
INTRODUCTION TO BIFURCATION THEORY

Solutions 3-10-2013

12. (4 points) Consider a planar system Ẋ = AX with

A =

(
λ1 0
0 λ2

)
and λ1 < λ2. Find the general solution and draw the phase portrait for the special
case where one of the eigenvalues is 0.

Solution There are two cases (i) 0 = λ1 < λ2 (ii) λ1 < λ2 = 0. As the eigenvalues
are real and distinct, we can use the general solution X(t) = αeλ1t

(
1
0

)
+ βeλ2t

(
0
1

)
derived in the lecture notes. In the fist case (i) we then have

X(t) = α

(
1

0

)
+ βeλ2t

(
0

1

)
.

From this we see that x(t) = α for all t, so x won’t change with time from the
initial value α. However, as λ2 > 0, y(t) increases for β > 0 and decreases for
β < 0. That is, all the trajectories starting away from the x-axis tends to infinity
or minus infinity. See the left panel in Figure 1

Figure 1. Left: (i) 0 = λ1 < λ2 Right: (ii) λ1 < λ2 = 0

In (ii) we have

X(t) = αeλ1t
(

1

0

)
+ β

(
0

1

)
so that y(t) is constant, but now λ1 < 0, and x(t) decreases to 0 as t → ∞. See
the right panel in Figure 1.

13. (4 points) Consider the ’Example (center)’ found in the lecture notes under the
section ’Complex Eigenvalues’. In this example we looked at a special matrix

A =

(
0 β
−β 0

)
for which we found two eigenvalues λ1,2 = ±iβ, and using the eigenvalue iβ we
derived the general solution. Show that it doesn’t matter which one we would
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have chosen, i.e. show that using the eigenvalue −iβ we get the same general
solution.

Solution We can progress the same way as in the lecture notes: first we find the
eigenvector (1,−i) associated to the eigenvalue −iβ, and then using the Eulers
formula we can split the imaginary general solution into a real and imaginary
part. Finally, using identities cos(−x) = cos(x) and sin (−x) = − sinx we find the
exact same general solution as in the lecture notes.

14. (4 points) Consider the system

A =

(
λ 1
0 λ

)
with λ 6= 0. Show that all solutions tend to or away from the origin tangentially
to the eigenvector (1, 0).

Solution The general solution is X(t) = αeλt
(
1
0

)
+βeλt

(
t
1

)
. We want to show that

X(t) tends to or away from the origin tangentially to the x-axis, i.e., we want to
show that the slope dy/dx tends to zero. Differentiating x(t) = αeλt + βteλt and
y(t) = βeλt with respect to t we get

dy

dx
=
dy/dt

dx/dt
=

λβeλt

λαeλt + βeλt + λβteλt
=

λβ

λα + β + λβt
→ 0

as t→ ±∞.

15. (4 points) Find the general solution and describe completely the phase portrait
for

Ẋ =

(
0 1
0 0

)
X.

Solution Because the above matrix A is just a special case of A in the exercise
16 (by substituting λ = 0), we get as the general solution X(t) = α

(
1
0

)
+ β

(
t
1

)
:

y(t) = β for all t and x(t) = α + βt. That is, y is constant and x increases with
time when β > 0 and decreases if β (i.e. depending on the initial condition). Phase
portrait is in Figure 2

Figure 2.
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16. (4 points) Prove that

αeλt
(

1

0

)
+ βeλt

(
t

1

)
is the general solution of

Ẋ =

(
λ 1
0 λ

)
X.

Solution We can check that Y1(t) = eλt
(
1
0

)
and Y2(t) = eλt

(
0
1

)
are solutions to the

system. As Y1(0) =
(
1
0

)
and Y2(0) =

(
0
1

)
are linearly independent we can apply

Theorem 3 (see lecture notes).

17. (8 points) Damped harmonic oscillator (DHO) satisfies the following equa-
tion

ẍ+ 2ζw0ẋ+ w2
0x = 0,

where w0 > 0 is the undamped angular frequency of the oscillator and ζ > 0
is the damping ratio. (a) Set up a planar linear system for DHO and find the
eigenvalues (b) Find the general solution of this system (for all the different types
of eigenvalues, if you know how to) (c) Draw the phase portrait for each of these
cases. Can you see how the phase portraits transform from one to the other? (d)
Draw how the position of the mass moves with time, i.e. make a (t, x(t))-plot.

Solution See Exercise 20.


