Department of Mathematics and Statistics
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Exercises 3 - Solutions

1. a) Prove that the standard simplex

An:{(l'l,...,l'n) GR’H | €T; ZOfOI‘ all Z,ZI‘Z S 1}

i=1

is a closed and bounded, hence compact, subset of R".

b) Show that the topological interior of the standard simplex A,, with
respect to R™ coincides with its simplicial interior Int o, and the same
is true for topological/simplicial boundaries.

Solution: a) First we show that A, is closed in R™. Consider the
mappings pr;: R" =+ R, g: R" = R, j =1,...,n, defined by

pri(T1, .., Tj, o, X)) = T4,

g(xl,...,xj,...,xn):in.

From the basic topology and/or calculus courses we know that these
mappings are continuous. Indeed mappings pr; are just (linear) pro-
jections and ¢ is a sum of these projections (the sum of continuous
real-valued functions is continuous).
Inverse images of closed sets with respect to continuous mappings are
closed (Lemma 3.2.), so the subsets

Fj:prj*l([o,oo[) ={(z1,...,2,) €eR" | 2; > 0},7=1,...,n,

Fipi=g"(1—00,1]) = {(z1,...,2,) €R" | Zﬂf <1}

of R" are all closed. Since

simplex A, is closed as an intersection of closed sets.



Next we present three ways to see that A,, is bounded.
Proof 1: Direct straightforward estimate. Let x = (z1,...,2,) € A,.
Thenz; >0 for alli =1,...,n and )., ; < 1. This implies that

n
=1

forall i =1,...,n. Hence

in other words |x| < y/n. This is true for every x € A,,.

Proof 2: A better estimate follows from observation that since we
already know that 0 < z; < 1 forall : =1,...,n, when x € A,,, then
in particular

in other words |x| < 1. This is true for every x € A,,.

Proof 3: Finally there is an abstract way to obtain the inclusion
A, Cc B"(0,1)

directly, using the theory of convex sets. Indeed all the vertices ey, eq, ..., e,
of a simplex A,, belong to the closed unit ball B" (0,1) centred at origin.
This ball is convex. Since A,, by definition is the smallest convex set
containing its vertices, we obtain the inclusion

A, C B"(0,1).

b) It is easy to verify that the simplicial interior of A,, is exactly the
set

IntA, =U = {(x1,...,2,) € R" | 2; > 0 for all i,Zaf;i< 1}.

i=1



Using the mappings pr;: R = R, g: R" - R, 7 =1,...,n,

pri(Te, ..., T, .., Tn) = T4,

n
g(x1, .. ., Ty) :in
i=1

already defined in a) above, we see that we can represent U as a finite

intersection
n+1

U=V,
i=1
where

Vj:prjfl(](),oo[):{(xl,...,xn) eR"|z;>0},j=1,...,n,

W+1:g—%y—a%uy:{@h“.ﬂh)eRn|}:xi<1}

are open as the inverse images of open subsets of R under continuous
mappings. Since a finite intersection of open sets is open, U is open
in R”. Hence U is an open subset of A,. Topological interior is the
biggest open subset of A,, (Proposition 3.17(1)), so this implies that

U=IntA, CintA,.

Next we prove the converse inclusion int A,, C Int A,. Suppose x =

(x1,...,2,) € int A,, where the interior is with respect to R". We have
to show that x; > 0 for all i = 1,...,n and that >  z; < 1. We do
this using counter-assumptions. Suppose z; = 0 for some i = 1,...,n.

Then, for every positive €, an e-neighbourhood of x obviously contains
a point

X —&i/2=(x1,...,—€/2,... ),
which is not an element of A,, (one of the coordinates is negative). This
contradicts the assumption x € int A,,. Hence we must have x; > 0 for
allv=1,...,n.
Suppose Y, x; = 1 (counter-assumption). Then for every positive ¢,
an e-neighbourhood of x obviously contains a point

X+e1/2=(x14+¢€/2,...,2,),

which is not an element of A,,, since for this point the sum of coordi-
nates is

Y wmite/2=14¢/2> 1.

=1



Again, we obtain the contradiction with the assumption x € int A,,.
Thus we also must have )", x; < 1. We have shown that every point
of int A,, belongs to the simplicial interior U of A,,.

. Suppose C'is a compact convex subset of R™ such that 0 € int C. Let
f:0C — S™ ! be the mapping

which we have shown to be a homeomorphism in the proof of Theorem
3.20. Prove that the mapping G': B' = C defined by

G(t) = {'t\ () e o

0, ift=0

is a continuous bijection.

Solution: Let us start by showing that G is actually well-defined, i.e.

G(t) e Cforallt € B Ift = 0, then G(t) = 0 € C by assumption.
Suppose t # 0. Then, by assumptions on the mapping f, the element

fU(&) = y is well-defined (since & € S*7! and is an element of
[t] [t]

0C C C (last inclusion - because C'is closed). Also, t = |t| €]0, 1], so
Gt)=t-y=(1-t)0+t-yeC

by the convexity of C'. We have shown that G is well-defined.

Next we show that G iskcontinuous. It is clear that the restriction of
G on the open subset B\ {0} (the punctured ball) is continuous (its
formula is a combination of continuous operations including f=!. It

follows that G'is continuous at every point of B \ {0} (openess of this
set is essential here, a mapping the restriction of which is continuous in
a neighbourhood of a point is continuous at this point). It remains

to show the continuity of G in the origin. Let t € B". Then

G(t) — G(0)] = |G(t)] = \tuflﬁ—,\ < K| <&,

when |t| < ¢/K. Here K > 0 is chosen so that

C ¢ B(0,K).
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Such K exists because C' is assumed to be bounded. This calculation
implies that G is also continuous at origin, so we are done with conti-
nuity.

Next we show injectivity of G. It is clear that only origin maps to
origin. Indeed if t # 0, then both [t| # 0 and f‘1|:—| # 0, being an
element of the boundary 0C' (which do not contain origin, since we are

assuming that origin is an interior point of C).

Suppose

o) =lel- (1) =x=1Isl- (/) = G6s)

t] s]

for some t,s € B \ {0}. Then

X 4 t q
— = — an
[t] [t]
X _ f—li.
s| s|

By definition f~! maps onto dC, so both x/|t| and x/|s| belong to
the boundary of C'. According to Lemma 3.19 (applied to 0 € int C),
however, there exist unique a > 0 such that a point of the form ax €

0C'. This implies that

[t = [s],
which in turn implies that
t X X S
=== =f1=
b [t]Is] 8|

Being an inverse of a bijection, f~! is a bijection itself, in particular
injection. Hence we have that

t S S

6l Isl ¢l

so t = s. We have shown that G is an injection.

Next we show that G is a surjection. Let x € C be arbitrary. If x = 0,
then G(0) = x. Suppose x # 0. By Lemma 3.19 there exist unique
r €]0,1] and y € 0C such that x = ry. Then



is an element of the closed ball Fk and

t x|y
it [yl
[t| =
It follows that ¢
y
f(y> = 170" T
vyl It]
SO ¢
i) =y
t|
This implies that
., t
G(t) = [t|f (m) =7y = X.

The surjectivity is proved.
. Let K{ be the set consisting of all possible sets of the form
conv(eg, vi,...,v,) C R"

where v; € {e;, —e;} fori=1,... n.

a) Show that K is a collection of simplices of R™, but is not a simplicial
complex.

b) Let K be the collection of all faces of simplices in K. Show that K
is a simplicial complex. What is a polyhedron |K| of K7

¢) Show that K has a subcomplex L such that the (topological) bound-
ary of | K| in R™ is a polyhedron |L| of L. How many (n—1)-dimensional
simplices L contains?

Solution: a) First we need to show that every sequence of the form
(eo, Vi,...,Vy), where v; € {e;, —e;} is affinely independent. By Lemma
2.10 this is equivalent to the linear independence of the sequence

(Vl—eo,...,Vn—eo).

This is simply the sequence (vi,...,v,) and the fact that it is linearly
independent is simple linear algebra exercise.

Hence K is indeed a collection of simplices. It is obviously not closed
under faces (unless we are talking about the degenerate case n = 0),
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so it cannot be a simplicial complex.

b) K is obviously closed under faces by its definition (a face of a face
of o is a face of o itself). To prove that K is a simplicial complex it is
enough, by Lemma 4.2., to show that every point x of the union

K=o

ceK

belongs to the simplicial interior Int ¢ for unique o € K. Since we are
asked to determine the polyhedron | K| anyway, we start by examining
what is |K|. Suppose x € |K|. Then x € o for some o € K and since
every such a simplex is a face of some simplex in K, we might as well
assume that o € Ky. Then

x:t0e0+t1v1+...+tnvn

for some (unique) scalars tg,...,t, >0, to+ ... +t, = 1. Since v; €
{e;,—e;} for all i = 1,... n, this equation implies that

(ZL‘l, PN ,l’n) =X = (:l:th :ttg, ey itn)

Since all scalars t; are non-negative, this is equivalent to ¢; = |x;| for
all v =1,...,n. It follows that

n

i=1

i=1

In other words we have shown that

K| C{xeR" | > |z <1} =X.

=1

We show the opposite inclusion by showing that every point x € X
belongs to the simplicial interior of exactly one simplex of K. This
will also automatically then conclude the proof of the claim that K is
a simplicial complex.

Thus, let x = (x1,...,2,) be an element of X, which means precisely

that .
D al <1
=1



Now if x belongs to the simplex o with vertices (eg, v1,...,V,), where
v; € {e;,—e;} fori=1,... n, then

X:toeg+t1V1—|—...+thn

for some (unique) scalars to,...,t, >0, to+ ...+, = 1, which, as we
have seen above implies that t; = |z;| for all i = 1,...,n. Moreover
ift; > 0,7 =1,...,n we must then have that v; = e; exactly when

x; > 0 and v; = —e; exactly when x; < 0. Finally

tozl—zn:tizl—zn:|l'i|,
=1 =1

so tg = 0 if and only if
Xx€0X ={xeR" | > |u| =1}
i=1

(the fact that the topological boundary of X with respect to R™ is ex-
actly this set is proved similarly to the proofs concerning interior and
boundary of a standard simplex in exercise 1b above).

It follows that

1) x belongs to the interior of face of o which vertices include e; if and
only if x; > 0, —e; if and only if z; > 0,7 =1,...,n, and also by ey if
and only if x € 0X.

2) Suppose x belongs to the interior of a face of a simplex o of Kj.
Then this simplex is exactly the simplex spanned by the vectors e; if
and only if z; > 0, —e; fif and only if z; > 0,7 =1,...,n, and also by
e if and only if x € 0X.
We have both shown that
K| ={x€R" | > |a| <1},
i=1

and proved that K is a simplicial complex.

c¢) The topological boundary 0| K| of the polyhedron |K| is a subset
{x eR" [ > |ay| =1},
i=1
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By the considerations above this set is exactly a polyhedron |L| of the
simplicial subcomplex L of K spanned by all the faces of simplices that
have the form conv(vy,...,v,), where v; € {e;,—e;} fori=1,... n.
In other words L is defined as K, but without references to the origin ey.

Since for every ¢ = 1,...,n there is exactly 2 choices for v;, L contains
exactly 2" simplices of dimension (n — 1).

Note: K is a triangulation of the closed ball B" and L is a triangu-
lation of the sphere S~ 1.

. Suppose K is a simplicial complex and let x € |K|. By Lemma 4.2.
there exists a unique simplex car(x) € K which contains x as an interior
point.

We also define the star of x to be the union of all simplicial interiors
of simplices that contain x, in other words

St(x) = J{Into | x € o}

Denote the vertices of car(x) by vy, ..., Vv,. Prove that
a) St(x) is an open neighbourhood of x in | K.
b)

St(x) = U{Int o| car(x) <o} = U{Int o|vo,...,v, are vertices of o}.

c)
St(x) = ﬂ St(v;).

Solution: a) Let us define the subset of K
L={ceK|x¢o}.

The subset L is obviously closed under faces (if a simplex does not con-
tain x, any face of it cannot contain x either). Thus L is a subcomplex
of K. We show that

St(x) = [K]\ | L].

This would imply that St(x) is open in |K]|, since, by Lemma 4.7, a
polyhedron |L| of a subcomplex L of K is always closed in |K|.



Suppose y € |K]| is arbitrary. Then, by Lemma 4.2. there exists
unique simplex o of K such that y € Into. There are exactly two
mutually exclusive possibilities -

1) either x € o or

2)x ¢ o.

We will show that y € St(x) if and only if case 1) is true and y € |L|
if and only if the case 2) is true. This will prove that | K| is a disjoint
union of the sets St(x) and |L|, so St(x) = |K|\ |L|.

Since, by Lemma 4.7, the simplicial interiors of the simplices of a sim-
plicial complex are always disjoint, the inclusion y € St(x) is true if
and only if x € o where ¢ is the unique simplex that contains y as an
interior point. Hence y € St(x) if and only if x € 0.

To prove the second claim we first assume that x ¢ . Then, by the def-
inition of L, the simplex ¢ € L, and, since y € o, it follows that y € |L]|.

Conversely suppose y € |L|. Then there exists a simplex ¢’ such that
y € o’ and x ¢ ¢’ (i.e. ¢’ € L). Now consider an intersection o No’. It
is not empty, since y belongs to it. By the definition of the simplicial
complex this intersection thus has to be a common face of both ¢ and
o’. On the other hand this intersection contains y, which is an interior
point of o. The only face of ¢ which intersects the interior of o is o
itself. Hence o0 N o’ = o, in particular 0 C ¢'. It follows that x ¢ o,
since otherwise x € o', which contradicts our assumptions. Hence we
have shown that x ¢ o if and only if y € |L|, which is what we wanted
to prove. The claim
St(x) = K]\ ||

is now proved, and, as we already noticed, this implies that St(x) is
open.

Clearly x belongs to St(x), since there exists (unique) simplex o of K
such that x € Int o and then

x € Into C St(x).
b) The equation
St(x) = | J{Into | car(x) < o}
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obviously follows once we show that an arbitrary simplex ¢ of K con-
tains x if and only if ¢/ = car(x) is a face of ¢. This is the same
argument we have already seen in the proof of a) above. Namely if
o' C o, then trivially

xe€o Co,

so x € 0. Conversely suppose x € ¢. Then the intersection ¢’ N o
is non-empty, so is a common face of both ¢ and ¢’. On the other
hand this intersection contains x, which is an interior point of ¢’. The
only face of ¢’ which intersects the interior of ¢’ is o itself. Hence
oNo’ = ¢, in particular ¢’ is a face of o which is what we had to show.
The equation

U{Int o| car(x) <o} = U{Inta | vo,..., Vv, are vertices of o}

is obvious, since vy, ..., Vv, are exactly the vertices of car(x), by as-
sumption.

¢) Suppose o is a simplex of K. As we have already seen above o
contains x if and only if car(x) is a face of ¢ i.e. if and only if vq, ..., v,
are all vertices of o. Vertex v belongs to ¢ if and only if

Int o C St(v).

It follows that .
Into C ﬂ St(v;)

i=0
if and only if v, ..., v, are all vertices of o. Since the simplicial inte-
riors are disjoint, this implies that

St(x) = ﬂ St(v;).

. The covering X = (X;);er of the topological space X is called locally
finite if every point x € X has a neighbourhood U, which intersects
only a finite amount of the elements of the covering X. Formally this
means that the subset J of the index set I defined by

J={iel|UNX; #0}

is finite. Covering X is called closed if all elements of X are closed in X.
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Prove that is X = (X;);es is a closed and locally finite covering of X,
then the topology of X is coherent with the family X.

Give an example of a closed covering X of a topological space X such
that the topology of X is not coherent with X.

Solution: Suppose V is a subset of X such that V' N X, is open in X
for all © € I. We need to show that V' is open in X. It is enough to
show that F' = X'\ V is closed in X. This is equivalent to showing that
FCF.

Suppose z € F. Let U be a neighbourhood of = that intersects only a
finite amount of the sets X;. Suppose W is an arbitrary neighbourhood
of x. Then U N W is also a neigbourhood of z, so it intersects F. It
follows that an arbitrary neighbourhood W of x intersects FF N U. In
other words

re FNU.

Since V N X, is open in X, its compliment in X;
E=X\UNX;)=(X\U)NX;=FnNX,
is closed in X; for every ¢ € I. This means that
Fi=X,NG;,

where G; is some closed subset of X. However X, is assumed to be
closed for every ¢ € I, so the intersection X; N G; is closed in X. In
other words F; is closed for all 7 € I. Now

FnU=JEnU)=JFnU.
iel j=1
Here we have used the fact that U intersect only finitely many of the

sets X;, so in particular only finitely many Fj;.Above we denote these
F; that intersect U by fi,..., F,. We have that

xeFmU:CJijU:OijUcUE:OchF.

Here we have used Proposition 3.17(4) - finite union of closures is the
closure of unions.
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An example which shows that the assumption of local finiteness is es-
sential - let X, = {z} be a singleton for every z € R. Then the
collection X = (X, )zer is a closed covering of R. However the stan-
dard topology of R is not coherent with X. Actually for every subset
U of R we have that U N X, is either an empty set or a singleton X,
which is open in X, but U need not to be open in R. If this family
would be coherent then the topology of R would be discrete.

. Show that every open subset of R can be triangulated (as a topological
space). (Hint: previous exercise might come in handy).

Solution: Suppose U C R is open. First we show that all connected
components of U are open intervals (possibly unbounded). This is seen
as following. Suppose x € U and let C' be a component of x in U. Since
the connected subsets of R are intervals (Proposition 3.13(4)), C' is an
interval. This interval cannot contain its endpoints. Indeed suppose C'
contains its left end-point ¢. Then ¢ € U, so, since U is open, there
exists an interval |a, b[ such that

¢ €la,b]C U.

It is clear that the union ]a, b|UC is an interval, hence connected. More-
over it contains ¢ and is bigger than C'. But that contradicts the max-
imality of C', as a component. Hence C' must be an open interval.

Since every space is a disjoint union of its components, we have that

U= U]ai,bi[,

i€l

where union is disjoint (and for some i we can have a; = —oo or
b; = o0). In fact it can be shown that this union is at most count-
able, but we do not need that fact).

For every ¢ € I we can choose an increasing sequence
<at<a" < <ait<ad)<al <...<al <aT <.

unlimited in both directions, so that

lim a;" = a;,
n—oo
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lim a = b;.
n—oo

It is clear that

]&iy bz [: U [Gz, ag+l]7

JET

U= | Jaibil.

i€l,jEZ

The family ([a], a?™"))ies jez is easily seen to be locally finite. Since this
family is also a closed cover of C, the topology of C' is coherent with
this family.

The collection K = ([af , a‘g M)ie 1,jez of 1-simplices and all their vertices
is a simplicial complex - different simplices intersect, by construction,
in their vertices only, at most. The polyhedron |K| of this complex
is precisely U. Also its weak topology is (by local finiteness of the
cover K) the same as the standard topology of U. So this complex is

a triangulation of U.
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