Department of Mathematics and Statistics

Introduction to Algebraic topology, fall 2013

Exercises 4. Solutions.

1. Suppose σ is a simplex in \mathbb{R}^{m}, with vertices $\left\{\mathbf{v}_{0}, \ldots, \mathbf{v}_{n}\right\}$.
a) Suppose $\mathbf{x} \in \sigma$ is fixed. Show that

$$
\sup \{|\mathbf{x}-\mathbf{y}| \mid \mathbf{y} \in \sigma\}=\max \left\{\left|\mathbf{x}-\mathbf{v}_{i}\right| \mid i=0, \ldots, m\right\} .
$$

b) Prove that

$$
\operatorname{diam} \sigma=\max \left\{\left|\mathbf{v}_{i}-\mathbf{v}_{j}\right| \mid i, j=0, \ldots, m\right\}
$$

Solution: a) Since $\mathbf{y} \in \sigma$ we can represent it as a simplicial combination

$$
\mathbf{y}=\sum_{i=0}^{n} t_{i} \mathbf{v}_{i}
$$

Then, by triangle inequality,

$$
\begin{aligned}
& \quad|\mathbf{x}-\mathbf{y}|=\left|\mathbf{x}-\left(\sum_{i=0}^{n} t_{i} \mathbf{v}_{i}\right)\right|=\left|\sum_{i=0}^{n} t_{i} \mathbf{x}-\sum_{i=0}^{n} t_{i} \mathbf{v}_{i}\right|=\left|\sum_{i=0}^{n} t_{i}\left(\mathbf{x}-\mathbf{v}_{i}\right)\right| \leq \\
& \leq \sum_{i=0}^{n} t_{i}\left|\mathbf{x}-\mathbf{v}_{i}\right| \leq \sum_{i=0}^{n} t_{i} \max \left\{\left|\mathbf{x}-\mathbf{v}_{i}\right| \mid i=0, \ldots, m\right\}=\max \left\{\left|\mathbf{x}-\mathbf{v}_{i}\right| \mid i=0, \ldots, m\right\} \\
& \text { since } \\
& \qquad \sum_{i=0}^{n} t_{i}=1 .
\end{aligned}
$$

Notice the trick we are using:

$$
\mathbf{x}=\sum_{i=0}^{n} t_{i} \mathbf{x}
$$

b) Suppose $\mathbf{x}, \mathbf{y} \in \sigma$. Then, by a)

$$
|\mathbf{x}-\mathbf{y}| \leq \max \left\{\left|\mathbf{x}-\mathbf{v}_{i}\right| \mid i=0, \ldots, m\right\}
$$

On the other hand it follows from a) that for every $j=0, \ldots, m$ we have that

$$
\left|\mathbf{v}_{j}-\mathbf{x}\right| \leq \max \left\{\left|\mathbf{v}_{j}-\mathbf{v}_{i}\right| \mid i=0, \ldots, m\right\}
$$

Thus

$$
|\mathbf{x}-\mathbf{y}| \leq \max \left\{\left|\mathbf{v}_{i}-\mathbf{v}_{j}\right| \mid i, j=0, \ldots, m\right\}
$$

hence

$$
\operatorname{diam} \sigma \leq \max \left\{\left|\mathbf{v}_{i}-\mathbf{v}_{j}\right| \mid i, j=0, \ldots, m\right\}
$$

The opposite inequality is trivial, so the claim follows.
2. a) Suppose σ is an k-dimensional simplex in $\mathbb{R}^{m}, \mathbf{b}(\sigma)$ is its barycentre and \mathbf{v} is a vertex of σ. Prove that

$$
|\mathbf{v}-\mathbf{b}(\sigma)| \leq \frac{k}{k+1} \operatorname{diam} \sigma
$$

b) Suppose K is a finite simplicial complex in \mathbb{R}^{m}. Let σ^{\prime} be a simplex in the first barycentric division K^{\prime}, with vertices $\left\{\mathbf{b}\left(\sigma_{0}\right), \mathbf{b}\left(\sigma_{1}\right), \ldots, \mathbf{b}\left(\sigma_{n}\right)\right\}$, where

$$
\sigma_{0}<\ldots<\sigma_{n}=\sigma \in K
$$

Show that

$$
\operatorname{diam} \sigma^{\prime} \leq \frac{k}{k+1} \operatorname{diam} \sigma
$$

where $k=\operatorname{dim} \sigma$.
Solution: a) By definition

$$
\mathbf{b}(\sigma)=\sum_{i=0}^{k} \frac{1}{k+1} \mathbf{v}_{i}
$$

where $\mathbf{v}_{0}, \ldots, \mathbf{v}_{k}$ are vertices of σ in some order.
Since \mathbf{v} is a vertex of $\sigma, \mathbf{v}=\mathbf{v}_{j}$ for some $j=0, \ldots, k$. We use the same trick as in the previous exercise and write \mathbf{v} in the form

$$
\mathbf{v}=\sum_{i=0}^{k} \frac{1}{k+1} \mathbf{v}_{j} .
$$

Then

$$
|\mathbf{v}-\mathbf{b}(\sigma)|=\left|\sum_{i=0}^{k} \frac{1}{k+1} \mathbf{v}_{j}-\sum_{i=0}^{k} \frac{1}{k+1} \mathbf{v}_{i}\right|=\left\lvert\, \sum_{i=0}^{k} \frac{1}{k+1}\left(\mathbf{v}_{i}-\mathbf{v}_{j} \mid .\right.\right.
$$

In the last sum the element of the sum corresponding to the index $i=j$ is zero, so we do not have to care about that. Using that observation and triangle inequality we see that
$|\mathbf{v}-\mathbf{b}(\sigma)|=\left|\sum_{i \neq j} \frac{1}{k+1}\left(\mathbf{v}_{i}-\mathbf{v}_{j}\right)\right| \leq \sum_{i \neq j} \frac{1}{k+1}\left|\mathbf{v}_{i}-\mathbf{v}_{j}\right| \leq \sum_{i \neq j} \frac{1}{k+1} \operatorname{diam} \sigma=\frac{k}{k+1} \operatorname{diam} \sigma$.
b) Suppose σ^{\prime} be a simplex in the first barycentric division K^{\prime}, with vertices $\left\{\mathbf{b}\left(\sigma_{0}\right), \mathbf{b}\left(\sigma_{1}\right), \ldots, \mathbf{b}\left(\sigma_{n}\right)\right\}$, where

$$
\sigma_{0}<\ldots<\sigma_{n}=\sigma \in K
$$

By exercise 1 the diameter of σ^{\prime} is the maximum of the distances between the pairs of vertices of σ^{\prime}, so it is enough to show that

$$
\left|\mathbf{b}\left(\sigma_{i}\right)-\mathbf{b}\left(\sigma_{j}\right)\right| \leq \frac{k}{k+1} \operatorname{diam} \sigma
$$

for all $i, j=, \ldots, n$. We may assume that $i \leq j$. Then

$$
\begin{aligned}
& \mathbf{b}\left(\sigma_{i}\right)=\sum_{r=0}^{p} \frac{1}{p+1} \mathbf{v}_{r}, \\
& \mathbf{b}\left(\sigma_{j}\right)=\sum_{r=0}^{q} \frac{1}{q+1} \mathbf{v}_{r},
\end{aligned}
$$

where $p=\operatorname{dim} \sigma_{i}$ and $q=\operatorname{dim} \sigma_{j}$. Here $\mathbf{v}_{0}, \ldots, \mathbf{v}_{p}, \mathbf{v}_{p+1}, \ldots, \mathbf{v}_{q}$ are vertices of σ_{j}, which are all also vertices of σ.

Now \mathbf{v}_{r} is in particularly a vertex of σ_{j} for $r=0, \ldots, p$, so, by a),

$$
\left|\mathbf{v}_{r}-\mathbf{b}\left(\sigma_{j}\right)\right| \leq \frac{k}{k+1} \operatorname{diam} \sigma=A
$$

Using the fact that

$$
\mathbf{b}\left(\sigma_{j}\right)=\sum_{r=0}^{p} \frac{1}{p+1} \mathbf{b}\left(\sigma_{j}\right)
$$

(same trick as in the previous exercise and in a), we obtain

$$
\begin{gathered}
\left|\mathbf{b}\left(\sigma_{i}\right)-\mathbf{b}\left(\sigma_{j}\right)\right|=\left|\sum_{r=0}^{p} \frac{1}{p+1} \mathbf{v}_{r}-\sum_{r=0}^{p} \frac{1}{p+1} \mathbf{b}\left(\sigma_{j}\right)\right| \leq \\
\leq \sum_{r=0}^{p} \frac{1}{p+1}\left|\mathbf{v}_{r}-\mathbf{b}\left(\sigma_{j}\right)\right| \leq\left(\sum_{r=0}^{p} \frac{1}{p+1}\right) A=A .
\end{gathered}
$$

This is what we had to prove. Notice that we did not actually use the representation of $\mathbf{b}\left(\sigma_{j}\right)$ in the form

$$
\mathbf{b}\left(\sigma_{j}\right)=\sum_{r=0}^{q} \frac{1}{q+1} \mathbf{v}_{r} .
$$

3. Suppose $f, g: X \rightarrow Y$ and $k, l: Y \rightarrow Z$ are continuous mappings between topological spaces. Suppose that $f \simeq g$ and $k \simeq l$.
a) Prove that $(k \circ f) \simeq(k \circ g)$.
b) Prove that $(k \circ g) \simeq(l \circ g)$.
c) Conclude that $(k \circ f) \simeq(l \circ g)$.

Solution: a) Suppose $F: X \times I \rightarrow Y$ is a homotopy between f and g. Then $k \circ F: X \times I \rightarrow Z$ is easily seen to be a homotopy between $(k \circ f)$ and $(k \circ g)$.
b) Suppose $G: Y \times I \rightarrow Z$ is a homotopy between k and l. Then $G \circ(g \times \mathrm{id}): X \times I \rightarrow Z$ is easily seen to be a homotopy between $(k \circ g)$ and $(l \circ g)$. Here $g \times \mathrm{id}: X \times I \rightarrow Y \times I$ is a product mapping defined by

$$
(g \times \mathrm{id})(x, t)=(g(x), t)
$$

c) Follows from a) and b) by transitivity of the homotopy relation \simeq (Lemma 5.5.(3)).
4. Suppose X is a non-empty topological space. Prove that the following conditions are equivalent.
(1) X is contractible.
(2) For every topological space Y the set of homotopy classes $[Y, X]$ is a singleton.
(3) X is path-connected and the set $[X, Y]$ is a singleton for every non-empty path-connected space Y.
(4) X has the homotopy type of a singleton space $\{x\}$.

Also show that path-connectedness of both X and Y are necessary in (3).

Solution: $(1) \Longrightarrow(2)$:
Suppose X is contractible. By definition it means that the identity mapping $\mathrm{id}_{X}: X \rightarrow X$ is homotopic to some costant mapping $c_{x_{0}}: X \rightarrow$ $X, c_{x_{0}}(x)=x_{0}, x \in X$, for some fixed $x_{0} \in X$.

Let Y be a topological space and let $f, g: Y \rightarrow X$. We need to show that $f \simeq g$.

By the previous exercise $f=i d_{X} \circ f \simeq c_{x_{0}} \circ f$ and likewise $g=i d_{X} \circ g \simeq$ $c_{x_{0}} \circ g$. But $c_{x_{0}} \circ f=c_{x_{0}} \circ g$, both are a constant mapping $Y \rightarrow X$ that maps $y \in Y$ to x_{0}.
Since f and g are both homotopic to the same map, they are homotopic by the symmetry and transitivity of the homotopy relation (Lemma 5.5.(2) and (3)).
$(2) \Longrightarrow(3)$:
Suppose X is such that $[Y, X]$ is a singleton for all topological spaces Y. Choose as $Y=\{0\}$ any singleton space. Let $x, y \in X$ be arbitrary. Consider the mappings $c_{x}, c_{y}: Y \rightarrow X$, defined by $c_{x}(0)=$ $x, c_{y}(0)=y$. These mappings are obviously continuous (they are constant mappings), so, since $[Y, X]$ is a singleton, they are homotopic. Let $F: Y \times I \rightarrow X$ be the homotopy between c_{x} and c_{y}. Then $\alpha: I \rightarrow X$ defined by $\alpha(t)=F(0, t)$ is a path between x and y and X. Thus X is path-connected.

Suppose Y is any path-connected space. Suppose $f, g: X \rightarrow Y$ are arbitrary. We need to show that they are homotopic.
Assumptions imply that $[X, X]$ is a singleton, so in particular id $_{X}: X \rightarrow$ X and any chosen fixed constant mapping $c_{x_{0}}: X \rightarrow X, c_{x_{0}}(x)=x_{0}$, $x_{0} \in X$ are homotopic. By Lemma 5.5.(4) mappings $f=f \circ$ id and $f^{\prime}=f \circ c_{x_{0}}$ are homotopic. The mapping $f^{\prime}: X \rightarrow Y$ is actually a constant mapping defined by

$$
f^{\prime}(x)=f\left(x_{0}\right)=y_{0} \in Y
$$

for all $x \in X$.
Likewise $g=g \circ \mathrm{id}$ and $g^{\prime}=g \circ c_{x_{0}}$ are homotopic as well, where $g^{\prime}: X \rightarrow Y$ is a constant mapping defined by

$$
g^{\prime}(x)=g\left(x_{0}\right)=y_{1} \in Y
$$

for all $x \in X$. In order to prove that f and g are homotopic it is enough, by Lemma 5.5., to show that f^{\prime} and g^{\prime} are homotopic.

By assumption Y is path-connected, so there exists a path $\alpha: I \rightarrow Y$ with $\alpha(0)=y_{0}$ and $\alpha(1)=y_{1}$. The mapping $H: X \times I \rightarrow Y$,

$$
H(x, t)=\alpha(t)
$$

is continuous (it is composition of projection $X \times I \rightarrow I$ and α) and is a homotopy between f^{\prime} and g^{\prime}.
$(3) \Longrightarrow(4)$
Suppose X is path-connected and $[X, Y]$ is a singleton for every pathconnected space Y. Then in particular $[X, X]$ is a singleton, so identity mapping id: $X \rightarrow X$ and some constant mapping $c_{x_{0}}: X \rightarrow X$ are homotopic (notice - some constant mapping exist, since X is not empty). We will show that X and singleton $\left\{x_{0}\right\}$ are of the same homotopy type. Since all singletons are homeomorphic, this also implies that X is of the same homotopy type as any singleton.

Let $f: X \rightarrow\left\{x_{0}\right\}$ be the obvious (the only possible) mapping and $g:\left\{x_{0}\right\} \rightarrow X$ be the inclusion, $g\left(x_{0}\right)=x_{0}$. The mapping $f: g:\left\{x_{0}\right\} \rightarrow$ $\left\{x_{0}\right\}$ is the identity mapping. The mapping $f \circ g: X \rightarrow X$ it exactly the constant mapping $c_{x_{0}}: X \rightarrow X$. Since we already established above that this mapping is homotopic to identity, we have shown that f and g are homotopy inverses of each other. This is what had to be shown.
$(4) \Longrightarrow(1)$
Suppose X had the homotopy type of a singleton space $\{a\}$. Let $f:\{a\} \rightarrow X$ be a homotopy equivalence and let $x_{0}=f(a) \in X$. The homotopy inverse $g: X \rightarrow\{a\}$ is the only possible mapping that maps everything to a. The identity mapping id ${ }_{X}$ and $f \circ g: X \rightarrow X$ are homotopic. But $f \circ g$ is a constant mapping $X \rightarrow X$ that maps everything to x_{0}. The identity mapping of X is thus homotopic to a constant mapping, which by definition means that X is contractible.

The restriction to path-connected spaces Y in the formulation of (3) is essential. For example let $X=\{x\}$ be a singleton and $Y=\{a, b\}$ be space of two points equipped with discrete topology. Then X is contractible but mappings $f: X \rightarrow Y, f(x)=a$ and $g: X \rightarrow Y, g(x)=b$ are not homotopic, since this would imply that a and b are in the same path-component of Y. Thus $[X, Y]$ is not a singleton.

Also the assumption that X is path-connected in (3) is essential. There exist non-pathconnected, hence non -contractible spaces X for which $[X, Y]$ is a singleton for every path-connected Y. For instance any discrete space with two points and more has this property.
5. Suppose $f:|K| \rightarrow\left|K^{\prime}\right|$ is a continuous mapping between polyhedra of simplicial complexes K and K^{\prime}. Suppose $g:|K| \rightarrow\left|K^{\prime}\right|$ is a simplicial approximation of f. Show that

$$
f(\operatorname{St}(\mathbf{v})) \subset \operatorname{St}(g(\mathbf{v}))
$$

for every vertex \mathbf{v} of the complex K.

Solution:

Let \mathbf{v} be a fixed vertex of K and suppose $\mathbf{x} \in \operatorname{St}(\mathbf{v})$. This means that the unique simplex σ of K that contains \mathbf{x} in its interior, i.e.

$$
\mathbf{x} \in \operatorname{Int} \sigma
$$

has \mathbf{v} as one of its vertices. We write the vertices of σ as $\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$, where $\mathbf{v}_{0}=\mathbf{v}$. Then we can write \mathbf{x} as a convex combination

$$
\mathbf{x}=r_{0} \mathbf{v}_{0}+r_{1} \mathbf{v}_{1}+\ldots+r_{n} \mathbf{v}_{n},
$$

where $r_{0}, r_{1}, \ldots, r_{n}>0$ (since the point is in the interior of σ).

Let $\sigma^{\prime} \in K^{\prime}$ be the unique simplex that contains $f(\mathbf{x})$ in its interior. Then, by definition of simplicial approximation, $g(\mathbf{x}) \in \sigma^{\prime}$. On the other hand, since

$$
\mathbf{x}=r_{0} \mathbf{v}_{0}+r_{1} \mathbf{v}_{1}+\ldots+r_{n} \mathbf{v}_{n}
$$

and g is simplicial, we have that

$$
g(\mathbf{x})=r_{0} g\left(\mathbf{v}_{0}\right)+r_{1} g\left(\mathbf{v}_{1}\right)+\ldots+r_{n} g\left(\mathbf{v}_{n}\right),
$$

where $g\left(\mathbf{v}_{0}\right), g\left(\mathbf{v}_{1}\right), \ldots, g\left(\mathbf{v}_{n}\right)$ are vertices of some simplex $\sigma^{\prime \prime}$ in K. Since all coefficients are positive, $g(\mathbf{x}) \in \operatorname{Int} \sigma^{\prime \prime}$. We also have $g(\mathbf{x}) \in \sigma^{\prime}$. The only possible way interior of a simplex $\sigma^{\prime \prime}$ can intersect another simplex σ^{\prime} in a simplicial complex K is when $\sigma^{\prime \prime}$ is a face of σ^{\prime} (think about their intersection, which by definition has to be a common face, which now intersects also interior of one of them). It follows that
$g\left(\mathbf{v}_{0}\right), g\left(\mathbf{v}_{1}\right), \ldots, g\left(\mathbf{v}_{n}\right)$ are vertices of σ^{\prime}, so in particular $g(\mathbf{v})$ is a vertex of σ^{\prime}. Since $f(\mathbf{x}) \in \operatorname{Int} \sigma^{\prime}$, by definition of star, we have that

$$
f(\mathbf{x}) \in \operatorname{St}(g(\mathbf{v})) .
$$

This is true for every $\mathbf{x} \in \operatorname{St}(\mathbf{v})$, so the claim is proved.
6. Consider the boundary of the 2-simplex σ with vertices $\mathbf{v}_{0}, \mathbf{v}_{2}, \mathbf{v}_{4}$. For odd indices $i=1,3,5$ we let \mathbf{v}_{i} to be the barycentre of the 1 -simplex $\left[\mathbf{v}_{i-1}, \mathbf{v}_{i+1}\right]$. Here we identify $\mathbf{v}_{6}=\mathbf{v}_{0}$ (see the picture below).

Let $K=K(\operatorname{Bd} \sigma)$ and let $f:|K| \rightarrow|K|$ be the unique simplicial mapping $f:\left|K^{\prime}\right| \rightarrow\left|K^{\prime}\right|$ defined by $f\left(\mathbf{v}_{i}\right)=\mathbf{v}_{i+1}, i=0, \ldots, 5$.

Prove the following claims.

1) As a mapping $f:|K| \rightarrow|K| f$ does not have a simplicial approximation $g:|K| \rightarrow|K|$.
2) As a mapping $f:\left|K^{\prime}\right| \rightarrow|K| f$ has exactly 8 simplicial approximations $g:\left|K^{\prime}\right| \rightarrow|K|$.

Here in this exercise K^{\prime} is the first barycentric subdivision of K.

Solution:

a) By Lemma $5.9 f$ has simplicial approximation if and only if for every vertex \mathbf{v} of K there exists a vertex $\mathbf{w}(\mathbf{v})$ of K such that

$$
f(\operatorname{St}(\mathbf{v})) \subset \operatorname{St}(\mathbf{w}(\mathbf{v})) .
$$

The stars of vertices of K look like this:

Star of \mathbf{v}_{0}

Star of \mathbf{v}_{2}

Star of \mathbf{v}_{4}

For example star of \mathbf{v}_{0} consists of open intervals $] \mathbf{v}_{0}, \mathbf{v}_{2}[,] \mathbf{v}_{0}, \mathbf{v}_{4}[$ and \mathbf{v}_{0} itself. Images of these stars under f then look like this:

$\mathrm{f}\left(\right.$ Star of $\left.\mathbf{v}_{0}\right)$

$\mathrm{f}\left(\right.$ Star of $\left.\mathbf{v}_{2}\right)$

$\mathrm{f}\left(\right.$ Star of $\left.\mathbf{v}_{4}\right)$

From the pictures we see, that in fact none of the sets $f(\operatorname{St}(\mathbf{v}))$ fit inside any star of any vertex of K. Thus f cannot have a simplicial approximation.
b) This time the stars of vertices of K^{\prime} look the following:

Star of \mathbf{v}_{0}

$$
\text { Star of } \mathbf{v}_{2}
$$

Star of \mathbf{v}_{1}

Star of \mathbf{v}_{4}

Star of \mathbf{v}_{3}
Applying f on those, we obtain the following images:

We compare this with stars of the vertices in K (which is on target side now):

Star of \mathbf{v}_{0}

Star of \mathbf{v}_{2}

Star of \mathbf{v}_{4}

We see the following. For $i=1,3,5$ there is exactly one choice for the vertex $g\left(\mathbf{v}_{i}\right)$ of K with the property

$$
f\left(\operatorname{St}\left(\mathbf{v}_{i}\right)\right) \subset \operatorname{St}\left(g\left(\mathbf{v}_{i}\right)\right) .
$$

For example for $i=1$, only the choice $g\left(\mathbf{v}_{i}\right)=\mathbf{v}_{2}$ works.
For $i=0,2,4$, one the hand, there are always exactly two choices for the vertex $g\left(\mathbf{v}_{i}\right)$ of K with the property

$$
f\left(\operatorname{St}\left(\mathbf{v}_{i}\right)\right) \subset \operatorname{St}\left(g\left(\mathbf{v}_{i}\right)\right) .
$$

For example for $i=0$ both \mathbf{v}_{0} and \mathbf{v}_{2} work. Hence we have exactly

$$
2^{3}=8
$$

different choices. Every choice leads to a simplicial approximation of f, by Theorem 5.9.

7* (bonus exercise).
Consider the following subset of the plane,

$$
X=\bigcup_{n \in \mathbb{N}_{+}}\{1 / n\} \times I \cup\{0\} \times I \cup I \times\{0\}
$$

Let $x_{0}=(0,1) \in X$.

1) Show that there exists a homotopy $F: X \times I \rightarrow X$ between the identity mapping id: $X \rightarrow X$ and the constant mapping $c: X \rightarrow$ X defined by $c(x)=x_{0}, x \in X$.
2) Prove that the pair $\left(X, x_{0}\right)$ is not contractible i.e. there does not exist a homotopy $F: X \times I \rightarrow X$ such that

$$
\begin{aligned}
& F(x, 0)=x \text { for all } x \in X, \\
& F(x, 1)=x_{0} \text { for all } x \in X, \\
& F\left(x_{0}, t\right)=x_{0}, \text { for all } t \in I .
\end{aligned}
$$

You may use the following result from the general topology known as Wallace Lemma (no proof of Walace Lemma required):
Suppose $A \subset X$ and $B \subset Y$ are compact subspaces of topological spaces X and Y, and assume that W is an open subset of the product space $X \times Y$ containing $A \times B$. Then there exists open neighbourhood U of A in X and open neighbourhood V of B in Y such that

$$
A \times B \subset U \times V \subset W
$$

Solution: 1) Mapping $H_{1}: X \times I \rightarrow X$ defined by

$$
H_{1}(a, b, t)=(a,(1-t) b)
$$

is a well-defined continuous mapping, hence homotopy between identity of X and the mapping $f: X \rightarrow X$ defined by $f(a, b)=(b, 0)$ (projection to x-axis). The mapping $H_{2}: X \times I: X$ defined by

$$
H_{2}(a, b, t)=((1-t) a, 0)
$$

is a well-defined continuous mapping, hence homotopy between f and the mapping $g: X \rightarrow X$ defined by $g(a, b)=(0,0)$ (constant mapping). Finally the mapping $H_{3}: X \times I \rightarrow X$

$$
H_{3}(a, b, t)=(0, t)
$$

is a well-defined continuous mapping, hence homotopy between g and the continuous mapping $c: X \rightarrow X$ defined by $c(a, b)=(0,1)$. By Lemma 5.5. id is homotopic to c, so F exists.
2) We present two proofs - one not using Wallace Lemma and one using Wallace Lemma.

Let

$$
U=\{(a, b) \in X \mid b>0\} .
$$

This is open subset of X and its path-components are subsets of the form

$$
\begin{gathered}
C_{n}=\{(1 / n, b) \mid 0<b \leq 1\}, n \in \mathbb{N} \text { and } \\
D=\{(0, b) \mid 0<b \leq 1\} .
\end{gathered}
$$

We assume that $F: X \times I \rightarrow X$ is such that

$$
\begin{aligned}
& F(x, 0)=x \text { for all } x \in X, \\
& F(x, 1)=x_{0} \text { for all } x \in X, \\
& F\left(x_{0}, t\right)=x_{0}, \text { for all } t \in I
\end{aligned}
$$

and generate contradiction.

Solution 1: For every $n \in \mathbb{N}, n \geq 1$ the path $\alpha: X \times I \rightarrow X$ defined by

$$
\alpha(t)=F((1 / n, 1), t)
$$

is a path in X from the point $x_{n}=(1 / n, 1)$ to $x_{0}=(0,1)$. Since x_{n} and x_{0} lie in different path components of U, this path cannot lie entirely in U, so there exists $t_{n} \in I$ such that

$$
y_{n}=F\left(x_{n}, t_{n}\right) \notin U,
$$

which means that $y_{n}=\left(a_{n}, 0\right)$ for some $a_{n} \in I$. In particular

$$
p r_{2} F\left(x_{n}, t_{n}\right)=0
$$

for all $n \in \mathbb{N}, n \geq 1$. Since I is metric compact, the sequence $\left(t_{n}\right)$ has converging subsequence $\left(t_{n_{k}}\right)$, let

$$
t=\lim _{k \rightarrow \infty} t_{n_{k}}
$$

Since projection $p r_{2}$ and F are both continuous and $x_{n} \rightarrow x_{0}$ when $n \rightarrow \infty$, we have that

$$
p r_{2} F\left(x_{0}, t\right)=\lim _{k \rightarrow \infty} p r_{2} F\left(x_{n_{k}}, t_{n_{k}}\right)=0 .
$$

In other words there exists $t \in I$ such that

$$
F\left(x_{0}, t\right)=(a, 0)
$$

for some $a \in I$. But this contradicts assumptions on F, since $F\left(x_{0}, t\right)=$ $x_{0}=(0,1)$ for all $t \in I$.

Solution 2: By assumptions

$$
F\left(\left\{x_{0}\right\} \times I\right)=\left\{x_{0}\right\} \subset U
$$

which can be written as

$$
\left\{x_{0}\right\} \times I \subset F^{-1} U
$$

Since F is continuous, $F^{-1} U$ is open in $X \times I$. Since both $\left\{x_{0}\right\}$ and I are compact, by Wallace Lemma there exist neighbourhood V of x_{0} in X such that

$$
\begin{gathered}
V \times I \subset F^{-1} U \text { i.e. } \\
F(V \times I) \subset U .
\end{gathered}
$$

Since V is a neighbourhood of $x_{0}=(0,1)$, there exists large enough $n \in$ \mathbb{N} such that $x_{n}=(1 / n, 1) \in V$. Now path connected set $F\left(\left\{x_{n}\right\} \times I\right)$ is a subset of U, which includes both

$$
\begin{aligned}
& F\left(x_{n}, 0\right)=x_{n}, \\
& F\left(x_{n}, 1\right)=x_{0}
\end{aligned}
$$

But this is impossible, since x_{0} and x_{n} both belong to different path components of U.

Proof of Wallace Lemma: since above we only need the case where the set $A=\{a\}$ is a singleton, we only prove this special case. Suppose W is a neighbourhood of

$$
\{a\} \times B
$$

in product space $X \times Y$. By the definition of product topology for every $b \in B$ there exists a neighbourhood U_{b} of a in X and a neighbourhood V_{b} of b in Y such that

$$
U_{b} \times V_{b} \subset W .
$$

Since B is compact we can choose finitely many points $b_{1}, \ldots, b_{n} \in B$ such that corresponding neighbourhoods $V_{b_{1}}, \ldots, V_{b_{n}}$ cover B. Let

$$
U=\bigcap_{i=1}^{n} U_{b_{i}},
$$

then U is a neighbourhood of a, being a finite intersection of neighbourhoods of a. It is easy to verify that

$$
U \times V \subset W
$$

Here

$$
V=\bigcup_{i=1}^{n} V_{b_{i}} .
$$

