
Department of Mathematics and Statistics
Introduction to Algebraic topology, fall 2013

Exercises 5. Solutions

1. Suppose f : X → Y is a quotient mapping and g : Y → Z is a mapping
(not assumed to be continuous). Prove that g is continuous if and only
if the composition mapping g ◦ f : X → Z is continuous. X, Y, Z are
topological spaces.

Solution: The composition of two continuous mappings is continuous,
this is well-known fact from the general topology. Hence if g is continu-
ous, then g ◦ f is continuous, since any quotient mapping is continuous
(follows from the definition)

Conversely let us assume that f : X → Y is a quotient mapping and
g : Y → Z is a mapping, such that g ◦ f : X → Z is continuous. By
Lemma 3.2 in order to prove that g is continuous, it is enough to show
that the inverse image g−1U of an open subset U ⊂ Z is an open subset
of Y .

Since f is a quotient mapping, g−1U ⊂ Y is open if and only if
f−1(g−1U) is open in X . But this is true, since by set theory we have
that

f−1(g−1U) = (g ◦ f)−1U

and g ◦ f is assumed continuous.

2. By RP n (real projective space) we denote the quotient space Sn/ ∼ of
the sphere Sn with respect to the equivalence relation ∼ generated by
relations (x,−x), x ∈ Sn.
a) Prove that the canonical projection p : Sn → RP n is both an open
and a closed mapping (note: the fact that RP n is Hausdorff is not
obvious, so if you want to use it, you have to prove it separately).
b) Consider a mapping f : B

n
→ Sn defined by

f(x1, . . . , xn) = (x1, . . . , xn,

√

√

√

√1−
n

∑

i=1

x2
i ).

Show that the composite p ◦ f is a quotient mapping (Hint: show that
it is a closed surjection).
c) Use b) to show that RP n is homeomorphic to the quotient space
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B
n
/ ∼′, where ∼′ is an equivalence relation on B

n
generated by the

relations (x,−x), x ∈ Sn−1 (notice - identifications only on the bound-
ary!).

Solution: a) Let U ⊂ Sn be open. We need to show that p(U) is open
in RP n. Since RP n has the quotient topology and p : Sn → RP n is a
canonical projection, a subset p(U) of RP n is open in RP n if and only
p−1p(U) is open in Sn. Now, an element y ∈ Sn belongs to p−1p(U) if
and only if

p(y) = ȳ = x̄ = p(x)

for some x ∈ p(U). This means that y ∼ x for some x ∈ U , which, by
definition of ∼ means precisely that y ∈ U or −y ∈ U i.e. y ∈ U or
y ∈ −U . Thus

p(U) = U ∪ (−U).

Since the antipodal mapping ι : Sn → Sn, ι(x) = −x is obviously a
homeomorphism (it is continuous bijection, whose inverse is ι itself),
we have that −U = ι(U) is open in Sn. Hence p(U) is open as a union
of two open sets.

The fact that p is also closed can be proved in the same way - the prove
above works literally if you substitute open U with closed F (check!).
It is also tempting to justify the closeness of p using Proposition 3.11
(ii) - any continuous mapping between compact and Hausdorff space is
closed. But the thing is, we do not know whether RP n is Hausdorff!
It is actually true, but requires a proof. In this case it seems easier to
prove the claim ”directly” as above.

b) Mapping f is well-defined, since for every x ∈ Bn we have that

1 ≥
n

∑

i=1

x2
i ,

so the square root of 1 −
∑n

i=1
x2
i is a well-defined non-negative real

number. Moreover

x2
1 + . . .+ x2

n + (1−
n

∑

i=1

x2
i ) = 1,

so f maps into Sn. In fact f is a homeomorphism of B
n
to the

upper hemisphere

Sn
+ = {y ∈ Sn | yn+1 ≥ 0}.
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This is seen as following. By considerations above f is well-defined as a
mapping of B

n
into Sn

+ (last coordinate of f(x) is non-negative, being

a square root). Let pr : Sn
+ → B

n
be (the restriction of) the projection

pr(x1, . . . , xn, xn+1) = pr(x1, . . . , xn).

Then pr ◦f = id directly from them definitions. Conversely, let

x = (x1, . . . , xn, xn+1) ∈ Sn
+

Then
∑n+1

i=1
x2
i = 1, so, since xn+1 ≥ 0, we have that

xn+1 =

√

√

√

√1−
n

∑

i=1

x2
i .

Hence

f(p(x1, . . . , xn, xn+1)) = f(x1, . . . , xn) = (x1, . . . , xn,

√

√

√

√1−
n

∑

i=1

x2
i ) = (x1, . . . , xn, xn+1).

This means that also f ◦ pr = id. We have shown that f and pr are
inverses of each other. Since both are clearly continuous, we see that f
is a homeomorphism, when considered as a mapping f : B

n
→ Sn

+. In
particular for every y ∈ Sn

+ there exists exactly one x such that

f(x) = y.

OBS The fact that f is a homeomorphism to its image is not necessary
in the proof of the this exercise, but it helps and is mentioned for the
convinience.

Now we go back to what we had to prove. The mapping g = p◦f : B
n
→

RP n is continuous since it is a composition of continuous mappings. Let
us show that g is a closed surjection. Then, by Lemma 6.3., g is a quo-
tient mapping.
Mapping f : B

n
→ Sn is closed, since it is a continuous mapping

between compact space B
n
and Hausdorff space Sn. (Proposition

3.11(ii)). Mapping p is proved to be closed above in a). Hence g is
closed, being a composition of two closed mappings.
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Next we show that g is surjective. Notice that although p is surjective,
f is not, so we cannot say that g is surjective being composition of
surjective mappings, coz it’s not. Instead we prove it directly. Since we
will need in c) information about every inverse image g−1(a) for every
element a ∈ RP n (this inverse images are exactly the classes of the
equiv. relation ∼g), we will investigate them now. The surjectivity of
g is equivalent to the claim that g−1(a) is not empty.

Let a ∈ RP n be arbitrary. Then, by our definition of RP n

a = {y,−y} = ȳ

for some
y = (y1, . . . , yn, yn+1) ∈ Sn.

Suppose x ∈ B
n
be an element of g−1(a) i.e. an element for which

g(x) = p(f(x)) = ¯f(x) = = ȳ.

Hence x ∈ g−1(a) if and only if

¯f(x) = ȳ

which means that either
f(x) = y or

f(x) = −y.

Suppose first that yn+1 6= 0. If yn+1 > 0, then −yn+1 > 0. Since y

and −y both represent a in RP n, we may assume that yn+1 > 0. Then
y ∈ Sn

+ and −y /∈ Sn
+. By above we know that for y there exists exactly

one x ∈ B
n
for which f(x) = y and there exist not x ∈ B

n
for which

f(x) = −y. The conclusion is that in case yn+1 6= 0 the inverse image
g−1a is a singleton, in particular not empty. This singleton consists
precisely of an element x = (x1, . . . , xn), where

1−
n

∑

i=1

x2
i = y2n+1 > 0,

so
∑n

i=1
x2
i < 1, which means that x ∈ Bn (open ball).
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Next we investigate the case yn+1 = 0. Then both y and −y belong to
Sn
+. Moreover, in this case ifg

f(x) = y,

then
f(−x) = −y.

Here x ∈ Sn−1, since

1−
n

∑

i=1

x2
i = y2n+1 = 0.

Since f is an injection, we conclude that in case yn+1 = 0 the inverse
image g−1a is a two-point set {x,−x}, where x ∈ Sn−1. In particular
it is not empty.

We have shown that g is a closed surjection. By Lemma 6.3. g is a
quotient mapping.

c) Now that we know that g is a quotient mapping, we can apply Propo-
sition 6.5. and conclude that g induces a homeomorphism g̃ : B

n
/ ∼g→

RP n. Here ∼g is the equivalence relation, whose equivalence classes
are, by definition, exactly inverse images g−1a of all different elements
a ∈ RP n. Above we have calculated what these inverse images are ex-
actly (that’s what it was for), so we see that ∼g is exactly the relation
∼′ given in the task, generated by the relations (x,−x), x ∈ Sn−1.

3. The cone c(X) of a topological space X is a quotient space of the prod-
uct space X × I with subset X × {1} identified to a single point (and
no other identifications). In other words c(X) = (X×I)/X×{1} (this
notation is introduced in Example 6.9).
a) Prove that c(Sn−1) is homeomorphic to B

n
, for all n ≥ 1.

b) Suppose X is compact. Prove that c(X) is contractible. Is it neces-
sary to assume that X is compact? Why/why not?

Solution: We define the mapping g : Sn−1 × I → B
n
by

g(x, t) = (1− t)x.

The idea behind this mapping is that we think of B
n
consisting of

sphere-shaped ”layers” (think onion!)

Sr{|x| = r},
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where r goes through the interval [0, 1]. All these layers are homeo-
morphic to the sphere Sn−1 in a natural way, except that S0 is just a
singleton {0}. Putting this mappings together we obtain g, which is
designed so that Sn−1 × {1} maps to the origin {0}.
It is easy to see that g is a surjection. Indeed

g(x, 1) = 0

for any x ∈ Sn−1 and if y 6= 0 then

g(y/|y|, 1− |y|) = y.

Mapping g is also obviously continuous. Since Sn−1×I is compact and
B

n
is Hausdorff, by Lemma 6.4. g is a quotient mapping.

Let us investigate the relation ∼g. Suppose

g(x, t) = (1− t)x = (1− t′)y = g(y, t′),

where x,y ∈ Sn−1 and 0 ≤ t, t′ ≤ 1. Taking norms we obtain

1− t = 1− t′,

hence t = t′. If t = 1, then

g(x, 1) = 0 = g(y, 1)

for all x,y ∈ Sn−1. If on the other hand t 6= 1, then

(1− t)x = (1− t)y

implies that x = y. We see that the relation ∼g identifies Sn−1 × {1}
to a point and there are no other non-trivial identifications. Hence the
quotient space Sn−1 × I/ ∼g is exactly the cone c(Sn−1). Since g is a
quotient mapping, by Proposition 6.5. g induces homeomorphism

g̃ : c(Sn−1) → B
n
.

b) It is easy to come up with a natural formula for homotopy F : c(X)×
I → c(X) that shrinks identity mapping to a point Sn−1 × {1},

F ((x, t), s) = (x, t+ s(1− t)).

The formula s 7→ (1− s)t+ s · 1 = t+ s(1− t) is a natural linear path
from t to 1 on real line.
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Mapping F obviously is a homotopy from identity to the constant map-
ping, once we know it is continuous. This is surprisingly not trivial to
proof, although is always true.

Consider the diagram

(X × I)× I
G

//

π×id

��

X × I

π

��

c(X)× I
F

// c(X),

where π : X×I → c(X) is a canonical projection and G : (X×I)×I →
X × I is a homotopy

G((x, t), s) = (x, t+ s(1− t)).

The continuity of G is simple - it is a combination of projections and
continuous mappings defined on the unit interval (and unit square).
Hence from the diagram above we see that F is continuous IF we know
that the mapping π × id is a quotient mapping (Exercise 1). The
mapping π is quotient by definition and identity mapping is always quo-
tient, but this is not enough to conclude that π × id is quotient - the
product of two quotient mappings is not always quotient (counterex-
amples exist). In this case the product IS quotient, but the proof of
this fact is not easy. This is a special case of the following result from
general topology (you can find proof in many topology or homotopy
theory texts):

Theorem. Suppose p : X → Y is a quotient mapping and Z a locally

compact Hausdorff space. Then p× id : X × Z → Y × Z is a quo-
tient mapping.

In particular theorem implies in case Z = I, so we can always ”quotient
out” homotopies to obtain homotopies between quotient spaces.

The proof of the Theorem mentioned is not exactly trivial, so we will
instead prove the continuity of F in case X is a compact Hausdorff
space (notice - Hausdorff assumption was unfortunately missing from
the suggestion of the exercise task. In general topology it is customary
to reserve term ”compact” only to Hausdorff compact spaces).
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We know that continuity of F follows if we prove that π × id : (X ×
I)× I → c(X)× I is quotient. This mapping is clearly surjective and
continuous. Since (X × I)× I is compact, claim follows from Lemma
6.4. once we have shown that c(X) × I is Hausdorff. For that it is
enough to prove that c(X) is Hausdorff.

We conclude the proof by showing that c(X) is Hausdorff whenever X
is Hausdorff.
Suppose ¯(x, t) 6= ¯(y, t′). Suppose first t 6= t′. We may assume that
t < t′. We can choose r ∈ I such that t < r < t′. Then

U = {(z, s) ∈ X × I | s < r}

and
V = {(z, s) ∈ X × I | s > r}

are both open subsets of X × I. Moreover

p−1pU = U, p−1pV = V

for the canonical projection p : X × I → c(X). This implies that
U ′ = p(U) and V ′ = p(V ) are open in c(X). It is easy to check that
U ′ ∩ V ′ = ∅ and by construction ¯(x, t) ∈ U ′, ¯(y, t′) ∈ V ′. Hence U ′ and
V ′ are disjoint neighbourhoods of ¯(x, t) and ¯(y, t′).

Next suppose t = t′. Then we must have t = t′ < 1, since otherwise
¯(x, t) = ¯(y, t′). Since we assume thatX is Hausdorff there exists disjoint

neighbourhoods U and V of x and y respectively in X . Let U ′ =
p(U × [0, 1[), V ′ = p(V × [0, 1[). Then

p−1U ′ = U × [0, 1[

is open in X × I, hence U ′ is open in c(X). Similarly one sees that V ′

is open in c(X). Moreover U ′ is a nieghbourhood of ¯(x, t), while V ′ is
a neighbourhood of ¯(y, t′) and they do not intersect.

4. Prove that Mobius Band has the same homotopy type as the circle S1.

Solution: Let us use the model M = I2/ ∼ for the Mobius Band,
where ∼ is the equivalence relation in I2 defined by relations (x, 0) ∼
(1 − x, 1). Notice that this is different from the definition used in the
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lecture notes, where identifications are made on the vertical, not hori-
zontal sides.

The idea of the proof is to deform the square I2 into its ”middle hori-
zontal line”

J = {(x, y) ∈ I2 | y = 1/2}

in a natural ”linear way” (see the picture below). This deformation
then works well with the identifications that define Mobius Band. The
middle line itself in the Mobius band becomes a circle.

J
aa

To formalize this idea with start with the construction of the homotopy
equivalences. First consider a mapping α : I → M , where M is the
Mobius band defined by

α(t) = (t, 1/2).

Then α is continuous, since it is a composition of the continuous map-
ping I → I2, t 7→ (1/2, t) and the canonical projection p : I2 → M .
Mapping α maps endpoints 0 and 1 of the unit interval to the same
point, since in the Mobius band (0, 1/2) = (1, 1/2). Hence α ”quo-
tients through” the quotient space I/{0, 1} which is homeomorphic to
S1 (Example 6.9.2). More formally there exists a commutative diagram

I
q

  B
B

B

B

B

B

B

B

α
��

S1
f

// M,

where f : S1 → M is the ”induced mapping” defined by the formula

f(cos 2πt, sin 2πt) = ¯(t, 1/2).

Here q : I → S1 is the quotient mapping defined by

q(t) = (cos 2πt, sin 2πt)
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(see Example 6.9.2). Since q is quotient and α is continuous, Exercise
1 implies that f is a continuous mapping. This mapping will be a ho-
motopy equivalence we want.

Next we construct the mapping g : M → S1, which will serve as a
homotopy inverse of f . This mapping comes naturally from the ”de-
formation” of the square into its vertical middle line i.e. is defined by
the formula

g( ¯(x, y)) = (cos 2πx, sin 2πx) = q(x).

To justify the continuity of g we use the same reasoning as usual -
mapping g is a part of the commutative diagram

I2

p

  B
B

B

B

B

B

B

B

β

��

M
g

// S1,

where β : I2 → S1 is defined by

β(x, y) = (cos 2πx, sin 2πx) = π(x).

Since β is clearly continuous and p is a quotient mapping, by Exercise
1 we obtain the continuity of g.

Next step is to show that g ◦ f and f ◦ g are actually homotopic to
corresponding identity mappings. The composition g ◦ f is actually
precisely the identity mapping of S1. The mapping f ◦ g : M → M is
defined by the formula

(f ◦ g)((x, y)) = (x, 1/2).

The homotopy between idM and f ◦ g is defined by the formula

F ((x, y), t) = (x, (1− s)y + t/2).

Mapping is well defined, since

F ((0, y), t) = (0, (1− t)y + t/2) = (1, 1− (1− t)y − t/2) =

= (1, (1− t)(1− y) + t/2) = F ((1, 1− y)), y, t ∈ I.
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To justify the continuity of F we consider the commutative diagram

I2 × I
G

//

p×id

��

I2

p

��

M × I
F

// M,

where G : I2 × I → I2 is defined by

G((x, y), t) = (x, (1− t)y + t/2).

Since G is clearly continuous and p is continuous, the continuity of F
follows once we know that p× id : I2 × I → M → I is a quotient map-
ping. This is the same problem we have encountered in the proof of the
previous exercise. In this instance we can use Lemma 6.4.. The space
I2 × I is compact and the mapping p× id is clearly surjection, so it is
enough to show that M × I is Hausdorff. To this end it is enough to
show that the Mobius Band M is Hausdorff.

Suppose a = (x, y), b = (u, v) ∈ M , a 6= b. Suppose first 0 < x < 1 and
x 6= u. Then we can find small enough ε > 0 such that

0 < x− ε < x < x+ ε < 1

and u /∈ [x− ε, x+ ε]. Then

U = {(s, t) ∈ I2 | |x− s| < ε},

V = {(s, t) ∈ I2 | |x− s| > ε}

are open subsets of I2. Moreover U does not contain any points that
have non-trivial identifications w.r.t. ∼ and V contains both bottom
and upper horizontal sides of the square, so is closed under non-trivial
identifications. It follows that

p−1p(U) = U,

p−1p(V ) = V,

so p(U) and p(V ) are both open inM . It is easy to see that these sets do
not intersect, p(U) is a neighbourhood of a and p(V ) is a neighbourhood
of b. Hence a and b have non-intersecting neighbourhoods.

11



ba

U

Next suppose 0 < x = u < 1. Then (x, y) 6= (u, v) and, since I2 is
Hausdorff, we can find small enough neighbourhood U of (x, y) and V
of (u, v) such that
1) U ∩ V = ∅,
2)

U ∩ V ⊂ {(t, s) ∈ I2 |0 < t < 1}.

The last condition assures that there the sets U and V do not contain
any points with non-trivial equivalence classes, hence p−1p(U) = U
and p−1p(V ) = V , so, as usual, p(U) and p(V ) will be non-intersecting
neighbourhoods of a and b in M .

ba

U

b b
V

The same arguments work if 0 < u < 1. The last case is when
x, u ∈ {0, 1}. Interchanging y or v with 1− y or v − 1, if necessary, we
may assume that x = u = 0. Then y 6= v.

We choose ε > 0 such that open ε-ball neighbourhoods in M

B((0, y), ε) = {(s, t) ∈ I2 | |(0, y)− (s, t)| < ε},

B((0, v), ε) = {(s, t) ∈ I2 | |(0, v)− (s, t)| < ε}

do not intersect and ε < 1/2. Then corresponding neighbourhoods ”on
the other side”

B((1, 1− y), ε) = {(s, t) ∈ I2 | |(1, 1− y)− (s, t)| < ε},

B((1, 1− v), ε) = {(s, t) ∈ I2 | |(1, 1− v)− (s, t)| < ε}
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also do not intersect.

b

b

a

b b

b

a

b

Hence if we define

U = B((0, u), ε) ∪ B((1, 1− u), ε),

V = B((0, v), ε) ∪ B((1, 1− v), ε),

then, as usual p−1p(U) = U, p−1p(V ) = V , so p(U) and p(V ) are disjoint
neighbourhoods of a and b in this case. The proof is finished.

5. Define an exact representation of
a) the Mobius Band
b) the Klein’s bottle
as a polyhedron of a ∆-complex with two triangles, based on the picture
below. Remember to order the simplices and define identifications!

U

V

a

a

bb

Klein’s bottle

U

V

a

a

Mobius’s Band

Solution: Here is one way to triangulate Mobius Band as the poly-
hedron of ∆-complex:
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U

V

a

a

b cd

v0 v1/w0

v2/w2
w1

The complex has two 2-simplices U = [v0,v1,v2] and V = [w0,w1,w2].
Sides [v0,v1] and [w1,w2], indicated by a, are identified. Also the sides
[v1,v2] and [w0,w2] which give common side d representing diagonal
are identified. As a consequence we also have the following identifica-
tions on the vertices:

v0 ∼ w1

v1 ∼ w2

v1 ∼ w0

v2 ∼ w2

This also forces identifications

v1 ∼ v2

w0 ∼ w2

b) A way to triangulate Klein’s bottle:

U

V

a

a

bb

v0 v1/w0

w1v2/w2

c

This complex has two triangles U = [v0,v1,v2] and V = [w0,w1,w2].
Sides [v0,v1] and [w1,w2], indicated by a, are identified. Sides [v0,v2]
and [w0,w1], indicated by b, are identified. Also the sides [v1,v2] and
[w0,w2], which give common side d representing diagonal are identi-
fied. As a consequence we also have the following identifications on the
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vertices:

v0 ∼ w1

v1 ∼ w2

v0 ∼ w0

v2 ∼ w1

v1 ∼ w0

v2 ∼ w2

This also forces identifications

v0 ∼ v1 ∼ v2

w0 ∼ w1 ∼ w2

In other words this complex has only one vertex - all vertices are iden-
tified.

6. Consider the quotient space X = S1 × I/ ∼, where ∼ is generated by
all relations of the form (x, 0) ∼ (−x, 0), x ∈ S1.
a) Present X as a polyhedron of a ∆-complex (Advice: start with the
square). Drawing with arrows suffices.
b) Show that X is actually homeomorphic to the Mobius band (use
”cut and glue” technique, see Exercise 6.18).

Solution: a) The space S1×I can be thought of as the space obtained
from the square I2 by identifying (0, x) ∼ (1, x) for all x ∈ I. The
quotient mapping I2 → S1 × I is defined by

(x, y) 7→ (e2πxi, y),

where we use complex exponential notation -

e2πxi = (cos 2πx, sin 2πx).

Under this identification the bottom S1 × {0} becomes in the square
the part on the x-axis i.e. the set I × {0}. The identifications (x, 0) ∼
(−x, 0), x ∈ S1 become

(x, 0) ∼ (x+ 1/2, 0), 0 ≤ x ≤ 1/2.

Hence we can draw X schematically using the square as following:
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b

a a

b b

Adding extra lines in order to obtain triangles, we obtain scheme for
∆-complex representing X , as following:

b

a a

b b
v0 v1/w0/u0

v2/u2

w1

w2/u2

b) First we divide the square with our identification along the vertical
line x = 1/2. Then we rearrange pieces.

a ac

b b

b b

a

ac

c

Mobius band!
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7.* (bonus exercise)
Use exercise 3.3 to define a triangulation of the projective plane RP n as
a polyhedron of a ∆-complex, for all n ≥ 1. The triangulation should
have 2n geometrical simplices in dimension n.

Solution: The triangulation of the sphere Sn from Exercise 3.3. con-
sisted of simplices of all simplices of the form

[±e1, . . . ,±en,±en+1]

and all their faces. The relation ∼ defined on these simplices by

[v1, . . . ,vn,vn+1] ∼ [−v1, . . . ,−vn,−vn+1]

defines a ∆-complex (forced relations on faces similar), whose polyhe-
dron is easily seen to be RP n.
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