show that f : (R,+) → (C∗, ·) is a homomorphism of abelian groups
and use f to prove that the quotient groups R/Q and S1/TorC∗ are
isomorphic.

Solution: Here we need to recall the multiplication of complex num-
bers and some of its essential properties.

The set C of complex numbers is defined to be R2 i.e. the set of real-
valued pairs (x, y). The multiplication of complex numbers is defined
by the formula

(x, y) · (u, v) = (xu− yv, xv + yu).

It can be shown (any standard algebra text or prove-it-yourself) that
the set of all non-zero complex numbers C∗ = C \ {0} is an abelian
group when equipped with this multiplication. The zero element is the
complex number 1 = (1, 0). The opposite element of complex number
(x, y) ̸= 0 is called inverse element (since we are using multiplicative
notation) and denoted (x, y)−1, it can be shown that

(x, y)−1 = (
x

x2 + y2
,

−y

x2 + y2
).

As elements the plane R2 complex numbers have natural norm | · |,
which is the standard norm

|(x, y)| =
√

x2 + y2.

This norm is ”compatible” with multiplication, meaning that for all
complex numbers z, w we have that

|z · w| = |z| · |w|.
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We also have that |1| = 1 (here on the left side complex number 1, on
the right side real number 1). These implies that for all z ̸= 0 we have
that

1 = |1| = |z · z−1| = |z| · |z−1|,

so
|z−1| = |z|−1.

It follows that the circle

S1 = {z ∈ C | |z| = 1}

is a subgroup of C∗ with respect to the multiplication. As we know
from basic mathematics, elements of S1 can be represented in the form

z = (cos 2πα, sin 2πα),

where α ∈ R. Such a representation is not unique, but it is unique up
to an integer. In other words for any other β ∈ R the equation

z = (cos 2πβ, sin 2πβ)

is true if and only if α− β = n for some n ∈ Z.

The mapping f : R → S1 defined by

f(x) = (cos 2πx, sin 2πx)

is a surjective homomorphism of abelian groups (R,+) and (S1, ·).
This claim is a part of b) but let us prove it now in advance, since it
will come in handy in the proof of a) as well. The formulas for the sine
and cosine of the sum of two angles gives us that

f(x+ y) = (cos 2π(x+ y), sin 2π(x+ y)) =

= (cos 2πx cos 2πy−sin 2πx sin 2πy, cos 2πx sin 2πy+sin 2πx cos 2πy) =

= (cos 2πx, sin 2πx) · (cos 2πy, sin 2πy) = f(x)f(y).

This proves that f is a homomorphism of groups. It is surjective since
every element of S1 can be written in the form

z = (cos 2πα, sin 2πα),

where α ∈ R.
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a) Let z be an element of Cn. Then iteration of the formula |z · w| =
|z| · |w| for z = w gives

|z|n = |zn| = |1| = 1,

which implies, since |z| is a non-negative real number, that |z| = 1 i.e.
z ∈ S1. In particular we can write z in the form

z = (cos 2πx, sin 2πx) = f(x)

for some x ∈ R (unique up to the addition of an integer). Since f was
shown to be a homomorphism above, we have that

(1, 0) = zn = f(x)n = f(nx) = (cos 2πnx, sin 2πnx).

This is possible if and only if 2πnx = m2π for some integer m ∈ Z i.e.
if and only if x = m/n. Hence

Cn = {(cos 2πm
n

, sin
2πm

n
) | m ∈ Z}.

Define α : Z → S1 by

α(m) = (cos
2πm

n
, sin

2πm

n
).

By considerations above the image of α is precisely Cn. Just as we have
seen that f is homomorphism, one easily sees, using the formulas for
the sine and cosine of the sum of angles, that α is a homomorphism
of abelian groups. Since an image of an abelian group w.r.t. a homo-
morphism is an abelian group itself, we see that Cn is an abelian group.

By isomorphism theorem 7.9. there exists an isomorphism ᾱ : Z/Kerα →
Cn of abelian groups. We calculate Kerα. Suppose m ∈ Z is such that

α(m) = (cos
2πm

n
, sin

2πm

n
) = (1, 0).

This is possible if and only if 2πm/n = k2π for some k ∈ Z, which
is equivalent to m = nk. Hence the kernel of α consists precisely of
integers divisible by n, in other words Kerα = nZ. Hence ᾱ is an iso-
morphism between Z/nZ = Zn and Cn, which is what we had to prove.
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b) The equation

TorC∗ =
∪
n>0

Cn

follows trivially from the definition of the torsion subgroup and groups
Cn.

c) We have already seen that f : R → C∗,

f(x) = (cos 2πx, sin 2πx)

is a homomorphism between abelian groups (R,+) and (C∗, ·) and it’s
image is precisely S1. By Exercise 1 there exists a quotient subgroup
S1/TorC∗.

Let g = p ◦ f : R → S1/TorC∗ be the composition of f : R → S1 and
the canonical projection p : S1 → S1/TorC∗. Then g is a surjective
homomorphism of groups. By Isomorphism Theorem 7.9. g induces an
isomorphism

ḡ : R/Ker g → S1/TorC∗.

Next we calculate Ker g. Suppose x ∈ R. Then

ḡ(x) = ¯f(x) = 1̄ = TorC∗,

which is a zero element of S1/TorC∗ if and only if

f(x) = (cos 2πx, sin 2πx) ∈ TorC∗.

By a) and b) we have that

TorC∗ =
∪
n>0

Cn =
∪
n>0

{(cos 2πq
,

sin
2πm

n
) |m ∈ Z} = {(cos 2πq, sin 2πq) | q ∈ Q}.

In other words
TorC∗ = {f(x) | x ∈ Q}.

Suppose x ∈ Q. Then, by the last equation, f(x) ∈ TorC∗. Suppose
conversely that f(x) ∈ TorC∗. Then, by the same equation, f(x) =
f(q) for some q ∈ Q. This implies that x − q = m for some integer
m ∈ Z, so, x = q + m ∈ Q. Hence we see that f(x) ∈ TorC∗ if and
only if x ∈ Q. This means precisely that Ker g = Q. Hence ḡ is an
isomorphism between R/Q and S1/TorC∗.
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3. Let A be a set. For every a ∈ A we define fa : A → Z by

fa(x) =

{
1, if x = a,

0, otherwise .

a) Prove that ZA is an abelian group (with point-wise addition, see
lecture notes) and Z(A) is its subgroup.
b) Prove that

{fa | a ∈ A}
is a basis of Z(A).

Solution: a) The addition + in ZA is defined as following. Suppose
f, g ∈ ZA. We define f + g : A → Z to be the function such that

(f + g)(a) = f(a) + g(a) for all a ∈ A.

We need to show that + satisfies the conditions of abelian group.

1) Associativity: Suppose f, g, h ∈ ZA. Let a ∈ A be arbitrary. Then

((f+g)+h)(a) = (f+g)(a)+h(a) = (f(a)+g(a))+h(a) =∗ f(a)+(g(a)+h(a)) =

f(a) + (g + h)(a) = (f + (g + h))(a).

Notice that in (*) we have used the associativity of the usual addition
of integers.
Since ((f + g) + h)(a) = (f + (g + h))(a) for all a ∈ A, we have that

(f + g) + h = f + (g + h).

2) Commutativity: Suppose f, g ∈ ZA. Let a ∈ A be arbitrary. Then

(f + g)(a) = f(a) + g(a) =∗ g(a) + f(a) = (g + f)(a).

Notice that in (*) we have used the commutativity of the usual addition
of integers.
Since (f + g)(a) = (g + f)(a) for all a ∈ A, we have that

f + g = g + h.

3) Zero element of ZA is the constant function 0: A → Z defined by
0(a) = 0 for all a ∈ A. Indeed, for every f ∈ ZA and all a ∈ A we have
that

(f + 0)(a) = f(a) + 0(a) = f(a) + 0 = f(a),
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so f + 0 = f .

4) Suppose f ∈ ZA. We define −f ∈ ZA by

(−f)(a) = −f(a), a ∈ A.

Then, for all a ∈ A we have that

(f + (−f))(a) = f(a) + (−f(a)) =∗ 0 = 0(a),

so f + (−f) = 0. In (*) we have used the definition of the opposite
element in the abelian group Z.

Next we show that Z(A) is a subgroup of ZA. First of all the support
of zero function 0 ∈ ZA is the empty set, which is finite, so 0 is finitely
supported, in other words 0 ∈ Z(A).

Suppose f, g ∈ Z(A). Then the supports

Bf = {a ∈ A | f(a) ̸= 0},

Bg = {a ∈ A | g(a) ̸= 0}

are both finite. We claim that

Bf+g ⊂ Bf ∪Bg.

Suppose x /∈ Bf ∪ Bg. Then f(a) = 0 and g(a) = 0, so (f + g)(a) =
f(a)+g(a) = 0. Hence x /∈ Bf+g. Thus, if x ∈ Bf+g, then x ∈ Bf ∪Bg.
Union of finite sets is finite, so Bf ∪Bg is finite. A subset of a finite set
is finite, so Bf+g is finite. Hence f + g ∈ Z(A) whenever f, g ∈ Z(A).

Finally we notice that for any f ∈ ZA

B−f = Bf ,

so if f ∈ Z(A), then also −f ∈ Z(A). We have shown that Z(A) satisfies
all the conditions of an abelian group.

b) Suppose f ∈ Z(A), then

Bf = {a ∈ A | f(a) ̸= 0}
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is a finite sum. We claim that

f =
∑
a∈Bf

f(a)fa.

Indeed, if b /∈ Bf , then

f(a) = 0 =
∑
a∈Bf

f(a)fa(b).

If b ∈ Bg, then

f(b) =
∑
a∈Bf

f(a)fa(b),

because fb(b) = 1 and fa(b) = 0 for all a ̸= b.

Since
f =

∑
a∈Bf

f(a)fa

we see that in particular the set {fa | a ∈ A} generates the whole
group Z(A) (obviously every element of this set is finitely supported,
so conversely the group generated by it must be a subset of Z(A) ). It
remains to show that this set is linearly independent. Suppose B =
{a1, . . . , ak} ⊂ A is a finite subset of A and

n1a1 + . . .+ nkak = 0

for some integers n1, . . . , nk ∈ Z. Evaluating this some (both sides are
functions!) in ai for i = 1, . . . , k we obtain

ni = (n1a1 + . . .+ nkak)(ai) = 0(ai) = 0.

Since this is true for all i = 1, . . . , k, set A is linearly independent,
which is what we had to show.

4. Suppose G is an abelian group and (Hα)α∈A is indexed collection of
abelian groups. Suppose for every α ∈ A a homomorphism of abelian
groups fα : G → Hα is given. Prove that then there exists unique
homomorphism of groups

f : G →
∏
α∈A

Hα
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such that prα ◦f = fα for all α ∈ A.

Solution: Suppose f : G →
∏

α∈A Hα is such that prα ◦f = fα for all
α ∈ A. Suppose g ∈ G and consider the family

f(g) = (hα)α∈A.

Since prα ◦f = fα for all α ∈ A, we have for every fixed β ∈ A that

hβ = (prβ ◦f)(g) = fβ(g).

Hence
f(g) = (fα(g))α∈A,

so the element f(g) is uniquely determined. This proves the uniqueness
of f .

To prove uniqueness we define f : G →
∏

α∈AHα by the formula already
deduced above,

f(g) = (fα(g))α∈A, for all g ∈ G.

Then prα ◦f = fα for all α ∈ A by construction. It remains to show
that f is a homomorphism of abelian gropus. Let g, g′ ∈ G. Then

f(g+g′) = (fα(g+g′))α∈A = (fα(g)+fα(g
′))α∈A = (fα(g))α∈A+(fα(g

′))α∈A = f(g)+f(g′).

Here we have used the fact that every mapping fα is a homomorphism,
as well as the actual definition of the +-operation in the direct product
(Hα)α∈A.

5. Prove that
a) Z6 is isomorphic to the direct sum Z2 ⊕ Z3,
b) Z4 is not isomorphic to the direct sum Z2 ⊕ Z2.
What do you think is the essential difference between those cases re-
sponsible for these results? Try to conjecture some general results sim-
ilar to those special cases (you do not have to prove your conjectures,
of course).

Solution: The key is to look at the order of elements. The order of
an element g ∈ G, where G is an abelian group, is the smallest positive
integer n ∈ Z such that ng = 0 or infinity ∞ if such an integer does
not exist. For example 0 is the only element of order 1.
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Isomorphism clearly preserve orders of elements. Using this fact we
can easily deduce that Z4 is not isomorphic to the direct sum Z2 ⊕Z2.
Indeed, every element of the group Z2 ⊕ Z2 has order at most 2, since

2(x, y) = (2x, 2y) = (0, 0) = 0

for all x, y ∈ Z2. But in the group Z4 there exists an element g such
that 2g ̸= 0, namely

21̄ = 2̄ ̸= 0 ∈ Z4,

because 2 is not divisible by 4. Also element 3̄ ∈ Z4 is such that 23̄ ̸= 0.
For any homomorphism f : Z2 → Z2 → Z4 we have that

0 = f(2g) = f(g + g) = f(g) + f(g) = 2f(g), for all g ∈ Z2 → Z2.

so the image of this homomorphism cannot contain element 1̄, hence
cannot be surjection.

It is usually easier to prove that some groups are not isomorphic, you
just have to find an algebraic property (i.e. property that isomorphisms
must preserve) that one group has and the other does not. Let’s how
we proved b). To prove that two groups are isomorphic, we must ac-
tually construct an isomorphism between them. One of the most used
tricks is to do this by using the Isomorphism Theorem - it is enough
to construct a surjective homomorphism and then quotient out by the
kernel. Hence, to prove that Z2 ⊕ Z3 is homeomorphic to Z6, we will
first try to come up with a surjective homomorphism f : Z → Z2 ⊕Z3.
Since all subgroups of Z are of the form nZ for some n ∈ Z, this will,
in any case, give us an isomorphism Z/nZ = Zn → Z2 ⊕ Z3 for some
n ∈ Z. If the claim we want to prove is true, we’ll be able to have this
result for n = 6.

Any homomorphism f : Z → G, where G is an arbitrary abelian group,
is determined once we know f(1). This is because 1 generates Z, so for
any n ∈ Z we have

f(n) = f(n · 1) = nf(1).

This implies, that the image of the homomorphism f : Z → G is a
subgroup of G generated on one element f(1). In particular f can be
surjective if and only if G is a group generated on one element. Hence
first we must find a generator of Z2 ⊕ Z3.
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Direct broute-force: One way to find a generator is to go through
all elements of Z2⊕Z3. Since there are only six elements, it is possible
in practice.

Abstract algebra : You might know from the basic course in algebra
that an element g ∈ G always generates the subgroup, which size is
exactly the order of g. This is actually consequence of an isomorphism
theorem - we consider homomorphism f : Z → G given by f(n) =
ng and using isomorphism theorem we conclude that f induces an
isomorphism Z/Ker f → G′, where G′ is the subgroup generated by
g. If Ker f = {0} this means that the order of g is infinite and G′ is
isomorphic to Z. If KerZ = nZ for some n > 0, then, by definition of
f , the order of g is precisely n and on the other hand G′ is isomorphic
to Zn, which has precisely n elements.

If we apply this knowledge to Z2⊕Z3, we realise, that the latter group
is generated by one element g if and only if this element has order 6.
Going through the order of elements we see that for example (bar1, 1̄) ∈
Z2⊕Z3 has order 6. The considerations above actually show that then
f : Z → Z2 ⊕ Z3 defined by

f(n) = nbar1, 1̄)

defines an isomorphism between Z6 and Z2 ⊕Z3, which is what had to
be shown.

General Fact: It can be shown that the group Zn ⊕ Zm (which has
mn elements) is isomorphic to Zmn if and only ifm and n are co-primes,
i.e. g.c.d(n,m) = 1. The proof can be found in texts on basic abstract
algebra.

6. a) Suppose A is a linearly independent subset of the abelian group
(Q,+). Prove that A has at most one element.
b) Use a) to prove that Q is not free.
c) Show also that Q is not finitely generated.

Solution: a) Enough to prove that if A contains at least two different
elements

x = m/n, y = k/l,

then A cannot be linearly independent. But

(nk)x− (ml)y = mk −mk = 0.
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This combination is non-trivial, since denominators n, l are non-zero
and at least one of the nominators m, k must also be non-zero (other-
wise x = y = 0). Hence A cannot be free.

c) We do c)-first. Suppose A = {a1 = m1/n1, a2 = m2/n2, . . . , ai =
mi/ni, . . . , ak = mk/nk} is a finite subset of Q. We’ll show that A
cannot generate Q. If it would generate the whole Q, then in particular
there would exist integers l1, . . . , lk such that

l1a1 + l2a2 + . . .+ lkak =
1

2n
,

where n = n1n2 · · ·nk. The sum of the left side can be written in the
form

l

n
,

where l ∈ Z. Cancelling out n from both parts of the equations gives us
that 1/2 is an integer l, which is impossible. Hence A cannot generate
the whole A.

b) Suppose Q is free and let A be its basis. By a) A must be at most
singleton. However by c) Q is not finitely generated, so in particular
cannot be generated by a singleton (or empty set) A. Contradiction.
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