Department of Mathematics and Statistics Introduction to Algebraic topology, fall 2013 Exercises 3 - Solutions

1. a) Prove that the standard simplex

$$\Delta_n = \{ (x_1, \dots, x_n) \in \mathbb{R}^n \mid x_i \ge 0 \text{ for all } i, \sum_{i=1}^n x_i \le 1 \}$$

is a closed and bounded, hence compact, subset of \mathbb{R}^n .

b) Show that the topological interior of the standard simplex Δ_n with respect to \mathbb{R}^n coincides with its simplicial interior Int σ , and the same is true for topological/simplicial boundaries.

Solution: a) First we show that Δ_n is closed in \mathbb{R}^n . Consider the mappings $pr_j \colon \mathbb{R}^n \to \mathbb{R}, g \colon \mathbb{R}^n \to \mathbb{R}, j = 1, \ldots, n$, defined by

$$pr_j(x_1, \dots, x_j, \dots, x_n) = x_j,$$
$$g(x_1, \dots, x_j, \dots, x_n) = \sum_{i=1}^n x_i.$$

From the basic topology and/or calculus courses we know that these mappings are continuous. Indeed mappings pr_j are just (linear) projections and g is a sum of these projections (the sum of continuous real-valued functions is continuous).

Inverse images of closed sets with respect to continuous mappings are closed (Lemma 3.2.), so the subsets

$$F_j = pr_j^{-1}([0,\infty[) = \{(x_1,\ldots,x_n) \in \mathbb{R}^n \mid x_j \ge 0\}, j = 1,\ldots,n,$$
$$F_{j+1} = g^{-1}(] - \infty, 1]) = \{(x_1,\ldots,x_n) \in \mathbb{R}^n \mid \sum_{i=1}^n x_i \le 1\}$$

of \mathbb{R}^n are all closed. Since

$$\Delta_n = \bigcap_{i=1}^{n+1} F_j,$$

simplex Δ_n is closed as an intersection of closed sets.

Next we present three ways to see that Δ_n is bounded.

Proof 1: Direct straightforward estimate. Let $\mathbf{x} = (x_1, \ldots, x_n) \in \Delta_n$. Then $x_i \ge 0$ for all $i = 1, \ldots, n$ and $\sum_{i=1}^n x_i \le 1$. This implies that

$$0 \le x_i \le \sum_{i=1}^n x_i \le 1$$

for all $i = 1, \ldots, n$. Hence

$$|\mathbf{x}|^2 = \sum_{i=1}^n x_i^2 \le \sum_{i=1}^n 1^2 = n,$$

in other words $|\mathbf{x}| \leq \sqrt{n}$. This is true for every $\mathbf{x} \in \Delta_n$.

Proof 2: A better estimate follows from observation that since we already know that $0 \le x_i \le 1$ for all i = 1, ..., n, when $\mathbf{x} \in \Delta_n$, then in particular

$$x_i^2 \le x_i \le 1$$

for all $i = 1, \ldots, n$. Hence

$$|\mathbf{x}|^2 = \sum_{i=1}^n x_i^2 \le \sum_{i=1}^n x_i = 1,$$

in other words $|\mathbf{x}| \leq 1$. This is true for every $\mathbf{x} \in \Delta_n$.

Proof 3: Finally there is an abstract way to obtain the inclusion

$$\Delta_n \subset \overline{B}^n(\overline{0},1)$$

directly, using the theory of convex sets. Indeed all the vertices $\mathbf{e}_0, \mathbf{e}_1, \ldots, \mathbf{e}_n$ of a simplex Δ_n belong to the closed unit ball $\overline{B}^n(\overline{0}, 1)$ centred at origin. This ball is convex. Since Δ_n by definition is **the smallest** convex set containing its vertices, we obtain the inclusion

$$\Delta_n \subset \overline{B}^n(\overline{0},1)$$

b) It is easy to verify that the simplicial interior of Δ_n is exactly the set

Int
$$\Delta_n = U = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_i > 0 \text{ for all } i, \sum_{i=1}^n x_i < 1\}.$$

Using the mappings $pr_j \colon \mathbb{R}^n \to \mathbb{R}, g \colon \mathbb{R}^n \to \mathbb{R}, j = 1, \dots, n$,

$$pr_j(x_1, \dots, x_j, \dots, x_n) = x_j,$$
$$g(x_1, \dots, x_j, \dots, x_n) = \sum_{i=1}^n x_i$$

already defined in a) above, we see that we can represent U as a finite intersection

$$U = \bigcap_{i=1}^{n+1} V_j,$$

where

$$V_j = pr_j^{-1}(]0, \infty[) = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_j > 0\}, j = 1, \dots, n,$$
$$V_{j+1} = g^{-1}(]-\infty, 1]) = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid \sum_{i=1}^n x_i < 1\}$$

are open as the inverse images of open subsets of \mathbb{R} under continuous mappings. Since a finite intersection of open sets is open, U is open in \mathbb{R}^n . Hence U is an open subset of Δ_n . Topological interior is **the biggest** open subset of Δ_n (Proposition 3.17(1)), so this implies that

$$U = \operatorname{Int} \Delta_n \subset \operatorname{int} \Delta_n$$

Next we prove the converse inclusion int $\Delta_n \subset \text{Int } \Delta_n$. Suppose $\mathbf{x} = (x_1, \ldots, x_n) \in \text{int } \Delta_n$, where the interior is with respect to \mathbb{R}^n . We have to show that $x_i > 0$ for all $i = 1, \ldots, n$ and that $\sum_{i=1}^n x_i < 1$. We do this using counter-assumptions. Suppose $x_i = 0$ for some $i = 1, \ldots, n$. Then, for every positive ε , an ε -neighbourhood of \mathbf{x} obviously contains a point

$$\mathbf{x} - \varepsilon_i/2 = (x_1, \dots, -\varepsilon/2, \dots, x_n),$$

which is not an element of Δ_n (one of the coordinates is negative). This contradicts the assumption $\mathbf{x} \in \text{int } \Delta_n$. Hence we must have $x_i > 0$ for all $i = 1, \ldots, n$.

Suppose $\sum_{i=1}^{n} x_i = 1$ (counter-assumption). Then for every positive ε , an ε -neighbourhood of **x** obviously contains a point

$$\mathbf{x} + \varepsilon_1/2 = (x_1 + \varepsilon/2, \dots, x_n),$$

which is not an element of Δ_n , since for this point the sum of coordinates is

$$\sum_{i=1}^{n} x_i + \varepsilon/2 = 1 + \varepsilon/2 > 1.$$

Again, we obtain the contradiction with the assumption $\mathbf{x} \in \text{int } \Delta_n$. Thus we also must have $\sum_{i=1}^n x_i < 1$. We have shown that every point of int Δ_n belongs to the simplicial interior U of Δ_n .

2. Suppose C is a compact convex subset of \mathbb{R}^n such that $\mathbf{0} \in \operatorname{int} C$. Let $f: \partial C \to S^{n-1}$ be the mapping

$$f(\mathbf{x}) = \frac{\mathbf{x}}{|\mathbf{x}|},$$

which we have shown to be a homeomorphism in the proof of Theorem 3.20. Prove that the mapping $G \colon \overline{B}^k \to C$ defined by

$$G(\mathbf{t}) = \begin{cases} |\mathbf{t}| \cdot \left(f^{-1} \frac{\mathbf{t}}{|\mathbf{t}|} \right) \text{ if } \mathbf{t} \neq \mathbf{0} \\ \mathbf{0}, \text{ if } \mathbf{t} = \mathbf{0} \end{cases}$$

is a continuous bijection.

Solution: Let us start by showing that G is actually well-defined, i.e. $G(\mathbf{t}) \in C$ for all $\mathbf{t} \in \overline{B}^k$. If $\mathbf{t} = \mathbf{0}$, then $G(\mathbf{t}) = \mathbf{0} \in C$ by assumption. Suppose $\mathbf{t} \neq \mathbf{0}$. Then, by assumptions on the mapping f, the element $f^{-1}(\frac{\mathbf{t}}{|\mathbf{t}|}) = \mathbf{y}$ is well-defined (since $\frac{\mathbf{t}}{|\mathbf{t}|} \in S^{k-1}$ and is an element of $\partial C \subset C$ (last inclusion - because C is closed). Also, $t = |\mathbf{t}| \in [0, 1]$, so

$$G(\mathbf{t}) = t \cdot \mathbf{y} = (1 - t)\mathbf{0} + t \cdot \mathbf{y} \in C$$

by the convexity of C. We have shown that G is well-defined.

Next we show that G is continuous. It is clear that the restriction of G on the open subset $\overline{B}^k \setminus \{\mathbf{0}\}$ (the punctured ball) is continuous (its formula is a combination of continuous operations including f^{-1} . It follows that G is continuous at every point of $\overline{B}^k \setminus \{\mathbf{0}\}$ (openess of this set is essential here, a mapping the restriction of which is continuous in a **neighbourhood** of a point is continuous at this point). It remains to show the continuity of G in the origin. Let $\mathbf{t} \in \overline{B}^k$. Then

$$|G(\mathbf{t}) - G(\mathbf{0})| = |G(\mathbf{t})| = |\mathbf{t}||f^{-1}\frac{\mathbf{t}}{|\mathbf{t}|}| \le K|\mathbf{t}| < \varepsilon,$$

when $|\mathbf{t}| < \varepsilon/K$. Here K > 0 is chosen so that

$$C \subset B(\mathbf{0}, K).$$

Such K exists because C is assumed to be bounded. This calculation implies that G is also continuous at origin, so we are done with continuity.

Next we show injectivity of G. It is clear that only origin maps to origin. Indeed if $\mathbf{t} \neq \mathbf{0}$, then both $|\mathbf{t}| \neq 0$ and $f^{-1}\frac{\mathbf{t}}{|\mathbf{t}|} \neq \mathbf{0}$, being an element of the boundary ∂C (which do not contain origin, since we are assuming that origin is an interior point of C).

Suppose

$$G(\mathbf{t}) = |\mathbf{t}| \cdot \left(f^{-1} \frac{\mathbf{t}}{|\mathbf{t}|} \right) = \mathbf{x} = |\mathbf{s}| \cdot \left(f^{-1} \frac{\mathbf{s}}{|\mathbf{s}|} \right) = G(\mathbf{s})$$

for some $\mathbf{t}, \mathbf{s} \in \overline{B}^k \setminus \{\mathbf{0}\}$. Then

$$\frac{\mathbf{x}}{|\mathbf{t}|} = f^{-1} \frac{\mathbf{t}}{|\mathbf{t}|} \text{ and}$$
$$\frac{\mathbf{x}}{|\mathbf{s}|} = f^{-1} \frac{\mathbf{s}}{|\mathbf{s}|}.$$

By definition f^{-1} maps onto ∂C , so both $\mathbf{x}/|\mathbf{t}|$ and $\mathbf{x}/|\mathbf{s}|$ belong to the boundary of C. According to Lemma 3.19 (applied to $\mathbf{0} \in \operatorname{int} C$), however, there exist **unique** a > 0 such that a point of the form $a\mathbf{x} \in \partial C$. This implies that

$$|\mathbf{t}| = |\mathbf{s}|,$$

which in turn implies that

$$f^{-1}\frac{\mathbf{t}}{|\mathbf{t}|} = \frac{\mathbf{x}}{|\mathbf{t}|} = \frac{\mathbf{x}}{|\mathbf{s}|} = f^{-1}\frac{\mathbf{s}}{|\mathbf{s}|}.$$

Being an inverse of a bijection, f^{-1} is a bijection itself, in particular injection. Hence we have that

$$\frac{\mathbf{t}}{|\mathbf{t}|} = \frac{\mathbf{s}}{|\mathbf{s}|} = \frac{\mathbf{s}}{|\mathbf{t}|}$$

so $\mathbf{t} = \mathbf{s}$. We have shown that G is an injection.

Next we show that G is a surjection. Let $\mathbf{x} \in C$ be arbitrary. If $\mathbf{x} = \mathbf{0}$, then $G(\mathbf{0}) = \mathbf{x}$. Suppose $\mathbf{x} \neq \mathbf{0}$. By Lemma 3.19 there exist unique $r \in]0, 1]$ and $\mathbf{y} \in \partial C$ such that $\mathbf{x} = r\mathbf{y}$. Then

$$\mathbf{t} = r \frac{\mathbf{x}}{|\mathbf{x}|}.$$

is an element of the closed ball \overline{B}^k and

$$\frac{\mathbf{t}}{|\mathbf{t}|} = \frac{\mathbf{x}}{|\mathbf{x}|} = \frac{\mathbf{y}}{|\mathbf{y}|},$$
$$|\mathbf{t}| = r.$$

It follows that

$$f(\mathbf{y}) = \frac{\mathbf{y}}{|\mathbf{y}|} = \frac{\mathbf{t}}{|\mathbf{t}|}$$

so

$$f^{-1}(\frac{\mathbf{t}}{|\mathbf{t}|}) = \mathbf{y}.$$

This implies that

$$G(\mathbf{t}) = |\mathbf{t}| f^{-1}(\frac{\mathbf{t}}{|\mathbf{t}|}) = r\mathbf{y} = \mathbf{x}.$$

The surjectivity is proved.

3. Let K_0 be the set consisting of all possible sets of the form

$$\operatorname{conv}(\mathbf{e}_0, \mathbf{v}_1, \dots, \mathbf{v}_n) \subset \mathbb{R}^n,$$

where $\mathbf{v}_i \in {\{\mathbf{e}_i, -\mathbf{e}_i\}}$ for $i = 1, \ldots, n$.

a) Show that K_0 is a collection of simplices of \mathbb{R}^n , but is not a simplicial complex.

b) Let K be the collection of all faces of simplices in K_0 . Show that K is a simplicial complex. What is a polyhedron |K| of K?

c) Show that K has a subcomplex L such that the (topological) boundary of |K| in \mathbb{R}^n is a polyhedron |L| of L. How many (n-1)-dimensional simplices L contains?

Solution: a) First we need to show that every sequence of the form $(\mathbf{e}_0, \mathbf{v}_1, \dots, \mathbf{v}_n)$, where $\mathbf{v}_i \in {\mathbf{e}_i, -\mathbf{e}_i}$ is affinely independent. By Lemma 2.10 this is equivalent to the linear independence of the sequence

$$(\mathbf{v}_1-\mathbf{e}_0,\ldots,\mathbf{v}_n-\mathbf{e}_0)$$

This is simply the sequence $(\mathbf{v}_1, \ldots, \mathbf{v}_n)$ and the fact that it is linearly independent is simple linear algebra exercise.

Hence K_0 is indeed a collection of simplices. It is obviously not closed under faces (unless we are talking about the degenerate case n = 0), so it cannot be a simplicial complex.

b) K is obviously closed under faces by its definition (a face of a face of σ is a face of σ itself). To prove that K is a simplicial complex it is enough, by Lemma 4.2., to show that every point **x** of the union

$$|K| = \bigcup_{\sigma \in K} \sigma$$

belongs to the simplicial interior $\operatorname{Int} \sigma$ for **unique** $\sigma \in K$. Since we are asked to determine the polyhedron |K| anyway, we start by examining what is |K|. Suppose $\mathbf{x} \in |K|$. Then $\mathbf{x} \in \sigma$ for some $\sigma \in K$ and since every such a simplex is a face of some simplex in K_0 , we might as well assume that $\sigma \in K_0$. Then

$$\mathbf{x} = t_0 \mathbf{e}_0 + t_1 \mathbf{v}_1 + \ldots + t_n \mathbf{v}_n$$

for some (unique) scalars $t_0, \ldots, t_n \ge 0, t_0 + \ldots + t_n = 1$. Since $\mathbf{v}_i \in {\mathbf{e}_i, -\mathbf{e}_i}$ for all $i = 1, \ldots, n$, this equation implies that

$$(x_1,\ldots,x_n) = \mathbf{x} = (\pm t_1,\pm t_2,\ldots,\pm t_n)$$

Since all scalars t_i are non-negative, this is equivalent to $t_i = |x_i|$ for all i = 1, ..., n. It follows that

$$\sum_{i=1}^{n} |x_i| = \sum_{i=1}^{n} t_i = 1 - t_0 \le 1.$$

In other words we have shown that

$$|K| \subset \{\mathbf{x} \in \mathbb{R}^n \mid \sum_{i=1}^n |x_i| \le 1\} = X.$$

We show the opposite inclusion by showing that every point $\mathbf{x} \in X$ belongs to the simplicial interior of **exactly one** simplex of K. This will also automatically then conclude the proof of the claim that K is a simplicial complex.

Thus, let $\mathbf{x} = (x_1, \ldots, x_n)$ be an element of X, which means precisely that

$$\sum_{i=1}^{n} |x_i| \le 1.$$

Now if **x** belongs to the simplex σ with vertices $(\mathbf{e}_0, \mathbf{v}_1, \dots, \mathbf{v}_n)$, where $\mathbf{v}_i \in {\mathbf{e}_i, -\mathbf{e}_i}$ for $i = 1, \dots, n$, then

$$\mathbf{x} = t_0 \mathbf{e}_0 + t_1 \mathbf{v}_1 + \ldots + t_n \mathbf{v}_n$$

for some (unique) scalars $t_0, \ldots, t_n \ge 0, t_0 + \ldots + t_n = 1$, which, as we have seen above implies that $t_i = |x_i|$ for all $i = 1, \ldots, n$. Moreover if $t_i > 0, i = 1, \ldots, n$ we must then have that $\mathbf{v}_i = \mathbf{e}_i$ exactly when $x_i > 0$ and $\mathbf{v}_i = -\mathbf{e}_i$ exactly when $x_i < 0$. Finally

$$t_0 = 1 - \sum_{i=1}^n t_i = 1 - \sum_{i=1}^n |x_i|,$$

so $t_0 = 0$ if and only if

$$\mathbf{x} \in \partial X = \{ \mathbf{x} \in \mathbb{R}^n \mid \sum_{i=1}^n |x_i| = 1 \}$$

(the fact that the topological boundary of X with respect to \mathbb{R}^n is exactly this set is proved similarly to the proofs concerning interior and boundary of a standard simplex in exercise 1b above).

It follows that

1) **x** belongs to the interior of face of σ which vertices include \mathbf{e}_i if and only if $x_i > 0$, $-\mathbf{e}_i$ if and only if $x_i > 0$, $i = 1, \ldots, n$, and also by \mathbf{e}_0 if and only if $\mathbf{x} \in \partial X$.

2) Suppose **x** belongs to the interior of a face of a simplex σ of K_0 . Then this simplex is exactly the simplex spanned by the vectors \mathbf{e}_i if and only if $x_i > 0$, $-\mathbf{e}_i$ f if and only if $x_i > 0$, $i = 1, \ldots, n$, and also by \mathbf{e}_0 if and only if $\mathbf{x} \in \partial X$.

We have both shown that

$$|K| = \{ \mathbf{x} \in \mathbb{R}^n \mid \sum_{i=1}^n |x_i| \le 1 \}.$$

and proved that K is a simplicial complex.

c) The topological boundary $\partial |K|$ of the polyhedron |K| is a subset

$$\{\mathbf{x} \in \mathbb{R}^n \mid \sum_{i=1}^n |x_i| = 1\}.$$

By the considerations above this set is exactly a polyhedron |L| of the simplicial subcomplex L of K spanned by all the faces of simplices that have the form $\operatorname{conv}(\mathbf{v}_1, \ldots, \mathbf{v}_n)$, where $\mathbf{v}_i \in {\mathbf{e}_i, -\mathbf{e}_i}$ for $i = 1, \ldots, n$. In other words L is defined as K, but without references to the origin \mathbf{e}_0 .

Since for every i = 1, ..., n there is exactly 2 choices for \mathbf{v}_i , L contains exactly 2^n simplices of dimension (n-1).

Note: K is a triangulation of the closed ball \overline{B}^n and L is a triangulation of the sphere S^{n-1} .

4. Suppose K is a simplicial complex and let $\mathbf{x} \in |K|$. By Lemma 4.2. there exists a unique simplex $\operatorname{car}(\mathbf{x}) \in K$ which contains \mathbf{x} as an interior point.

We also define **the star** of \mathbf{x} to be the union of all simplicial interiors of simplices that contain \mathbf{x} , in other words

$$\operatorname{St}(\mathbf{x}) = \bigcup \{ \operatorname{Int} \sigma \mid \mathbf{x} \in \sigma \}.$$

Denote the vertices of car(x) by $\mathbf{v}_0, \ldots, \mathbf{v}_n$. Prove that

a) St(x) is an open neighbourhood of x in |K|.b)

$$\operatorname{St}(\mathbf{x}) = \bigcup \{\operatorname{Int} \sigma \mid \operatorname{car}(\mathbf{x}) < \sigma\} = \bigcup \{\operatorname{Int} \sigma \mid \mathbf{v}_0, \dots, \mathbf{v}_n \text{ are vertices of } \sigma\}$$

c)

$$\operatorname{St}(\mathbf{x}) = \bigcap_{i=0}^{n} \operatorname{St}(\mathbf{v}_i).$$

Solution: a) Let us define the subset of K

$$L = \{ \sigma \in K \mid \mathbf{x} \notin \sigma \}.$$

The subset L is obviously closed under faces (if a simplex does not contain \mathbf{x} , any face of it cannot contain \mathbf{x} either). Thus L is a **subcomplex** of K. We show that

$$\operatorname{St}(\mathbf{x}) = |K| \setminus |L|$$

This would imply that $St(\mathbf{x})$ is open in |K|, since, by Lemma 4.7, a polyhedron |L| of a subcomplex L of K is always closed in |K|.

Suppose $\mathbf{y} \in |K|$ is arbitrary. Then, by Lemma 4.2. there exists **unique** simplex σ of K such that $\mathbf{y} \in \operatorname{Int} \sigma$. There are exactly two mutually exclusive possibilities -

1) either $\mathbf{x} \in \sigma$ or

2) $\mathbf{x} \notin \sigma$.

We will show that $\mathbf{y} \in \text{St}(\mathbf{x})$ if and only if case 1) is true and $\mathbf{y} \in |L|$ if and only if the case 2) is true. This will prove that |K| is a disjoint union of the sets $\text{St}(\mathbf{x})$ and |L|, so $\text{St}(\mathbf{x}) = |K| \setminus |L|$.

Since, by Lemma 4.7, the simplicial interiors of the simplices of a simplicial complex are always disjoint, the inclusion $\mathbf{y} \in \operatorname{St}(\mathbf{x})$ is true if and only if $\mathbf{x} \in \sigma$ where σ is the unique simplex that contains \mathbf{y} as an interior point. Hence $\mathbf{y} \in \operatorname{St}(\mathbf{x})$ if and only if $\mathbf{x} \in \sigma$.

To prove the second claim we first assume that $\mathbf{x} \notin \sigma$. Then, by the definition of L, the simplex $\sigma \in L$, and, since $\mathbf{y} \in \sigma$, it follows that $\mathbf{y} \in |L|$.

Conversely suppose $\mathbf{y} \in |L|$. Then there exists a simplex σ' such that $\mathbf{y} \in \sigma'$ and $\mathbf{x} \notin \sigma'$ (i.e. $\sigma' \in L$). Now consider an intersection $\sigma \cap \sigma'$. It is not empty, since \mathbf{y} belongs to it. By the definition of the simplicial complex this intersection thus has to be a common face of both σ and σ' . On the other hand this intersection contains \mathbf{y} , which is an interior point of σ . The only face of σ which intersects the interior of σ is σ itself. Hence $\sigma \cap \sigma' = \sigma$, in particular $\sigma \subset \sigma'$. It follows that $\mathbf{x} \notin \sigma$, since otherwise $\mathbf{x} \in \sigma'$, which contradicts our assumptions. Hence we have shown that $\mathbf{x} \notin \sigma$ if and only if $\mathbf{y} \in |L|$, which is what we wanted to prove. The claim

$$\operatorname{St}(\mathbf{x}) = |K| \setminus |L|$$

is now proved, and, as we already noticed, this implies that $St(\mathbf{x})$ is open.

Clearly **x** belongs to $St(\mathbf{x})$, since there exists (unique) simplex σ of K such that $\mathbf{x} \in \operatorname{Int} \sigma$ and then

$$\mathbf{x} \in \operatorname{Int} \sigma \subset \operatorname{St}(\mathbf{x}).$$

b) The equation

$$\operatorname{St}(\mathbf{x}) = \bigcup \{\operatorname{Int} \sigma \mid \operatorname{car}(\mathbf{x}) < \sigma\}$$

obviously follows once we show that an arbitrary simplex σ of K contains \mathbf{x} if and only if $\sigma' = \operatorname{car}(\mathbf{x})$ is a face of σ . This is the same argument we have already seen in the proof of a) above. Namely if $\sigma' \subset \sigma$, then trivially

$$\mathbf{x} \in \sigma' \subset \sigma,$$

so $\mathbf{x} \in \sigma$. Conversely suppose $\mathbf{x} \in \sigma$. Then the intersection $\sigma' \cap \sigma$ is non-empty, so is a common face of both σ and σ' . On the other hand this intersection contains \mathbf{x} , which is an interior point of σ' . The only face of σ' which intersects the interior of σ' is σ itself. Hence $\sigma \cap \sigma' = \sigma'$, in particular σ' is a face of σ which is what we had to show. The equation

$$\bigcup \{ \operatorname{Int} \sigma \mid \operatorname{car}(\mathbf{x}) < \sigma \} = \bigcup \{ \operatorname{Int} \sigma \mid \mathbf{v}_0, \dots, \mathbf{v}_n \text{ are vertices of } \sigma \}$$

is obvious, since $\mathbf{v}_0, \ldots, \mathbf{v}_n$ are exactly the vertices of $\operatorname{car}(\mathbf{x})$, by assumption.

c) Suppose σ is a simplex of K. As we have already seen above σ contains \mathbf{x} if and only if $\operatorname{car}(\mathbf{x})$ is a face of σ i.e. if and only if $\mathbf{v}_0, \ldots, \mathbf{v}_n$ are all vertices of σ . Vertex \mathbf{v} belongs to σ if and only if

Int
$$\sigma \subset \operatorname{St}(\mathbf{v})$$
.

It follows that

Int
$$\sigma \subset \bigcap_{i=0}^{n} \operatorname{St}(\mathbf{v}_{i})$$

if and only if $\mathbf{v}_0, \ldots, \mathbf{v}_n$ are all vertices of σ . Since the simplicial interiors are disjoint, this implies that

$$\operatorname{St}(\mathbf{x}) = \bigcap_{i=0}^{n} \operatorname{St}(\mathbf{v}_i).$$

5. The covering $\mathbf{X} = (X_i)_{i \in I}$ of the topological space X is called *locally* finite if every point $x \in X$ has a neighbourhood U, which intersects only a finite amount of the elements of the covering **X**. Formally this means that the subset J of the index set I defined by

$$J = \{i \in I \mid U \cap X_i \neq \emptyset\}$$

is finite. Covering \mathbf{X} is called *closed* if all elements of \mathbf{X} are closed in X.

Prove that is $\mathbf{X} = (X_i)_{i \in I}$ is a closed and locally finite covering of X, then the topology of X is coherent with the family \mathbf{X} .

Give an example of a closed covering \mathbf{X} of a topological space X such that the topology of X is not coherent with \mathbf{X} .

Solution: Suppose V is a subset of X such that $V \cap X_i$ is open in X_i for all $i \in I$. We need to show that V is open in X. It is enough to show that $F = X \setminus V$ is closed in X. This is equivalent to showing that $\overline{F} \subset F$.

Suppose $x \in \overline{F}$. Let U be a neighbourhood of x that intersects only a finite amount of the sets X_i . Suppose W is an arbitrary neighbourhood of x. Then $U \cap W$ is also a neighbourhood of x, so it intersects F. It follows that an arbitrary neighbourhood W of x intersects $F \cap U$. In other words

$$x \in \overline{F \cap U}$$

Since $V \cap X_i$ is open in X_i , its compliment in X_i

$$F_i = X_i \setminus (U \cap X_i) = (X \setminus U) \cap X_i = F \cap X_i$$

is closed in X_i for every $i \in I$. This means that

$$F_i = X_i \cap G_i,$$

where G_i is some closed subset of X. However X_i is assumed to be closed for every $i \in I$, so the intersection $X_i \cap G_i$ is closed in X. In other words F_i is closed for all $i \in I$. Now

$$F \cap U = \bigcup_{i \in I} (F_i \cap U) = \bigcup_{j=1}^n F_j \cap U.$$

Here we have used the fact that U intersect only finitely many of the sets X_i , so in particular only finitely many F_i . Above we denote these F_i that intersect U by f_1, \ldots, F_n . We have that

$$x \in \overline{F \cap U} = \overline{\bigcup_{j=1}^{n} F_j \cap U} = \bigcup_{j=1}^{n} \overline{F_j \cap U} \subset \bigcup_{j=1}^{n} \overline{F_j} = \bigcup_{j=1}^{n} F_j \subset F_j$$

Here we have used Proposition 3.17(4) - finite union of closures is the closure of unions.

An example which shows that the assumption of local finiteness is essential - let $X_x = \{x\}$ be a singleton for every $x \in \mathbb{R}$. Then the collection $\mathbf{X} = (X_x)_{x \in \mathbb{R}}$ is a closed covering of \mathbb{R} . However the standard topology of \mathbb{R} is not coherent with \mathbf{X} . Actually for every subset U of \mathbb{R} we have that $U \cap X_x$ is either an empty set or a singleton X_x , which is open in X_x , but U need not to be open in \mathbb{R} . If this family would be coherent then the topology of \mathbb{R} would be discrete.

6. Show that every open subset of \mathbb{R} can be triangulated (as a topological space). (Hint: previous exercise might come in handy).

Solution: Suppose $U \subset \mathbb{R}$ is open. First we show that all connected components of U are open intervals (possibly unbounded). This is seen as following. Suppose $\mathbf{x} \in U$ and let C be a component of \mathbf{x} in U. Since the connected subsets of \mathbb{R} are intervals (Proposition 3.13(4)), C is an interval. This interval cannot contain its endpoints. Indeed suppose C contains its left end-point c. Then $c \in U$, so, since U is open, there exists an interval |a, b| such that

$$c \in]a, b[\subset U.$$

It is clear that the union $]a, b[\cup C]$ is an interval, hence connected. Moreover it contains c and is bigger than C. But that contradicts the maximality of C, as a component. Hence C must be an open interval.

Since every space is a disjoint union of its components, we have that

$$U = \bigcup_{i \in I}]a_i, b_i[,$$

where union is disjoint (and for some *i* we can have $a_i = -\infty$ or $b_i = \infty$). In fact it can be shown that this union is at most countable, but we do not need that fact).

For every $i \in I$ we can choose an increasing sequence

$$\ldots < a_i^{-n} < a_i^{-n+1} < \ldots < a_i^{-1} < a_i^0 < a_i^1 < \ldots < a_i^n < a_i^{n+1} < \ldots$$

unlimited in both directions, so that

$$\lim_{n \to \infty} a_i^{-n} = a_i$$

$$\lim_{n \to \infty} a_i^n = b_i.$$

It is clear that

$$\begin{aligned}]a_i, b_i &[= \bigcup_{j \in \mathbb{Z}} [a_i^j, a_i^{j+1}], \\ U &= \bigcup_{i \in I, j \in \mathbb{Z}}]a_i, b_i[. \end{aligned}$$

The family $([a_i^j, a_i^{j+1}])_{i \in I, j \in \mathbb{Z}}$ is easily seen to be locally finite. Since this family is also a closed cover of C, the topology of C is coherent with this family.

The collection $K = ([a_i^j, a_i^{j+1}])_{i \in I, j \in \mathbb{Z}}$ of 1-simplices and all their vertices is a simplicial complex - different simplices intersect, by construction, in their vertices only, at most. The polyhedron |K| of this complex is precisely U. Also its weak topology is (by local finiteness of the cover K) the same as the standard topology of U. So this complex is a triangulation of U.