
Department of Mathematics and Statistics
Introduction to Algebraic topology, fall 2013

Exercises 4. Solutions.

1. Suppose σ is a simplex in R
m, with vertices {v0, . . . ,vn}.

a) Suppose x ∈ σ is fixed. Show that

sup{|x− y| | y ∈ σ} = max{|x− vi| | i = 0, . . . , m}.

b) Prove that

diam σ = max{|vi − vj| | i, j = 0, . . . , m}.

Solution: a) Since y ∈ σ we can represent it as a simplicial combina-
tion

y =

n∑

i=0

tivi.

Then, by triangle inequality,

|x− y| = |x− (

n∑

i=0

tivi)| = |

n∑

i=0

tix−

n∑

i=0

tivi| = |

n∑

i=0

ti(x− vi)| ≤

≤
n∑

i=0

ti|x−vi| ≤
n∑

i=0

ti max{|x−vi| | i = 0, . . . , m} = max{|x−vi| | i = 0, . . . , m},

since
n∑

i=0

ti = 1.

Notice the trick we are using:

x =
n∑

i=0

tix.

b) Suppose x,y ∈ σ. Then, by a)

|x− y| ≤ max{|x− vi| | i = 0, . . . , m}.

On the other hand it follows from a) that for every j = 0, . . . , m we
have that

|vj − x| ≤ max{|vj − vi| | i = 0, . . . , m}.
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Thus
|x− y| ≤ max{|vi − vj | | i, j = 0, . . . , m},

hence
diam σ ≤ max{|vi − vj | | i, j = 0, . . . , m}.

The opposite inequality is trivial, so the claim follows.

2. a) Suppose σ is an k-dimensional simplex in R
m, b(σ) is its barycentre

and v is a vertex of σ. Prove that

|v − b(σ)| ≤
k

k + 1
diam σ.

b) SupposeK is a finite simplicial complex in R
m. Let σ′ be a simplex in

the first barycentric divisionK ′, with vertices {b(σ0),b(σ1), . . . ,b(σn)},
where

σ0 < . . . < σn = σ ∈ K.

Show that

diam σ′ ≤
k

k + 1
diam σ,

where k = dim σ.

Solution: a) By definition

b(σ) =
k∑

i=0

1

k + 1
vi,

where v0, . . . ,vk are vertices of σ in some order.
Since v is a vertex of σ, v = vj for some j = 0, . . . , k. We use the same
trick as in the previous exercise and write v in the form

v =

k∑

i=0

1

k + 1
vj.

Then

|v − b(σ)| = |
k∑

i=0

1

k + 1
vj −

k∑

i=0

1

k + 1
vi| = |

k∑

i=0

1

k + 1
(vi − vj |.

In the last sum the element of the sum corresponding to the index i = j
is zero, so we do not have to care about that. Using that observation
and triangle inequality we see that

|v−b(σ)| = |
∑

i 6=j

1

k + 1
(vi−vj)| ≤

∑

i 6=j

1

k + 1
|vi−vj | ≤

∑

i 6=j

1

k + 1
diam σ =

k

k + 1
diam σ.
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b) Suppose σ′ be a simplex in the first barycentric division K ′, with
vertices {b(σ0),b(σ1), . . . ,b(σn)}, where

σ0 < . . . < σn = σ ∈ K.

By exercise 1 the diameter of σ′ is the maximum of the distances be-
tween the pairs of vertices of σ′, so it is enough to show that

|b(σi)− b(σj)| ≤
k

k + 1
diam σ

for all i, j =, . . . , n. We may assume that i ≤ j. Then

b(σi) =

p∑

r=0

1

p+ 1
vr,

b(σj) =

q∑

r=0

1

q + 1
vr,

where p = dim σi and q = dim σj . Here v0, . . . ,vp,vp+1, . . . ,vq are
vertices of σj , which are all also vertices of σ.

Now vr is in particularly a vertex of σj for r = 0, . . . , p, so, by a),

|vr − b(σj)| ≤
k

k + 1
diam σ = A.

Using the fact that

b(σj) =

p∑

r=0

1

p+ 1
b(σj)

(same trick as in the previous exercise and in a), we obtain

|b(σi)− b(σj)| = |

p∑

r=0

1

p+ 1
vr −

p∑

r=0

1

p+ 1
b(σj)| ≤

≤

p∑

r=0

1

p+ 1
|vr − b(σj)| ≤ (

p∑

r=0

1

p+ 1
)A = A.

This is what we had to prove. Notice that we did not actually use the
representation of b(σj) in the form

b(σj) =

q∑

r=0

1

q + 1
vr.
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3. Suppose f, g : X → Y and k, l : Y → Z are continuous mappings be-
tween topological spaces. Suppose that f ≃ g and k ≃ l.
a) Prove that (k ◦ f) ≃ (k ◦ g).
b) Prove that (k ◦ g) ≃ (l ◦ g).
c) Conclude that (k ◦ f) ≃ (l ◦ g).

Solution: a) Suppose F : X × I → Y is a homotopy between f and
g. Then k ◦ F : X × I → Z is easily seen to be a homotopy between
(k ◦ f) and (k ◦ g).

b) Suppose G : Y × I → Z is a homotopy between k and l. Then
G◦ (g× id) : X×I → Z is easily seen to be a homotopy between (k ◦g)
and (l ◦ g). Here g × id : X × I → Y × I is a product mapping defined
by

(g × id)(x, t) = (g(x), t).

c) Follows from a) and b) by transitivity of the homotopy relation ≃
(Lemma 5.5.(3)).

4. Suppose X is a non-empty topological space. Prove that the following
conditions are equivalent.

(1) X is contractible.

(2) For every topological space Y the set of homotopy classes [Y,X ]
is a singleton.

(3) X is path-connected and the set [X, Y ] is a singleton for every
non-empty path-connected space Y .

(4) X has the homotopy type of a singleton space {x}.

Also show that path-connectedness of both X and Y are necessary in
(3).

Solution: (1)=⇒(2):
Suppose X is contractible. By definition it means that the identity
mapping idX : X → X is homotopic to some costant mapping cx0

: X →
X , cx0

(x) = x0, x ∈ X , for some fixed x0 ∈ X .
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Let Y be a topological space and let f, g : Y → X . We need to show
that f ≃ g.

By the previous exercise f = idX ◦f ≃ cx0
◦f and likewise g = idX ◦g ≃

cx0
◦ g. But cx0

◦ f = cx0
◦ g, both are a constant mapping Y → X that

maps y ∈ Y to x0.
Since f and g are both homotopic to the same map, they are homotopic
by the symmetry and transitivity of the homotopy relation (Lemma
5.5.(2) and (3)).

(2)=⇒(3):
Suppose X is such that [Y,X ] is a singleton for all topological spaces
Y . Choose as Y = {0} any singleton space. Let x, y ∈ X be ar-
bitrary. Consider the mappings cx, cy : Y → X , defined by cx(0) =
x, cy(0) = y. These mappings are obviously continuous (they are con-
stant mappings), so, since [Y,X ] is a singleton, they are homotopic. Let
F : Y × I → X be the homotopy between cx and cy. Then α : I → X
defined by α(t) = F (0, t) is a path between x and y and X . Thus X is
path-connected.

Suppose Y is any path-connected space. Suppose f, g : X → Y are
arbitrary. We need to show that they are homotopic.

Assumptions imply that [X,X ] is a singleton, so in particular idX : X →
X and any chosen fixed constant mapping cx0

: X → X , cx0
(x) = x0,

x0 ∈ X are homotopic. By Lemma 5.5.(4) mappings f = f ◦ id and
f ′ = f ◦ cx0

are homotopic. The mapping f ′ : X → Y is actually a
constant mapping defined by

f ′(x) = f(x0) = y0 ∈ Y

for all x ∈ X .
Likewise g = g ◦ id and g′ = g ◦ cx0

are homotopic as well, where
g′ : X → Y is a constant mapping defined by

g′(x) = g(x0) = y1 ∈ Y

for all x ∈ X . In order to prove that f and g are homotopic it is
enough, by Lemma 5.5., to show that f ′ and g′ are homotopic.
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By assumption Y is path-connected, so there exists a path α : I → Y
with α(0) = y0 and α(1) = y1. The mapping H : X × I → Y ,

H(x, t) = α(t)

is continuous (it is composition of projection X × I → I and α) and is
a homotopy between f ′ and g′.

(3)=⇒(4)
Suppose X is path-connected and [X, Y ] is a singleton for every path-
connected space Y . Then in particular [X,X ] is a singleton, so identity
mapping id : X → X and some constant mapping cx0

: X → X are ho-
motopic (notice - some constant mapping exist, since X is not empty).
We will show that X and singleton {x0} are of the same homotopy
type. Since all singletons are homeomorphic, this also implies that X
is of the same homotopy type as any singleton.

Let f : X → {x0} be the obvious (the only possible) mapping and
g : {x0} → X be the inclusion, g(x0) = x0. The mapping f : g : {x0} →
{x0} is the identity mapping. The mapping f ◦ g : X → X it exactly
the constant mapping cx0

: X → X . Since we already established above
that this mapping is homotopic to identity, we have shown that f and
g are homotopy inverses of each other. This is what had to be shown.

(4)=⇒(1)
Suppose X had the homotopy type of a singleton space {a}. Let
f : {a} → X be a homotopy equivalence and let x0 = f(a) ∈ X .
The homotopy inverse g : X → {a} is the only possible mapping that
maps everything to a. The identity mapping idX and f ◦ g : X → X
are homotopic. But f ◦ g is a constant mapping X → X that maps
everything to x0. The identity mapping of X is thus homotopic to a
constant mapping, which by definition means that X is contractible.

The restriction to path-connected spaces Y in the formulation of (3) is
essential. For example let X = {x} be a singleton and Y = {a, b} be
space of two points equipped with discrete topology. Then X is con-
tractible but mappings f : X → Y , f(x) = a and g : X → Y , g(x) = b
are not homotopic, since this would imply that a and b are in the same
path-component of Y . Thus [X, Y ] is not a singleton.
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Also the assumption that X is path-connected in (3) is essential. There
exist non-pathconnected, hence non -contractible spaces X for which
[X, Y ] is a singleton for every path-connected Y . For instance any
discrete space with two points and more has this property.

5. Suppose f : |K| → |K ′| is a continuous mapping between polyhedra of
simplicial complexes K and K ′. Suppose g : |K| → |K ′| is a simplicial
approximation of f . Show that

f(St(v)) ⊂ St(g(v))

for every vertex v of the complex K.

Solution:

Let v be a fixed vertex of K and suppose x ∈ St(v). This means that
the unique simplex σ of K that contains x in its interior, i.e.

x ∈ Int σ

has v as one of its vertices. We write the vertices of σ as v0,v1, . . . ,vn,
where v0 = v. Then we can write x as a convex combination

x = r0v0 + r1v1 + . . .+ rnvn,

where r0, r1, . . . , rn > 0 (since the point is in the interior of σ).

Let σ′ ∈ K ′ be the unique simplex that contains f(x) in its interior.
Then, by definition of simplicial approximation, g(x) ∈ σ′. On the
other hand, since

x = r0v0 + r1v1 + . . .+ rnvn

and g is simplicial, we have that

g(x) = r0g(v0) + r1g(v1) + . . .+ rng(vn),

where g(v0), g(v1), . . . , g(vn) are vertices of some simplex σ′′ in K.
Since all coefficients are positive, g(x) ∈ Int σ′′. We also have g(x) ∈ σ′.
The only possible way interior of a simplex σ′′ can intersect another
simplex σ′ in a simplicial complex K is when σ′′ is a face of σ′ (think
about their intersection, which by definition has to be a common face,
which now intersects also interior of one of them). It follows that
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g(v0), g(v1), . . . , g(vn) are vertices of σ
′, so in particular g(v) is a vertex

of σ′. Since f(x) ∈ Int σ′, by definition of star, we have that

f(x) ∈ St(g(v)).

This is true for every x ∈ St(v), so the claim is proved.

6. Consider the boundary of the 2-simplex σ with vertices v0,v2,v4. For
odd indices i = 1, 3, 5 we let vi to be the barycentre of the 1-simplex
[vi−1,vi+1]. Here we identify v6 = v0 (see the picture below).

Let K = K(Bd σ) and let f : |K| → |K| be the unique simplicial
mapping f : |K ′| → |K ′| defined by f(vi) = vi+1, i = 0, . . . , 5.

b b

b

b

b b

v0

v1

v2

v3

v4

v5

Prove the following claims.

1) As a mapping f : |K| → |K| f does not have a simplicial approx-
imation g : |K| → |K|.

2) As a mapping f : |K ′| → |K| f has exactly 8 simplicial approxi-
mations g : |K ′| → |K|.

Here in this exercise K ′ is the first barycentric subdivision of K.

Solution:

a) By Lemma 5.9 f has simplicial approximation if and only if for every
vertex v of K there exists a vertex w(v) of K such that

f(St(v)) ⊂ St(w(v)).
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The stars of vertices of K look like this:

v0

v2

v4

v2 v2

v0v0
v4 v4

Star of v0 Star of v2 Star of v4

For example star of v0 consists of open intervals ]v0,v2[, ]v0,v4[ and
v0 itself. Images of these stars under f then look like this:

f(Star of v0) f(Star of v2) f(Star of v4)

From the pictures we see, that in fact none of the sets f(St(v)) fit
inside any star of any vertex of K. Thus f cannot have a simplicial
approximation.

b) This time the stars of vertices of K ′ look the following:

Star of v0

Star of v2

Star of v4

Star of v1

Star of v3

Star of v5

Applying f on those, we obtain the following images:
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f(Star of v0)
f(Star of v2)

f(Star of v4)

f(Star of v1)
f(Star of v3)

f(Star of v5)

We compare this with stars of the vertices in K (which is on target side
now):

v0

v2

v4

v2 v2

v0v0
v4 v4

Star of v0 Star of v2 Star of v4

We see the following. For i = 1, 3, 5 there is exactly one choice for the
vertex g(vi) of K with the property

f(St(vi)) ⊂ St(g(vi)).

For example for i = 1, only the choice g(vi) = v2 works.
For i = 0, 2, 4, one the hand, there are always exactly two choices for
the vertex g(vi) of K with the property

f(St(vi)) ⊂ St(g(vi)).

For example for i = 0 both v0 and v2 work. Hence we have exactly

23 = 8

different choices. Every choice leads to a simplicial approximation of
f , by Theorem 5.9.
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7* (bonus exercise).
Consider the following subset of the plane,

X =
⋃

n∈N+

{1/n} × I ∪ {0} × I ∪ I × {0}.

Let x0 = (0, 1) ∈ X .

1) Show that there exists a homotopy F : X × I → X between the
identity mapping id : X → X and the constant mapping c : X →
X defined by c(x) = x0, x ∈ X .

2) Prove that the pair (X, x0) is not contractible i.e. there does not
exist a homotopy F : X × I → X such that

F (x, 0) = x for all x ∈ X,

F (x, 1) = x0 for all x ∈ X,

F (x0, t) = x0, for all t ∈ I.

You may use the following result from the general topology known as
Wallace Lemma (no proof of Walace Lemma required):
Suppose A ⊂ X and B ⊂ Y are compact subspaces of topological
spaces X and Y , and assume that W is an open subset of the product
space X×Y containing A×B. Then there exists open neighbourhood
U of A in X and open neighbourhood V of B in Y such that

A× B ⊂ U × V ⊂ W.

Solution: 1) Mapping H1 : X × I → X defined by

H1(a, b, t) = (a, (1− t)b)

is a well-defined continuous mapping, hence homotopy between identity
ofX and the mapping f : X → X defined by f(a, b) = (b, 0) (projection
to x-axis). The mapping H2 : X × I : X defined by

H2(a, b, t) = ((1− t)a, 0)

is a well-defined continuous mapping, hence homotopy between f and
the mapping g : X → X defined by g(a, b) = (0, 0) (constant mapping).
Finally the mapping H3 : X × I → X

H3(a, b, t) = (0, t)
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is a well-defined continuous mapping, hence homotopy between g and
the continuous mapping c : X → X defined by c(a, b) = (0, 1). By
Lemma 5.5. id is homotopic to c, so F exists.

2) We present two proofs - one not using Wallace Lemma and one using
Wallace Lemma.

Let
U = {(a, b) ∈ X | b > 0}.

This is open subset of X and its path-components are subsets of the
form

Cn = {(1/n, b) | 0 < b ≤ 1}, n ∈ N and

D = {(0, b) | 0 < b ≤ 1}.

We assume that F : X × I → X is such that

F (x, 0) = x for all x ∈ X,

F (x, 1) = x0 for all x ∈ X,

F (x0, t) = x0, for all t ∈ I

and generate contradiction.

Solution 1: For every n ∈ N, n ≥ 1 the path α : X × I → X defined
by

α(t) = F ((1/n, 1), t)

is a path in X from the point xn = (1/n, 1) to x0 = (0, 1). Since xn and
x0 lie in different path components of U , this path cannot lie entirely
in U , so there exists tn ∈ I such that

yn = F (xn, tn) /∈ U,

which means that yn = (an, 0) for some an ∈ I. In particular

pr2F (xn, tn) = 0

for all n ∈ N, n ≥ 1. Since I is metric compact, the sequence (tn) has
converging subsequence (tnk

), let

t = lim
k→∞

tnk
.
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Since projection pr2 and F are both continuous and xn → x0 when
n → ∞, we have that

pr2F (x0, t) = lim
k→∞

pr2F (xnk
, tnk

) = 0.

In other words there exists t ∈ I such that

F (x0, t) = (a, 0)

for some a ∈ I. But this contradicts assumptions on F , since F (x0, t) =
x0 = (0, 1) for all t ∈ I.

Solution 2: By assumptions

F ({x0} × I) = {x0} ⊂ U,

which can be written as

{x0} × I ⊂ F−1U.

Since F is continuous, F−1U is open in X × I. Since both {x0} and I
are compact, by Wallace Lemma there exist neighbourhood V of x0 in
X such that

V × I ⊂ F−1U i.e.

F (V × I) ⊂ U.

Since V is a neighbourhood of x0 = (0, 1), there exists large enough n ∈
N such that xn = (1/n, 1) ∈ V . Now path connected set F ({xn} × I)
is a subset of U , which includes both

F (xn, 0) = xn,

F (xn, 1) = x0.

But this is impossible, since x0 and xn both belong to different path
components of U .

Proof of Wallace Lemma: since above we only need the case where the
set A = {a} is a singleton, we only prove this special case. Suppose W
is a neighbourhood of

{a} × B

13



in product space X×Y . By the definition of product topology for every
b ∈ B there exists a neighbourhood Ub of a in X and a neighbourhood
Vb of b in Y such that

Ub × Vb ⊂ W.

Since B is compact we can choose finitely many points b1, . . . , bn ∈ B
such that corresponding neighbourhoods Vb1 , . . . , Vbn cover B. Let

U =

n⋂

i=1

Ubi,

then U is a neighbourhood of a, being a finite intersection of neigh-
bourhoods of a. It is easy to verify that

U × V ⊂ W.

Here

V =
n⋃

i=1

Vbi .
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