# Introduction to Probability with MATLAB Spring 2014 

## Lecture 2 / 12

Jukka Kohonen<br>Department of Mathematics and Statistics<br>University of Helsinki

## Probabilities in an equiprobable space

To get $P(A)$, there are two things to do:

1. What are the elementary events? How many are they?

- can you perhaps list them all? Or,
- can you imagine a process that lists them all (for example, as in the rule of product we saw last time)?

2. Which elementary events belong to A?
(We may call those the "favorable elementary events") How many are they?

Once you know these (and assume equiprobability), then

$$
P(A)=\frac{n(A)}{n(\Omega)}
$$

## Example. Two dice, P(both are even)

- Elementary events = ordered pairs out of the set $\{1, \ldots, 6\}$. There are 36 of them (rule of product): $\{(1,1),(1,2), \ldots,(6,5),(6,6)\}$
- Favorable elementary events: first die must be one of $\{2,4,6\}$, likewise the second, so the favorable outcomes are $\{(2,2),(2,4),(2,6), \ldots,(6,6)\}$
- Rule of product, there are $3 \cdot 3=9$ of them
- Probability = $9 / 36=1 / 4$


## Example. Two dice, $\mathrm{P}(\mathrm{X}+\mathrm{Y}=6)$

- 36 elementary events
- Favorable are: $\{(1,5),(2,4),(3,3),(4,2),(5,1)\}$ that is 5 outcomes
- Probability $=5$ / 36

Let's experiment...
>> n=1e6;
$\gg x=$ dice ( $n$ );
>> $y=$ dice (n);
>> sum ( $x+y==6$ ) / $n$
ans $=$
0.1385
>> 5/36
ans $=$
0.1389

Seems close!

## Subsets of given size "combinations"

4 persons ABCD shake hands. How many handshakes occur? (subsets of 2 persons)
If we list all ordered pairs, 4.3=12
$A B, A C, A D$,
$B C, B A, B D$,
CA, CB, CD,
DA, DB, DC

The red ones are the same set $\{A, B\}=\{B, A\}$

The blue ones are the same set
$\{A, C\}=\{C, A\}$
And so on. Every subset has been listed twice, so the number of subsets is $12 / 2=6$

## Number of combinations

In a set of $n$ elements, the number of $\boldsymbol{k}$-element subsets ( $k$-combinations) can be computed thus:

- Count all ordered $k$-sequences: $(n)_{k}$
- Each $k$-combination corresponds to $k$ ! different ordered sequences, thus the number of $k$-combinations is

$$
\frac{(n)_{k}}{k!}=\frac{n(n-1) \ldots(n-k+1)}{k!}=\frac{n!}{(n-k)!k!}=\binom{n}{k}
$$

- Also known as the binomial coefficient, " $n$ choose $k$ ".
- MATLAB: nchoosek ( $n, ~ k)$


## Listing all cases (Matlab)

## Ordered sequences

>> perms('ABCD')
ans =
DCBA
DCAB
DBCA
DBAC
DABC
DACB
CDBA
CDAB
CBDA
CBAD
CABD
CADB
BCDA
BCAD
BDCA
BDAC
BADC
BACD
ACBD
ACDB
ABCD
ABDC
ADBC
ADCB
Spring 2014

## $P$ (Four of a kind) in poker see e.g. Wikipedia: Poker probability

- 52 cards (4 suits, 13 cards each)
- A hand is a 5-element subset (combination), so there are nchoosek $(52,5)$ different hands
- Counting the favorable hands (via rule of product):
- The four cards must have the same value. This value is one of 13 possible values. The hand then contains all four cards of that value (no choice here).
- The fifth card can be any one of the remaining 48 cards.
- Rule of product: 13-48=624 favorable hands
- Probability is 624 / nchoosek $(52,5) \approx 0.000240$


## How to try that in Matlab?

- We could list all nchoosek $(52,5)=$ about 2.6 million hands of five cards,
- Pick out those that are "four of a kind" ("favorable")
- Count them one by one, and then compute \#A / \# $\Omega$
- Or, we could generate some random hands of five cards, check how often we got "four of a kind", and compute relative frequency.
- How do these approaches differ?



## SAMPLING WITH OR WITHOUT REPLACEMENT

## Without replacement

- A population of $N$ elements (balls, people etc.), of two kinds ("white", "black")
- A sample $=$ subset of size $n$ is chosen at random (equiprobably)
- Define event $\boldsymbol{A}_{\boldsymbol{k}}=$ "there are $\boldsymbol{k}$ white balls in the sample"
- It contains many elementary events (which white balls, which black balls are in the sample)


Counting favorable outcomes
$n-k$ black balls
chosen from $N-K$


Counting all outcomes
( $n$-subsets of $N$ )

## Without replacement (example)



$$
P\left(A_{2}\right)=\frac{\binom{7}{2} \times\binom{ 3}{2}}{\binom{10}{4}}=\frac{21 \times 3}{210}=0.3
$$

Similarly
$\mathrm{P}($ " 0 white") $=0$ (why?)
$P(" 1$ white") $\approx 0.033$
$\mathrm{P}($ "2 white") $=0.300$
$\mathrm{P}($ " 3 white") $=0.500$
$P(" 4$ white") $\approx 0.167$

## With replacement

- Same population. A ball is picked at random, placed back into the population, again a ball is picked at random and so on.
- Not necessarily physical "replacing" (placing back into the population. The point is that each time, a ball is picked from the same population (e.g. pick people from phone directory)
- Thus the same ball can appear again! A subset is not a good model for the sampling.
- Instead the sample is an ordered $n$-sequence where same element can occur again (just like in die-tossing)


Favorable outcomes

$$
\boldsymbol{P}\left(A_{k}\right)=\left(\begin{array}{c}
\left.\begin{array}{c}
\text { Location of the } k \\
\text { whites within } \\
\text { sample of } n \\
k
\end{array}\right)
\end{array} \begin{array}{c}
\begin{array}{c}
n-k \text { black } \\
\text { out of } K
\end{array} \\
N^{k}(N-K)^{n-k}
\end{array}\right.
$$

## With replacement (example)



Favorable outcomes


Elementary events = ordered sequences of 4 elements out of 10

## Comparison: without vs. with

7 white and 3 black, sample of $n=4$

| $k$ | $\mathrm{P}($ " $k$ white") <br> without replacement | $\mathrm{P}($ " $k$ white") <br> with replacement |
| :--- | :--- | :--- |
| 0 | 0,000 | $0,008 \quad$ (why $>0$ ?) |
| 1 | 0,033 | 0,076 |
| 2 | 0,300 | 0,265 |
| 3 | 0,500 | 0,412 |
| 4 | 0,167 | 0,240 |

## Example: A very large population

- $N=5000000$ (people living in Finland)
- $K=500000$ (people living in Helsinki)
- $n=3$ (sample) $n \ll K$ ja $n \ll N-K$
- P(sample contains exactly one person from Helsinki)?
- Without replacement

$$
P\left(A_{1}\right)=\frac{\binom{500000}{1} \times\binom{ 4500000}{2}}{\binom{5000000}{3}} \approx 0,243000094
$$

- With replacement

$$
P\left(A_{1}\right)=\binom{3}{1} \frac{500000^{1} \times 4500000^{2}}{5000000^{3}}=0,243000000
$$

Sample Space (all possible outcomes)
Not A
Not B


## NON-EQUIPROBABLE PROBABILITY SPACE

## Finite sample space

- As before, $\Omega=$ sample space $=$ set of all possible alternatives (elementary events, outcomes): exactly one of them will be true.
- Outcomes $\boldsymbol{\omega}_{i}$ (where $i=1, \ldots, n$ ) need not be equally probable, each one has some probability $\mathrm{P}\left(\left\{\omega_{i}\right\}\right)=p_{i}$
- We still maintain additivity of probability (G\&S p. 19 and 22). The probability of an event is defined to be the sum of the elementary event probabilities
- Unlike the equiprobable space, we no longer care much about "counts" of elementary events. Instead we must add up their elementary probabilties.
- Eg. pin tossing (2 outcomes, eg. $P($ down $)=0.7, P(u p)=0.3)$
- Eg. gender of child (2 outcomes, eg. $P($ boy $)=0.51$ )
- Eg. loaded die (several elementary events with arbitrary probabilities)


## Useful properties (rules)

- Even if the outcomes are not equiprobable, probability has properties similar to what we saw in Exercise set 1. See G\&S book p. 22.
- Additivity (for disjoint sets).
- Monotonicity
- Boundedness: $0 \leq P(A) \leq 1$
- Complement rule: $P\left(A^{c}\right)=1-P(A)$
- Why? These follow from how probability was defined, and from the properties of addition


## BERNOULLI TRIAL

## Tossing a coin $n$ times

- For each toss we have
$P$ (heads) = $1 / 2$
$P$ (tails) $=1 / 2$
- What is the probability of getting exactly $k$ times the result "heads"? Surely $0 \leq k \leq n$.
- We can take elementary events to be the sequences of $n$ results ( $1=$ heads, $0=$ tails)
- We can even assume them equiprobable
- There are $2^{n}$ such sequences, so...


## Tossing a pin $n$ times

- Suppose
$P($ up $)=p$
$P(d o w n)=q=1-p$
- What is the probability of getting exactly $k$ times the result "up" ?
- We can still take elementary events to be the sequences of $n$ results ( $1=$ up, $0=$ down)
- But we can no longer assume them equiprobable


## Tossing a pin $n$ times...

- What is the probability of getting, for example, the ordered sequence
(up, up, down) ?
- Appealing to a frequency interpretation of probability, this seems to be

$$
p \cdot p \cdot q
$$

- We will accept this for a while. (We shall later learn a formal concept of "independence".)


## Tossing a pin...

- But the event "2 times up" allows the following possibilities:
(up, up, down)
(up, down, up)
(down, up, up)
- Each of those has the same probability ppq (why?), so by additivity
$\mathrm{P}(2$ times up $)=3 p p q$


## Binomial probability

- More generally: if we have
- $n$ tosses of the pin, and each time
- probability $p$ of pin landing "up", and $q=1-p$ of landing "down"
- Then the probability of exactly $k$ "up" results is nchoosek $(n, k) \cdot p^{k} \cdot q^{n-k}$
- (see e.g. G\&S p. 96-98)

