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Distribution of sample sum and sample mean
Let X1,...,Xn be independent, identically distributed, from some distribution.
(For example, uniform, exponential, geometric, Bernoulli, rolls of dice...)

Let E(Xi)=µ and D(Xi)= .

What do we know about the sum S=X1+...+Xn and the average M = S/n?

• Easy: E(M) = µ (additivity of expectation)

• Almost easy: D(M) = / n (additivity of variance)

• A bit harder: M  µ, probably (law of large numbers)

• Harder still: Distribution of M? Central limit theorem
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Additivity properties of some distributions
When X || Y, from the same distribution, and S=X+Y, often we know

the distribution of the sum.
Adding discrete random variables:
• X,Y ~ fair coin S ~ binomial
• X,Y ~ fair dice S ~ discrete triangular
• X,Y ~ Geom S ~ negative binomial
Adding continuous random variables:
• X,Y ~ uniform S ~ continuous triangular
• X,Y ~ exponential S ~ gamma distribution

• The exact distributions are different in all cases.
• But if there are many terms in the sum, these

different ”sum distributions”  seem similar in shape.
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CENTRAL LIMIT THEOREM
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Sum of U(0,1) variables

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5
x 104 SUMMA

n=1
n=2
n=3
n=4
n=5

As n increases, distribution of the sum
• moves right: E(Sn) = · n
• widens: D(Sn) = · n
• changes shape towards the normal distribution

A single variable has
= E(Xn) = ½ 
= D(Xn) = 1 / 12

Sum is
Sn = Xi

Exact density of the sum
is a cumbersome piecewise
polynomial, which can be
calculated via convolution.

This picture is simply a
histogram of a random sample.



Average of U(0,1) variables

As n increases, the distribution of the sample mean
• does not move: E(Mn) = = 0.5
• narrows: D(Mn) = / n
• changes shape towards the normal distribution.

A single variable has
= E(Xn) = ½ 
= D(Xn) = 1 / 12

Their average, or
sample mean is
Mn = Sn / n
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Standardized sum of U(0,1) variables

As n increases, the distribution of the standardized sum
• does not move: E(Zn) = 0
• does not widen or narrow: D(Zn) = 1
• changes shape towards the normal distribution.

A single variable has
= E(Xn) = ½ 
= D(Xn) = 1 / 12

Standardized sum
Zn = [Sn E(Sn)] / D(Sn)
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Sum of Exp(1) variables

A single variable has
= E(Xn) = 1 
= D(Xn) = 1

Sum
Sn = Xi

The exact distribution
of the sum is in fact
”gamma distribution”
(G&S page 292)0 2 4 6 8 10 12
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Average of Exp(1) variables

A single variable has
= E(Xn) = 1 
= D(Xn) = 1

Their average, or
sample mean is
Mn = Sn / n
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Standardized sum of Exp(1) variables

A single variable has
= E(Xn) = 1 
= D(Xn) = 1

Standardized sum
Zn = [Sn E(Sn)] / D(Sn)
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Empirical observation
When you add independent random variables, the distribution of the sum seems 

to have a similar shape.

This family of distributions is called the normal distribution and denoted N
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Standard normal distribution
• Continuous distribution with density

f(x) = c · exp( 0.5x2)

• By looking at the density we can observe
– Max density at x=0
– Left and right sides symmetric
– Very thin tails (very low density for large |x|)
– Median and mean are also = 0
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General normal distribution
If Z has the standard normal distribution, and if

X = aZ + b,
Then we define that X has the normal distribution

X ~ N(b, a2)

Note that
multiplying is ”stretching” of the distribution
addition is ”shifting” (moving) the distribution
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Normal distribution
• We need the cdf for calculating the 

probabilities of given intervals
• In principle, we get cdf as the integral of pdf. 
• Unfortunately the integral function of this pdf 

has no ”closed form formula”, so we have to
– use a table, or
– use a calculator normcdf
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Normaalijakauma
• Let Z have a standard normal distribution

– We can compute E(Z) = 0
– We can also compute D(Z) = 1

• If we now stretch and shift the distribution
X = aZ + b,

then obviously(?)
E(X) =  a · 0 + b = b
D(X) =  a · 1 = a

• Thus we can have a normal distribution with any given mean (b) and any 
given standard deviation (a).
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Sum of normally distributed variables
Let X || Y, ja
X ~ N( 1, 1

2)
Y ~ N( 2, 2

2)

Then the sum also has exactly normal distribution
X+Y ~ N(some parameters).   What are parameters?

Remember additivity of mean and variance:
E(X+Y) = E(X) + E(Y)
V(X+Y) = Var(X) + Var(Y) (we assumed independence)
Thus it is easy to deduce the parameters

X+Y ~ N( 1 + 2,  1
2 + 2

2)



Sum of two normals
Two bus trips take independently times 
Bus 1: X ~ N(20, 42)
Bus 2: Y ~ N(24, 42)

The trips are consecutive. The whole trip takes time
X+Y ~ N(20+24, 42+42)

= N(44,       5.662)

Note: Standard deviations were not added! (NOT ”4 + 4 = 8 minutes”). 
Variances were added. Standard deviation is its square root.

Probability that the whole trip takes < 50 minutes?
FX+Y(50) = ((50 44) / 5.66) = 0.855



Difference of two normals
Two buses independently reach the same stop at time
bus 1: X ~ N(20, 42)
bus 2: Y ~ N(24, 42)

Mr. K is riding the first bus, and wants to transfer to the second bus.

Distribution of the transfer marginal V = (Y X) ?
Note that V is the sum of two normals: V = Y + ( X),
where X ~ N( 20 , 42) (multiplication by constant 1)

Thus V ~ N(24 20, 42+42)
= N(4, 5.662)

Note that the variances were not subtracted but added.
Average transfer marginal is 4 min. Standard deviation 5.66 is pretty large. 

Probability of a negative transfer marginal ( transfer fails) ?
P(V < 0) = FV(0) = ((0 4) / 5.66) = 0.24



Central limit theorem
• How do you prove exactly that the ”shape” of the sum 

distribution goes towards the normal distribution?

• How do you even write this as an exact mathematical claim?
(How do you formalize the ”shape” of a distribution?)



Central limit theorem
Formally, CLT is given for the cumulative distribution of the 

standardized sum, as a limit claim at every point b :

P(Zn  b) (b),   as n  

• This is valid for discrete and continuous variables.

• Cumulative distribution gives often just what we want,
i.e. the probability of an interval

P(a < Zn b) = F(b) – F(a),
and by CLT the values F(b (b), and F(a (a).
So we can approximate that

P(a < Zn b) (b) – (a).



Using the CLT
• In practice we don’t care about the standardized sum. 

• We simply approximate that the sample sum and the 
sample mean have normal distributions.

• We need the parameters of that distribution,
but they are in fact easy to deduce since they are the 
mean and variance, which are additive.



Fair coin
• Toss the coin a million times.
• Tails count S ~ Bin(106, ½)
• We know E(S) = 500000

D(S) = 500
• Approximate S ~ N(500000, 5002)
• Now the probability that the tails count differs from the 

mean by at most 1000 (= two standard deviations) is

P( 1000 S E(S)   1000 ) (2) 2)  0.9545

• Of course we could compute the exact probability by taking
the sum of 2001 binomial probabilities. We can do this with
Matlab, and we get 0.9546.



Fair coin: Normal approximation vs. Chebysev

• By normal approximation we got

P( 1000 S E(S)  1000 ) (2) 2)  0.9545

• If we did not know the sum is approximately normal, we might
use Chebysev to find the tail probability for ”deviation larger than
2 standard deviations”, that is, tail probability for k=2,

P( |S E(S)|  1000)  1/k2 = 0.25
P( |S E(S)|  1000) 0.75

This is a very crude bound, but it is certainly correct. It is not an 
approximation, and it does not depend on how close the distribution 
is to normal.



Fair coin continued
• By CLT the tails count (and relative frequency) is within

2 standard deviations of the mean with probability 0.955
• Std.dev of count D(Sn) = (npq) = 0.5 · n
• Std.dev of relative freq D(fn) = (pq/n) = 0.5 / n

n D(Sn) D(fn)
100 5 0.05

10 000 50 0.005
1 000 000 500 0.0005

If p is unknown, and we try to estimate it by the relative frequency,
we gain one more decimal place of accuracy by performing
100 times more trials



Exact density of sum of U(0,1)
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... and so on. For n variables, the 
density has n pieces of polynomials
of degree (n 1). Doable, but not 
very practical.



MONTE CARLO INTEGRATION
AN APPLICATION OF THE LAW OF LARGE NUMBERS
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Problem without any probabilities
• What is the area of this complicated figure A ?

We only know how to test whether a given point (x,y) is inside it:
sqrt(x2 + y2) < 1
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Auxiliary figure
• Let’s introduce another figure (B), that

– Contains A, and
– Whose area is known (4)
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Introduce randomness
• Let’s introduce another figure (B), that

– Contains A, and
– Whose area is known (4), and
– From which we are able to generate random points
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Monte Carlo integration
• P(given point inside) p = m(A) / m(B), m = area
• This is a Bernoulli trial with n trials and success probability p
• Law of large numbers: fn  p
• Estimate m(A) = p m(B)  fn m(B)
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Monte Carlo integration
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n points inside m(B) 
100 80 3.200000
1 000 783 3.132000
10 000 7 849 3.139600
100 000 78 544 3.141760
1 000 000 785 132 3.140528

The same method could be applied in a space of any dimension,
for example, what is the ”volume” of an n-dimensional ball?

The accuracy of the estimate could be judged by assuming that the 
number of points inside has normal distribution (Central Limit Theorem). 
In general, if we want just one more decimal place of accuracy, we need 
100 times more points!


