Department of Mathematics and Statistics Introduction to Algebraic topology, fall 2013

Exercises 2 (for the exercise session Tuesday 17.09)

- 1. Suppose V is a finite dimensional vector space, $A \subset V$ and $m \in \mathbb{N}$. Prove that the affine dimension of A is m if and only if the following conditions are true.
 - (a) For any affinely independent subset $\{\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_k\}$ of A we have that $k \leq m$.
 - (b) There exists an affinely independent subset $\{\mathbf{w}_0, \mathbf{w}_1, \dots, \mathbf{w}_m\} \subset A$ with precisely m + 1 vectors in it.
- 2. a) Suppose V is a vector space and $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are three different elements of V that lie on the same line. Prove that one of these points lies on the closed interval between the other two (i.e. on the 1-simplex the other two points span).

b) Suppose $C,D\subset V$ are convex sets and $f\colon C\to D$ is an affine mapping. Prove that

$$f((1-t)\mathbf{x} + t\mathbf{y}) = (1-t)f(\mathbf{x}) + tf(\mathbf{y})$$

whenever $\mathbf{x}, \mathbf{y} \in C$ and $t \in \mathbb{R}$ is such that

$$(1-t)\mathbf{x} + t\mathbf{y} \in C.$$

3. Consider the set

$$A = \{(2, 1, -3), (6, 3, -4), (5, 2, -8), (9, 4, -9)\} \subset \mathbb{R}^3$$

from the exercise 1.3. Construct an affine isomorphism $f: I^2 \to \operatorname{conv}(A)$. Is such an affine isomorphism between I^2 and $\operatorname{conv}(A)$ unique? If not, can you guess (no exact proof required) how many there are?

4. a) Recall (or google) the precise definitions (and be ready to present them) of the following concepts - inner product in a vector space, norm defined by an inner product.

b) Recall (or google) the proof of the Schwartz inequality

$$|\langle \mathbf{v}, \mathbf{w}
angle| \le |\mathbf{v}| |\mathbf{w}|$$

Here \langle , \rangle is an inner product in a vector space and $| \cdot |$ is a norm defined by this inner product. Also prove that the equality

$$\langle \mathbf{v}, \mathbf{w} \rangle = |\mathbf{v}| |\mathbf{w}|.$$

holds if and only if $\mathbf{v} = \mathbf{0}$ or there exists $t \ge 0$ such that $\mathbf{w} = t\mathbf{v}$. c) Recall (or google) the proof of the **triangle inequality**

$$|\mathbf{v} + \mathbf{w}| \le |\mathbf{v}| + |\mathbf{w}|$$

(using Schwartz inequality). Here \langle, \rangle is an inner product in a vector space and $|\cdot|$ is a norm defined by this inner product. Also prove that the equality

$$|\mathbf{v} + \mathbf{w}| = |\mathbf{v}| + |\mathbf{w}|.$$

holds if and only if $\mathbf{v} = \mathbf{0}$ or there exists $t \ge 0$ such that $\mathbf{w} = t\mathbf{v}$. d) Apply the previous result to show that every point of the sphere S^{n-1} is an extreme point of the convex set \overline{B}^n . The concept of the extreme point was defined in Exercises 1.

5. Define the topology τ in \mathbb{R} as following. Suppose $U \subset \mathbb{R}$. Then U is open if and only if for every $x \in U$ there exists half-open interval [a, b[such that $x \in [a, b[$ and $[a, b] \subset U$.

a) Show that τ is indeed a topology in \mathbb{R} . Show that every subset of \mathbb{R} which is open with respect to the standard topology of \mathbb{R} is also open with respect to τ , but the converse statement is not true.

b) Is open interval]a, b[open or closed with respect to τ ? What about intervals of the form [a, b[,]a, b], [a, b]?

c) Show that the closed interval [a, b] is not compact with respect to τ . d) The topological space is called totally disconnected if the only connected subsets of the space are empty set and singletons. Show that all intervals of \mathbb{R} are totally disconnected with respect to τ .

6. a) Suppose $\mathbf{y} \in S^n, \mathbf{y} \neq \mathbf{e}_{n+1}$. Show that the unique line ℓ that goes through both \mathbf{y} and \mathbf{e}_{n+1} intersects the set

$$\mathbb{R}^n = \{ \mathbf{x} \in \mathbb{R}^{n+1} \mid \mathbf{x}_{n+1} = 0 \} \subset \mathbb{R}^{n+1}.$$

in exactly one point, which we denote $p(\mathbf{y})$.

b) Show that $p: S^n \setminus {\mathbf{e}_{n+1}} \to \mathbb{R}^n$ is given by the formula

$$p(\mathbf{y}) = \frac{1}{1 - \mathbf{y}_{n+1}}(\mathbf{y}_1, \dots, \mathbf{y}_n).$$

Show that p is a continuous bijection and its inverse is given by the formula

$$p^{-1}(\mathbf{y}) = \frac{1}{|\mathbf{y}|^2 + 1} (2\mathbf{y} + (|\mathbf{y}|^2 - 1)\mathbf{e}_{n+1}).$$

Bonus points for the exercises: 25% - 2 point, 40% - 3 points, 50% - 4 points, 60% - 5 points, 75% - 6 points.