
Introduction to Algebraic topology, fall 2013
Exercises 2 - Solutions

1. Suppose V is a finite dimensional vector space, A ⊂ V and m ∈ N.
Prove that the affine dimension of A is m if and only if the following
conditions are true.

(a) For any affinely independent subset {v0,v1, . . . ,vk} of A we have
that k ≤ m.

(b) There exists an affinely independent subset {w0,w1, . . . ,wm} ⊂ A
with precisely m+ 1 vectors in it.

Solution: Since V is finite dimensional, by Linear Algebra we know
that V cannot contain arbitrary large linearly independent sequences.
In fact Proposition 1.5 ii) states that if dimV = n and (w1,w2, . . . ,wk)
is a linearly independent sequence of vectors of V , then k ≤ n.

Let {v0,v1, . . . ,vk} be affinely independent set of vectors belonging to
A. Then, by Lemma 2.10, the sequence (v1−v0, . . . ,vk−v0) is linearly
independent, so, by previous paragraph, k ≤ dimV . In particular A
cannot contain arbitrary long affinely independent sequences, so there
must exist a maximal affinely independent subset of A consisting of
vectors w0,w1, . . . ,wm. ”Maximal” here means that it has a maximal
number of vectors an affinely independent subset of A can have. In
other words it is exactly a set that satisfies conditions 1) and 2) of the
exercise.

Let W = aff{w0,w1, . . . ,wm}. It is enough to show that
a) affine dimension of W is exactly m,
b) W is the affine hull of A.

To prove a) let vi = wi − v0, for all i = 1, . . . , m. Clearly (or ”easy to
see”, if you prefer that notorious expression)

W = v0 + U,

where U is the vector space spanned by vectors v1, . . . ,vm. By Lemma
2.10 the sequence (v1, . . . ,vm) is linearly independent, hence it is a
basis for U . Thus U is m-dimensional and since W = v0+U , the affine
dimension of W is exactly m. Claim a) is proved.
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Next we show that W is precisely the affine hull of A. Let W ′ = aff(A).
Since

W = aff{w0,w1, . . . ,wm}

and {w0,w1, . . . ,wm} ⊂ A ⊂ W ′, we have that W ⊂ W ′ (the bigger
set, the bigger its affine hull). Indeed, this inclusion shows that W ′ is
some affine set that includes the points w0,w1, . . . ,wm and by defini-
tion W is the smallest such a set.

To prove the converse inclusion W ′ ⊂ W it is enough to show that
A ⊂ W , by the same reasoning as in the previous paragraph. Let
a ∈ A be arbitrary. If a ∈ {w0,w1, . . . ,wm}, then a ∈ W by defini-
tion. Otherwise the set {w0, . . . ,wm, a} has more elements then the
set {w0,w1, . . . ,wm}, so, by maximality of the former set, this bigger
set cannot be affinely independent. By Lemma 2.10, (2), there exists
scalars t0, . . . , tm, tm+1 such that

t0w0 + . . .+ tmwn + tm+1a = 0

and t0+ . . .+ tm+ tm+1 = 0, but not all scalars t0, . . . , tm, tm+1 equal to
zero. Here we must have tm+1 6= 0, because otherwise we would have a
representation

t0w0 + . . .+ tmwm = 0

and t0 + . . . + tm = 0, and at least one of the scalars t0, . . . , tm, is not
a zero. This would contradict (by the same Lemma 2.10) the fact that
the sequence w0,w1, . . . ,wm is affinely independent. Thus tm+1 = 0,
so, solving for a, we have the equation of the form

a =
−t0
tm+1

w0 +
−t1
tm+1

w1 + . . .+
−tm
tm+1

wm.

Here the sum of scalars is

m
∑

i=0

−ti
tm+1

=
1

tm+1

(−t0 − t1 − . . .− tm) =
1

tm+1

tm+1 = 1,

because t0 + t1 + . . .+ tm + tm+1 = 0. By Lemma 2.7

a ∈ aff{w0,w1, . . . ,wm} = W,

which is what we had to prove.
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2. a) Suppose V is a vector space and x,y, z are three different elements
of V that lie on the same line. Prove that one of these points lies on
the closed interval between the other two (i.e. on the 1-simplex the
other two points span).
b) Suppose C,D ⊂ V are convex sets and f : C → D is an affine
mapping. Prove that

f((1− t)x+ ty) = (1− t)f(x) + tf(y)

whenever x,y ∈ C and t ∈ R is such that

(1− t)x + ty ∈ C.

Solution: a) By Exercise 1.1 the unique line ℓ that contains both x

and y is the set
ℓ = {(1− t)x+ ty | t ∈ R}.

Assumptions imply that z ∈ ℓ as well, so there exists t ∈ R such that

z = (1− t)x + ty.

There are three possibilities -
1) t[0, 1],
2) t > 1 or
3) t < 0.

b

b

x

y

b

b

x

y

b

b

x

y
b

b

b

z

z

z

0<t<1 t>1 t<0

In case t ∈ [0, 1] the point z lies on the interval [x,y] by definition and
we are done.

In case t > 1 the picture suggests that y should lie on the interval [x, z],
so we solve the equation

z = (1− t)x+ ty
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for y, obtaining

y =
1

t
(z− (1− t)x) =

1

t
z+ (1−

1

t
)x.

Since t > 1, 0 < 1/t < 1, so y indeed lies on the interval [x, z].

In case t < 0 we solve for x, obtaining the combination

x =
−t

1− t
y +

1

1− t
z.

Here both scalars −t
1−t

and 1

1−t
are positive and

−t

1− t
+

1

1− t
=

1− t

1− t
= 1,

so the combination is convex. In other words x lies on the interval [z,y].

b) Suppose C,D ⊂ V are convex sets and f : C → D is an affine
mapping. Suppose x,y

z = (1− t)x+ ty

are elements of C, where t ∈ R. This means that x,y, z lie on the same
line.

If t ∈ [0, 1] then
f(z) = (1− t)f(x) + tf(y)

by the definition of affine mapping.

Suppose t > 1. By the proof of a) there is a simplicial combination

y =
1

t
z+ (1−

1

t
)x,

so, since f is affine, we have that

f(y) =
1

t
f(z) + (1−

1

t
)f(x).

Solving this equation back for z we obtain

f(z) = (1− t)f(x) + tf(y).
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The proof for the case t < 0 is similar - in that case we have the
simplicial combination

x =
−t

1− t
y +

1

1− t
z,

so

f(x) =
−t

1− t
f(y) +

1

1− t
f(z)

and solving back for z yields the equation

f(z) = (1− t)f(x) + tf(y)

once more.

Remark: The claim of b) can be generalized to arbitrary long affine
combinations. In other words suppose f : C → D, where C is convex,
is an affine mapping, v0, . . . ,vn ∈ C and t0, . . . , tn ∈ R are such that
t0 + t1 + . . .+ tn = 1 and

w = t0v0 + . . .+ tnvn ∈ C.

We claim that then

f(w) = t0f(v0) + . . .+ tnf(vn).

It is tempting to prove this claim by induction on n. The part b) of
this exercise is precisely the claim for n = 2. Case n = 1 is trivial.

Let us try to continue with the inductive step. Suppose the claim is
true for some n ≥ 2 and suppose v0, . . . ,vn+1 ∈ C and t0, . . . , t+1n ∈ R

are such that t0 + t1 + . . .+ tn+1 = 1 and

w = t0v0 + . . .+ tn+1vn+1 ∈ C.

The natural way to use inductive assumption is now to choose ti such
that ti 6= 1 (such must exist), for instance we may assume that tn+1 6= 1,
and let

w′ =
t0

1− tn+1

v0 + . . .+
tn

1− tn+1

vn.

Then w = (1− tn+1)w
′+ tn+1w, so it seems that we can apply the case

n = 2 proved above separately. But the huge problem with this proof
is that nothing guarantees that w′ is a point of C! The point w′ is an
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affine combination of the points v0, . . . ,vn belonging to C, since the
coefficients add up to 1,

t0
1− tn+1

+
t1

1− tn+1

+. . .+
tn

1− tn+1

=
1

1− tn+1

(t0+t1+. . .+tn) =
1

1− tn+1

(1−tn+1) = 1.

But that does not help, since we are only assuming that C is convex,
not necessarily affine. However this attempt is not entirely waste of
time, because if the original combination

w = t0v0 + . . .+ tn+1vn+1

were simplicial, i.e. all scalars are also non-negative, the point

w′ =
t0

1− tn+1

v0 + . . .+
tn

1− tn+1

vn

will also be a simplicial combination of the points from C, so will belong
to C. In this case we would have thatw = (1−tn+1)w

′+tn+1w, so, since
f is affine and we assume 0 ≤ tn+1 ≤ 1, directly from the definition we
obtain

f(w) = (1− tn+1)f(w
′) + tn+1f(w).

Next we use the inductive assumption, which is the claim that

f(w′) =
t0

1− tn+1

f(v0) + . . .+
tn

1− tn+1

f(vn),

whenever

w′ =
t0

1− tn+1

v0 + . . .+
tn

1− tn+1

vn

is a simplicial combination. This gives us the claim for all n ≥ 1 for
simplicial combinations (the initial case n = 1 is trivial and the case
n = 2 is a definition of an affine mapping).

Now that we have the claim for simplicial combinations, we prove the
claim for affine combinations as following. Suppose

c = t0v0 + t1v1 + . . .+ tnvn ∈ C,

where v0, . . . ,vn ∈ C and t0, . . . , tn ∈ R are such that t0+t1+ . . .+tn =
1. We may assume that t0, t1, . . . , tk ≥ 0 and tk+1, . . . , tn < 0 for some
k ≥ 0. Then we have that

(0.1) t0v0 + . . .+ tkvk = 1 · c− tk+1vk+1 − . . .− tnvn.
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Scalars on the left and on the right side are all non-negative and sum
up to the same number

t0 + . . .+ tk = t = 1− tk+1 − . . .− tn.

Moreover t > 0. Hence if we devide the equation 0.1 by t, we obtain
the equation

t0
t
v0 + . . .+

tk
t
vk =

1

t
c+

−tk+1

t
vk+1 + . . .+

−tn
t

vn,

where both left and right side are simplicial combinations. Since we
already have proved the claim for simplicial combinations above, we
have that

t0
t
f(v0) + . . .+

tk
t
f(vk) =

1

t
f(c) +

−tk+1

t
f(vk+1) + . . .+

−tn
t

f(vn).

Multiplicating by t and rearranging produces equation

f(c) = t0f(v0) + t1f(v1) + . . .+ tnf(vn) ∈ C,

which is precisely what we needed to show.

3. Consider the set

A = {(2, 1,−3), (6, 3,−4), (5, 2,−8), (9, 4,−9)} ⊂ R
3

from the exercise 1.3. Construct an affine isomorphism f : I2 → conv(A).
Is such an affine isomorphism between I2 and conv(A) unique? If not,
can you guess (no exact proof required) how many there are?

Solution: Let
v0 = (2, 1,−3),

v1 = (6, 3,−4),

v2 = (5, 2,−8),

v2 = (9, 4,−9).

and
w1 = v1 − v0 = (4, 2,−1),

w2 = v2 − v0 = (3, 1,−5),

w3 = v3 − v0 = (7, 3,−6).

7



In the exercise 1.3 we have noticed that A is not affinely independent
and

(0.2) w1 +w2 = w3.

The vertices of the square I2 have the same property. Precisely, let us
denote them, as usual, e0 = (0, 0), e1 = (1, 0), e2 = (0, 1), f3 = (1, 1)
(here we don’t use e3 since this notation is already taken, e3 means the
vector (0, 0, 1) of R3). Then substituting e0 changes nothing and

e1 + e2 = f3,

the property analogous to 0.2. Hence the natural approach one can take
is to first map square affinely to the parallelogram conv(B) spanned
by the sequence B = {(0, 0),w1,w2,w3}, in a natural way, mapping
vertices e0, e1 = (1, 0), e2, f3 to the vertices (0, 0),w1,w2,w3, in that
order. It is easy to realise that the simplest choice (and in fact the only)
is a (restriction of) the linear mapping L that maps the basis (e1, e2)
onto (w1,w2). This mapping will be an affine isomorphism between I2

and the convex hull of {(0, 0),w1,w2,w3}. Combining this mapping
with the translation x → x+ v0 will produce affine isomorphism I2 →
conv(A) required (see the picture).

bb

0

0

e1

e2

w1

w2 b

v0

v2

v1

w3
v3

f3 L

It remains to check the details. Mapping L is the restriction of the
unique linear mapping R

2 → R
3 that maps standard basis (e1, e2) onto

(w1,w2). Writing this down will give a formula

L(x1, x2) = x1w1+x2w2 = x1(4, 2,−1)+x2(3, 1,−5) = (4x1+3x2, 2x1+x2,−x1−5x2).

This formula defines a well-defined mapping L : I2 → conv(B). More-
over it is affine, since it is even linear (linear mappings clearly satisfy the
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definition of an affine mapping). Since L(I2) is convex and clearly, by
construction, contains B, L(I2) = conv(B) and hence L is a surjection.
Using the formula for L one can easily verify that it is an injection.
Hence L : I2 → conv(B) is indeed affine bijection. The translation
x → x+v0 is clearly a well-defined affine bijection conv(B) → conv(A).
Since the composition of affine bijections is an affine bijection (check!),
this composition is an affine bijection I2 → conv(A).

How many affine isomorphisms f : I2 → conv(A) exists?

Fix any affine isomorphism f : I2 → conv(A), for instance the one
we have constructed before. Then for any other affine isomorphism
g : I2 → conv(A) the composite mapping g−1 ◦ f : I2 → I2 is an auto-

morphism of the square. ”Automorphism” is an isomorphism of the
set to itself. Conversely any automorphism α : I2 → I2 of the square
defines an affine isomorphism g = f ◦ α : I2 → conv(A). It is easy to
see that the correspondence α → f ◦ α is bijective, so it is enough to
count how many affine isomorphisms α : I2 → I2 of the square to itself
there is.

The first observation is that any affine isomorphism α : I2 → I2 pre-
serves extreme points (for the concept of extreme points see exercise
1). Since extreme points of I2 are exactly the vertices e0, e1, e2, f3 (see
exercise 1.4), we see that an affine isomorphism α : I2 → I2 permutes
these 4 extreme points. There are 4! = 24 permutations of the set of
four elements, however not all of these can be extended to an affine
mapping.

Next we observe that any affine isomorphism α : I2 → I2 maps the
”middle” point (1

2
, 1

2
) to itself i.e. leaves it fixed. The reason for that

is that this point is the the only point x of the square that can be
written in the form

x =
1

2
vi +

1

2
vj

where vi and vj are two different vertices of the square, in two dif-

ferent ways. Indeed,

(
1

2
,
1

2
) =

1

2
e0 +

1

2
e3 and

(
1

2
,
1

2
) =

1

2
e1 +

1

2
e2.
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All the other middle points of the intervals, which end points are ver-
tices, are the middle points of only one such interval - see the picture,
in which all such points are marked with red colour.

b

b

b

b

b

e0 e1

e3e2

Now since affine isomorphism α : I2 → I2 maps the point of the form

x =
1

2
vi +

1

2
vj

to the point of the same form, it follows that the middle points (1/2, 1/2)
is mapped to itself. Translating this point to the origin and rotat-
ing the square we can reduce the problem to the problem of counting
how many affine automorphism of the rhombus C with the vertices
(e1, e2,−e1,−e2), that map origin to itself, there is.

b
e0

e1

e2

−e2

−e1

Let us show that an affine mapping α : C → C that maps origin to
itself is (restriction of) the linear mapping. Suppose x ∈ C and t ∈ R

are such that tx =∈ C. Then

tx = (1− t)0 + tx

belongs to C and is an affine combination of two points of C. By
Exercise 2b) above, affine mapping α preserves such combinations, so

α(tx) = (1− t)α(0) + tα(x) = tα(x),

since we are assuming that α(0) = 0.

10



Next suppose x,y ∈ C are such that

x+ y ∈ C.

By convexity of C we also have that

u =
1

2
x+

1

2
y ∈ C.

Now u and
2u = x+ y ∈ C.

By the property α(tx) = tα(x) proved above and applied for t = 2, we
have, using also the fact that α is an affine mapping, that

α(x+ y) = α(2u) = 2α(u) = 2(α(
1

2
x+

1

2
y)) =

= 2(
1

2
α(x) + α(

1

2
y)) = α(x) + α(y).

We have thus shown that α satisfies the conditions of a linear mapping
i.e.

α(tx) = tα(x) and

α(x+ y) = α(x) + α(y)

whenever they are well-defined, i.e. when all arguments of α belong
to C. Using this we proceed as following. Suppose x = (x1, x2) ∈ C.
Then

x = x1e1 + x2e2,

where x1e1 and x2e2 both belong to C. Hence

α(x) = α(x1e1) + α(x2e2) = x1α(e1) + x2α(e2).

This implies that α is just a restriction of a linear mapping

L : R2 → R
2

defined by
L(x1, x2) = x1a1 + x2a2,

where a1 = α(e1), a2 = α(e2).

Now all we have to do is to calculate how many there are linear iso-
morphisms L : R2 → R

2, that map rhombus C to itself. The linear
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mapping is completely determined by the image of the basis vectors
e1, e2, which belong to the rhombus and are in fact its extreme points.
Since extreme points must map to extreme points, e1 must map onto
one of the vertices e1, e2,−e1,−e2. Thus there are 4 choices for the
image L(e1). Once this choice is made, there are only 2 choices left
for the image L(e2). Indeed, suppose L(e1) ∈ {e1,−e1}. Then L(e2)
cannot map to the same points, since then, by linearity, L will not be
isomorphism. Thus L(e2) is e2 or −e2. The similar conclusion holds
when L(e1) ∈ {e2,−e2}. Thus amount of different choices is 4 · 2 = 8.

Answer: There are exactly 8 different affine automorphisms of the
square and consequently 8 different affine isomorphisms I2 → conv(A).

Remark: Similarly as above one can show in general that an affine
mapping is always a composition of some linear mapping and a trans-
lation mapping.

4. a) Recall (or google) the precise definitions (and be ready to present
them) of the following concepts - inner product in a vector space, norm
defined by an inner product.
b) Recall (or google) the proof of the Schwartz inequality

|〈v,w〉| ≤ |v||w|.

Here 〈, 〉 is an inner product in a vector space and | · | is a norm defined
by this inner product. Also prove that the equality

〈v,w〉 = |v||w|.

holds if and only if v = 0 or there exists t ≥ 0 such that w = tw.
c) Recall (or google) the proof of the triangle inequality

|v +w| ≤ |v|+ |w|

(using Schwartz inequality). Here 〈, 〉 is an inner product in a vector
space and | · | is a norm defined by this inner product. Also prove that
the equality

|v +w| = |v|+ |w|.

holds if and only if v = 0 or there exists t ≥ 0 such that w = tv.
d) Apply the previous result to show that every point of the sphere
Sn−1 is an extreme point of the convex set B

n
. The concept of the
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extreme point was defined in Exercises 1.

Solution: a) Suppose V is vector space. A function 〈, 〉 : V × V → R

is called an inner product in V if it satisfies the equations

〈v + v′,w〉 = 〈v,w〉+ 〈v′,w〉,

〈v,w +w′〉 = 〈v,w〉+ 〈v,w′〉,

〈tv,w〉 = t〈v,w〉,

〈v, tw〉 = 〈v, tw〉,

〈v,w〉 = 〈w,v〉,

〈v,v〉 > 0 for all v ∈ V,v 6= 0.

In other words inner product is a symmetric real-valued function of two
arguments (both are vectors from V ) which is linear with respect to
every argument i.e. so-called bilinear mapping. The last condition says
that the inner product of every non-zero vector with itself is a strictly
positive real number. The inner product of zero vector with itself, or
any vector, is always zero, this follows from bilinearity.

The norm | · | defined by the inner product 〈, 〉 in a vector space V is
defined by the formula

|v| =
√

〈v,v〉.

The standard norm of Rn is induced by the standard inner product ·
in R

n defined by

x · y =
n

∑

i=1

xiyi.

b) The Schwartz inequality

|〈v,w〉| ≤ |v||w|

can be proved as following. In case v = 0 the inequality is clear, and
in fact even the equality holds.

Assume v 6= 0. Let t ∈ R be arbitrary. Then

0 ≤ 〈w− tv,w− tv〉 = t2〈v,v〉 − 2t〈v,w〉+ 〈w,w〉 =

= t2|v|2 − 2t〈v,w〉+ |w|2.
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The expression on the right is the polynomial of second degree in terms
of t, which is now non-negative for all t ∈ R. In this s This is equivalent
to the assertion that the discriminant D of this polynomial is non-
negative, i.e.

D = 4|〈v,w〉|2 − 4|v|2|w|2 ≥ 0.

This is equivalent to
|〈v,w〉| ≤ |v||w|

which is exactly the Schwartz inequality.

Let us investigate when the Schwartz inequality is the strict equality

|〈v,w〉| = |v||w|.

The case v = 0 is already taken care of, so we assume again that v 6= 0.

By the proof above the equality holds if and only if D = 0, which is
equivalent to the existence of t ∈ R for which the quadratic function
above is zero, i.e. the existence of t ∈ R for which

0 = 〈w− tv,w− tv〉 = |〈w− tv,w − tv〉|.

The norm of the vector is, by definition of the inner product, can be
negative if and only if the vector is zero. Hence the Schwartz inequality
is the equality precisely when v = 0 or when there exists t ∈ R such
that w− tv = 0 i.e.

w = tv.

When t < 0 and v 6= 0, the equation holds in the form

−〈v,w〉 = |v||w|.

When t ≥ 0, the equation holds in the form

〈v,w〉 = |v||w|.

Thus the equation
〈v,w〉 = |v||w|.

holds if and only if v = 0 or when there exists t ≥ 0 such that w = tv.

c) The standard proof of the triangle inequality uses Schwartz inequal-
ity,

|v+w|2 = 〈v+w〉 = |v|2+2〈v,w〉+|w|2 ≤ |v|2+2|v||w|+|w|2 =
(

|v|+|w|
)2

.
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Taking square root from both sides yields the triangle inequality. Also,
the prove above shows that the equality holds if and only

〈v,w〉 = |v||w|.

By b) this is possible if and only if v = 0 or there exists t ≥ 0 such
that w = tv.

d) Suppose x ∈ Sn−1. We prove that x is an extreme point of the ball
B

n
. Let us make a counter-assumption, suppose

x = (1− t)y + tz

for some y, z ∈ B
n
, t ∈]0, 1[ and y 6= z. Then, by the triangle inequality

1 = |x| ≤ (1− t)|y|+ t|z|.

Here |y|, |z| ≤ 1. Moreover, if at least one of the inequalities is strict,
for instance |y| < 1, then also

1 ≤ (1− t)|y|+ t|z| < (1− t) + t = 1,

which is impossible. Hence y, z ∈ Sn−1 and in the application of the
triangle inequality above, the equality must hold. By c), there must
exist s ≥ 0 such that

(1− t)y = stz.

Taking norms from both sides of this equality gives us

(1− t) = st,

hence
(1− t)y = stz = (1− t)z,

which implies that y = z. This contradicts the assumption.

5. Define the topology τ in R as following. Suppose U ⊂ R. Then U is
open if and only if for every x ∈ U there exists half-open interval [a, b[
such that x ∈ [a, b[ and [a, b[⊂ U .
a) Show that τ is indeed a topology in R. Show that every subset of R
which is open with respect to the standard topology of R is also open
with respect to τ , but the converse statement is not true.
b) Is open interval ]a, b[ open or closed with respect to τ? What about
intervals of the form [a, b[, ]a, b], [a, b]?
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c) Show that the closed interval [a, b] is not compact with respect to τ .
d) The topological space is called totally disconnected if the only con-
nected subsets of the space are empty set and singletons. Show that
all intervals of R are totally disconnected with respect to τ .

Solution:

a) Emptyset and the whole real line are trivially open. Suppose (Ui)i∈I
is a collection of open sets and let

U =
⋃

i∈I

Ui.

Suppose x ∈ U . Then x ∈ Ui for some i ∈ I and by definition of τ
there exists a, b such that

x ∈ [a, b[⊂ Ui ⊂ U.

Since this is true for every x ∈ U , U ∈ τ .

Suppose U1, U2, . . . , Un ∈ τ . Let

x ∈
n
⋂

i=1

Ui.

For every i = 1, . . . , n there exists ai, bi such that x ∈ [ai, bi[⊂ Ui. Let

a = max{a1, . . . , an},

b = min{b1, . . . , bn}.

Then

x ∈ [a, b[⊂

n
⋂

i=1

Ui.

Hence also finite intersection of open sets is open.

Suppose U is open in standard topology of R and let x ∈ U . By
definition of standard topology there exist a, b ∈ R such that

x ∈]a, b[⊂ U.

But then
x ∈ [x, b[⊂ U.

16



This implies that U is also open with respect to τ .

The converse is not true - interval [a, b[ is open w.r.t. τ , but not with
respect to standard topology.

b) Every open interval is open w.r.t to τ by a), since it is open even
w.r.t. standard topology. It is not closed since its compliment

R\]a, b[=]−∞, a] ∪ [b,+∞[= B

is not open. This is seen by observing that for a ∈ B it is impossible
to find an interval of the form [c, d[ such that a ∈ [c, d[ and [c, d[⊂ B.

Closed interval [a, b] is closed, since its compliment is open in standard
topology, so also open w.r.t. to τ . Closed interval is not open, since
for a point b ∈ [a, b] we cannot find an interval of the form [c, d[ such
that b ∈ [c, d[ and [c, d[⊂ [a, b].

Half-open interval [a, b[ is open in τ by the very definition of τ - every
point x ∈ [a, b[ has interval [a, b[ such that

x ∈ [a, b[⊂ [a, b[.

Half-open interval [a, b[ is also closed, since its compliment

R \ [a, b[=]−∞, a[∪[b,+∞[

is open, as a union of two open sets first is open since it is open in
standard topology and the second is the union

[b,∞[=
⋃

n≥1

[b, b+ n[

of half-open intervals that we already proved to be open in this topol-
ogy.

Half-open interval ]a, b] is not open. This is seen as before observing
that b cannot have a suitable neighbourhood [c, d[ containing in the set.
For the similar reason the compliment

R\]a, b] =]−∞, a]∪]b,+∞[
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is not open (problem in a), so the half-open interval ]a, b] is not closed
either.

c) The covering

{[a, b−
1

n
[ | n ≥ 1} ∪ {[b, b+ 1[}

is an open covering of [a, b] that has no finite subcover - any finite union
of sets from this cover do not contain points b−ε for small ε > 0. Thus
[a, b] is not compact.

d) It is enough to prove that the only non-empty connected subsets of
R w.r.t. τ are singletons. Suppose A ⊂ R is a set that contains at least
two different points x,y ∈ A. Choose a point a between x and y. Then
intervals B1 =] − ∞[, a[ and B2 = [a,∞[ are open, disjoint and their
union is the whole R. This implies that A∩B1 and A∩B2 is a separa-
tion of A into two non-empty, open, disjoint sets, so A is not connected.

Remark: Notice that the definition of τ is very similar to the standard
topology of R, the only difference is that the interval [a, b[ instead of
the interval ]a, b[ is used. Observe however dramatic difference that
adding of one end point has made. The closed intervals which are
compact in standard topology are not compact any more. Moreover
intervals, which are connected in standard topology, are even totally
disconnected w.r.t. to τ .

6. a) Suppose y ∈ Sn,y 6= en+1. Show that the unique line ℓ that goes
through both y and en+1 intersects the set

R
n = {x ∈ R

n+1 | xn+1 = 0} ⊂ R
n+1.

in exactly one point, which we denote p(y).
b) Show that p : Sn \ {en+1} → R

n is given by the formula

p(y) =
1

1− yn+1

(y1, . . . ,yn).

Show that p is a continuous bijection and its inverse is given by the
formula

p−1(y) =
1

|y|2 + 1
(2y + (|y|2 − 1)en+1).
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Solution: a) By Exercise 1.1 the unique line ℓ that contains y and
en+1 is the set

{(1− t)y + ten+1 | t ∈ R}.

The point of the line is in the subspace Rn, if its last (n+1)-component
is exactly zero i.e. if

(1− t)yn+1 + t = 0.

This is true if and only

t =
yn+1

yn+1 − 1
.

Thus the unique intersection point of ℓ and R
n is the point

(1−
yn+1

yn+1 − 1
)y +

yn+1

yn+1 − 1
en+1 =

1

1− yn+1

(y1, . . . ,yn),

which gives the formula for p.

b) The mapping p : Sn \ {en+1} → R
n defined by

p(y) =
1

1− yn+1

(y1, . . . ,yn)

is clearly well-defined and continuous. Since the formula for the inverse
mapping q : Rn → Sn \ {en+1} is given,

q(y) =
1

|y|2 + 1
(2y + (|y|2 − 1)en+1),

it is enough to verify that this mapping is well-defined i.e. maps R
n

onto Sn \{en+1} and satisfies equations p◦ q = id, q ◦p is identity. The
continuity of q is clear.

For the first assertion one calculates

|q(y)|2 =
1

(|y|2 + 1)2
(4|y|2 + (|y|2 − 1)2 = 1.

Also n first coordinates of q(y) can all be zeros if and only if y = 0, in
which case the last coordinate is −1, not 1. Hence q indeed map R

n

into Sn \ {en+1}. The verification of equations p ◦ q = id and q ◦ p = id
is a straightforward calculation.
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If the formula for the inverse q of p would not be given in the exercise,
it can be easily constructed as following. Let y ∈ R

n be arbitrary.
The definition of p implies that q(y) must be unique point of the set
Sn \ {en+1} that lies on the line

{(1− t)y + ten+1 | t ∈ R}

(the unique line passing through y and en+1).

Thus we must find t ∈ R for which the point of the form (1−t)y+ten+1

lies on the sphere but is not its north pole. This implies the equation

(1− t)2|y|2 + t2 = 1.

Simplifying yields equation

(|y|2 + 1)t2 − 2|y|2t+ (|y2| − 1) = 0.

Solving this equation of the second degree will give

t =
|y|2 ± 1

|y|2 + 1
.

When the sigh in the numerator is +, we obtain the north pole. When
the sign is −, the point

(1− t)y + ten+1

will be precisely q(y). This also provides with a geometric way to prove
that p is bijection and its inverse is q.
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