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Exercises 3 - Solutions

1. a) Prove that the standard simplex

∆n = {(x1, . . . , xn) ∈ Rn | xi ≥ 0 for all i,
n∑

i=1

xi ≤ 1}

is a closed and bounded, hence compact, subset of Rn.
b) Show that the topological interior of the standard simplex ∆n with
respect to Rn coincides with its simplicial interior Intσ, and the same
is true for topological/simplicial boundaries.

Solution: a) First we show that ∆n is closed in Rn. Consider the
mappings prj : Rn → R, g : Rn → R, j = 1, . . . , n, defined by

prj(x1, . . . , xj, . . . , xn) = xj,

g(x1, . . . , xj, . . . , xn) =
n∑

i=1

xi.

From the basic topology and/or calculus courses we know that these
mappings are continuous. Indeed mappings prj are just (linear) pro-
jections and g is a sum of these projections (the sum of continuous
real-valued functions is continuous).
Inverse images of closed sets with respect to continuous mappings are
closed (Lemma 3.2.), so the subsets

Fj = pr−1
j ([0,∞[) = {(x1, . . . , xn) ∈ Rn | xj ≥ 0}, j = 1, . . . , n,

Fj+1 = g−1(]−∞, 1]) = {(x1, . . . , xn) ∈ Rn |
n∑

i=1

xi ≤ 1}

of Rn are all closed. Since

∆n =
n+1∩
i=1

Fj,

simplex ∆n is closed as an intersection of closed sets.
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Next we present three ways to see that ∆n is bounded.
Proof 1: Direct straightforward estimate. Let x = (x1, . . . , xn) ∈ ∆n.
Thenxi ≥ 0 for all i = 1, . . . , n and

∑n
i=1 xi ≤ 1. This implies that

0 ≤ xi ≤
n∑

i=1

xi ≤ 1

for all i = 1, . . . , n. Hence

|x|2 =
n∑

i=1

x2
i ≤

n∑
i=1

12 = n,

in other words |x| ≤
√
n. This is true for every x ∈ ∆n.

Proof 2: A better estimate follows from observation that since we
already know that 0 ≤ xi ≤ 1 for all i = 1, . . . , n, when x ∈ ∆n, then
in particular

x2
i ≤ xi ≤ 1

for all i = 1, . . . , n. Hence

|x|2 =
n∑

i=1

x2
i ≤

n∑
i=1

xi = 1,

in other words |x| ≤ 1. This is true for every x ∈ ∆n.

Proof 3: Finally there is an abstract way to obtain the inclusion

∆n ⊂ B
n
(0, 1)

directly, using the theory of convex sets. Indeed all the vertices e0, e1, . . . , en
of a simplex ∆n belong to the closed unit ball B

n
(0, 1) centred at origin.

This ball is convex. Since ∆n by definition is the smallest convex set
containing its vertices, we obtain the inclusion

∆n ⊂ B
n
(0, 1).

b) It is easy to verify that the simplicial interior of ∆n is exactly the
set

Int∆n = U = {(x1, . . . , xn) ∈ Rn | xi > 0 for all i,
n∑

i=1

xi < 1}.
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Using the mappings prj : Rn → R, g : Rn → R, j = 1, . . . , n,

prj(x1, . . . , xj, . . . , xn) = xj,

g(x1, . . . , xj, . . . , xn) =
n∑

i=1

xi

already defined in a) above, we see that we can represent U as a finite
intersection

U =
n+1∩
i=1

Vj,

where

Vj = pr−1
j (]0,∞[) = {(x1, . . . , xn) ∈ Rn | xj > 0}, j = 1, . . . , n,

Vj+1 = g−1(]−∞, 1]) = {(x1, . . . , xn) ∈ Rn |
n∑

i=1

xi < 1}

are open as the inverse images of open subsets of R under continuous
mappings. Since a finite intersection of open sets is open, U is open
in Rn. Hence U is an open subset of ∆n. Topological interior is the
biggest open subset of ∆n (Proposition 3.17(1)), so this implies that

U = Int∆n ⊂ int∆n.

Next we prove the converse inclusion int∆n ⊂ Int∆n. Suppose x =
(x1, . . . , xn) ∈ int∆n, where the interior is with respect to Rn. We have
to show that xi > 0 for all i = 1, . . . , n and that

∑n
i=1 xi < 1. We do

this using counter-assumptions. Suppose xi = 0 for some i = 1, . . . , n.
Then, for every positive ε, an ε-neighbourhood of x obviously contains
a point

x− εi/2 = (x1, . . . ,−ε/2, . . . , xn),

which is not an element of ∆n (one of the coordinates is negative). This
contradicts the assumption x ∈ int∆n. Hence we must have xi > 0 for
all i = 1, . . . , n.
Suppose

∑n
i=1 xi = 1 (counter-assumption). Then for every positive ε,

an ε-neighbourhood of x obviously contains a point

x+ ε1/2 = (x1 + ε/2, . . . , xn),

which is not an element of ∆n, since for this point the sum of coordi-
nates is

n∑
i=1

xi + ε/2 = 1 + ε/2 > 1.
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Again, we obtain the contradiction with the assumption x ∈ int∆n.
Thus we also must have

∑n
i=1 xi < 1. We have shown that every point

of int∆n belongs to the simplicial interior U of ∆n.

2. Suppose C is a compact convex subset of Rn such that 0 ∈ intC. Let
f : ∂C → Sn−1 be the mapping

f(x) =
x

|x|
,

which we have shown to be a homeomorphism in the proof of Theorem

3.20. Prove that the mapping G : B
k → C defined by

G(t) =

{
|t| ·

(
f−1 t

|t|

)
if t ̸= 0,

0, if t = 0

is a continuous bijection.

Solution: Let us start by showing that G is actually well-defined, i.e.

G(t) ∈ C for all t ∈ B
k
. If t = 0, then G(t) = 0 ∈ C by assumption.

Suppose t ̸= 0. Then, by assumptions on the mapping f , the element
f−1( t

|t|) = y is well-defined (since t
|t| ∈ Sk−1 and is an element of

∂C ⊂ C (last inclusion - because C is closed). Also, t = |t| ∈]0, 1], so

G(t) = t · y = (1− t)0+ t · y ∈ C

by the convexity of C. We have shown that G is well-defined.

Next we show that G is continuous. It is clear that the restriction of
G on the open subset B

k \ {0} (the punctured ball) is continuous (its
formula is a combination of continuous operations including f−1. It

follows that G is continuous at every point of B
k \ {0} (openess of this

set is essential here, a mapping the restriction of which is continuous in
a neighbourhood of a point is continuous at this point). It remains

to show the continuity of G in the origin. Let t ∈ B
k
. Then

|G(t)−G(0)| = |G(t)| = |t||f−1 t

|t|
| ≤ K|t| < ε,

when |t| < ε/K. Here K > 0 is chosen so that

C ⊂ B(0, K).
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Such K exists because C is assumed to be bounded. This calculation
implies that G is also continuous at origin, so we are done with conti-
nuity.

Next we show injectivity of G. It is clear that only origin maps to
origin. Indeed if t ̸= 0, then both |t| ̸= 0 and f−1 t

|t| ̸= 0, being an

element of the boundary ∂C (which do not contain origin, since we are
assuming that origin is an interior point of C).

Suppose

G(t) = |t| ·
(
f−1 t

|t|

)
= x = |s| ·

(
f−1 s

|s|

)
= G(s)

for some t, s ∈ B
k \ {0}. Then

x

|t|
= f−1 t

|t|
and

x

|s|
= f−1 s

|s|
.

By definition f−1 maps onto ∂C, so both x/|t| and x/|s| belong to
the boundary of C. According to Lemma 3.19 (applied to 0 ∈ intC),
however, there exist unique a > 0 such that a point of the form ax ∈
∂C. This implies that

|t| = |s|,
which in turn implies that

f−1 t

|t|
=

x

|t|
=

x

|s|
= f−1 s

|s|
.

Being an inverse of a bijection, f−1 is a bijection itself, in particular
injection. Hence we have that

t

|t|
=

s

|s|
=

s

|t|
so t = s. We have shown that G is an injection.

Next we show that G is a surjection. Let x ∈ C be arbitrary. If x = 0,
then G(0) = x. Suppose x ̸= 0. By Lemma 3.19 there exist unique
r ∈]0, 1] and y ∈ ∂C such that x = ry. Then

t = r
x

|x|
.
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is an element of the closed ball B
k
and

t

|t|
=

x

|x|
=

y

|y|
,

|t| = r.

It follows that

f(y) =
y

|y|
=

t

|t|
,

so

f−1(
t

|t|
) = y.

This implies that

G(t) = |t|f−1(
t

|t|
) = ry = x.

The surjectivity is proved.

3. Let K0 be the set consisting of all possible sets of the form

conv(e0,v1, . . . ,vn) ⊂ Rn,

where vi ∈ {ei,−ei} for i = 1, . . . , n.
a) Show that K0 is a collection of simplices of Rn, but is not a simplicial
complex.
b) Let K be the collection of all faces of simplices in K0. Show that K
is a simplicial complex. What is a polyhedron |K| of K?
c) Show that K has a subcomplex L such that the (topological) bound-
ary of |K| in Rn is a polyhedron |L| of L. How many (n−1)-dimensional
simplices L contains?

Solution: a) First we need to show that every sequence of the form
(e0,v1, . . . ,vn), where vi ∈ {ei,−ei} is affinely independent. By Lemma
2.10 this is equivalent to the linear independence of the sequence

(v1 − e0, . . . ,vn − e0).

This is simply the sequence (v1, . . . ,vn) and the fact that it is linearly
independent is simple linear algebra exercise.

Hence K0 is indeed a collection of simplices. It is obviously not closed
under faces (unless we are talking about the degenerate case n = 0),
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so it cannot be a simplicial complex.

b) K is obviously closed under faces by its definition (a face of a face
of σ is a face of σ itself). To prove that K is a simplicial complex it is
enough, by Lemma 4.2., to show that every point x of the union

|K| =
∪
σ∈K

σ

belongs to the simplicial interior Intσ for unique σ ∈ K. Since we are
asked to determine the polyhedron |K| anyway, we start by examining
what is |K|. Suppose x ∈ |K|. Then x ∈ σ for some σ ∈ K and since
every such a simplex is a face of some simplex in K0, we might as well
assume that σ ∈ K0. Then

x = t0e0 + t1v1 + . . .+ tnvn

for some (unique) scalars t0, . . . , tn ≥ 0, t0 + . . . + tn = 1. Since vi ∈
{ei,−ei} for all i = 1, . . . , n, this equation implies that

(x1, . . . , xn) = x = (±t1,±t2, . . . ,±tn).

Since all scalars ti are non-negative, this is equivalent to ti = |xi| for
all i = 1, . . . , n. It follows that

n∑
i=1

|xi| =
n∑

i=1

ti = 1− t0 ≤ 1.

In other words we have shown that

|K| ⊂ {x ∈ Rn |
n∑

i=1

|xi| ≤ 1} = X.

We show the opposite inclusion by showing that every point x ∈ X
belongs to the simplicial interior of exactly one simplex of K. This
will also automatically then conclude the proof of the claim that K is
a simplicial complex.

Thus, let x = (x1, . . . , xn) be an element of X, which means precisely
that

n∑
i=1

|xi| ≤ 1.
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Now if x belongs to the simplex σ with vertices (e0,v1, . . . ,vn), where
vi ∈ {ei,−ei} for i = 1, . . . , n, then

x = t0e0 + t1v1 + . . .+ tnvn

for some (unique) scalars t0, . . . , tn ≥ 0, t0 + . . .+ tn = 1, which, as we
have seen above implies that ti = |xi| for all i = 1, . . . , n. Moreover
if ti > 0, i = 1, . . . , n we must then have that vi = ei exactly when
xi > 0 and vi = −ei exactly when xi < 0. Finally

t0 = 1−
n∑

i=1

ti = 1−
n∑

i=1

|xi|,

so t0 = 0 if and only if

x ∈ ∂X = {x ∈ Rn |
n∑

i=1

|xi| = 1}

(the fact that the topological boundary of X with respect to Rn is ex-
actly this set is proved similarly to the proofs concerning interior and
boundary of a standard simplex in exercise 1b above).

It follows that
1) x belongs to the interior of face of σ which vertices include ei if and
only if xi > 0, −ei if and only if xi > 0, i = 1, . . . , n, and also by e0 if
and only if x ∈ ∂X.

2) Suppose x belongs to the interior of a face of a simplex σ of K0.
Then this simplex is exactly the simplex spanned by the vectors ei if
and only if xi > 0, −ei f if and only if xi > 0, i = 1, . . . , n, and also by
e0 if and only if x ∈ ∂X.

We have both shown that

|K| = {x ∈ Rn |
n∑

i=1

|xi| ≤ 1}.

and proved that K is a simplicial complex.

c) The topological boundary ∂|K| of the polyhedron |K| is a subset

{x ∈ Rn |
n∑

i=1

|xi| = 1}.
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By the considerations above this set is exactly a polyhedron |L| of the
simplicial subcomplex L of K spanned by all the faces of simplices that
have the form conv(v1, . . . ,vn), where vi ∈ {ei,−ei} for i = 1, . . . , n.
In other words L is defined asK, but without references to the origin e0.

Since for every i = 1, . . . , n there is exactly 2 choices for vi, L contains
exactly 2n simplices of dimension (n− 1).

Note: K is a triangulation of the closed ball B
n
and L is a triangu-

lation of the sphere Sn−1.

4. Suppose K is a simplicial complex and let x ∈ |K|. By Lemma 4.2.
there exists a unique simplex car(x) ∈ K which contains x as an interior
point.
We also define the star of x to be the union of all simplicial interiors
of simplices that contain x, in other words

St(x) =
∪

{Intσ | x ∈ σ}.

Denote the vertices of car(x) by v0, . . . ,vn. Prove that

a) St(x) is an open neighbourhood of x in |K|.
b)

St(x) =
∪

{Intσ | car(x) < σ} =
∪

{Intσ | v0, . . . ,vn are vertices of σ}.

c)

St(x) =
n∩

i=0

St(vi).

Solution: a) Let us define the subset of K

L = {σ ∈ K | x /∈ σ}.

The subset L is obviously closed under faces (if a simplex does not con-
tain x, any face of it cannot contain x either). Thus L is a subcomplex
of K. We show that

St(x) = |K| \ |L|.
This would imply that St(x) is open in |K|, since, by Lemma 4.7, a
polyhedron |L| of a subcomplex L of K is always closed in |K|.
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Suppose y ∈ |K| is arbitrary. Then, by Lemma 4.2. there exists
unique simplex σ of K such that y ∈ Intσ. There are exactly two
mutually exclusive possibilities -
1) either x ∈ σ or
2) x /∈ σ.
We will show that y ∈ St(x) if and only if case 1) is true and y ∈ |L|
if and only if the case 2) is true. This will prove that |K| is a disjoint
union of the sets St(x) and |L|, so St(x) = |K| \ |L|.

Since, by Lemma 4.7, the simplicial interiors of the simplices of a sim-
plicial complex are always disjoint, the inclusion y ∈ St(x) is true if
and only if x ∈ σ where σ is the unique simplex that contains y as an
interior point. Hence y ∈ St(x) if and only if x ∈ σ.

To prove the second claim we first assume that x /∈ σ. Then, by the def-
inition of L, the simplex σ ∈ L, and, since y ∈ σ, it follows that y ∈ |L|.

Conversely suppose y ∈ |L|. Then there exists a simplex σ′ such that
y ∈ σ′ and x /∈ σ′ (i.e. σ′ ∈ L). Now consider an intersection σ ∩ σ′. It
is not empty, since y belongs to it. By the definition of the simplicial
complex this intersection thus has to be a common face of both σ and
σ′. On the other hand this intersection contains y, which is an interior
point of σ. The only face of σ which intersects the interior of σ is σ
itself. Hence σ ∩ σ′ = σ, in particular σ ⊂ σ′. It follows that x /∈ σ,
since otherwise x ∈ σ′, which contradicts our assumptions. Hence we
have shown that x /∈ σ if and only if y ∈ |L|, which is what we wanted
to prove. The claim

St(x) = |K| \ |L|

is now proved, and, as we already noticed, this implies that St(x) is
open.

Clearly x belongs to St(x), since there exists (unique) simplex σ of K
such that x ∈ Intσ and then

x ∈ Intσ ⊂ St(x).

b) The equation

St(x) =
∪

{Intσ | car(x) < σ}
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obviously follows once we show that an arbitrary simplex σ of K con-
tains x if and only if σ′ = car(x) is a face of σ. This is the same
argument we have already seen in the proof of a) above. Namely if
σ′ ⊂ σ, then trivially

x ∈ σ′ ⊂ σ,

so x ∈ σ. Conversely suppose x ∈ σ. Then the intersection σ′ ∩ σ
is non-empty, so is a common face of both σ and σ′. On the other
hand this intersection contains x, which is an interior point of σ′. The
only face of σ′ which intersects the interior of σ′ is σ itself. Hence
σ∩σ′ = σ′, in particular σ′ is a face of σ which is what we had to show.
The equation∪

{Intσ | car(x) < σ} =
∪

{Intσ | v0, . . . ,vn are vertices of σ}

is obvious, since v0, . . . ,vn are exactly the vertices of car(x), by as-
sumption.

c) Suppose σ is a simplex of K. As we have already seen above σ
contains x if and only if car(x) is a face of σ i.e. if and only if v0, . . . ,vn

are all vertices of σ. Vertex v belongs to σ if and only if

Intσ ⊂ St(v).

It follows that

Intσ ⊂
n∩

i=0

St(vi)

if and only if v0, . . . ,vn are all vertices of σ. Since the simplicial inte-
riors are disjoint, this implies that

St(x) =
n∩

i=0

St(vi).

5. The covering X = (Xi)i∈I of the topological space X is called locally
finite if every point x ∈ X has a neighbourhood U , which intersects
only a finite amount of the elements of the covering X. Formally this
means that the subset J of the index set I defined by

J = {i ∈ I | U ∩Xi ̸= ∅}

is finite. CoveringX is called closed if all elements ofX are closed in X.
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Prove that is X = (Xi)i∈I is a closed and locally finite covering of X,
then the topology of X is coherent with the family X.

Give an example of a closed covering X of a topological space X such
that the topology of X is not coherent with X.

Solution: Suppose V is a subset of X such that V ∩Xi is open in Xi

for all i ∈ I. We need to show that V is open in X. It is enough to
show that F = X \V is closed in X. This is equivalent to showing that
F ⊂ F .

Suppose x ∈ F . Let U be a neighbourhood of x that intersects only a
finite amount of the sets Xi. Suppose W is an arbitrary neighbourhood
of x. Then U ∩ W is also a neigbourhood of x, so it intersects F . It
follows that an arbitrary neighbourhood W of x intersects F ∩ U . In
other words

x ∈ F ∩ U.

Since V ∩Xi is open in Xi, its compliment in Xi

Fi = Xi \ (U ∩Xi) = (X \ U) ∩Xi = F ∩Xi

is closed in Xi for every i ∈ I. This means that

Fi = Xi ∩Gi,

where Gi is some closed subset of X. However Xi is assumed to be
closed for every i ∈ I, so the intersection Xi ∩ Gi is closed in X. In
other words Fi is closed for all i ∈ I. Now

F ∩ U =
∪
i∈I

(Fi ∩ U) =
n∪

j=1

Fj ∩ U.

Here we have used the fact that U intersect only finitely many of the
sets Xi, so in particular only finitely many Fi.Above we denote these
Fi that intersect U by f1, . . . , Fn. We have that

x ∈ F ∩ U =
n∪

j=1

Fj ∩ U =
n∪

j=1

Fj ∩ U ⊂
n∪

j=1

Fj =
n∪

j=1

Fj ⊂ F.

Here we have used Proposition 3.17(4) - finite union of closures is the
closure of unions.
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An example which shows that the assumption of local finiteness is es-
sential - let Xx = {x} be a singleton for every x ∈ R. Then the
collection X = (Xx)x∈R is a closed covering of R. However the stan-
dard topology of R is not coherent with X. Actually for every subset
U of R we have that U ∩Xx is either an empty set or a singleton Xx,
which is open in Xx, but U need not to be open in R. If this family
would be coherent then the topology of R would be discrete.

6. Show that every open subset of R can be triangulated (as a topological
space). (Hint: previous exercise might come in handy).

Solution: Suppose U ⊂ R is open. First we show that all connected
components of U are open intervals (possibly unbounded). This is seen
as following. Suppose x ∈ U and let C be a component of x in U . Since
the connected subsets of R are intervals (Proposition 3.13(4)), C is an
interval. This interval cannot contain its endpoints. Indeed suppose C
contains its left end-point c. Then c ∈ U , so, since U is open, there
exists an interval ]a, b[ such that

c ∈]a, b[⊂ U.

It is clear that the union ]a, b[∪C is an interval, hence connected. More-
over it contains c and is bigger than C. But that contradicts the max-
imality of C, as a component. Hence C must be an open interval.

Since every space is a disjoint union of its components, we have that

U =
∪
i∈I

]ai, bi[,

where union is disjoint (and for some i we can have ai = −∞ or
bi = ∞). In fact it can be shown that this union is at most count-
able, but we do not need that fact).

For every i ∈ I we can choose an increasing sequence

. . . < a−n
i < a−n+1

i < . . . < a−1
i < a0i < a1i < . . . < ani < an+1

i < . . .

unlimited in both directions, so that

lim
n→∞

a−n
i = ai,
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lim
n→∞

ani = bi.

It is clear that
]ai, bi[=

∪
j∈Z

[aji , a
j+1
i ],

U =
∪

i∈I,j∈Z

]ai, bi[.

The family ([aji , a
j+1
i ])i∈I,j∈Z is easily seen to be locally finite. Since this

family is also a closed cover of C, the topology of C is coherent with
this family.

The collectionK = ([aji , a
j+1
i ])i∈I,j∈Z of 1-simplices and all their vertices

is a simplicial complex - different simplices intersect, by construction,
in their vertices only, at most. The polyhedron |K| of this complex
is precisely U . Also its weak topology is (by local finiteness of the
cover K) the same as the standard topology of U . So this complex is
a triangulation of U .
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