
Department of Mathematics and Statistics
Introduction to Algebraic topology, fall 2013

Exercises 1 - Solutions

1. Suppose x,y ∈ V , where V is a vector space and x 6= y. Prove that
there exists unique line ℓ in V that contains both x and y. Also show
that in this case

ℓ = {(1− t)x + ty | t ∈ R} = {λx+ µy | λ, µ ∈ R, λ+ µ = 1}.

We have defined a line to be a set of the form v+W , where W ⊂ V is
a 1-dimensional vector subspace of V and v ∈ V .

Solution: Suppose ℓ is a line, that contains both x and y. By defi-
nition of the line, there exist v ∈ V and 1-dimensional vector subspace
W of V such that

ℓ = v +W.

Since we assume that x,y ∈ ℓ, there exists w1, w2 ∈ W such that

x = v +w1,

y = v +w2.

This implies that
y − x = w1 −w2 ∈ W,

since W is closed under subtraction of vectors. Since x 6= y, the sub-
space

W ′ = {t(y − x) | t ∈ R}

of W is 1-dimensional. But W is 1-dimensional itself, so

W = W ′ = {t(y − x) | t ∈ R}.

This proves the uniqueness of W . Next we show that in fact

ℓ = x +W.

Indeed, x = v +w1,, where w1 ∈ W , so

v = x−w1

and thus
ℓ = v +W = x−w1 +W = x +W,
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since W is a subspace and w1 ∈ W . We have shown that

ℓ = x+W = x+ {t(y − x) | t ∈ R} =

= {(1− t)x+ ty | t ∈ R} = {λx+ µy | λ, µ ∈ R, λ+ µ = 1}.

This also establishes the uniqueness of ℓ.

It remains to show that ℓ defined by

ℓ = {(1− t)x+ ty | t ∈ R}

is actually a line that contains x and y. For the first claim we just
follow the prove above ”backwards”,

{(1− t)x+ ty | t ∈ R} = x+ {t(y − x) | t ∈ R} = x +W,

where W = Span(y − x) is a 1-dimensional subspaces. As a translate
of W , ℓ is a line by definition. Choosing t = 0, 1 in the definition of ℓ,
we see that x,y ∈ ℓ.

2. In the proof of the Lemma 2.4 we have shown that a given non-empty
affine set A in the vector space V can be written in the form A = v+W ,
where v ∈ A and W is a vector subspace of V . Complete the proof by
showing that W is unique, while v can be chosen arbitrary from A.

Solution: We start by showing that
1) if A = v +W , where W is a vector subspace of V , then v ∈ A and
2) if A = v +W for some v ∈ V and x ∈ A is arbitrary, then also

A = x+W.

Claim 1) is clear - since W is a vector subspace, 0 ∈ W , so

v = v + 0 ∈ x +W = A.

To show 2) we first notice that if A = v + W for some v ∈ V and
x ∈ A, then there exists w ∈ W , so that

x = v +w.

This implies that
v = x−w,
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so
A = v +W = x−w +W = x+W,

since w ∈ W and W is vector subspace. Hence 2) is also shown.

Thus in the representation of A in the form v + W , we can choose v

as an arbitrary vector of A (and only such a vector can be chosen, in
converse).

Next we show the uniqueness of W . Suppose

A = v1 +W1 = v2 +W2,

where W1,W2 are both vector subspaces. We need to show that W1 =
W2.

From 1) above it follows that v2 ∈ A. This, in its own turn, implies
by 2) above that since we have a representation A = v1 +W1, we have
also a representation A = v2 +W1. Thus

v2 +W2 = A = v2 +W1,

which leads to W2 = W1.

3. Determine whether the set of vectors

A = {(2, 1,−3), (6, 3,−4), (5, 2,−8), (9, 4,−9)}

in R
3 is affinely independent or not. In case it is not also give an ex-

ample of a point x ∈ conv(A) that has two different representations as
a convex combination of points ofA (together with these combinations).

Solution:

We denote
v0 = (2, 1,−3),

v1 = (6, 3,−4),

v2 = (5, 2,−8),

v2 = (9, 4,−9),

Let us start by examining whether A is affinely independent. By
Lemma 2.10 this is equivalent to the question if the set (w1,w2,w3),
where

w1 = (6, 3,−4)− (2, 1,−3) = (4, 2,−1),
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w2 = (5, 2,−8)− (2, 1,−3) = (3, 1,−5),

w3 = (9, 4,−9)− (2, 1,−3) = (7, 3,−6).

This is standard linear algebra, we need to solve the equation

t1(4, 2,−1) + t2(3, 1,−5) + t3(7, 3,−6) = (0, 0, 0)

and see if it has any non-trivial solutions.

We omit the details since we assume that the student is able to solve
linear systems (or knows how to make Wolfram Alpha to do it). All
solutions of this equation are of the form

t1 = t2 = −t3, t ∈ R.

In particular there is at least one non-trivial solution, so vectors are
not linearly independent. This implies that the original set A is not
affinely independent.

To find a particular representation of the same vector as a convex com-
bination of given vectors in A, one can notice that the solutions above
imply that

tw1 + tw2 = tw3

for all t ∈ R. Substituting wi = vi − v0 in this equation leads (after
some obvious simplifications) to the equation

tv1 + tv2 = tv3 + tv0,

for all t ∈ R. Both combinations are convex if (and only if) we choose
t = 1/2. Hence a particular example is

1

2
v1 +

1

2
v2 =

1

2
v3 +

1

2
v0.

If one wants to find all possible different simplicial representations of
the same vectors in terms of the set A, it can be done systematically
as following. We are interested in possible equations of the form

t0v0 + t1v1 + t2v2 + t3v3 = t′
0
v0 + t′

1
v1 + t′

2
v2 + t′

3
v3,

where ti, t
′
i ≥ 0 for i = 0, . . . , 3 and

3∑

i=0

ti = 1 =

3∑

i=0

t′i.
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If we first consider only the last condition, i.e. only affine representa-
tions (no restriction on the sign of scalars), this is the same as equation
of the form

s0v0 + s1v1 + s2v2 + s3v3 = 0,

where
∑

3

i=0
si = 0 (we put si = t′i − ti). This can be re-written as an

arbitrary linear combination

s1w1 + s2w2 + s3w3 = 0,

since s0 = −s1 − s2 − s3 is determined by s1, s2, s3. But we already
know all the solutions of this equation, they are precisely of the form

s1 = t = s2, s3 = −t, t ∈ R.

It also follows then that s0 = −s1 − s2 − s3 = −t − t + t = −t = s3.
Hence for the original problem we obtain the complete solution of the
form

t′
0
= t0 − t,

t′
1
= t1 + t,

t′
2
= t2 + t,

t′
3
= t3 − t,

where t is a real number. This describes completely all different affine
combinations of the vectors vi with the same value - you pick any
arbitrary scalars t1, t2, t3 and t 6= 0, put t0 = 1 − t1 − t2 − t3, and
you get scalars t′

0
, . . . , t′

3
that yield the same affine representation as

t0, . . . , t3. If we want both representations to be simplicial, we need
choice for t to also satisfy the conditions

t0, t3 ≥ t,

t1, t2 ≥ −t

that will insure that the scalars t′
0
, . . . , t′

3
are non-negative. For example

the representation
1

2
v1 +

1

2
v2 =

1

2
v3 +

1

2
v0

obtained above can be obtained when one chooses t0 = 0 = t3, t1 =
1

2
= t2 (this gives left side) and t = −1/2.

Remark:
Analysis above also shows that the set conv(A) actually looks like a
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parallelogram. This follows from the fact that when you translate it
”to origin” via the translation x − v0, the image is the convex hull of
the origin and the points w0,w1,w2 with

w2 = w1 +w2.

The point
1

2
v1 +

1

2
v2 =

1

2
v3 +

1

2
v0

corresponds to the middle point of the diagonals of this.

Compare this with the standard square I2 that is the convex hull of
the origin and points e1, e2, (1, 1) = e1 + e2.

b

bb

b

b

w2

w1

The point 1

2
v1 +

1

2
v2 =

1

2
v3 +

1

2
v0

In the following exercises we need the concept of an ”extreme point”.
Suppose C is a convex subset of a vector space V and z ∈ C. We say
that z is an extreme point of C if it is not an ”interior point” of
any proper closed interval of C i.e., precisely put if there do not exist
x,y ∈ C and t ∈]0, 1[ such that x 6= y and

z = (1− t)x + ty.

4. In this exercise you are allowed to skip the proofs and calculations. The
answer supported by drawings and ’intuition’ is acceptable.

Determine the extreme points of the following convex sets:
I2 (the square), B

n
(closed unit ball), Bn (open unit ball), the closed

upper half of the plane

H = {(x, y) ∈ R
2 | x ≥ 0},
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the closed quarter of the plane

F = {(x, y) ∈ R
2 | x, y ≥ 0}.

Also check for every of these sets if the statement
”the convex set is a convex hull of its extreme points” is true for them.
Can you make a conjecture for which convex sets (in general) this state-
ment is true?

Solution:

e0 e1

e2 e1 + e2

The extreme points of the square I2 are its ’vertices’, i.e. corner points
0, e1, e2 and (1, 1) = e1 + e2. This is ’clear from the picture’, but can
also be easily shown from the definition. Indeed, suppose x,y ∈ I2,
x 6= y and 0 < t < 1. Then 0 ≤ x1, x2 ≤ 1 and 0 ≤ y1, y2 ≤ 1. If
x1 6= y1, then the corresponding 1st component z1 of

z = (1− t)x + ty.

is strictly between 0 and 1, hence z cannot be one of the corner points.
The same conclusion holds if x2 6= y2.
It follows that the corner point must be an extreme point. Conversely
it is easy to verify that the point which is not a corner point (which
means that at least one component of that point is strictly between 0
and 1) is not an extreme point. For example if z1 6= 0, 1, then

z = (1− z1)(0, z2) + z1(1, z2).

The convex hull of the corner points of the square is the square. Hence
for I2 the statement ”the convex set is a convex hull of its extreme
points” is true.
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b

b

b

The extreme points of the closed ball B
n
are precisely the points of

the sphere Sn−1, for any n ≥ 1. This is ”obvious from the picture”,
but should you bear in mind that we cannot draw 4- and more-

dimensional pictures, so we do not really know how ball of

dimension bigger than 3 ”looks like”. Our intuition is only offer-
ing us analogies and generalizations from the cases we can draw. The
precise analytic proof of the fact that the set of the extreme points of
B

n
is Sn−1 will be presented in Exercise 2.4 (a non-trivial part).

It is not difficult to see that the convex hull of Sn−1 is precisely B
n
.

Hence for this set the statement ”the convex set is a convex hull of its
extreme points” is also true.

Open unit ball Bn do not have extreme points at all, for any n ≥ 1.
In fact no open convex subset U of a finite-dimensional vector space
V can have no extreme points. This follows from the fact that around
any point z of U there is an ε > 0 neighbourhood B(z, ε) contained
entirely in U . Then

z1 = (z1 + ε/2, z2, . . . , zn),

z2 = (z1 − ε/2, z2, . . . , zn)

both belong to U and

z = (1−
1

2
)z1 +

1

2
z2.

Incidentally, this shows that all points of Bn cannot be extreme points
of the bigger set B

n
, so to prove that the set of the extreme points of

B
n
is precisely Sn−1, it will be enough to show that every point of Sn−1

is an extreme point of B
n
(which is what will be shown in Exercise 2.4).
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The convex hull of an empty set is an empty set, so Bn is not a convex
hull of its extreme points. In particular the statement ”the convex set
is a convex hull of its extreme points” is not true for Bn.

b

The set H

The set F

The closed upper half of the plane

H = {(x, y) ∈ R
2 | x ≥ 0}

do not have extreme points. Intuitively it is because it has ”no cor-
ners”. Precise (easy) proof is left to the reader.

Since convex hull of an empty set is an empty set, for the set H the
statement ”the convex set is a convex hull of its extreme points” is also
not true.

The closed quarter of the plane

F = {(x, y) ∈ R
2 | x, y ≥ 0}

has exactly one extreme point - the origin (0, 0). Again we leave the
precise proof to the reader. The origin is the only ”corner point” of F .

The convex hull of a singleton {0} is the same singleton, because it is
already convex. Hence for the set F the statement ”the convex set is a
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convex hull of its extreme points” is not true.

The analysis of these examples suggests that a closed and bounded i.e.
compact convex subsets of finite-dimensional vector space are convex
hulls of their extreme points. This is indeed true, a (extremely impor-
tant) fact known as Krein-Milman Theorem.

The compactness of the compact set is sufficient condition, but not
necessary - for example if you take away one boundary point from the
closed ball B

n
, the set obtained so will be convex hull of its extreme

points (the remaining boundary points), although will not be compact
any more. On the other hand, if you take away one of the corner points
from the square, the set will not be convex hull of its extreme points
(which will be the remaining three corner).

5. Suppose the set A = {v0,v1, . . . ,vm} is affinely independent subset of
a vector space V . Let σ = conv(A) be the simplex spanned by A. Show
that a point of σ is an extreme point of σ if and only if it is one of the
vertices v0,v1, . . . ,vm.

Solution: We first show that a vertex vi is not an extreme point
through counter-assumptions. Suppose x,y ∈ σ and t ∈]0, 1[ are such
that x 6= y and

vi = (1− t)x+ ty.

By definition of the simplex there are (unique) simplicial combinations

x = t0v0 + t1v1 + . . .+ tmvm,

y = t′
0
v0 + t′

1
v1 + . . .+ t′mvm.

This implies that

vi =

m∑

j=0

((1− t)tj + tt′j)vj .

Both left and right side are simplicial combinations, so by uniqueness
we must have

(1− t)ti + tt′i = 1.

The combination of real numbers (1 − t)ti + tt′i, where t, ti, t
′
i ∈ [0, 1]

can equal 1 only if ti = t′i = 1. Since tj ≥ 0 for all j = 0, . . . , m,
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∑
tj = 1 and the same is true for t′j, this implies that tj = 0 = t′j for

all j 6= i and hence x = vi = y, which contradicts the assumptions.
Hence every vertex is an extreme point.

Next we show that that a point, which is not a vertex, is not an extreme
point. One way to do it the following. Suppose

z = t0v0 + t1v1 + . . .+ tmvm ∈ σ

is not a vertex. Then there is are at least two coefficients ti, tj, i 6= j
such that ti, tj ∈]0, 1[. Consequently there exists ε > 0 such that

ti ± ε > 0, tj ± ε > 0.

We may assume that i < j. The points

x = t0v0 + . . .+ (ti + ε)vi + . . .+ (tj − ε)vi + . . .+ tmvm,

y = t0v0 + . . .+ (ti − ε)vi + . . .+ (tj + ε)vi + . . .+ tmvm

are both simplicial combinations of the vertices of σ, so belong to σ.
Moreover by construction x 6= y and

z =
1

2
x+

1

2
x.

Another solution - suppose

z = t0v0 + t1v1 + . . .+ tmvm ∈ σ

is not a vertex. Let i = 0, . . . , m be an index such that ti 6= 0. Then
also ii 6= 1 (otherwise z would be a vertex vi. Define

y =
∑

j 6=i

tj
1− ti

vi.

Notice that y is a point of the simplex, in fact a point of the face diσ
opposite the vertex vi. Also

x = (1− ti)y + tivi,

which shows that x is a not an extreme point. The geometric idea
behind this solution (and the definition of y) is simple - y is actually
the unique point of the face diσ which lies on the line that goes through
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x and vi (see the picture below).So the idea is that you ”project” x

using vi as the ’origin’.

b

bb

b

vi

x

y

Remark: This exercise implies that the set of vertices of a simplex
is determined by the simplex as a set.

6. Deduce, using previous exercise, that the square I2 and the closed ball

B
2

are not simplices, by showing that the corresponding sets of their
extreme points are not affinely independent.

Solution: The extreme points of the square were determined in the
exercise 4 above - I2 has exactly four extreme points, which are corner
points 0, e1, e2 and (1, 1) = e1+ e2. If square would be a simplex these
points would be, by the previous exercise, vertices of that simplex. In
particular these points would then constitute affinely independent set.
However it is easy to check that the set

{(0, 0), (1, 0), (0, 1), (1, 1)}

is not affinely independent. For example if you subtract the first
vector (which is the zero vector) from the others, the remaining set
{(1, 0), (0, 1), (1, 1)} is not linearly independent - either because

1 · (1, 0) + 1 · (0, 1)− 1 · (1, 1) = 0,

or simply because two-dimensional vector space R
2 cannot contain

three linearly independent vectors.

For B
2

the solution is even simplier - the set of its extreme points is
infinite set S1, and no set of vertices of a simplex can be infinite.
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