
INTRODUCTION TO BIFURCATION THEORY

Exercises 21-11-2013

Consider
ẋ = −x + y2

ẏ = −2x2 + 2xy2

31. (8 points) Find all the equilibria. As one equilibrium is the origin, compute
the invariant manifolds belonging to this equilibrium.

Solution Equilibria we obtain from

−x + y2 = 0

−2x2 + 2xy2 = 2x(−x + y2) = 0

Hence this system has a curve of equilibria given by x = y2.

Lest consider the equilibrium at the origin (x̂, ŷ) = (0, 0). The linearization about
the origin is

Ẋ =

(
−1 0
0 0

)
X

where X = (x, y). The eigenvalues are thus −1 and 0 with eigenvectors (1, 0) and
(0, 1). The system is already in its standard form. As the linearization has linear
subspaces Es and Ec, the manifold theorem says that the nonlinear original system
has invariant manifolds W s(0, 0) and W c(0, 0) tangent to the corresponding linear
subspaces.

W s(0, 0) can be represented as y = h(x). The taylor approximation is h(x) =
ax2 + bx3 + O(x4), and when differentiating y = h(x) with respect to time and
substituting this approximation and the nonlinear vector field we get

ẏ = Dh(x)ẋ

and after substitution

−2ax2 − 3bx3 + O(x4) = −2x2 + O(x5).

We have then that a = 1, b = 0 and the center manifold is y = h(x) = x2. In fact,
all other higher order terms are zero (this can be checked by substituting this into
M(h(x))), thus y = x2 is not only local but also a global stable manifold of the
origin.
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W c(0, 0) can be represented as x = h(y) with its taylor expansion x = ay2 + by3 +
. . . . Following the same procedure as above, we get

ẋ = Dh(y)ẏ

or
(1− a)y2 − by3 = O(y5)

and hence x = h(y) = y2. Again, we notice that x = h(y) = y2 is not only local
but global center manifold. Moreover, as this is the same as the curve of equilibria,
there is no dynamics on the center manifold, every solution starting on the center
manifold is a constant solution ( In linear systems this is the case, but not true
in general nonlinear systems! see later exercise sessions and lecture notes. We are
dealing with a special system here).

32. (16 points) Another equilibrium is (x̂, ŷ) = (1, 1).
(a) compute the invariant manifolds connected to this equilibrium by shifting the
equilibrium to the origin. Don’t transform it to the simple block diagonal form
(i.e. do not apply map T ). Hint: the first-order terms of the manifolds are not
zero, that is, Dh(·) 6= 0.

Solution We shift the equilibrium (x̂1, ŷ1) = (1, 1) to the origin by setting Y =

X − X̂1 = (x1, y1) − (1, 1), where Y = (u, v). We have then u = x − 1, v = y − 1
and u̇ = ẋ, v̇ = ẏ, and by substituting this into the system we get

u̇ = −u + 2v + v2

v̇ = −2u + 4v + 4uv + 2uv2 + 2v2 − 2u2.

Linearizing about (u, v) = (0, 0) (the new equilibrium!) we get

Ẏ =

(
−1 2
−2 4

)
Y

Eigenvalues are 3 and 0 and the corresponding eigenvectors are (1, 2) and (2, 1). As
the eigenspaces are not the axis, but spanned by these vectors, we may represent
both the unstable and the center manifold by v = h(u) OR u = h(v).

For the unstable manifold we choose v = h(u). Notice that now its Taylor expan-
sion doesn’t have a vanishing first-order term, hence, v = h(u) = 0+ku+au2+. . . .
As it must be tangent to the eigenspace, we know that k = 2. Alternatively, we
could’ve solved k as we will solve a. Using the same procedure as in the previous
exercise we get

v̇ = Dh(u)u̇

and after substitutions we obtain a = 1. Thus v = h(u) = 2u + u2 is the unstable
manifold.
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For the center manifold we choose u = h(v) = kv + av2, where k = 2 as it needs
to be tangent to the corresponding eigenspace. Following the same procedures as
above, we obtain a = 1 and thus u = h(v) = 2v + v2. If we would’ve chosen
to represent it as u = h(v), which would’ve been another option, we would’ve
been trying to expand square roots ! (we know this cause the center manifold is
u = 2v + v2 and hence this curve in terms of u would contain square roots)

(b) compute the invariant manifolds connected to this equilibrium by shifting it
to the origin AND applying map T .

Solution Next we want to put the above system in the standard form. That
is, we need to apply the map T , which we get by setting the columns to be the
eigenvectors, i.e.

T =

(
1 2
2 1

)
Applying this map to the system is algebraically bit lengthy, so I refer to the
Maple solution, and just state the resulting expression. When applying T we want
to get

Ż = BZ + T−1R(TZ)

where Y = TZ, Y = (u, v), Z = (m,n) and B = T−1AT where A is the lineariza-
tion of the system before applying map T . Maple says it should be

ṁ = 3m + n2 + 12mn + 8m2 +
8

3
n2 + 12mn2 + 16m2n +

16

3
m3

ṅ = −4mn− 2m2 − 4

3
n3 − 6mn2 − 8mn2 − 8m2n− 8

3
m3

The eigenvalues are obviously the same 3, 0 but the corresponding eigenvectors are
now (1, 0) and (0, 1).

The unstable manifold W u(0, 0) we represent by n = h(m) = am2 + . . . and
following the same procedures as above we obtain a = −1

3
and hence n = h(m) =

−1
3
m3.

The center manifold involves more calculations and hence we let maple to do the
job, we get m = h(n) = −1

3
n2 + 4

9
n3 + . . . .

33. (8 points) Draw as complete phase-portrait as you can. You need to (i)
investigate the stability of all the invariant manifolds you just calculated. That
is, you need to restrict the vector field to those manifolds (ii) be careful, this is a
very special system! Why?

Solution See the Maple program for the phase portrait. As we know the stability
properties for the stable and unstable manifolds, we only need to investigate the
stability along the center manifold. Already in the first exercise above we however
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noticed that the center manifold coincides with the curve of equilibiria for all x
and y. Hence no dynamics happens on the center manifold.

34. (10 points) Work out a Maple program that does all these above calculations.
Hint: Use the command mtaylor for taylor expansions.

Please ask for further instructions if needed!


