Department of Mathematics and Statistics Introduction to Algebraic topology, fall 2013

Exercises 5 (for the exercise session Tuesday 8.10.)

- 1. Suppose $f: X \to Y$ is a quotient mapping and $g: Y \to Z$ is a mapping (not assumed to be continuous). Prove that g is continuous if and only if the composition mapping $g \circ f: X \to Z$ is continuous. X, Y, Z are topological spaces.
- 2. By $\mathbb{R}P^n$ (real projective space) we denote the quotient space S^n / \sim of the sphere S^n with respect to the equivalence relation \sim generated by relations $(x, -x), x \in S^n$.

a) Prove that the canonical projection $p: S^n \to \mathbb{R}P^n$ is both an open and a closed mapping (note: the fact that $\mathbb{R}P^n$ is Hausdorff is not obvious, so if you want to use it, you have to prove it separately). b) Consider a mapping $f: \overline{B}^n \to S^n$ defined by

$$f(x_1, \dots, x_n) = (x_1, \dots, x_n, \sqrt{1 - \sum_{i=1}^n x_i^2}).$$

Show that the composite $p \circ f$ is a quotient mapping (Hint: show that it is a closed surjection).

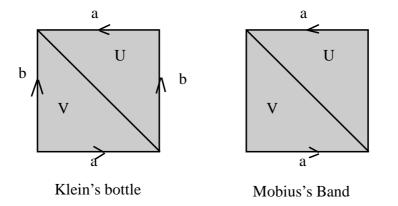
c) Use b) to show that $\mathbb{R}P^n$ is homeomorphic to the quotient space \overline{B}^n/\sim' , where \sim' is an equivalence relation on \overline{B}^n generated by the relations $(x, -x), x \in S^{n-1}$ (notice - identifications only on the boundary!).

- 3. The cone c(X) of a topological space X is a quotient space of the product space $X \times I$ with subset $X \times \{1\}$ identified to a single point (and no other identifications). In other words $c(X) = (X \times I)/X \times \{1\}$ (this notation is introduced in Example 6.9).
 - a) Prove that $c(S^{n-1})$ is homeomorphic to \overline{B}^n , for all $n \ge 1$.

b) Suppose X is compact. Prove that c(X) is contractible. Is it necessary to assume that X is compact? Why/why not?

- 4. Prove that Mobius Band has the same homotopy type as the circle S^1 .
- 5. Define an exact representation of
 - a) the Mobius Band
 - b) the Klein's bottle

as a polyhedron of a Δ -complex with two triangles, based on the picture below. Remember to order the simplices and define identifications!



6. Consider the quotient space $X = S^1 \times I / \sim$, where \sim is generated by all relations of the form $(x, 0) \sim (-x, 0), x \in S^1$.

a) Present X as a polyhedron of a Δ -complex (Advice: start with the square). Drawing with arrows suffices.

b) Show that X is actually homeomorphic to the Mobius band (use "cut and glue" technique, see Exercise 6.18).

7.* (bonus exercise)

Use exercise 3.3 to define a triangulation of the projective plane $\mathbb{R}P^n$ as a polyhedron of a Δ -complex, for all $n \geq 1$. The triangulation should have 2^n geometrical simplices in dimension n (notice - the original formulation has a mistake, this is updated version).

Bonus points for the exercises: 25% - 2 point, 40% - 3 points, 50% - 4 points, 60% - 5 points, 75% - 6 points.