Department of Mathematics and Statistics Introduction to Algebraic topology, fall 2013 Exercises 4. Solutions.

1. Suppose σ is a simplex in \mathbb{R}^m , with vertices $\{\mathbf{v}_0, \ldots, \mathbf{v}_n\}$. a) Suppose $\mathbf{x} \in \sigma$ is fixed. Show that

$$\sup\{|\mathbf{x} - \mathbf{y}| \mid \mathbf{y} \in \sigma\} = \max\{|\mathbf{x} - \mathbf{v}_i| \mid i = 0, \dots, m\}.$$

b) Prove that

diam
$$\sigma = \max\{|\mathbf{v}_i - \mathbf{v}_j| \mid i, j = 0, \dots, m\}.$$

Solution: a) Since $\mathbf{y} \in \sigma$ we can represent it as a simplicial combination

$$\mathbf{y} = \sum_{i=0}^{n} t_i \mathbf{v}_i.$$

Then, by triangle inequality,

$$|\mathbf{x} - \mathbf{y}| = |\mathbf{x} - (\sum_{i=0}^{n} t_i \mathbf{v}_i)| = |\sum_{i=0}^{n} t_i \mathbf{x} - \sum_{i=0}^{n} t_i \mathbf{v}_i| = |\sum_{i=0}^{n} t_i (\mathbf{x} - \mathbf{v}_i)| \le \sum_{i=0}^{n} t_i |\mathbf{x} - \mathbf{v}_i| \le \sum_{i=0}^{n} t_i \max\{|\mathbf{x} - \mathbf{v}_i| \mid i = 0, \dots, m\} = \max\{|\mathbf{x} - \mathbf{v}_i| \mid i = 0, \dots, m\},$$

since

$$\sum_{i=0}^{n} t_i = 1.$$

Notice the trick we are using:

$$\mathbf{x} = \sum_{i=0}^{n} t_i \mathbf{x}.$$

b) Suppose $\mathbf{x}, \mathbf{y} \in \sigma$. Then, by a)

$$|\mathbf{x} - \mathbf{y}| \le \max\{|\mathbf{x} - \mathbf{v}_i| \mid i = 0, \dots, m\}.$$

On the other hand it follows from a) that for every $j = 0, \ldots, m$ we have that

$$|\mathbf{v}_j - \mathbf{x}| \le \max\{|\mathbf{v}_j - \mathbf{v}_i| \mid i = 0, \dots, m\}.$$

Thus

$$|\mathbf{x} - \mathbf{y}| \le \max\{|\mathbf{v}_i - \mathbf{v}_j| \mid i, j = 0, \dots, m\},\$$

hence

diam
$$\sigma \leq \max\{|\mathbf{v}_i - \mathbf{v}_j| \mid i, j = 0, \dots, m\}.$$

The opposite inequality is trivial, so the claim follows.

2. a) Suppose σ is an k-dimensional simplex in \mathbb{R}^m , $\mathbf{b}(\sigma)$ is its barycentre and \mathbf{v} is a vertex of σ . Prove that

$$|\mathbf{v} - \mathbf{b}(\sigma)| \le \frac{k}{k+1} \operatorname{diam} \sigma.$$

b) Suppose K is a finite simplicial complex in \mathbb{R}^m . Let σ' be a simplex in the first barycentric division K', with vertices $\{\mathbf{b}(\sigma_0), \mathbf{b}(\sigma_1), \ldots, \mathbf{b}(\sigma_n)\}$, where

$$\sigma_0 < \ldots < \sigma_n = \sigma \in K.$$

Show that

$$\operatorname{diam} \sigma' \le \frac{k}{k+1} \operatorname{diam} \sigma,$$

where $k = \dim \sigma$.

Solution: a) By definition

$$\mathbf{b}(\sigma) = \sum_{i=0}^{k} \frac{1}{k+1} \mathbf{v}_i,$$

where $\mathbf{v}_0, \ldots, \mathbf{v}_k$ are vertices of σ in some order. Since \mathbf{v} is a vertex of σ , $\mathbf{v} = \mathbf{v}_j$ for some $j = 0, \ldots, k$. We use the same trick as in the previous exercise and write \mathbf{v} in the form

$$\mathbf{v} = \sum_{i=0}^{k} \frac{1}{k+1} \mathbf{v}_j.$$

Then

$$|\mathbf{v} - \mathbf{b}(\sigma)| = |\sum_{i=0}^{k} \frac{1}{k+1} \mathbf{v}_{j} - \sum_{i=0}^{k} \frac{1}{k+1} \mathbf{v}_{i}| = |\sum_{i=0}^{k} \frac{1}{k+1} (\mathbf{v}_{i} - \mathbf{v}_{j})|.$$

In the last sum the element of the sum corresponding to the index i = j is zero, so we do not have to care about that. Using that observation and triangle inequality we see that

$$|\mathbf{v} - \mathbf{b}(\sigma)| = |\sum_{i \neq j} \frac{1}{k+1} (\mathbf{v}_i - \mathbf{v}_j)| \le \sum_{i \neq j} \frac{1}{k+1} |\mathbf{v}_i - \mathbf{v}_j| \le \sum_{i \neq j} \frac{1}{k+1} \operatorname{diam} \sigma = \frac{k}{k+1} \operatorname{diam} \sigma$$

b) Suppose σ' be a simplex in the first barycentric division K', with vertices $\{\mathbf{b}(\sigma_0), \mathbf{b}(\sigma_1), \ldots, \mathbf{b}(\sigma_n)\}$, where

$$\sigma_0 < \ldots < \sigma_n = \sigma \in K.$$

By exercise 1 the diameter of σ' is the maximum of the distances between the pairs of vertices of σ' , so it is enough to show that

$$|\mathbf{b}(\sigma_i) - \mathbf{b}(\sigma_j)| \le \frac{k}{k+1} \operatorname{diam} \sigma$$

for all $i, j = \dots, n$. We may assume that $i \leq j$. Then

$$\mathbf{b}(\sigma_i) = \sum_{r=0}^p \frac{1}{p+1} \mathbf{v}_r,$$
$$\mathbf{b}(\sigma_j) = \sum_{r=0}^q \frac{1}{q+1} \mathbf{v}_r,$$

where $p = \dim \sigma_i$ and $q = \dim \sigma_j$. Here $\mathbf{v}_0, \ldots, \mathbf{v}_p, \mathbf{v}_{p+1}, \ldots, \mathbf{v}_q$ are vertices of σ_j , which are all also vertices of σ .

Now \mathbf{v}_r is in particularly a vertex of σ_j for $r = 0, \ldots, p$, so, by a),

$$|\mathbf{v}_r - \mathbf{b}(\sigma_j)| \le \frac{k}{k+1} \operatorname{diam} \sigma = A$$

Using the fact that

$$\mathbf{b}(\sigma_j) = \sum_{r=0}^p \frac{1}{p+1} \mathbf{b}(\sigma_j)$$

(same trick as in the previous exercise and in a), we obtain

$$|\mathbf{b}(\sigma_i) - \mathbf{b}(\sigma_j)| = |\sum_{r=0}^p \frac{1}{p+1} \mathbf{v}_r - \sum_{r=0}^p \frac{1}{p+1} \mathbf{b}(\sigma_j)| \le \\ \le \sum_{r=0}^p \frac{1}{p+1} |\mathbf{v}_r - \mathbf{b}(\sigma_j)| \le (\sum_{r=0}^p \frac{1}{p+1}) A = A.$$

This is what we had to prove. Notice that we did not actually use the representation of $\mathbf{b}(\sigma_j)$ in the form

$$\mathbf{b}(\sigma_j) = \sum_{r=0}^q \frac{1}{q+1} \mathbf{v}_r.$$

- 3. Suppose $f, g: X \to Y$ and $k, l: Y \to Z$ are continuous mappings between topological spaces. Suppose that $f \simeq g$ and $k \simeq l$.
 - a) Prove that $(k \circ f) \simeq (k \circ g)$.
 - b) Prove that $(k \circ g) \simeq (l \circ g)$.
 - c) Conclude that $(k \circ f) \simeq (l \circ g)$.

Solution: a) Suppose $F: X \times I \to Y$ is a homotopy between f and g. Then $k \circ F: X \times I \to Z$ is easily seen to be a homotopy between $(k \circ f)$ and $(k \circ g)$.

b) Suppose $G: Y \times I \to Z$ is a homotopy between k and l. Then $G \circ (g \times id): X \times I \to Z$ is easily seen to be a homotopy between $(k \circ g)$ and $(l \circ g)$. Here $g \times id: X \times I \to Y \times I$ is a product mapping defined by

$$(g \times \mathrm{id})(x,t) = (g(x),t).$$

c) Follows from a) and b) by transitivity of the homotopy relation \simeq (Lemma 5.5.(3)).

- 4. Suppose X is a non-empty topological space. Prove that the following conditions are equivalent.
 - (1) X is contractible.
 - (2) For every topological space Y the set of homotopy classes [Y, X] is a singleton.
 - (3) X is path-connected and the set [X, Y] is a singleton for every non-empty path-connected space Y.
 - (4) X has the homotopy type of a singleton space $\{x\}$.

Also show that path-connectedness of both X and Y are necessary in (3).

Solution: $(1) \Longrightarrow (2)$:

Suppose X is contractible. By definition it means that the identity mapping $id_X \colon X \to X$ is homotopic to **some** costant mapping $c_{x_0} \colon X \to X$, $c_{x_0}(x) = x_0, x \in X$, for some fixed $x_0 \in X$.

Let Y be a topological space and let $f, g: Y \to X$. We need to show that $f \simeq g$.

By the previous exercise $f = id_X \circ f \simeq c_{x_0} \circ f$ and likewise $g = id_X \circ g \simeq c_{x_0} \circ g$. But $c_{x_0} \circ f = c_{x_0} \circ g$, both are a constant mapping $Y \to X$ that maps $y \in Y$ to x_0 .

Since f and g are both homotopic to the same map, they are homotopic by the symmetry and transitivity of the homotopy relation (Lemma 5.5.(2) and (3)).

 $(2) \Longrightarrow (3):$

Suppose X is such that [Y, X] is a singleton for all topological spaces Y. Choose as $Y = \{0\}$ any singleton space. Let $x, y \in X$ be arbitrary. Consider the mappings $c_x, c_y \colon Y \to X$, defined by $c_x(0) = x, c_y(0) = y$. These mappings are obviously continuous (they are constant mappings), so, since [Y, X] is a singleton, they are homotopic. Let $F \colon Y \times I \to X$ be the homotopy between c_x and c_y . Then $\alpha \colon I \to X$ defined by $\alpha(t) = F(0, t)$ is a path between x and y and X. Thus X is path-connected.

Suppose Y is any path-connected space. Suppose $f, g: X \to Y$ are arbitrary. We need to show that they are homotopic.

Assumptions imply that [X, X] is a singleton, so in particular $\operatorname{id}_X \colon X \to X$ and any chosen fixed constant mapping $c_{x_0} \colon X \to X$, $c_{x_0}(x) = x_0$, $x_0 \in X$ are homotopic. By Lemma 5.5.(4) mappings $f = f \circ \operatorname{id}$ and $f' = f \circ c_{x_0}$ are homotopic. The mapping $f' \colon X \to Y$ is actually a constant mapping defined by

$$f'(x) = f(x_0) = y_0 \in Y$$

for all $x \in X$.

Likewise $g = g \circ id$ and $g' = g \circ c_{x_0}$ are homotopic as well, where $g' \colon X \to Y$ is a constant mapping defined by

$$g'(x) = g(x_0) = y_1 \in Y$$

for all $x \in X$. In order to prove that f and g are homotopic it is enough, by Lemma 5.5., to show that f' and g' are homotopic.

By assumption Y is path-connected, so there exists a path $\alpha: I \to Y$ with $\alpha(0) = y_0$ and $\alpha(1) = y_1$. The mapping $H: X \times I \to Y$,

$$H(x,t) = \alpha(t)$$

is continuous (it is composition of projection $X \times I \to I$ and α) and is a homotopy between f' and g'.

 $(3) \Longrightarrow (4)$

Suppose X is path-connected and [X, Y] is a singleton for every pathconnected space Y. Then in particular [X, X] is a singleton, so identity mapping id: $X \to X$ and some constant mapping $c_{x_0} \colon X \to X$ are homotopic (notice - some constant mapping exist, since X is not empty). We will show that X and singleton $\{x_0\}$ are of the same homotopy type. Since all singletons are homeomorphic, this also implies that X is of the same homotopy type as any singleton.

Let $f: X \to \{x_0\}$ be the obvious (the only possible) mapping and $g: \{x_0\} \to X$ be the inclusion, $g(x_0) = x_0$. The mapping $f: g: \{x_0\} \to \{x_0\}$ is the identity mapping. The mapping $f \circ g: X \to X$ it exactly the constant mapping $c_{x_0}: X \to X$. Since we already established above that this mapping is homotopic to identity, we have shown that f and g are homotopy inverses of each other. This is what had to be shown.

 $(4) \Longrightarrow (1)$

Suppose X had the homotopy type of a singleton space $\{a\}$. Let $f: \{a\} \to X$ be a homotopy equivalence and let $x_0 = f(a) \in X$. The homotopy inverse $g: X \to \{a\}$ is the only possible mapping that maps everything to a. The identity mapping id_X and $f \circ g: X \to X$ are homotopic. But $f \circ g$ is a constant mapping $X \to X$ that maps everything to x_0 . The identity mapping of X is thus homotopic to a constant mapping, which by definition means that X is contractible.

The restriction to path-connected spaces Y in the formulation of (3) is essential. For example let $X = \{x\}$ be a singleton and $Y = \{a, b\}$ be space of two points equipped with discrete topology. Then X is contractible but mappings $f: X \to Y$, f(x) = a and $g: X \to Y$, g(x) = bare not homotopic, since this would imply that a and b are in the same path-component of Y. Thus [X, Y] is not a singleton. Also the assumption that X is path-connected in (3) is essential. There exist non-pathconnected, hence non -contractible spaces X for which [X, Y] is a singleton for every path-connected Y. For instance any discrete space with two points and more has this property.

5. Suppose $f: |K| \to |K'|$ is a continuous mapping between polyhedra of simplicial complexes K and K'. Suppose $g: |K| \to |K'|$ is a simplicial approximation of f. Show that

$$f(\operatorname{St}(\mathbf{v})) \subset \operatorname{St}(g(\mathbf{v}))$$

for every vertex \mathbf{v} of the complex K.

Solution:

Let \mathbf{v} be a fixed vertex of K and suppose $\mathbf{x} \in \text{St}(\mathbf{v})$. This means that the unique simplex σ of K that contains \mathbf{x} in its interior, i.e.

$$\mathbf{x} \in \operatorname{Int} \sigma$$

has \mathbf{v} as one of its vertices. We write the vertices of σ as $\mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_n$, where $\mathbf{v}_0 = \mathbf{v}$. Then we can write \mathbf{x} as a convex combination

$$\mathbf{x} = r_0 \mathbf{v}_0 + r_1 \mathbf{v}_1 + \ldots + r_n \mathbf{v}_n,$$

where $r_0, r_1, \ldots, r_n > 0$ (since the point is in the interior of σ).

Let $\sigma' \in K'$ be the unique simplex that contains $f(\mathbf{x})$ in its interior. Then, by definition of simplicial approximation, $g(\mathbf{x}) \in \sigma'$. On the other hand, since

$$\mathbf{x} = r_0 \mathbf{v}_0 + r_1 \mathbf{v}_1 + \ldots + r_n \mathbf{v}_n$$

and g is simplicial, we have that

$$g(\mathbf{x}) = r_0 g(\mathbf{v}_0) + r_1 g(\mathbf{v}_1) + \ldots + r_n g(\mathbf{v}_n),$$

where $g(\mathbf{v}_0), g(\mathbf{v}_1), \ldots, g(\mathbf{v}_n)$ are vertices of some simplex σ'' in K. Since all coefficients are positive, $g(\mathbf{x}) \in \operatorname{Int} \sigma''$. We also have $g(\mathbf{x}) \in \sigma'$. The only possible way interior of a simplex σ'' can intersect another simplex σ' in a simplicial complex K is when σ'' is a face of σ' (think about their intersection, which by definition has to be a common face, which now intersects also interior of one of them). It follows that $g(\mathbf{v}_0), g(\mathbf{v}_1), \ldots, g(\mathbf{v}_n)$ are vertices of σ' , so in particular $g(\mathbf{v})$ is a vertex of σ' . Since $f(\mathbf{x}) \in \text{Int } \sigma'$, by definition of star, we have that

$$f(\mathbf{x}) \in \operatorname{St}(g(\mathbf{v}))$$

This is true for every $\mathbf{x} \in \operatorname{St}(\mathbf{v})$, so the claim is proved.

6. Consider the boundary of the 2-simplex σ with vertices $\mathbf{v}_0, \mathbf{v}_2, \mathbf{v}_4$. For odd indices i = 1, 3, 5 we let \mathbf{v}_i to be the barycentre of the 1-simplex $[\mathbf{v}_{i-1}, \mathbf{v}_{i+1}]$. Here we identify $\mathbf{v}_6 = \mathbf{v}_0$ (see the picture below).

Let $K = K(\operatorname{Bd} \sigma)$ and let $f: |K| \to |K|$ be the unique simplicial mapping $f: |K'| \to |K'|$ defined by $f(\mathbf{v}_i) = \mathbf{v}_{i+1}, i = 0, \dots, 5$.

Prove the following claims.

- 1) As a mapping $f : |K| \to |K|$ f does not have a simplicial approximation $g : |K| \to |K|$.
- 2) As a mapping $f: |K'| \to |K|$ f has exactly 8 simplicial approximations $g: |K'| \to |K|$.

Here in this exercise K' is the first barycentric subdivision of K.

Solution:

a) By Lemma 5.9 f has simplicial approximation if and only if for every vertex **v** of K there exists a vertex **w**(**v**) of K such that

$$f(\operatorname{St}(\mathbf{v})) \subset \operatorname{St}(\mathbf{w}(\mathbf{v})).$$

The stars of vertices of K look like this:

For example star of \mathbf{v}_0 consists of open intervals $]\mathbf{v}_0, \mathbf{v}_2[,]\mathbf{v}_0, \mathbf{v}_4[$ and \mathbf{v}_0 itself. Images of these stars under f then look like this:

From the pictures we see, that in fact none of the sets $f(St(\mathbf{v}))$ fit inside any star of any vertex of K. Thus f cannot have a simplicial approximation.

b) This time the stars of vertices of K' look the following:

Applying f on those, we obtain the following images:

We compare this with stars of the vertices in K (which is on target side now):

We see the following. For i = 1, 3, 5 there is exactly one choice for the vertex $g(\mathbf{v}_i)$ of K with the property

$$f(\operatorname{St}(\mathbf{v}_i)) \subset \operatorname{St}(g(\mathbf{v}_i)).$$

For example for i = 1, only the choice $g(\mathbf{v}_i) = \mathbf{v}_2$ works. For i = 0, 2, 4, one the hand, there are always exactly two choices for the vertex $g(\mathbf{v}_i)$ of K with the property

$$f(\operatorname{St}(\mathbf{v}_i)) \subset \operatorname{St}(g(\mathbf{v}_i)).$$

For example for i = 0 both \mathbf{v}_0 and \mathbf{v}_2 work. Hence we have exactly

 $2^3 = 8$

different choices. Every choice leads to a simplicial approximation of f, by Theorem 5.9.

 7^* (bonus exercise).

Consider the following subset of the plane,

$$X = \bigcup_{n \in \mathbb{N}_+} \{1/n\} \times I \cup \{0\} \times I \cup I \times \{0\}.$$

Let $x_0 = (0, 1) \in X$.

- 1) Show that there exists a homotopy $F: X \times I \to X$ between the identity mapping id: $X \to X$ and the constant mapping $c: X \to X$ defined by $c(x) = x_0, x \in X$.
- 2) Prove that the pair (X, x_0) is **not** contractible i.e. there does not exist a homotopy $F: X \times I \to X$ such that

$$F(x,0) = x \text{ for all } x \in X,$$

$$F(x,1) = x_0 \text{ for all } x \in X,$$

$$F(x_0,t) = x_0, \text{ for all } t \in I.$$

You may use the following result from the general topology known as Wallace Lemma (no proof of Walace Lemma required):

Suppose $A \subset X$ and $B \subset Y$ are compact subspaces of topological spaces X and Y, and assume that W is an open subset of the product space $X \times Y$ containing $A \times B$. Then there exists open neighbourhood U of A in X and open neighbourhood V of B in Y such that

$$A \times B \subset U \times V \subset W.$$

Solution: 1) Mapping $H_1: X \times I \to X$ defined by

$$H_1(a, b, t) = (a, (1 - t)b)$$

is a well-defined continuous mapping, hence homotopy between identity of X and the mapping $f: X \to X$ defined by f(a, b) = (b, 0) (projection to x-axis). The mapping $H_2: X \times I: X$ defined by

$$H_2(a, b, t) = ((1 - t)a, 0)$$

is a well-defined continuous mapping, hence homotopy between f and the mapping $g: X \to X$ defined by g(a, b) = (0, 0) (constant mapping). Finally the mapping $H_3: X \times I \to X$

$$H_3(a,b,t) = (0,t)$$

is a well-defined continuous mapping, hence homotopy between g and the continuous mapping $c: X \to X$ defined by c(a, b) = (0, 1). By Lemma 5.5. id is homotopic to c, so F exists.

2) We present two proofs - one not using Wallace Lemma and one using Wallace Lemma.

Let

$$U = \{ (a, b) \in X \mid b > 0 \}.$$

This is open subset of X and its path-components are subsets of the form $G_{\text{res}} = \left\{ \left(1 \left(-1 \right) + 0 - 1 \right) \left(-1 \right) \right\} = \sum_{i=1}^{N} \left(1 \left(-1 \right) \right) = \sum_{i=1}^{N} \left(1 \left(-1 \right)$

$$C_n = \{(1/n, b) \mid 0 < b \le 1\}, n \in \mathbb{N} \text{ and}$$

 $D = \{(0, b) \mid 0 < b \le 1\}.$

We assume that $F: X \times I \to X$ is such that

$$F(x,0) = x \text{ for all } x \in X,$$

$$F(x,1) = x_0 \text{ for all } x \in X,$$

$$F(x_0,t) = x_0, \text{ for all } t \in I$$

and generate contradiction.

Solution 1: For every $n \in \mathbb{N}, n \ge 1$ the path $\alpha \colon X \times I \to X$ defined by

$$\alpha(t) = F((1/n, 1), t)$$

is a path in X from the point $x_n = (1/n, 1)$ to $x_0 = (0, 1)$. Since x_n and x_0 lie in different path components of U, this path cannot lie entirely in U, so there exists $t_n \in I$ such that

$$y_n = F(x_n, t_n) \notin U,$$

which means that $y_n = (a_n, 0)$ for some $a_n \in I$. In particular

$$pr_2F(x_n, t_n) = 0$$

for all $n \in \mathbb{N}, n \geq 1$. Since I is metric compact, the sequence (t_n) has converging subsequence (t_{n_k}) , let

$$t = \lim_{k \to \infty} t_{n_k}.$$

Since projection pr_2 and F are both continuous and $x_n \to x_0$ when $n \to \infty$, we have that

$$pr_2F(x_0,t) = \lim_{k \to \infty} pr_2F(x_{n_k},t_{n_k}) = 0.$$

In other words there exists $t \in I$ such that

$$F(x_0, t) = (a, 0)$$

for some $a \in I$. But this contradicts assumptions on F, since $F(x_0, t) = x_0 = (0, 1)$ for all $t \in I$.

Solution 2: By assumptions

$$F(\{x_0\} \times I) = \{x_0\} \subset U,$$

which can be written as

$$\{x_0\} \times I \subset F^{-1}U.$$

Since F is continuous, $F^{-1}U$ is open in $X \times I$. Since both $\{x_0\}$ and I are compact, by Wallace Lemma there exist neighbourhood V of x_0 in X such that

$$V \times I \subset F^{-1}U$$
 i.e.
 $F(V \times I) \subset U.$

Since V is a neighbourhood of $x_0 = (0, 1)$, there exists large enough $n \in \mathbb{N}$ such that $x_n = (1/n, 1) \in V$. Now path connected set $F(\{x_n\} \times I)$ is a subset of U, which includes both

$$F(x_n, 0) = x_n,$$

$$F(x_n, 1) = x_0.$$

But this is impossible, since x_0 and x_n both belong to different path components of U.

Proof of Wallace Lemma: since above we only need the case where the set $A = \{a\}$ is a singleton, we only prove this special case. Suppose W is a neighbourhood of

$$\{a\} \times B$$

in product space $X \times Y$. By the definition of product topology for every $b \in B$ there exists a neighbourhood U_b of a in X and a neighbourhood V_b of b in Y such that

$$U_b \times V_b \subset W.$$

Since B is compact we can choose finitely many points $b_1, \ldots, b_n \in B$ such that corresponding neighbourhoods V_{b_1}, \ldots, V_{b_n} cover B. Let

$$U = \bigcap_{i=1}^{n} U_{b_i},$$

then U is a neighbourhood of a, being a **finite** intersection of neighbourhoods of a. It is easy to verify that

$$U \times V \subset W$$
.

Here

$$V = \bigcup_{i=1}^{n} V_{b_i}.$$