Department of Mathematics and Statistics

 Introduction to Algebraic topology, fall 2013
Exercises 3-Solutions

1. a) Prove that the standard simplex

$$
\Delta_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{i} \geq 0 \text { for all } i, \sum_{i=1}^{n} x_{i} \leq 1\right\}
$$

is a closed and bounded, hence compact, subset of \mathbb{R}^{n}.
b) Show that the topological interior of the standard simplex Δ_{n} with respect to \mathbb{R}^{n} coincides with its simplicial interior Int σ, and the same is true for topological/simplicial boundaries.

Solution: a) First we show that Δ_{n} is closed in \mathbb{R}^{n}. Consider the mappings $p r_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}, j=1, \ldots, n$, defined by

$$
\begin{gathered}
p r_{j}\left(x_{1}, \ldots, x_{j}, \ldots, x_{n}\right)=x_{j}, \\
g\left(x_{1}, \ldots, x_{j}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i} .
\end{gathered}
$$

From the basic topology and/or calculus courses we know that these mappings are continuous. Indeed mappings $p r_{j}$ are just (linear) projections and g is a sum of these projections (the sum of continuous real-valued functions is continuous).
Inverse images of closed sets with respect to continuous mappings are closed (Lemma 3.2.), so the subsets

$$
\begin{gathered}
F_{j}=p r_{j}^{-1}\left(\left[0, \infty[)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{j} \geq 0\right\}, j=1, \ldots, n,\right.\right. \\
\left.\left.F_{j+1}=g^{-1}(]-\infty, 1\right]\right)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} x_{i} \leq 1\right\}
\end{gathered}
$$

of \mathbb{R}^{n} are all closed. Since

$$
\Delta_{n}=\bigcap_{i=1}^{n+1} F_{j},
$$

simplex Δ_{n} is closed as an intersection of closed sets.

Next we present three ways to see that Δ_{n} is bounded.
Proof 1: Direct straightforward estimate. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \Delta_{n}$. Then $x_{i} \geq 0$ for all $i=1, \ldots, n$ and $\sum_{i=1}^{n} x_{i} \leq 1$. This implies that

$$
0 \leq x_{i} \leq \sum_{i=1}^{n} x_{i} \leq 1
$$

for all $i=1, \ldots, n$. Hence

$$
|\mathbf{x}|^{2}=\sum_{i=1}^{n} x_{i}^{2} \leq \sum_{i=1}^{n} 1^{2}=n,
$$

in other words $|\mathrm{x}| \leq \sqrt{n}$. This is true for every $\mathrm{x} \in \Delta_{n}$.

Proof 2: A better estimate follows from observation that since we already know that $0 \leq x_{i} \leq 1$ for all $i=1, \ldots, n$, when $\mathbf{x} \in \Delta_{n}$, then in particular

$$
x_{i}^{2} \leq x_{i} \leq 1
$$

for all $i=1, \ldots, n$. Hence

$$
|\mathbf{x}|^{2}=\sum_{i=1}^{n} x_{i}^{2} \leq \sum_{i=1}^{n} x_{i}=1
$$

in other words $|\mathbf{x}| \leq 1$. This is true for every $\mathbf{x} \in \Delta_{n}$.
Proof 3: Finally there is an abstract way to obtain the inclusion

$$
\Delta_{n} \subset \bar{B}^{n}(\overline{0}, 1)
$$

directly, using the theory of convex sets. Indeed all the vertices $\mathbf{e}_{0}, \mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ of a simplex Δ_{n} belong to the closed unit ball $\bar{B}^{n}(\overline{0}, 1)$ centred at origin. This ball is convex. Since Δ_{n} by definition is the smallest convex set containing its vertices, we obtain the inclusion

$$
\Delta_{n} \subset \bar{B}^{n}(\overline{0}, 1)
$$

b) It is easy to verify that the simplicial interior of Δ_{n} is exactly the set

$$
\text { Int } \Delta_{n}=U=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{i}>0 \text { for all } i, \sum_{i=1}^{n} x_{i}<1\right\}
$$

Using the mappings $p r_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}, j=1, \ldots, n$,

$$
\begin{aligned}
& p r_{j}\left(x_{1}, \ldots, x_{j}, \ldots, x_{n}\right)=x_{j}, \\
& g\left(x_{1}, \ldots, x_{j}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}
\end{aligned}
$$

already defined in a) above, we see that we can represent U as a finite intersection

$$
U=\bigcap_{i=1}^{n+1} V_{j},
$$

where

$$
\begin{gathered}
V_{j}=p r_{j}^{-1}(] 0, \infty[)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{j}>0\right\}, j=1, \ldots, n, \\
\left.\left.V_{j+1}=g^{-1}(]-\infty, 1\right]\right)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} x_{i}<1\right\}
\end{gathered}
$$

are open as the inverse images of open subsets of \mathbb{R} under continuous mappings. Since a finite intersection of open sets is open, U is open in \mathbb{R}^{n}. Hence U is an open subset of Δ_{n}. Topological interior is the biggest open subset of Δ_{n} (Proposition 3.17(1)), so this implies that

$$
U=\operatorname{Int} \Delta_{n} \subset \operatorname{int} \Delta_{n} .
$$

Next we prove the converse inclusion int $\Delta_{n} \subset \operatorname{Int} \Delta_{n}$. Suppose $\mathbf{x}=$ $\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{int} \Delta_{n}$, where the interior is with respect to \mathbb{R}^{n}. We have to show that $x_{i}>0$ for all $i=1, \ldots, n$ and that $\sum_{i=1}^{n} x_{i}<1$. We do this using counter-assumptions. Suppose $x_{i}=0$ for some $i=1, \ldots, n$. Then, for every positive ε, an ε-neighbourhood of \mathbf{x} obviously contains a point

$$
\mathbf{x}-\varepsilon_{i} / 2=\left(x_{1}, \ldots,-\varepsilon / 2, \ldots, x_{n}\right)
$$

which is not an element of Δ_{n} (one of the coordinates is negative). This contradicts the assumption $\mathbf{x} \in \operatorname{int} \Delta_{n}$. Hence we must have $x_{i}>0$ for all $i=1, \ldots, n$.
Suppose $\sum_{i=1}^{n} x_{i}=1$ (counter-assumption). Then for every positive ε, an ε-neighbourhood of \mathbf{x} obviously contains a point

$$
\mathbf{x}+\varepsilon_{1} / 2=\left(x_{1}+\varepsilon / 2, \ldots, x_{n}\right),
$$

which is not an element of Δ_{n}, since for this point the sum of coordinates is

$$
\sum_{i=1}^{n} x_{i}+\varepsilon / 2=1+\varepsilon / 2>1
$$

Again, we obtain the contradiction with the assumption $\mathrm{x} \in \operatorname{int} \Delta_{n}$. Thus we also must have $\sum_{i=1}^{n} x_{i}<1$. We have shown that every point of int Δ_{n} belongs to the simplicial interior U of Δ_{n}.
2. Suppose C is a compact convex subset of \mathbb{R}^{n} such that $\mathbf{0} \in \operatorname{int} C$. Let $f: \partial C \rightarrow S^{n-1}$ be the mapping

$$
f(\mathbf{x})=\frac{\mathbf{x}}{|\mathbf{x}|},
$$

which we have shown to be a homeomorphism in the proof of Theorem 3.20. Prove that the mapping $G: \bar{B}^{k} \rightarrow C$ defined by

$$
G(\mathbf{t})=\left\{\begin{array}{l}
|\mathbf{t}| \cdot\left(f^{-1} \frac{\mathbf{t}}{|\mathrm{t}|}\right) \text { if } \mathbf{t} \neq \mathbf{0} \\
\mathbf{0}, \text { if } \mathbf{t}=\mathbf{0}
\end{array}\right.
$$

is a continuous bijection.

Solution: Let us start by showing that G is actually well-defined, i.e. $G(\mathbf{t}) \in C$ for all $\mathbf{t} \in \bar{B}^{k}$. If $\mathbf{t}=\mathbf{0}$, then $G(\mathbf{t})=\mathbf{0} \in C$ by assumption. Suppose $\mathbf{t} \neq \mathbf{0}$. Then, by assumptions on the mapping f, the element $f^{-1}\left(\frac{\mathbf{t}}{|t|}\right)=\mathbf{y}$ is well-defined (since $\frac{\mathbf{t}}{|\mathbf{t}|} \in S^{k-1}$ and is an element of $\partial C \subset C$ (last inclusion - because C is closed). Also, $t=|\mathbf{t}| \in] 0,1]$, so

$$
G(\mathbf{t})=t \cdot \mathbf{y}=(1-t) \mathbf{0}+t \cdot \mathbf{y} \in C
$$

by the convexity of C. We have shown that G is well-defined.

Next we show that G is continuous. It is clear that the restriction of G on the open subset $\bar{B}^{k} \backslash\{\mathbf{0}\}$ (the punctured ball) is continuous (its formula is a combination of continuous operations including f^{-1}. It follows that G is continuous at every point of $\bar{B}^{k} \backslash\{\mathbf{0}\}$ (openess of this set is essential here, a mapping the restriction of which is continuous in a neighbourhood of a point is continuous at this point). It remains to show the continuity of G in the origin. Let $\mathbf{t} \in \bar{B}^{k}$. Then

$$
|G(\mathbf{t})-G(\mathbf{0})|=|G(\mathbf{t})|=|\mathbf{t}|\left|f^{-1} \frac{\mathbf{t}}{|\mathbf{t}|}\right| \leq K|\mathbf{t}|<\varepsilon
$$

when $|\mathbf{t}|<\varepsilon / K$. Here $K>0$ is chosen so that

$$
C \subset B(\mathbf{0}, K) .
$$

Such K exists because C is assumed to be bounded. This calculation implies that G is also continuous at origin, so we are done with continuity.

Next we show injectivity of G. It is clear that only origin maps to origin. Indeed if $\mathbf{t} \neq \mathbf{0}$, then both $|\mathbf{t}| \neq 0$ and $f^{-1} \frac{\mathbf{t}}{|\mathbf{t}|} \neq \mathbf{0}$, being an element of the boundary ∂C (which do not contain origin, since we are assuming that origin is an interior point of C).

Suppose

$$
G(\mathbf{t})=|\mathbf{t}| \cdot\left(f^{-1} \frac{\mathbf{t}}{|\mathbf{t}|}\right)=\mathbf{x}=|\mathbf{s}| \cdot\left(f^{-1} \frac{\mathbf{s}}{|\mathbf{s}|}\right)=G(\mathbf{s})
$$

for some $\mathbf{t}, \mathbf{s} \in \bar{B}^{k} \backslash\{\mathbf{0}\}$. Then

$$
\begin{gathered}
\frac{\mathbf{x}}{|\mathbf{t}|}=f^{-1} \frac{\mathbf{t}}{|\mathbf{t}|} \text { and } \\
\frac{\mathbf{x}}{|\mathbf{s}|}=f^{-1} \frac{\mathbf{s}}{|\mathbf{s}|}
\end{gathered}
$$

By definition f^{-1} maps onto ∂C, so both $\mathbf{x} /|\mathbf{t}|$ and $\mathbf{x} /|\mathbf{s}|$ belong to the boundary of C. According to Lemma 3.19 (applied to $\mathbf{0} \in \operatorname{int} C$), however, there exist unique $a>0$ such that a point of the form $a \mathrm{x} \in$ ∂C. This implies that

$$
|\mathbf{t}|=|\mathbf{s}|,
$$

which in turn implies that

$$
f^{-1} \frac{\mathbf{t}}{|\mathbf{t}|}=\frac{\mathbf{x}}{|\mathbf{t}|}=\frac{\mathbf{x}}{|\mathbf{s}|}=f^{-1} \frac{\mathbf{s}}{|\mathbf{s}|} .
$$

Being an inverse of a bijection, f^{-1} is a bijection itself, in particular injection. Hence we have that

$$
\frac{\mathrm{t}}{|\mathrm{t}|}=\frac{\mathrm{s}}{|\mathrm{~s}|}=\frac{\mathrm{s}}{|\mathrm{t}|}
$$

so $\mathbf{t}=\mathbf{s}$. We have shown that G is an injection.

Next we show that G is a surjection. Let $\mathbf{x} \in C$ be arbitrary. If $\mathbf{x}=\mathbf{0}$, then $G(\mathbf{0})=\mathbf{x}$. Suppose $\mathbf{x} \neq \mathbf{0}$. By Lemma 3.19 there exist unique $r \in] 0,1]$ and $\mathbf{y} \in \partial C$ such that $\mathbf{x}=r \mathbf{y}$. Then

$$
\mathbf{t}=r \frac{\mathbf{x}}{|\mathbf{x}|}
$$

is an element of the closed ball \bar{B}^{k} and

$$
\begin{gathered}
\frac{\mathbf{t}}{|\mathbf{t}|}=\frac{\mathbf{x}}{|\mathbf{x}|}=\frac{\mathbf{y}}{|\mathbf{y}|}, \\
|\mathbf{t}|=r
\end{gathered}
$$

It follows that

$$
f(\mathbf{y})=\frac{\mathbf{y}}{|\mathbf{y}|}=\frac{\mathbf{t}}{|\mathbf{t}|}
$$

SO

$$
f^{-1}\left(\frac{\mathbf{t}}{|\mathbf{t}|}\right)=\mathbf{y}
$$

This implies that

$$
G(\mathbf{t})=|\mathbf{t}| f^{-1}\left(\frac{\mathbf{t}}{|\mathbf{t}|}\right)=r \mathbf{y}=\mathbf{x}
$$

The surjectivity is proved.
3. Let K_{0} be the set consisting of all possible sets of the form

$$
\operatorname{conv}\left(\mathbf{e}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right) \subset \mathbb{R}^{n}
$$

where $\mathbf{v}_{i} \in\left\{\mathbf{e}_{i},-\mathbf{e}_{i}\right\}$ for $i=1, \ldots, n$.
a) Show that K_{0} is a collection of simplices of \mathbb{R}^{n}, but is not a simplicial complex.
b) Let K be the collection of all faces of simplices in K_{0}. Show that K is a simplicial complex. What is a polyhedron $|K|$ of K ?
c) Show that K has a subcomplex L such that the (topological) boundary of $|K|$ in \mathbb{R}^{n} is a polyhedron $|L|$ of L. How many $(n-1)$-dimensional simplices L contains?

Solution: a) First we need to show that every sequence of the form $\left(\mathbf{e}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$, where $\mathbf{v}_{i} \in\left\{\mathbf{e}_{i},-\mathbf{e}_{i}\right\}$ is affinely independent. By Lemma 2.10 this is equivalent to the linear independence of the sequence

$$
\left(\mathbf{v}_{1}-\mathbf{e}_{0}, \ldots, \mathbf{v}_{n}-\mathbf{e}_{0}\right)
$$

This is simply the sequence $\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ and the fact that it is linearly independent is simple linear algebra exercise.

Hence K_{0} is indeed a collection of simplices. It is obviously not closed under faces (unless we are talking about the degenerate case $n=0$),
so it cannot be a simplicial complex.
b) K is obviously closed under faces by its definition (a face of a face of σ is a face of σ itself). To prove that K is a simplicial complex it is enough, by Lemma 4.2., to show that every point \mathbf{x} of the union

$$
|K|=\bigcup_{\sigma \in K} \sigma
$$

belongs to the simplicial interior $\operatorname{Int} \sigma$ for unique $\sigma \in K$. Since we are asked to determine the polyhedron $|K|$ anyway, we start by examining what is $|K|$. Suppose $\mathbf{x} \in|K|$. Then $\mathbf{x} \in \sigma$ for some $\sigma \in K$ and since every such a simplex is a face of some simplex in K_{0}, we might as well assume that $\sigma \in K_{0}$. Then

$$
\mathbf{x}=t_{0} \mathbf{e}_{0}+t_{1} \mathbf{v}_{1}+\ldots+t_{n} \mathbf{v}_{n}
$$

for some (unique) scalars $t_{0}, \ldots, t_{n} \geq 0, t_{0}+\ldots+t_{n}=1$. Since $\mathbf{v}_{i} \in$ $\left\{\mathbf{e}_{i},-\mathbf{e}_{i}\right\}$ for all $i=1, \ldots, n$, this equation implies that

$$
\left(x_{1}, \ldots, x_{n}\right)=\mathbf{x}=\left(\pm t_{1}, \pm t_{2}, \ldots, \pm t_{n}\right)
$$

Since all scalars t_{i} are non-negative, this is equivalent to $t_{i}=\left|x_{i}\right|$ for all $i=1, \ldots, n$. It follows that

$$
\sum_{i=1}^{n}\left|x_{i}\right|=\sum_{i=1}^{n} t_{i}=1-t_{0} \leq 1
$$

In other words we have shown that

$$
|K| \subset\left\{\mathbf{x} \in \mathbb{R}^{n}\left|\sum_{i=1}^{n}\right| x_{i} \mid \leq 1\right\}=X
$$

We show the opposite inclusion by showing that every point $\mathbf{x} \in X$ belongs to the simplicial interior of exactly one simplex of K. This will also automatically then conclude the proof of the claim that K is a simplicial complex.
Thus, let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ be an element of X, which means precisely that

$$
\sum_{i=1}^{n}\left|x_{i}\right| \leq 1
$$

Now if \mathbf{x} belongs to the simplex σ with vertices $\left(\mathbf{e}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$, where $\mathbf{v}_{i} \in\left\{\mathbf{e}_{i},-\mathbf{e}_{i}\right\}$ for $i=1, \ldots, n$, then

$$
\mathbf{x}=t_{0} \mathbf{e}_{0}+t_{1} \mathbf{v}_{1}+\ldots+t_{n} \mathbf{v}_{n}
$$

for some (unique) scalars $t_{0}, \ldots, t_{n} \geq 0, t_{0}+\ldots+t_{n}=1$, which, as we have seen above implies that $t_{i}=\left|x_{i}\right|$ for all $i=1, \ldots, n$. Moreover if $t_{i}>0, i=1, \ldots, n$ we must then have that $\mathbf{v}_{i}=\mathbf{e}_{i}$ exactly when $x_{i}>0$ and $\mathbf{v}_{i}=-\mathbf{e}_{i}$ exactly when $x_{i}<0$. Finally

$$
t_{0}=1-\sum_{i=1}^{n} t_{i}=1-\sum_{i=1}^{n}\left|x_{i}\right|,
$$

so $t_{0}=0$ if and only if

$$
\mathbf{x} \in \partial X=\left\{\mathbf{x} \in \mathbb{R}^{n}\left|\sum_{i=1}^{n}\right| x_{i} \mid=1\right\}
$$

(the fact that the topological boundary of X with respect to \mathbb{R}^{n} is exactly this set is proved similarly to the proofs concerning interior and boundary of a standard simplex in exercise 1 b above).

It follows that

1) \mathbf{x} belongs to the interior of face of σ which vertices include \mathbf{e}_{i} if and only if $x_{i}>0,-\mathbf{e}_{i}$ if and only if $x_{i}>0, i=1, \ldots, n$, and also by \mathbf{e}_{0} if and only if $\mathbf{x} \in \partial X$.
2) Suppose \mathbf{x} belongs to the interior of a face of a simplex σ of K_{0}. Then this simplex is exactly the simplex spanned by the vectors \mathbf{e}_{i} if and only if $x_{i}>0,-\mathbf{e}_{i} \mathrm{f}$ if and only if $x_{i}>0, i=1, \ldots, n$, and also by \mathbf{e}_{0} if and only if $\mathbf{x} \in \partial X$.

We have both shown that

$$
|K|=\left\{\mathbf{x} \in \mathbb{R}^{n}\left|\sum_{i=1}^{n}\right| x_{i} \mid \leq 1\right\} .
$$

and proved that K is a simplicial complex.
c) The topological boundary $\partial|K|$ of the polyhedron $|K|$ is a subset

$$
\left\{\mathbf{x} \in \mathbb{R}^{n}\left|\sum_{i=1}^{n}\right| x_{i} \mid=1\right\}
$$

By the considerations above this set is exactly a polyhedron $|L|$ of the simplicial subcomplex L of K spanned by all the faces of simplices that have the form $\operatorname{conv}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$, where $\mathbf{v}_{i} \in\left\{\mathbf{e}_{i},-\mathbf{e}_{i}\right\}$ for $i=1, \ldots, n$. In other words L is defined as K, but without references to the origin \mathbf{e}_{0}.

Since for every $i=1, \ldots, n$ there is exactly 2 choices for \mathbf{v}_{i}, L contains exactly 2^{n} simplices of dimension $(n-1)$.

Note: K is a triangulation of the closed ball \bar{B}^{n} and L is a triangulation of the sphere S^{n-1}.
4. Suppose K is a simplicial complex and let $\mathbf{x} \in|K|$. By Lemma 4.2. there exists a unique simplex $\operatorname{car}(\mathbf{x}) \in K$ which contains \mathbf{x} as an interior point.
We also define the star of \mathbf{x} to be the union of all simplicial interiors of simplices that contain \mathbf{x}, in other words

$$
\operatorname{St}(\mathbf{x})=\bigcup\{\operatorname{Int} \sigma \mid \mathbf{x} \in \sigma\} .
$$

Denote the vertices of $\operatorname{car}(x)$ by $\mathbf{v}_{0}, \ldots, \mathbf{v}_{n}$. Prove that
a) $\operatorname{St}(\mathbf{x})$ is an open neighbourhood of \mathbf{x} in $|K|$.
b)

$$
\operatorname{St}(\mathbf{x})=\bigcup\{\operatorname{Int} \sigma \mid \operatorname{car}(\mathbf{x})<\sigma\}=\bigcup\left\{\operatorname{Int} \sigma \mid \mathbf{v}_{0}, \ldots, \mathbf{v}_{n} \text { are vertices of } \sigma\right\} .
$$

c)

$$
\operatorname{St}(\mathbf{x})=\bigcap_{i=0}^{n} \operatorname{St}\left(\mathbf{v}_{i}\right) .
$$

Solution: a) Let us define the subset of K

$$
L=\{\sigma \in K \mid \mathbf{x} \notin \sigma\} .
$$

The subset L is obviously closed under faces (if a simplex does not con$\operatorname{tain} \mathbf{x}$, any face of it cannot contain \mathbf{x} either). Thus L is a subcomplex of K. We show that

$$
\mathrm{St}(\mathbf{x})=|K| \backslash|L| .
$$

This would imply that $\operatorname{St}(\mathbf{x})$ is open in $|K|$, since, by Lemma 4.7, a polyhedron $|L|$ of a subcomplex L of K is always closed in $|K|$.

Suppose $\mathbf{y} \in|K|$ is arbitrary. Then, by Lemma 4.2. there exists unique simplex σ of K such that $\mathbf{y} \in \operatorname{Int} \sigma$. There are exactly two mutually exclusive possibilities -

1) either $x \in \sigma$ or
2) $\mathbf{x} \notin \sigma$.

We will show that $\mathbf{y} \in \operatorname{St}(\mathbf{x})$ if and only if case 1$)$ is true and $\mathbf{y} \in|L|$ if and only if the case 2) is true. This will prove that $|K|$ is a disjoint union of the sets $\operatorname{St}(\mathbf{x})$ and $|L|$, so $\operatorname{St}(\mathbf{x})=|K| \backslash|L|$.

Since, by Lemma 4.7, the simplicial interiors of the simplices of a simplicial complex are always disjoint, the inclusion $\mathbf{y} \in \operatorname{St}(\mathbf{x})$ is true if and only if $\mathbf{x} \in \sigma$ where σ is the unique simplex that contains \mathbf{y} as an interior point. Hence $\mathbf{y} \in \operatorname{St}(\mathbf{x})$ if and only if $\mathbf{x} \in \sigma$.

To prove the second claim we first assume that $\mathbf{x} \notin \sigma$. Then, by the definition of L, the simplex $\sigma \in L$, and, since $\mathbf{y} \in \sigma$, it follows that $\mathbf{y} \in|L|$.

Conversely suppose $\mathbf{y} \in|L|$. Then there exists a simplex σ^{\prime} such that $\mathbf{y} \in \sigma^{\prime}$ and $\mathbf{x} \notin \sigma^{\prime}$ (i.e. $\sigma^{\prime} \in L$). Now consider an intersection $\sigma \cap \sigma^{\prime}$. It is not empty, since \mathbf{y} belongs to it. By the definition of the simplicial complex this intersection thus has to be a common face of both σ and σ^{\prime}. On the other hand this intersection contains \mathbf{y}, which is an interior point of σ. The only face of σ which intersects the interior of σ is σ itself. Hence $\sigma \cap \sigma^{\prime}=\sigma$, in particular $\sigma \subset \sigma^{\prime}$. It follows that $\mathbf{x} \notin \sigma$, since otherwise $\mathbf{x} \in \sigma^{\prime}$, which contradicts our assumptions. Hence we have shown that $\mathbf{x} \notin \sigma$ if and only if $\mathbf{y} \in|L|$, which is what we wanted to prove. The claim

$$
\operatorname{St}(\mathbf{x})=|K| \backslash|L|
$$

is now proved, and, as we already noticed, this implies that $\operatorname{St}(\mathbf{x})$ is open.

Clearly \mathbf{x} belongs to $\mathrm{St}(\mathbf{x})$, since there exists (unique) simplex σ of K such that $\mathbf{x} \in \operatorname{Int} \sigma$ and then

$$
\mathbf{x} \in \operatorname{Int} \sigma \subset \operatorname{St}(\mathbf{x}) .
$$

b) The equation

$$
\operatorname{St}(\mathbf{x})=\bigcup\{\operatorname{Int} \sigma \mid \operatorname{car}(\mathbf{x})<\sigma\}
$$

obviously follows once we show that an arbitrary simplex σ of K contains \mathbf{x} if and only if $\sigma^{\prime}=\operatorname{car}(\mathbf{x})$ is a face of σ. This is the same argument we have already seen in the proof of a) above. Namely if $\sigma^{\prime} \subset \sigma$, then trivially

$$
\mathbf{x} \in \sigma^{\prime} \subset \sigma
$$

so $\mathbf{x} \in \sigma$. Conversely suppose $\mathbf{x} \in \sigma$. Then the intersection $\sigma^{\prime} \cap \sigma$ is non-empty, so is a common face of both σ and σ^{\prime}. On the other hand this intersection contains \mathbf{x}, which is an interior point of σ^{\prime}. The only face of σ^{\prime} which intersects the interior of σ^{\prime} is σ itself. Hence $\sigma \cap \sigma^{\prime}=\sigma^{\prime}$, in particular σ^{\prime} is a face of σ which is what we had to show. The equation

$$
\bigcup\{\operatorname{Int} \sigma \mid \operatorname{car}(\mathbf{x})<\sigma\}=\bigcup\left\{\operatorname{Int} \sigma \mid \mathbf{v}_{0}, \ldots, \mathbf{v}_{n} \text { are vertices of } \sigma\right\}
$$

is obvious, since $\mathbf{v}_{0}, \ldots, \mathbf{v}_{n}$ are exactly the vertices of $\operatorname{car}(\mathbf{x})$, by assumption.
c) Suppose σ is a simplex of K. As we have already seen above σ contains \mathbf{x} if and only if $\operatorname{car}(\mathbf{x})$ is a face of σ i.e. if and only if $\mathbf{v}_{0}, \ldots, \mathbf{v}_{n}$ are all vertices of σ. Vertex \mathbf{v} belongs to σ if and only if

$$
\operatorname{Int} \sigma \subset \operatorname{St}(\mathbf{v}) .
$$

It follows that

$$
\operatorname{Int} \sigma \subset \bigcap_{i=0}^{n} \operatorname{St}\left(\mathbf{v}_{i}\right)
$$

if and only if $\mathbf{v}_{0}, \ldots, \mathbf{v}_{n}$ are all vertices of σ. Since the simplicial interiors are disjoint, this implies that

$$
\operatorname{St}(\mathbf{x})=\bigcap_{i=0}^{n} \operatorname{St}\left(\mathbf{v}_{i}\right) .
$$

5. The covering $\mathbf{X}=\left(X_{i}\right)_{i \in I}$ of the topological space X is called locally finite if every point $x \in X$ has a neighbourhood U, which intersects only a finite amount of the elements of the covering \mathbf{X}. Formally this means that the subset J of the index set I defined by

$$
J=\left\{i \in I \mid U \cap X_{i} \neq \emptyset\right\}
$$

is finite. Covering \mathbf{X} is called closed if all elements of \mathbf{X} are closed in X.

Prove that is $\mathbf{X}=\left(X_{i}\right)_{i \in I}$ is a closed and locally finite covering of X, then the topology of X is coherent with the family \mathbf{X}.

Give an example of a closed covering \mathbf{X} of a topological space X such that the topology of X is not coherent with \mathbf{X}.

Solution: Suppose V is a subset of X such that $V \cap X_{i}$ is open in X_{i} for all $i \in I$. We need to show that V is open in X. It is enough to show that $F=X \backslash V$ is closed in X. This is equivalent to showing that $\bar{F} \subset F$.

Suppose $x \in \bar{F}$. Let U be a neighbourhood of x that intersects only a finite amount of the sets X_{i}. Suppose W is an arbitrary neighbourhood of x. Then $U \cap W$ is also a neigbourhood of x, so it intersects F. It follows that an arbitrary neighbourhood W of x intersects $F \cap U$. In other words

$$
x \in \overline{F \cap U}
$$

Since $V \cap X_{i}$ is open in X_{i}, its compliment in X_{i}

$$
F_{i}=X_{i} \backslash\left(U \cap X_{i}\right)=(X \backslash U) \cap X_{i}=F \cap X_{i}
$$

is closed in X_{i} for every $i \in I$. This means that

$$
F_{i}=X_{i} \cap G_{i},
$$

where G_{i} is some closed subset of X. However X_{i} is assumed to be closed for every $i \in I$, so the intersection $X_{i} \cap G_{i}$ is closed in X. In other words F_{i} is closed for all $i \in I$. Now

$$
F \cap U=\bigcup_{i \in I}\left(F_{i} \cap U\right)=\bigcup_{j=1}^{n} F_{j} \cap U
$$

Here we have used the fact that U intersect only finitely many of the sets X_{i}, so in particular only finitely many F_{i}.Above we denote these F_{i} that intersect U by f_{1}, \ldots, F_{n}. We have that

$$
x \in \overline{F \cap U}=\overline{\bigcup_{j=1}^{n} F_{j} \cap U}=\bigcup_{j=1}^{n} \overline{F_{j} \cap U} \subset \bigcup_{j=1}^{n} \overline{F_{j}}=\bigcup_{j=1}^{n} F_{j} \subset F
$$

Here we have used Proposition 3.17(4) - finite union of closures is the closure of unions.

An example which shows that the assumption of local finiteness is essential - let $X_{x}=\{x\}$ be a singleton for every $x \in \mathbb{R}$. Then the collection $\mathbf{X}=\left(X_{x}\right)_{x \in \mathbb{R}}$ is a closed covering of \mathbb{R}. However the standard topology of \mathbb{R} is not coherent with \mathbf{X}. Actually for every subset U of \mathbb{R} we have that $U \cap X_{x}$ is either an empty set or a singleton X_{x}, which is open in X_{x}, but U need not to be open in \mathbb{R}. If this family would be coherent then the topology of \mathbb{R} would be discrete.
6. Show that every open subset of \mathbb{R} can be triangulated (as a topological space). (Hint: previous exercise might come in handy).

Solution: Suppose $U \subset \mathbb{R}$ is open. First we show that all connected components of U are open intervals (possibly unbounded). This is seen as following. Suppose $\mathbf{x} \in U$ and let C be a component of \mathbf{x} in U. Since the connected subsets of \mathbb{R} are intervals (Proposition 3.13(4)), C is an interval. This interval cannot contain its endpoints. Indeed suppose C contains its left end-point c. Then $c \in U$, so, since U is open, there exists an interval $] a, b[$ such that

$$
c \in] a, b[\subset U .
$$

It is clear that the union $] a, b[\cup C$ is an interval, hence connected. Moreover it contains c and is bigger than C. But that contradicts the maximality of C, as a component. Hence C must be an open interval.

Since every space is a disjoint union of its components, we have that

$$
\left.U=\bigcup_{i \in I}\right] a_{i}, b_{i}[,
$$

where union is disjoint (and for some i we can have $a_{i}=-\infty$ or $\left.b_{i}=\infty\right)$. In fact it can be shown that this union is at most countable, but we do not need that fact).

For every $i \in I$ we can choose an increasing sequence

$$
\ldots<a_{i}^{-n}<a_{i}^{-n+1}<\ldots<a_{i}^{-1}<a_{i}^{0}<a_{i}^{1}<\ldots<a_{i}^{n}<a_{i}^{n+1}<\ldots
$$

unlimited in both directions, so that

$$
\lim _{n \rightarrow \infty} a_{i}^{-n}=a_{i},
$$

$$
\lim _{n \rightarrow \infty} a_{i}^{n}=b_{i} .
$$

It is clear that

$$
\begin{gathered}
] a_{i}, b_{i}\left[=\bigcup_{j \in \mathbb{Z}}\left[a_{i}^{j}, a_{i}^{j+1}\right],\right. \\
\left.U=\bigcup_{i \in I, j \in \mathbb{Z}}\right] a_{i}, b_{i}[.
\end{gathered}
$$

The family $\left(\left[a_{i}^{j}, a_{i}^{j+1}\right]\right)_{i \in I, j \in \mathbb{Z}}$ is easily seen to be locally finite. Since this family is also a closed cover of C, the topology of C is coherent with this family.

The collection $K=\left(\left[a_{i}^{j}, a_{i}^{j+1}\right]\right)_{i \in I, j \in \mathbb{Z}}$ of 1-simplices and all their vertices is a simplicial complex - different simplices intersect, by construction, in their vertices only, at most. The polyhedron $|K|$ of this complex is precisely U. Also its weak topology is (by local finiteness of the cover K) the same as the standard topology of U. So this complex is a triangulation of U.

