
INTRODUCTION TO BIFURCATION THEORY

Exercises 5-12-2013

37. (8 points) Consider

ẋ = −y + xz

ẏ = x+ yz

ż = −z − x2 − y2 + z2

Determine the stability of the equilibrium at the origin. Hint: after restricting the
vector field on the center manifold it will be helpful to use polar coordinates and
the identity rṙ = xẋ+ yẏ, where x = r cos θ, y = r sin θ.

Solution We may rewrite the system as

Ẋ =

 0 −1 0
1 0 0
0 0 −1

X +

 xz
yz

−(x2 + y2) + z2


or

Ẏ =

(
0 −1
1 0

)
Y +

(
xz
yz

)
= AY + F (Y, Z)

Ż = −1Z − (x2 + y2) + z2 = BZ +G(Y, Z)

where Y = (x, y), Z = z.

We see that the system is already in standard form, with a pair of purely complex
eigenvalues ±i and one eigenvalue −1. As the real part of the dominant eigenvalue
is zero, the Linearization theorem can’t be applied. We need to use center manifold
theory.
As there is a pair of eigenvalues with zero real part, the center manifold is a two
dimensional surface, which we may represent with z = h(x, y). The approximation
of this manifold is h(x, y) = ax2 + bxy + cy2 + O(3). As z = h(x, y) we have
that

Dh(x, y)Ẏ − Ż = 0

or

Dxh(x, y)ẋ+Dyh(x, y)ẏ − ż = 0
1
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(notation: Dxh(x, y) = ∂h(x,y)
∂x

). Substituting (z = h(x, y), A,B, F,G), and equat-
ing terms of the same order, we get

x2 : b = −a− 1

xy : −sa+ 2c = −b
y2 : −b = −c− 1

and hence a = 1, b = 0, c = −1. The approximation is thus z = h(x, y) =
−(x2 + y2) + O(3). Vectorfield on this manifold is

ẋ = −y + x(−x2 − y2 + O(3))

ẏ = x+ y(−x2 − y2 + O(3))

Using the given hint, we use polar coordinates and get rṙ = −r4 and hence

ṙ = −r3.

We have then that for positive and negative initial values r, the trajectories ap-
proach 0. The equilibrium at the origin is thus stable! (more detailed discussion
about this type of problems can be found in lecture notes and exercise 36)

38. (a) (3 points) Consider the saddle-node bifurcation. For the case (∂
2f
∂x2

(0, 0)/∂f
∂µ

(0, 0)) >

0, under which conditions the upper part of the curve of equilibria is stable and
the lower unstable?
(b) (3 points) Consider the transcritical bifurcation. For the case (∂

2f
∂x2

(0, 0)/ ∂2f
∂x∂µ

(0, 0)) >

0, under which conditions the curve x = 0 is stable for µ > 0 and the other curve
of equilibria unstable?

Solution (a) The condition above is equivalent to

−(
∂2f

∂x2
(0, 0)/

∂f

∂µ
(0, 0)) < 0

or
dµ

dx2
(0, 0) < 0,

which implies that the unique curve of equilibria in the (µ, x)-plane exists only
on the left of the x-axis (but passing through the origin). Moreover, the above

condition is true when either (i) ∂2f
∂x2

(0, 0) > 0 (and ∂f
∂µ

(0, 0) > 0) or (ii) ∂2f
∂x2

(0, 0) < 0

(and ∂f
∂µ

(0, 0) < 0).

We notice when looking at the (x, f(x)) (or (x, ẋ))-plane (See Figure 1) that for
the upper part of the curve (i.e. the equilibrium that gets greater value) to be
stable we need the curve in this plane to be concave (open downward). We thus
have that conditions in (ii) answer the question asked.
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(b) The above condition is equivalent to dµ(0)
dx

< 0, which implies that in the
(µ, x)-plane the nonzero curve of equilibria decreases when it passes through the

origin. Moreover, following the previous case, we have that either (i) ∂2f
∂x2

(0, 0) > 0

or (ii) ∂2f
∂x2

(0, 0) < 0.

As the nonzero curve of equilibria decreases with µ, for µ > 0, the x = 0 equilib-
rium gets the greater value. Therefore, we want that the curve f(x, µ) in the (x, ẋ)
plane is concave. Again, condition (ii) gives the answer to our question.

39. (6 points) Consider ẋ = f(x, µ), µ, x ∈ R. Give conditions under which
the system undergoes a pitchfork bifurcation. Hint: Use procedures used in lec-
ture notes when deriving conditions for the transcritical and saddle-node bfurca-
tions.

Solution Consider (µ, x)−plane. We may set f(0, 0) = 0 and ∂f
∂x

(0, 0) = 0 (nonyh-
perbolic equilibrium at the origin). Furthermore, for pitchfork to occur we need
(i) two curves of equilibria intersect (ii) one of them lies only on one side of the
x-axis (iii) setting x = 0 be the other curve of equilibria, its stability must change
when it passes the intersection point at the origin.

As there is not a unique curve of equilibria at the origin, we must have ∂f
∂µ

(0, 0) =

0 (otherwise IFT would contradict this claim). Also, as x = 0 is one of the
equilibrium curves we may write ẋ = xF (x, µ), where

(1) F (x, µ) =

{
f(x,µ)
x

for x 6= 0
∂f
∂x

(0, µ) for x = 0

For the second curve of equilibria, denoted with µ(x), to be unique and pass the
origin we require F (0, 0) = 0 and ∂F

∂µ
(0, 0) 6= 0. As we want also that it passes and

lies only on one side of the x-axis we need dµ
∂x

(0) = 0 and d2µ
∂x2

(0) 6= 0.
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Differentiating implicitly, we get that dµ
∂x

(0) = 0 when ∂F
∂x

(0, 0) = 0 and after second

differentiation d2µ
∂x2

(0) 6= 0 when ∂2F
∂x2

(0, 0) 6= 0. Using (1) we may express all these
conditions in terms of f :

f(0, 0) = 0

∂f

∂x
(0, 0) = 0

∂f

∂µ
(0, 0) = 0

∂2f

∂x2
(0, 0) = 0

∂2f

∂x∂µ
(0, 0) 6= 0

∂3f

∂x3
(0, 0) 6= 0.

40. (6 points) Consider

ẋ = µ+ x2 + y2

ẏ = −y + x2.

What bifurcation this system undergoes at an equilibrium at the origin when µ
passes zero?

Solution Indeed, as the question suggests, the origin (x, y) = (0, 0) is a nonhy-
perbolic equilibrium for µ = 0: the Jacobian evaluated at the origin for µ = 0
is

DF (0, 0) =

(
0 0
0 −1

)
so the eigenvalues are 0 and −1. Notice also that the system is in its standard
form and that the eigenspaces Ec, Es of the linearization are the x− and y−axis,
resp..

We want to investigate how the phase portrait of the vector field changes when
µ passes zero. As the equilibrium is nonhyperbolic at µ = 0, we need to use the
center manifold theory. We know from the theorems that a center manifold exists,
and that it is tangent to Ec. As we need to restrict the vector field to this manifold
in the neighborhood of µ = 0, we need to represent this manifold also as a function
of µ. Since Ec is the x-axis, the center manifold must then be represented as
y = h(x, µ). Moreover, as it passes zero at (x, µ) = (0, 0) and it has no linear
terms (cause its tangent to x-axis), its Taylor expansion is

y = h(x, µ) = ax2 + bµx+ cµ2 + O(3).
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Since ẏ = Dxh(x, µ)ẋ and after substituting the vector field and the center man-
ifold, and equating terms of the same order, we get that a = 1, b = −2, c = 2.
Substituting the center manifold to the vector field, we get

ẋ = µ+ x2 + (h(x, µ))2 = µ+ x2 + O(4)

From the lecture notes we know that this system undergoes a saddle-node bifur-
cation.


