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1. Preface

These lectures notes are composed from various sources listed below. Some section
are followed so closely that very little editing has been done when adopting the
material. The books below should hence be considered as primary references.
Although this course is aimed at graduate students or advanced undergraduate
students, the first half of the course functions as a not so demanding introductory
text to the second half of the course, and the focal topic, bifurcation theory.
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and an Introduction to Chaos. Academic Press.

[3] Wiggins S. (2000) Introduction to Applied Nonlinear Dynamical Systems and Chaos. Second
Edition. Springer.
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Lecture 1: Monday 9th of September

2. Introduction: concepts and notation

In this course we will study equations of the form

(2.1) ẋ = f(x;µ),

with x ∈ U ⊂ Rn and µ ∈ V ⊂ Rp where U and V are open sets in Rn and Rp,
respectively. The overdot in (2.1) means a derivative with respect to time “ d

dt
”,

and variables µ are considered as model parameters. We call (2.1) an ordinary
differential equation (ODE) or a vector field.

Remark: Most of the theory applies to discrete dynamical systems as well (maps/difference
equations)

(2.2) x→ g(x;µ),

but we won’t deal with it here.

By a solution of (2.1) we mean a mapping from some interval I ⊂ R1 into Rn,
represented as

x : I → Rn

t→ x(t),

such that (2.1) is satisfied. The map x has a geometrical interpretation of a curve
in Rn, and (2.1) gives the tangent vector at each point of the curve, hence the
name vector field.

2.1. Illustrative Examples. The purpose of this section is, using examples, to
present some of the main ideas of this course. Then, in the following sections our
aim is to formalize and extend them.

Example 1 Lets take the simplest ODE we can think of

(2.3) ẋ = µx, µ, x ∈ R1.

This equation may for example describe the (initial) growth of the population: x
is the measure (number/density of individuals) of the population and ẋ/x = µ
per capita growth rate (rate of growth is directly proportional to the size of the
population). The solution can be obtained easily: if K is any constant in R1, the
function

x(t) = Keµt

is a solution since

ẋ(t) =
dx(t)

dt
= µKeµt = µx(t).
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Moreover, from the theory of differential equations (see e.g. kurssi Differenti-
aaliyhtälöt or Hirsch and Smale (1974)) we know that there are no other solutions.
This can also be shown by using simple calculus:

Exercise Show that x(t) = Keµt is the only solution to (2.3). Hint: Letting u(t)
to be any solution, compute the derivative of u(t)e−µt.

We have thus found all possible solutions of this ODE. We will call the collection
of all solutions the general solution of the equation.

The constant K appearing in this solution is completely determined if we require
the solution to pass a certain point, say x0, at some time t0. We have that x(t0) =
x0, and therefore K must satisfy Keµt0 = x0, or K = x0e

−µt0 . Thus equation
(2.3) has a unique solution satisfying a specified initial condition x(t0) = x0.
For simplicity, we will take t0 = 0 which leads to K = x0. There is no loss of
generality in taking t0 = 0, for if x(t) is a solution with x(0) = x0, then the
function v(t) = x(t− t0) is a solution with v(t0) = x0.

It is common to restate this in the form of an initial value problem:

ẋ = µx, x(0) = K.

How does the general solution x(t) = Keµt look like? Consider µ a model param-
eter. If the value of µ changes, the equation changes and so do the solutions. Can
we describe the qualitatively different types of solutions? The sign of µ is crucial
here:

(1) if µ > 0, limt→∞Ke
µt = ∞, when K > 0 and limt→∞Ke

µt = −∞ when
K < 0

(2) if µ = 0, Keµt = constant

(3) if µ < 0, limt→∞Ke
µt = 0

Notice that x(t) = 0 is a special solution of the ODE (2.3) when K = 0. A constant
solution such as this is called an equilibrium solution, equilibrium point or a fixed
point. Fixed points are often among the most important solutions of ODEs and
will be considered in great deal in later sections.

The qualitative behavior of solutions is illustrated in Figure 1. Note that the
behavior of solutions is quite different when µ changes sign. When µ > 0, all
the solutions tend away from the fixed point x = 0 (the special solution) when t
increases, whereas when µ < 0 all the solutions tend towards the fixed point. We
call the fixed point a source when solutions tend away from it and a sink when
solutions tend toward it.

We may describe solutions by drawing a phase line (or phase plane if in R2 etc.).
As the solution x(t) is a function of time, we view x(t) ∈ R1 as a particle moving
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Figure 1. The solution graphs and phase line for ẋ = µx for (a)
µ > 0 (b) µ < 0.

along real line (see Figure 1). At the fixed point the particle doesn’t move, while
any other solution moves up and down the x-axis as indicated by the arrows. We
indicate with an open circle a fixed point that is a source and with a solid circle a
sink.

The ODE (2.3) is stable in certain sense if µ 6= 0 (see structural stability in section
). More precisely, if µ is replaced by another constant ν sufficiently close to µ,
the qualitative behavior of the solutions doesn’t change (solutions either increase
or decrease from/to x = 0). But if µ = 0, the slightest change in µ leads to
radically different behavior: a constant solution will change to either an increasing
or decreasing solution. We call such points bifurcation points, and hence we say
that we have a bifurcation at µ = 0 in the one-parameter family of equations
ẋ = µx.

Exercise Above is a very simplistic model of population growth, for example, the
assumption of growth without bound is naive. The following logistic population
growth model is bit more realistic

ẋ = µx(1− x

N
),

where µ is the growth rate and N is the sort of ”ideal” population or carrying
capacity (why?). Find and analyze the general solution.

Example 2 Consider next a system of two differential equations:

(2.4)
ẋ1 = µ1x1

ẋ2 = µ2x2.

Notice that there is no relation in the dynamics of x1 and x2 (i.e. ẋ1 doesn’t depend
on x2 and vice versa), we call them hence uncoupled. As in (2.3), the solutions
are

(2.5)
x1(t) = K1e

µ1t

x2(t) = K2e
µ2t
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whereK1, K2 are some constants, determined if initial conditions x1(t0) = u1, x2(t0) =
u2 are specified. The solution is a curve x(t) = (x1(t), x2(t)) in the plane R2;
x : R → R2. The right-hand side of (2.4) expresses the tangent vector ẋ(t) =
(ẋ1(t), ẋ2(t)) to the curve. Using vector notation

(2.6) ẋ = Ax,

where Ax denotes the vector (µ1x1, µ2x2), which one should think of as being based
at x. Hence the map (function) A : R2 → R2 (or x → Ax) can be considered a
vector field on R2. This means that to each point x in the plane we assign a
vector Ax “based at x”. If Ax = (2x1,−1

2
x2), we attach to each point x in the

plane an arrow with tail at x and head at x + Ax (see Figure 2) (draw couple of
initial conditions and x + Ax). Given initial conditions few solution curves (2.5)
are depicted in 2.

−1 0 1
−1

0

1

x
1
(t)

x
2
(t

)

 

 

Figure 2. Few solution curves (2.5) and several arrows indicating
the direction and strength of the vector field associated to that point.

Note that the trivial solution (x1(t), x2(t)) = (0, 0) is also considered a curve. The
family of all solution curves is called the phase portrait.

Le us consider the system (2.4) as a dynamical system. This means that the
independent variable variable t is interpreted as time and the solution curve x(t)
could be thought of, for example, as the path of a particle moving in the plane R2.
We can imagine a particle placed at any point u = (u1, u2) in R2 at time t = 0.
As time proceeds the particle moves along the solution curve x(t) that satisfies
the initial condition x(0) = u. At any later or earlier time t the particle is/was at
position x(t). To indicate the dependence of the position on t and u we denote it
by φt(u). For (2.4) we have

(2.7) φt(u) = (u1e
µ1t, u2e

µ2t)
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We cam imagine particles placed at each point of the plane and all moving simulta-
neously (for example, dust particle under a steady wind). For each fixed t in R we
have a transformation assigning to each point u in the plane another point φt(u).
In this way the collection of maps φt : R2 → R2, t ∈ R, is a two-parameter family
of transformations. This family is called the flow or dynamical system determined
by the vector field.

The examples above are the simplest examples we can think of. Below we show
some well known and a bit more complicated systems and their dynamics.

Example 3 (nonlinear system) The following system

(2.8)
ẋ1 = µx1 − x2 − x1(x21 + x22)

ẋ2 = x1 + µx2 − x2(x21 + x22)

undergoes a so-called Hopf-bifurcation when µ passes 0. In Hopf-bifurcation a
periodic solution is born at the equilibrium point (see Figure 3).
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2
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Figure 3. Hopf-bifurcation in system (2.8). Left: µ = −1
2

and all
the trajectories nearby the equilibrium (0, 0) approach it. Right:
µ = 1 and a stable periodic orbit is born out of the equilibrium.

Example 4 (three-dimensional system) The Lorenz system

(2.9)

ẋ1 = µ1(x2 − x1)
ẋ2 = x1(µ2 − x3)− x2
ẋ3 = x1x2 − µ3x3

is a simplified model for atmospheric convection (Lorenz 1963). It is notable for
its chaotic properties (see Figure 4). It undergoes several bifurcations e.g. saddle-
node bifurcation and a Hopf-bifurcation (both will be explored later; neither shown
in the Figure).
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Figure 4. Chaotic attractor induced by a system (2.11) with µ1 =
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Lecture 2: Monday 11th of September

Example 5 (SIR-model with vaccination) In this example we look at the effect of
vaccinations in the spread of a disease. Consider a disease where infected individ-
uals may infect individuals that are not immune. Immune individuals areeither
vaccinated or they gained immunity by having the disease earlier in life. You can
think of measles (tuhkarokko) or rubella (vihurirokko), however, we assume that
the disease doesn’t increase the mortality rate.

Let S denote individuals that are susceptible to the disease (i.e. are able to get
sick if being infected), I the infected individuals and R the recovered and immune
individuals (in this class we also include individuals that are immune right from
birth, i.e. newborns that are vaccinated). See Figure (to appear soon) how the
transition between different states happens. m is the birth and death rate, β is
the contact rate and hence βI is the rate at which susceptible individuals get
infected, g is the recovery rate, and p is the fraction of newborn individuals that
are vaccinated. The dynamics between different states can be described with the
following ODE’s

(2.10)

Ṡ = (1− p)m− βIS −mS
İ = βIS − gI −mI
Ṙ = gI + pm−mR

The total population size is N = S+I+R, but as Ṡ+ İ+Ṙ = the total population
size is constant which we have normalized to be 1. Note also that the change in
S and I is independent of R, and therefore we can only consider the reduced
system

(2.11)
Ṡ = (1− p)m− (βI +m)S

İ = βIS − (g +m)I

Lets calculate the so-called nullclines : at a curve, which is obtained by solving
Ṡ = 0 and which we call the S-nullcline, the dynamics happens only in I (as Ṡ = 0
the value of S doesn’t change at that curve!). At a curve obtained from İ = 0 (I-
nullcline) the dynamics happens only in S. When nullclines cross nothing changes
at the intersection: these points are the equilibria.

There are two I-nullclines, the trivial curve given by I = 0 and a S = g+m
β

.

The S-nullcline is given by I = m
β

(1−p
S
− 1). There are therefore two equilibria,

(Ŝ0, Î0) = (1 − p, 0) and (Ŝ1, Î1) =
(
g+m
β
, m
β

(1−p
Ŝ1
− 1)

)
. Notice that the latter

one is positive (and therefore biologically relevant) if and only if Ŝ1 < Ŝ0. See
Figure.



12

Lets first consider the case where the non-trivial equilibrium is negative, i.e. 1−p <
g+m
β

. Noticing that Ṡ < 0 at least for (really) large values of I, and since no other

nullcline intersects the I-nullcline S = m+g
β

(which means that the direction of the

flow at this nullcline doesn’t change), we have that at S = g+m
β

the values of S

decreases for all I > 0 (while I is constant as this is a I-nullcline). With similar
reasoning we find that the flow points downward at the S-nullcline on the left of
g+m
β

. Hence, we get that all trajectories approach the trivial equilibrium as t→∞
(given Ŝ1 < Ŝ0).

Now, suppose we take p to be the model parameter while all other parameters are
assumed to be fixed. When increasing the value of p the non-trivial equilibrium
passes the trivial equilibrium and enters the positive quadrant of the phase space,
provided m+g

β
< 1. Using results from bifurcation theory (the topic of this course!)

we find that when equilibria pass each other the stability of both equilibria change,
s.t. the trivial equilibrium becomes unstable. This happens at the critical value
pc = 1− g+m

β
. Bifurcation thus occurs when p passes pc.

What are the relevant consequences? When there is no disease in the population,
I = 0 and the population approaches the equilibrium (1 − p, 0) (where p is the
proportion of vaccinated individuals). Then, in the initial phase when only few
individuals get infected the population is still close to that equilibrium. What
happens after? Well, if p > pc, the trivial equilibrium is stable and hence the
disease won’t spread. For p < pc however, the trivial equilibrium is unstable and
there is a disease outbreak. That is, as long as enough newborns are vaccinated
the disease will not be able to spread. What is interesting here, is that we don’t
need to vaccinate all the newborns for the disease not to spread, only a fraction
of the population which is above pc is sufficient!

Remarks : (i) For measles, the parameters are estimated to have values β =
1800,m = 0.02, g = 100. The critical value is then pc ≈ 0.95. (ii) American
microbiologists Maurice Hilleman’s invented the vaccine for measles which is esti-
mated to prevent 1 million deaths every year.

Exercise Draw the direction of the flow (by calculating the nullclines and find-
ing which direction the flow points at those nullclines) for the SIR-model with
vaccinations when p < pc. Are there any difficulties to do this?
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Figure 5. Animation for the SIR-model with vaccinations for β =
180,m = 20, g = 10. We take p to be the bifurcation parameter,
and we let it change values from 0 to 0.99. You should observe a
collision of the equilibria and change of stability at p = pc. Note:
You need to open these lecture notes with Acrobat Reader for the
animation to run.
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Lecture 3: Monday 16th of September

3. Planar Linear Systems

It is good to start with planar linear systems, a particular class of systems of equa-
tions that are very important and relatively straightforward to work with.

Let us first point out, that many of the most important differential equations are
second-order differential equations. However, many of them just belong to a special
subclass of two dimensional systems of differential equation by simply introducing
a second variable. Important examples of second-order equations include Newton’s
equation

mẍ = f(x),

the equation for an RLC circuit in electrical engineering

LCẍ+RCẋ+ x = v(t),

and the forced harmonic oscillator

mẋ+ bẋ+ kx = f(t).

For example, introducing a second variable y = x′, we may rewrite an equa-
tion

ẍ+ aẋ+ bx = 0

as
ẋ = y

ẏ = −bx− ay.
That is, we obtain a planar linear system. Any second-order equation can be
handled in a similar manner.

Consider a (at this moment not-necessarily linear or planar) system

(3.1) ẋ = f(x), x ∈ Rn.

which is autonomous, that is, where f doesn’t depend on time t.

Definition 1. An equilibrium solution of (3.1) is a point x̂ ∈ Rn s.t.

f(x̂) = 0,

that is, a solution that does not change with time.

There are other terms used instead of equilibrium such as, fixed point, rest point,
critical point or steady state. We will use either equilibrium or a fixed point.
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Now, lets restrict (3.1) to a plane R2 such that f contains only linear terms of its
arguments, that is, consider a planar linear system

(3.2)
ẋ = ax+ by

ẏ = cx+ dy

where a, b, c, d are constants. We write x and y for convenience (instead of x1 and
x2), and we reserve capital letters for the vector and matrix notation. For example,
we write X = (x, y)T and

A =

(
a b
c d

)
and therefore the linear system may be written as

(3.3) Ẋ = AX.

Note that the origin is always an equilibrium point for a linear system. To find
other equilibria, we must solve

ax+ by = 0

cx+ dy = 0.

We have the following proposition

Proposition 1. The planar system (3.3) has

1. A unique equilibrium point (0, 0) if detA 6= 0.

2. A straight line of equilibrium points if detA = 0 (and A is not the 0 matrix)

Proof (exercise).

3.1. Eigenvalues and Eigenvectors. Let us find non-equilibrium solutions of
(3.3). The key observation is this: Suppose V0 is a nonzero vector for which we
have

AV0 = λV0, λ ∈ R.

Then the function

(3.4) X(t) = eλtV0

is a solution of (3.3). To see the claim to be true, we simply compute

(3.5)

X ′(t) = λeλtV0

eλt(λV0)

eλt(AV0)

A(eλtV0)

= AX(t).
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Such a vector V0 is in a focal role in the theory of dynamical systems, hence its
appropriate to have a name:

Definition 2. A nonzero vector V0 is called an eigenvector of A if AV0 = λV0 for
some λ. The constant λ is called an eigenvalue of A.

From above, we write an important result:

Theorem 1. Suppose that V0 is an eigenvector for the matrix A with associated
eigenvalue λ. Then the function X(t) = eλtV0 is a solution of the system Ẋ = AX.

Note that if V0 is an eigenvector for A with eigenvalue λ, then any nonzero scalar
multiple of V0 is also an eigenvector for A with eigenvalue λ (exercise).

Example. Consider

A =

(
1 3
1 −1

)
.

Then A has an eigenvector V1 = (3, 1) with associated eigenvalue λ = 2 since(
1 3
1 −1

)(
3
1

)
=

(
6
2

)
= 2

(
3
1

)
.

Similarly, V2 = (1,−1) is an eigenvector with associated eigenvalue λ = −2 (see
Figure 6).

(3,1)

(1,-1)
x

y

(3,1)

(1,-1)
x

y

Figure 6. Left: Two eigenvectors V1, V2. Right: Three solutions,
the zero equilibrium solution and X1(t) = e2tV1, X2(t) = e−2tV2.
The direction of the dynamics is indicated as well.

Thus, for the system Ẋ = AX we know three solutions: the equilibrium solution
(0, 0) and
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X1(t) = e2t
(

3
1

)
and X2(t) = e−2t

(
1
−1

)
.

In a moment we will see that we can in fact use these solutions to generate all
solutions of this system. First we look at how to find eigenvectors and eigenval-
ues.

To produce an eigenvector V = (x, y), we must find a nonzero solution (x, y) of
the equation

A

(
x
y

)
= λ

(
x
y

)
.

Note that there are three unknowns in this system, λ, x and y. Let I denote the
2× 2 identity matrix (

1 0
0 1

)
.

We may rewrite the above equation

(A− λI)V =

(
0
0

)
.

As we saw previously, this linear system has nonzero solutions if and only if det(A−
λI) = 0. But this is just a quadratic equation in λ, whose roots are therefore easy
to find ! This equation is called the characteristic equation, and as a function of
λ, we call det(A− λI) the characteristic polynomial.

The strategy to find eigenvectors is thus to find the roots of the characteristic
equation, which yields the eigenvalues, and then we use each of these eigenvalues
to generate the associated eigenvector.

Example. Lets return to the matrix

A =

(
1 3
1 −1

)
.

We have

A− λI =

(
1− λ 3

1 −1− λ

)
so the characteristic equation is

det(A− λI) = (1− λ)(−1− λ)− 3 = 0.

Simplifying, we get

λ2 − 4 = 0,

from which we obtain two eigenvalues λ = ±2.
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Now, for λ = 2, we next solve the equation

(A− 2I) =

(
x
y

)
=

(
0
0

)
.

We thus have
(1− 2)x+ 3y = 0

x+ (−1− 2)y = 0

or just −x+ 3y = 0, because the equations are redundant (as they should be since
we obtained them by having determinant zero!). Thus any vector of the form
(3y, y) with y 6= 0 is an eigenvector associated to λ = 2 (recall that eigenvector
may be multiplied by a scalar). Similarly, any vector of the form (y,−y) with
y 6= 0 is an eigenvector associated to λ = −2.�

Note that the above example was just one special case where the eigenvalues were
distinct and real. This of course might not be always the case, therefore we need
to consider other cases as well (see section Phase Portraits). But first we return
to the problem of finding all the solutions of linear systems.
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3.2. Solving Linear Systems. Lets first remind ourselves of some concepts from
linear algebra:

Recall some elementary concepts from Linear Algebra:

Definition 3. Let V and W be vectors in the plane R2. We say that V and
W are linearly independent if V and W do not lie along the same straight line
through the origin. The vectors V and W are linearly dependent if either V
or W is the zero vector or if both lie on the same line through the origin.

Or more formally, let F be a vector space. A set S = {V1, . . . , Vk} of vectors in
F is said to span F if every vector in F is a linear combination of V1, . . . , Vk;
that is, for every s ∈ F there are scalars t1, . . . , tk such that

(3.6) s = t1V1 + · · ·+ tkVk.

The set S = {V1, . . . , Vk} in F is called independent if whenever t1, . . . , tk are
scalars s.t.

(3.7) t1V1 + · · ·+ tkVk = 0,

then t1 = · · · = tk = 0 (i.e. the only solution to t1V1 + · · · + tkVk = 0 is
t1 = · · · = tk = 0).

A basis of F is an ordered set of vectors in F that is independent and which
spans F .

An important consequence of the notion of linear independence is the fact that
any vector in the span of a given list of linearly independent vectors can be
uniquely written as a linear combination.

Lemma 1. The list of vectors (V1, . . . , Vm) is linearly independent if and only
if every linear span s ∈ F can be uniquely written as a linear combination of
(V1, . . . , Vm).

Proof (exercise)
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Lecture 4: Wednesday 18th of September

We saw in the previous section, that if we find two real and distinct eigenvalues
λ1 6= λ2, we may generate a pair of solutions of the system of differential equations
of the form Xi = eλitVi, where Vi is the eigenvector associated to λi. Note that
each of these solutions is a straight-line solution emanating from the origin and
passing through Vi. Furthermore, if λi > 0, then

lim
t→∞
|Xi(t)| =∞

and

lim
t→−∞

|Xi(t)| = 0.

The exact opposite situation occurs if λi < 0, and if λi = 0 the solution is the
constant solution Xi(t) = Vi for all t (see for example Figure 6).

So how do we find all solutions given X1(t) and X2(t)? Suppose we have two
distinct real eigenvalues λ1 and λ2 with eigenvectors V1 and V2. Then V1 and V2
are linearly independent (exercise). Thus (Lemma 1) V1 and V2 form a basis of R2

and so for any point Z0 ∈ R2 we must find a unique pair of real numbers α, β for
which

αV1 + βV2 = Z0.

Now consider the function Z(t) = αX1(t) + βX2(t) where Xi(t) are the straight-
line solutions previously. We claim that Z(t) is a solution of Ẋ = AX. To see this
we compute

Ż(t) = αẊ1(t) + βẊ2(t)

= αAX1(t) + βAX2(t)

= A(αX1(t) + βX2(t)

= AZ(t).

This last step follows from the linearity of matrix multiplication (check). Hence
we have shown that Z(t) is a solution. Moreover, Z(t) is a solution that satisfies
Z(0) = Z0 (check).
Finally, we claim that Z(t) is the unique solution of Ẋ = AX that satisfies Z(0) =
Z0. Suppose that Y (t) is another such solution with Y (0) = Z0. Then we may
write

Y (t) = ζ(t)V1 + ξ(t)V2

with ζ(0) = α, ξ(0) = β. Hence

AY (t) = Ẏ (t) = ζ̇(t)V1 + ξ̇(t)V2.

But
AY (t) = ζ(t)AV1 + ξ(t)AV2

= λ1ζ(t)V1 + λ2ξ(t)V2
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Therefore we have
ζ̇(t) = λ1ζ(t)

ξ̇(t) = λ2ξ(t)

with ζ(0) = α, ξ(0) = β. It follows that (solving the above)

ζ(t) = αeλ1t, ξ(t) = βeλ2t

so that Y (t) is indeed equal to Z(t).

As a consequence, we have found the unique solution to the system

Ẋ = AX

that satisfies X(0) = Z0 for any Z0 ∈ R2. The collection of all such solutions
is called the general solution of X ′ = AX. That is, the general solution is the
collection of solution of Ẋ = AX that features a unique solution of the initial
value problem X(0) = Z0 for each Z0 ∈ R2.

We have shown the following theorem:

Theorem 2. Suppose A has a pair of real eigenvalues λ1 6= λ2 and associated
eigenvectors V1 and V2. Then the general solution of the linear system Ẋ = AX
is given by

X(t) = αeλ1tV1 + βeλ2tV2.

Example Consider the second-order differential equation

ẍ+ 3ẋ+ 2x = 0.

This is a specific case of the damped harmonic oscillator discussed earlier. As a
system, this equation may be rewritten:

Ẋ =

(
0 1
−2 −3

)
X = AX.

The characteristic equation is

λ2 + 3λ+ 2 = (λ+ 2)(λ+ 1) = 0,

so the eigenvalues are −1 and −2. The eigenvector corresponding to the eigenvalue
−1 is given by solving the equation

(A+ I) =

(
0
−2

)
=

(
0
0

)
We have

x+ y = 0

−2x− 2y = 0.
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Hence, one eigenvector associated to the eigenvalue−1 is (1,−1). In similar fashion
we compute that an eigenvector associated to the eigenvalue −2 is (1,−2). Note
that these eigenvectors are linearly independent. Therefore, by the Theorem 2,
the general solution of this system is

(3.8) X(t) = αe−t
(

1
−1

)
+ βe−2t

(
1
−2

)
.

That is, the position of the mass is given by the first component of the solu-
tion

x(t) = αe−t + βe−2t

and the velocity is given by the second component

(3.9) y(t) = ẋ(t) = −αe−t − 2βe−2t.

In fact, the previous Theorem is a special case of the following much general
result:

Theorem 3. Let

Ẋ = AX

be a planar linear system. Suppose that Y1(t) and Y2(t) are solutions of this system,
and that vectors Y1(0) and Y2(0) are linearly independent. Then

X(t) = αY1(t) + βY1(t)

is the unique solution of this system that satisfies X(0) = αY1(0) + βY1(0).

Proof (exercise)

3.3. Phase Portraits. Our main objective is to describe all possible qualitatively
different solutions a planar linear system Ẋ = AX can have. To do this we first
go through some simple forms of A and show the types of solutions these systems
have. Then, we show that we can transform any system into one of these simple
cases. Finally, we show that the classification of qualitatively different solutions
really depends on the eigenvalues the A has. Also, we make more precise what we
mean when we say that solutions behave ’qualitatively’ same/different.

Lets anticipate future results, and start presenting above mentioned simple sys-
tems based on the types of eigenvalues they have.
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3.3.1. Real Distinct Eigenvalues. Consider Ẋ = AX and suppose that A has two
real eigenvalues λ1 < λ2. Assuming for the moment that λi 6= 0, there are three
cases to consider:

(1) λ1 < 0 < λ2

(2) λ1 < λ2 < 0

(3) 0 < λ1 < λ2.

We give a specific example of each case; any system that falls into any of these
three categories may be handled in a similar manner, as we show later.

Example (Saddle) First consider the simple system Ẋ = AX where

A =

(
λ1 0
0 λ2

)
with λ1 < 0 < λ2. This can be solved immediately since the system decouples into
two unrelated first-order equations:

ẋ = λ1x

ẏ = λ2y

We already know how to solve these equations, but, having in mind what will
follow, let’s find the eigenvalues and eigenvectors. The characteristic equation
is

(λ− λ1)(λ− λ2) = 0

so λ1 and λ2 are the eigenvalues. Eigenvector corresponding to λ1 is (1, 0) and to
λ2 is (0, 1). Hence we find the general solution

X(t) = αeλ1t
(

1
0

)
+ βeλ2t

(
0
1

)
.

Since λ1 < 0, the straight-line solutions of the form αeλ1t(1, 0) lie on the x−axis
and tend to (0, 0) as t → ∞. This axis is called the stable line (more generally
stable manifold). Since λ2 > 0, the solutions βeλ2t(0, 1) lie on the y−axis and tend
away from (0, 0) as t→∞; this axis is the unstable line (unstable manifold). All
other solution with α, β 6= 0 tend to ∞ in the direction of the unstable line, as
t→∞, since X(t) comes closer and closer to (0, βeλ2t) as t increases. In backward
time the solutions tend to ∞ in the direction of the stable line. �

In Figure 7 we have plotted the phase portrait of this system. The phase portrait is
a picture of a collection of representative solution curves of the system in R2, which
we call the phase plane. The equilibrium point (0, 0) of a system with eigenvalues
satisfying λ1 < 0 < λ2 is called a saddle.
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Figure 7. A saddle.
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Lecture 5: Monday 23th of September

For a slightly more complicated example of this type, consider Ẋ = AX where

A =

(
1 3
1 −1

)
.

The eigenvalues of A are ±2 (see previous section). The eigenvector associated to
λ = 2 is the vector (3, 1); the eigenvector associated to λ = −2 is (1,−1). Hence
we have an unstable line that contains straight-line solutions of the form

X1(t) = αe2t
(

3
1

)
,

each of which tends away from the origin as t→∞. The stable line contains the
straight-line solutions

X2(t) = βe−2t
(

1
−1

)
,

which tend toward origin as t→∞. By Theorem 3, any other solution takes the
form

X(t) = αe2t
(

3
1

)
+ βe−2t

(
1
−1

)
,

for some α, β. Note that, if α 6= 0, as t→∞, we have

X(t) ∼ αe2t
(

3
1

)
= X1(t)

whereas, if β 6= 0, as t→ −∞, we have

X(t) ∼ βe−2t
(

1
−1

)
= X2(t)

Thus, as time increases, the typical solution approaches X1(t) while, as time de-
creases, this solution tends toward X2(t), just as in the previous case (see Fig-
ure).

Remark: In the general case where A has a positive and negative eigenvalue, we
always find a similar stable and unstable line on which solutions tend toward or
away from the origin. All other solution approach the unstable line as t→∞, and
the stable line as t→ −∞.

Example (Sink) Consider the case Ẋ = AX where

A =

(
λ1 0
0 λ2

)
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but λ1 < λ2 < 0. As in the previous example we find two straight-line solutions
and then the general solution:

X(t) = αeλ1t
(

1
0

)
+ βeλ2t

(
0
1

)
Both eigenvalues being negative, all solutions tend to (0, 0) as t→∞. The question
is, how do they approach origin? Lets compute the slope dy/dx of a solution with
β 6= 0. We write

x(t) = αeλ1t

y(t) = βeλ2t

and compute
dy

dx
=
dy/dt

dx/dt
=
λ2β

λ1α
e(λ2−λ1)t.

Since λ2 − λ1 > 0, these slopes approach ±∞ as t → ∞ (provided β 6= 0). Thus
the solutions approach origin tangentially to the y− axis (see Figure 8).

sink source

Figure 8. Sink and a Source.

Remarks Above solutions thus approach y-axis faster than x-axis, i.e. x-coordinates
tend to (0, 0) faster than y-coordinates. As the term αeλ1t

(
1
0

)
dominates the dy-

namics, we call λ1 the stronger and λ2 the weaker eigenvalue.

More generally, if λ1 < λ2 < 0 with eigenvectors (u1, u2) and (v1, v2), resp., then
the general solution is

X(t) = αeλ1t
(
u1
u2

)
+ βeλ2t

(
v1
v2

)
The slope of this solution is

dy

dx
=
λ1αe

λ1tu2 + λ2βe
λ2tv2

λ1αeλ1tu1 + λ2βeλ2tv1

=
λ1αe

(λ1−λ2)tu2 + λ2βv2
λ1αe(λ1−λ2)tu1 + λ2βv1
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Since λ1 − λ2 < 0, then as t → ∞, we have dy
dx
→ v2

v1
unless β = 0. If β = 0, then

X(t) = αeλ1t
(
u1
u2

)
.

We get that all solutions (except straight-line solutions) tend to the origin tan-
gentially to the straight-line solution corresponding to the weaker eigenvector (as
the solutions move faster in the direction of the eigenvector corresponding to the
stronger eigenvalue).

Example (Source) When the matrix

A =

(
λ1 0
0 λ2

)
satisfies 0 < λ1 < λ2, our vector field may be regarded as the negative of the
previous example. The general solution and the phase portrait remain the same,
except that all the solutions now tend away from (0, 0) (see Figure 8).

Then we have the special case where λi = 0 for i = 1 or 2, i.e. either 0 = λ1 < λ2
or λ1 < λ2 = 0. In this case there is a straight-line of equilibrium points, and the
sign of the nonzero eigenvalue determines whether we approach this line or tend
away from it. (Showing this is left as an exercise).
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Lecture 6: Wednesday 25th of September

3.3.2. Complex Eigenvalues. Let us start with a special case.

Example (center) Consider the case Ẋ = AX with

A =

(
0 β
−β 0

)
and β 6= 0. The characteristic equation is λ2 + β2 = 0 and hence the eigenvalues
are λ1,2 = ±iβ. Not worrying about the resulting complex vectors we do the same
old stuff to find eigenvector to λ, say, we choose λ1 = iβ (exercise: what if we
choose λ2 = −iβ ?). We therefore solve

(
−iβ β
−β −iβ

)(
x

y

)
=

(
0

0

)
or just −iβx+ βy = 0 since the second equation is redundant. We find a complex
eigenvector (1, i), and so the function

(3.10) X(t) = eiβt
(

1

i

)
is a complex solution of Ẋ = AX (check). How does this solution look like? It
would be nice to somehow translate it to a real solution.

Let us use the most beautiful mathematical formula in the World, the Euler’s
formula

X(t) = eiβt = cos βt+ i sin βt.

We can rewrite the solution (3.10) to

X(t) =

(
cos βt+ i sin βt

i(cos βt+ i sin βt)

)
=

(
cos βt+ i sin βt

− sin βt+ i cos βt)

)
or

X(t) = XRe(t) + iXIm(t)

where

XRe(t) =

(
cos βt

− sin βt

)
, XIm(t) =

(
sin βt

cos βt

)
.

But now, we observe from

ẊRe + iẊIm = Ẋ

= AX

= A(XRe + iXIm)

= AXRe + iAXIm
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that in fact XRe and XIm are real solutions to Ẋ = AX because equating real and
imaginary parts we have ẊRe = AXRe and ẊIm = AXIm (check this is true indeed).
Moreover, since XRe(0) =

(
1
0

)
and XIm(0) =

(
0
1

)
, the linear combination

X(t) = c1XRe(t) + c2XIm(t)

where c1, c2 are arbitrary constants is the general solution (Theorem 3).

Note that for each initial condition the solution is a periodic function with period
2π/β. If β > 0, the solutions cycle clockwise, if β < 0, they cycle counterclockwise.
(See Figure 9)

Example (spiral sink, spiral source) More generally, consider Ẋ = AX with

A =

(
α β
−β α

)
and α, β 6= 0 (the previous case was a special case with α = 0). The characteristic
equation is now λ2 − 2αλ + α2 + β2 = 0 so the eigenvalues are λ = α ± iβ. We
proceed as previously. An eigenvector associated to α+iβ is determined from

(α− λ)x+ βy = 0 ⇐⇒ iβx+ βy = 0 ⇐⇒ y = ix

and hence (1, i) is again an eigenvector. Hence we have complex solutions

X(t) = e(α+iβ)t
(

1

i

)
and by using Euler’s formula we can rewrite it to

X(t) = XRe(t) + iXIm(t)

where

XRe(t) = eαt
(

cos βt

− sin βt

)
, XIm(t) = eαt

(
sin βt

cos βt

)
.

Again, XRe(t) and XIm(t) are real solution of Ẋ = AX with linearly independent
initial conditions, and so the general solution is

X(t) = c1e
αt

(
cos βt

− sin βt

)
+ c2e

αt

(
sin βt

cos βt

)
.

This is in fact just the solution of the previous example multiplied by eαt. Thus
the periodic closed solutions are converted into spirals that either spiral to the
origin, when α < 0, or away from the origin, when α > 0. Equilibrium point is
the called a spiral sink or spiral source, resp. (See Figure 9)

Remark Note that it is the real part of the eigenvalue that determines whether we
spiral towards or away from the origin.
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spiral sink spiral sourcecenter

Figure 9. Spiral sink, center and a spiral source.

3.3.3. Repeated Eigenvalues. One simple case occurs when

A =

(
λ 0
0 λ

)
.

Both eigenvalues are equal to λ. Notice that

AV =

(
λ 0
0 λ

)(
v1
v2

)
=

(
λv1
λv2

)
= λV

for any V = (v1, v2) ∈ R2. Then any nonzero vector is an eigenvector. Hence
straight-line solutions are of the form

X(t) = αeλtV.

Each solution lies on a straight-line through the origin and either tends to the
origin if λ < 0, or away from it, if λ > 0.

A more interesting case occur when

A =

(
λ 1
0 λ

)
.

Again both eigenvalues are equal to λ, but now the eigenvector is (1, 0). We have
a straight-line solution

X0(t) = αeλt
(

1

0

)
.

To find other solutions, note that the system can be written as

ẋ = λx+ y

ẏ = λy.

Thus if y 6= 0 we must have
y(t) = βeλt

and by substituting we get

(3.11) ẋ = λx+ βeλt.

When an ODE depends explicitly on time, we call such equations non-autonomous.
The best option is to guess a solution of the form

x(t) = νeλt + µteλt.
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for some ν, µ. Differentiating this we get

ẋ = νλeλt + νeλt + µλteλt

= λ(νeλt + µteλt) + µeλt

= λx+ µeλt.

As this has to equate to (3.11) we get that µ = β. Also, as x(0) = ν and

X0(0) =
(
x0(0)
y0(0)

)
=
(
α
0

)
then ν = α. We have as a solution

X(t) = αeλt
(

1

0

)
+ βeλt

(
t

1

)
.

This is also the general solution (exercise). See Figure 10.

Figure 10. Phase portraits for repeated eigenvalues. The two on
the left correspond to the case with an infinite number of eigenvec-
tors and the two on the right with only one.

Note that if λ < 0 then X(t) → (0, 0) as t → ∞. This is, because (any) expo-
nential function increases/decreases faster than any polynomial. When λ > 0, all
solutions tend away from (0, 0) as t→∞. In fact, solutions tend toward or away
from (0, 0) in direction tangent to the eigenvector (1, 0) (exercise).

With this example we conclude our section of presenting the simplest linear systems
and their phase portraits. Next, we show that we can transform any system to
one of the examples presented above.

3.3.4. Changing Coordinates. Despite differences in phase portraits of previous
sections, we really have dealt with only three types of matrices:(

λ 0
0 µ

)
,

(
α β
−β α

)
,

(
λ 1
0 λ

)
,

where λ may equal µ in the first case.
Any 2×2 matrix that is in one of these three forms is said to be in canonical form.
Systems in this form may seem rather special, but they are not! Given any linear
system X ′ = AX, we can always ”change coordinates” so that the new system is
transformed to one of the three forms above and hence easily solved. Here is how
to do this.
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A linear map (or linear transformation) on R2 is a function T : R2 → R2 of the
form

T (x, y) = (ax+ by, cx+ dy)

or

T

(
x
y

)
=

(
ax+ by
cx+ dy

)
.

T simply multiplies any vector by the 2× 2 matrix(
a b
c d

)
.

We will thus think of the linear map and its matrix as being interchangeable, so
that we also write

T =

(
a b
c d

)
.

Now suppose that T is invertible. This means T has an inverse matrix S that
satisfies TS = ST = I where I is the 2 × 2 identity matrix. It is traditional to
denote the inverse of a matrix T by T−1. As is easily checked, the matrix

S =
1

detT

(
d −b
−c a

)
serves as T−1 if detT 6= 0 (we just showed that the inverse of T is S whenever
detT is not 0, now lets show that this also necessary condition, i.e. if detT = 0,
T is not invertible) If detT = 0, we showed in the Proposition 1 that there are
infinitely many vectors (x, y) for which

T

(
x
y

)
=

(
0
0

)
Hence there is no inverse matrix in this case, for we would need(

x
y

)
= T−1T

(
x
y

)
= T−1

(
0
0

)
for each such vector. We have shown:

Proposition 2. The 2× 2 matrix T is invertible if and only if detT 6= 0.

Now, consider a system

Ẏ = BY

where B = (T−1AT ) for some invertible map T . Note that if Y (t) is a solution of
this system, then X(t) = TY (t) is a solution of

Ẋ = AX.
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Indeed, we have
Ẋ(t) = (T Ẏ (t)) = T Ẏ (t)

= T (T−1AT )Y (t)

= A(TY (t))

= AX(t)

as required. That is, the linear map T converts solutions of Ẏ = BY to solutions of
Ẋ = AX. Or conversely, T−1 takes solution of Ẋ = AX to solutions of Ẏ = BY .
We therefore think of T as a change of coordinates that converts a given linear
system into one whose coefficient matrix is different. So, we may find a linear
map T that converts the given (possibly difficult) system into a system of the form
Ẏ = (T−1AT )Y that is easily solved. This is great news, as we can do this by
choosing a linear map that converts a system to one in canonical form!
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Example Suppose

A =

(
−1 0

1 −2

)
.

The characteristic equation is λ2 + 3λ + 2, which yields eigenvalues λ = −1 and
λ = −2, and the corresponding eigenvectors are (1, 1) and (0, 1), respectively.
We therefore have a pair of straight-line solutions, each tending to the origin as
t→∞. All other solutions approach origin tangentially to the line y = x.

To put this system in canonical form, we guess T (below we see how to construct
such a matrix) to be the matrix

T =

(
1 0
1 1

)
so that

T−1 =

(
1 0
−1 1

)
.

Finally, we compute

T−1AT =

(
−1 0

0 −2

)
so that T−1AT is in canonical form. The general solution of the system Y ′ =
(T−1AT )Y is

Y (t) = αe−t
(

1
0

)
+ βe−2t

(
0
1

)
so the general solution of X ′ = AX is

TY (t) =

(
1 0
1 1

)(
αe−t

(
1
0

)
+ βe−2t

(
0
1

))
= αe−t

(
1
1

)
+ βe−2t

(
0
1

)
.

Thus the linear map T converts the phase portrait for the system

Y ′ =

(
−1 0

0 −2

)
Y

to that of X ′ = AX. �

Remark: Note that we really don’t have to go through the step of converting a
system to canonical form; once we have the eigenvalues and eigenvectors we can
simply write down the general solution. This extra step is taken for classification
purpose: we can think of systems with some specific eigenvalues as belonging to
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one equivalence class - there are an infinite number of systems which have those
exact same eigenvalues, but by applying a suitable linear transformation they all
have the exact same canonical form. The solutions are hence the same up to a
linear transformation. Therefore, when we work with a linear system it is enough
to consider only the canonical form of it.

Next, we see how to find matrix T for a system Ẋ = AX.

Real and distinct eigenvalues:
Suppose A has two real and distinct eigenvalues λ1 and λ2 with associated eigen-
vectors V1 and V2, i.e we have AVj = λjVj, j = 1, 2. Let T be the matrix whose
columns are V1 and V2. Thus

TEj = Vj, for j = 1, 2

where the Ej’s form a standard basis of R2.

Let B = T−1AT , then we have

BEj = (T−1AT )Ej = T−1AVj

= T−1λjVj

= λjT
−1Vj

= λjEj

Thus, we have that the matrix B is in the canonical form

B = T−1AT =

(
λ1 0
0 λ2

)
Complex eigenvalues:
Suppose A has complex eigenvalues λ1,2 = α ± iβ, β 6= 0. Futhermore, suppose
V1 + iV2 is an eigenvector associated to α+ iβ, where V1, V2 are real vectors. Then,
V1, V2 are linearly independent. To show this, suppose it is not true, i.e. there
exist s ∈ R s.t. V1 = sV2. But then

A(V1 + iV2) = (α + iβ)(V1 + iV2) = (α + iβ)(s+ i)V2

and also

A(V1 + iV2) = (s+ i)AV2

We thus have AV2 = (α + iβ)V2 which is a contradiction as AV2 is a real vector
and (α + iβ)V2 is complex.

Because an eigenvector V1 + iV2 is associated to α + iβ, we have

A(V1 + iV2) = (α + iβ)(V1 + iV2)
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and hence
AV1 = αV1 − βV2
AV2 = βV1 + αV2.

Now, set linearly independent vectors (as in the previous case) V1, V2 to be the
columns of T . We thus have TEj = Vj, j = 1, 2. Matrix B = T−1AT we compute
from

BE1 = (T−1AT )E1 = T−1A(TE1)

= T−1AV1

= T−1(αV1 − βV2)
= αT−1V1 − βT−1V2
= αE1 − βE2

=

(
α

−β

)
and

BE2 = (T−1AT )E2 = T−1A(TE2)

= T−1AV2

= T−1(βV1 + αV2)

= βE1 + αE2

=

(
β

α

)
.

Thus, we have that the matrix B is in the canonical form

B = T−1AT =

(
α β
−β α

)

Repeated eigenvalues:
Suppose A has a single eigenvalue. Then, the eigenvectors are either linearly
independent (exercise) or not. Suppose they are not: let V be an eigenvector and
that any other eigenvector is αV, α ∈ R.

Let W be any vector s.t. V and W are linearly independent. This means any
vector can be expressed as their linear combination, in particular

(3.12) AW = µV + νW

for some µ, ν ∈ R. Lets determine µ, ν. Note that µ 6= 0 because otherwise
AW = νW and hence W would be a second linearly independent eigenvector with
eigenvalue ν. Lets show that ν = λ. If ν 6= λ, then by setting U = W + µ

ν−λV we
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get

AU = A(W +
µ

ν − λ
V ) = µV + νW +

µ

ν − λ
AV

= νW + (µ+
µλ

ν − λ
)V = ν(W +

µ

ν − λ
V )

= νU.

Hence there would exist another linearly independent eignvector with eigenvalue
ν distinct from λ. Thus ν = λ.

Now, setting S = 1
µ
W , we get from (3.12) that

AS = V +
λ

µ
W = V + λS

Also recall we have AV = λV . Defining TE1 = V and TE2 = S we get

BE1 = (T−1AT )E1 = T−1AV = T−1λV

= λE1

=

(
λ

0

)
and

BE2 = (T−1AT )E2 = T−1AS

= T−1(V + λS)

= T−1V + λT−1S

= E1 + λE2

=

(
1

λ

)
.

Thus we have

B = T−1AT =

(
λ 1
0 λ

)
.
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4. Classification of Planar Linear Systems

Next, we try to classify planar linear system according to the types of solutions
they have. First, we give a geometric classification.

4.1. The Trace-Determinant Plane. Consider a matrix

A =

(
a b
c d

)
.

To find eigenvalues of A we solve the characteristic equation

(a− λ)(d− λ)− bs = 0

⇐⇒
λ2 − (a+ d)λ+ ad− bc = 0

⇐⇒
λ2 − (trA)λ+ det(A) = 0,

where trA is called the trace and detA the determinant of A. Solving above we
get

(4.1) λ± =
1

2

(
trA±

√
(trA)2 − 4detA

)
Remarks (i) To simplify, we denote with T the trace and D the determinant of A.
Also, we set ∆ = T 2 − 4D (ii) Note that λ− + λ+ = T and λ−λ+ = D (iii) Note
importantly (see also below) that T and D tell us what types of eigenvalues we
are dealing with, e.g. when T 2 < 4D the eigenvalues are complex.

Following up on the last remark we can express the types of eigenvalues in a
(T,D)−plane.

The sign of the discriminant ∆ determines the types of eigenvalues matrix A
has:

(1) ∆ < 0: complex eigenvalues

(2) ∆ > 0: real and distinct eigenvalues

(3) ∆ = 0: real and repeated eigenvalues
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Remarks: The type of the eigenvalues depends on the location of the (T,D)-value
relative to the parabola ∆ = 0.

Can we say anything more? In particular, can we say anything about the phase-
portraits?
B First, suppose that the eigenvalues are complex, i.e. ∆ < 0, then the the phase
portraits are determined by the trace:

(1) T < 0: spiral sink

(2) T > 0: spiral source

(3) T = 0: center

Remark Notice that from (4.1) we can’t determine the direction of the rota-
tion.

B Next, consider real and distinct eigenvalues, i.e. when ∆ > 0:

(1) D < 0: saddle

(2) D > 0: eigenvalues have the same sign. If

• T < 0 : sink

• T > 0 : source

(3) D = 0: λ− = 0 and λ+ = T . If

• T < 0 : solutions tend to the line of equilibria

• T > 0 : solutions tend away from the line of equilibria

B Lastly, if eigenvalues are real and repeated, i.e. ∆ = 0, and

(1) T < 0: Solutions tend to the origin.

(2) T > 0: Solutions tend away from the origin.

Remark Note that from (4.1) we can’t determine how many linearly independent
eigenvectors A has when ∆ = 0.

Se Figure 11 for a graphical demonstration of the above observations.

Remarks (i) Note importantly, that there are infinitely many matrices which have
the same (T,D)-value. That is, each point on the plane represents infinitely many
matrices. (ii) As major changes occur in the geometry of the phase portraits when
we cross the T -axis, the positive D-axis and ∆ = 0, we can think of this plot as a
bifurcation diagram.
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saddle

sink source

D

T

Figure 11. (T,D)-plane.



41

Lecture 9: Monday 7th of October

4.2. Dynamical Classification. In this section we give a more precise formula-
tion of the following useful and intuitive classification: ”Two systems are equivalent
if their solutions share the same fate”.

Recall that we call the function φ(t,X0) = φt(X0) flow of the ODE that satisfies
the initial condition X0, that is, φ0(X0) = X0. For example, for

Ẋ =

(
1 0
0 2

)
X

we have
φt(x0, y0) = (x0e

t, y0e
2t)

Notice, importantly, that the flow is a function that depends on time and the
initial values.

Lets be a bit more general and formal:

Definition 4. A flow on M ⊂ Rn is a continuously differentiable function φ :
R×M →M , such that, for each t ∈ R, φ(t, ·) = φt(·) satisfies

(1) φ0 = idM

(2) φt ◦ φs = φt+s, t, s,∈ R

Remarks (i) Notation: φt(φs) = φt ◦φs (ii) inverse of φt exists and is given by φ−t.
This is easy to check: φ−t ◦ φt(x) = x.

One-dimensional linear systems:

Consider the one-dimensional ODE’s

ẋ = λ1x

and
ẋ = λ2x

The general solutions are x(t) = x0e
λ1t and x(t) = y0e

λ2t, resp. Thus the flows
are

φ1
t (x0) = x0e

λ1t

and
φ2
t (y0) = y0e

λ2t

Suppose that λ1 and λ2 are nonzero and have the same sign. Let

h(x) =

{
xλ2/λ1 if x ≥ 0

−|x|λ2/λ1 if x < 0
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Note that h is a homeomorphism. Lets show that h is a conjugacy between ẋ = λ1x
and ẋ = λ2x. For x0 > 0 we have

h(φ1(t, x0)) = (x0e
λ1t)λ2/λ1

= x
λ2/λ1
0 eλ2t

= h(x0)e
λ2t

= φ2(t, h(x0))

We have that the h maps one flow to the other with y0 = h(x0). Similarly for
x0 < 0.

Remarks: (i) λ1 and λ2 must have the same sign, because if not, then |h(x)| → ∞
as x → 0, i.e. h would not be continuous and hence not a homeomorphism. (ii)
Indeed, above agrees with our notion of equivalence (”solutions having the same
fate”) as if eigenvalues have the same sign then both solutions tend to or away
from the origin. (ii) One-dimensional linear systems thus have three conjugacy
”classes”: sinks, sources and the constant solution case (ẋ = 0).

Before we move to the planar case we give an important definition:

Definition 5. A matrix A is hyperbolic of none of its eigenvalues has real part 0.

Remark we also call the system Ẋ = AX hyperbolic if none of A’s eigenvalues
have real part 0.

Planar linear systems:

Theorem 4. Suppose that the 2 × 2 matrices A and B are hyperbolic. Then
Ẋ = AX and Ẋ = BX are conjugate if and only if each matrix has the same
number of eigenvalues with negative part.

Remark note that the above theorem says that it doesn’t matter whether the
eigenvalues are complex or real ! For example, systems with spiral sinks and sinks
are conjugate; yes indeed, those systems are ”similar” as the solutions of both
systems tend to the origin.

Proof The outline of the proof was presented in the lecture.
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Lecture 10: Monday 14th of October

5. Higher Dimensional Linear Algebra

Our aim is to present the results derived for planar systems in higher dimensions.
For that we need some concepts from higher dimensional linear algebra. Most of
the things are analogous to the planar case and hence we mostly just state the
results without proofing them. Most of the proofs can be found in Hirsch and
Smale (1974).

Consider Ẋ = AX, where

X =

 x1
...
xn

 ,

A =

 a11 . . . a1n
...

...
an1 . . . ann

 = [aij]

and

AX =


∑n

j=1 a1jxj
...∑n

j=1 anjxj


The n × n matrix A is invertible if there exists a n × n matrix B for which
AB = BA = I. Note that B, the inverse of A, is unique: if not, then for some C
we have AC = CA = I and then B = BI = B(AC) = (BA)C = IC = C.

Proposition 3. Let A be a n × n matrix. Then AX = V has a unique solution
for any V ∈ Rn if and only if A is invertible.

Sketch of the proof: ”⇐” As A is invertible, then A−1V = A−1(AX) = X is one
solution. Also, it is the only one, as if Y is another solution, then

Y = (A−1A)Y = A−1(AY ) = A−1V = X.

”⇒” Straightforward calculations using the ”elementary row operations” ( Gauss-
Jordan elimination).

Proposition 4. The matrix is invertible if and only if the columns of A form a
linearly independent set of vectors.



44

Proof: ”⇒” A is invertible with columns V1, . . . , Vn, i.e. AEj = Vj. If Vj’s are not
LI, then ∃α1, . . . , αn, not all zero, such that

∑
j αjVj = 0. But then

0 =
∑
j

αjAEj = A
∑
j

αjEj = A(α1, . . . , αn)T .

Hence AX = 0 has two solutions, the nonzero vector (α1, . . . , αn) and the 0 vector.
This contradicts the previous proposition.
”⇐” Vj’s are LI. If A is not invertible, then ∃X1, X2 s.t. X1 6= X2 and

AX1 = AX2.

We have that AX1 − AX2 = A(X1 − X2) = AZ = 0 for a nonzero Z. Letting
Z = (α1, . . . , αn) we get

0 = AZ =
∑
j

αjVj

so that Vj’s are not linearly independent.�

Lets denote with Aij the (n− 1)× (n− 1) matrix obtained by deleting the ith row
and jth column of A.

Definition 6. The determinant of A = [aij] is defined (inductively) by

detA =
n∑
k=1

(−1)ka1kdetA1k

Remark Above, we could have expanded along any other row than the first.

Proposition 5. (Invertibility Criterion) The matrix A is invertible if and only if
detA 6= 0.

Proof Use the elementary row operations.

Proposition 6.
det(AB) = det(A)det(B).

5.1. Eigenvalues & Eigenvectors.

Definition 7. A vector V is an eigenvector of A if V is a nonzero solution to the
system det(A− λI)V = 0. The quantity λ is called the eigenvalue of A, and V is
an eigenvector associated to λ.

Remarks (i) As (A−λI)X has now (at least) two solutions, V and a zero solution
⇐⇒ A − λI = 0 is not invertible ⇐⇒ det(A − λI) = 0. (ii) As A is n × n
the characteristic polynomial is of degree n, which has n roots (counted with
multiples), hence there are n eigenvalues.

Next, lets look at canonical forms.
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Distinct eigenvalues: Real

Proposition 7. Suppose λ1, . . . , λm are real and distinct eigenvalues of A with
associated eigenvectors V1, . . . , Vm. The the Vj’s are linearly independent.

Proof analogous to the planar case.

Corollary 1. Suppose A is a n×n matrix with real and distinct eigenvalues. Then
there exists matrix T such that

T−1AT =

 λ1 0
. . .

0 λn


Proof Let TEj = Vj. Since Vj’s are LI there exists T−1 and we have

(T−1AT )Ej = T−1AVj

= T−1λjVj

= λjT
−1Vj

= λjEj

Note that this is exactly the same procedure we used when deriving the canonical
form in the planar case.

Distinct eigenvalues: Complex
Again, we use the same logic as in the planar case. So lets just state the re-
sult.

Suppose A is a 2n × 2n matrix with distinct nonreal eigenvalues αj ± iβj, j =
1, . . . , n. We construct T by letting the column vectors to be the real parts and
the imaginary parts of the eigenvectors (see the planar case). Then

B = T−1AT =

 D1 0
. . .

0 Dn


where each Dj is a 2× 2 matrix

Dj =

(
αj βj
−βj αj

)

As A might be a big matrix, it might have both real and complex eigenvalues.
Combining above results we get the following theorem.
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Theorem 5. Suppose A is a n × n matrix with distinct eigenvalues. Then there
exists T such that

B = T−1AT =



λ1
. . .

λk
D1

. . .
Dm


where all other entries are zero and

Dj =

(
αj βj
−βj αj

)
Repeated eigenvalues
We come back to this case later if needed.

5.2. Genericity. Here we want to express bit more formally the intuitive state-
ment ”Most matrices have distinct eigenvalues”.

Recall, (i) set U ⊂ Rn is open whenever X ∈ U there is an open ball about X
which is contained in U (ii) set U ⊂ Rn is dense if there are points in U arbitrarily
close to each point in Rn.

For example, in the plane, the complement of a line is open and dense (i.e. the
set of all other points in the plane than the points on the line). (check this!).
Indeed, if we pick a random point from a plane then almost surely it is a point not
on that line. This is a convenient way how to formalize our intuitive statement
above.

Let L(Rn) denote the set of n× n matrices.

Theorem 6. The set M of matrices in L(Rn) that have n distinct eigenvalues is
open and dense in L(Rn).

Proof see Hirsch, Smale and Devaney (2004).

Remarks We call a property of matrices to be generic if the set of matrices having
this property contains an open and dense set in L(Rn). That is, a generic property
is one that almost all matrices have.
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Lecture 11: Wednesday 16th of October

6. Higher Dimensional Linear Systems

6.1. General Solutions of Ẋ = AX, A ∈ Rn×n.

6.1.1. Distinct eigenvalues. Lets first deal with the case where eigenvalues are
purely real. Consider Ẋ = AX, where A has n distinct and real eigenvalues
λ1, . . . , λn. Then there exists a T such that Ẏ = BY = (T−1AT )Y , where

T−1AT =

 λ1 0
. . .

0 λn


Then, a function

Y (t) =

 c1e
λ1t

...
cne

λnt


is the unique solution of Ẏ = BY that satisfies the initial condition Y (0) =
(c1, . . . , cn). Then, the general solution of Ẋ = AX is X(t) = TY (t), and as
TEj = Vj where Vj’s are the eigenvectors of A, we have

(6.1) X(t) = TY (t) =
∑
j

cjVje
λjt.

”Saddle”: Suppose that λ1, . . . , λk are negative and λk+1, . . . , λn are positive (no
zero eigenvalues!). Also, suppose that some solution starts in the subspace spanned
by V1, . . . , Vk, i.e. initial conditions are such that ci 6= 0 for i = 1, . . . , k but
ck+1 = · · · = cn = 0. Then, from (6.1) we see that the solution stays in that
subspace. As λ1, . . . , λk < 0, X(t)→ 0 as t→∞. This subspace we thus call the
stable subspace. Similarly, the subspace spanned by eigenvectors that correspond
to the positive eigenvalues is called the unstable subspace. All other solutions tend
toward the stable subspace.

Example Consider

Ẋ =

 1 2 −1
0 3 −2
0 2 −2

X.
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It has eigenvalues 2, 1,−1 with associated eigenvectors (3, 2, 1), (1, 0, 0) and (0, 1, 2),
resp. Then

T =

 3 1 0
2 0 1
1 0 2


and we get

X(t) = TY (t) = c1e
2t

 3
2
1

+ c2e
t

 1
0
0

+ c3e
−t

 0
1
2



(i) The straight-line through the origin and (0, 1, 2) is the stable subspace (ii)
subspace spanned by (3, 2, 1), (1, 0, 0) is the unstable subspace.

If all λj’s are negative (positive) we call it a higher dimensional sink (source).

Now, lets deal with the general case where matrix A has real and complex distinct
eigenvalues. We give directly the main result

Theorem 7. Consider the system Ẋ = AX where A has distinct eigenvalues
λ1, . . . , λk1 ∈ R and α1 + iβ1, . . . , αk2 + iβk2 ∈ C. Let T be the linear map that
transforms A to the canonical form

B = T−1AT =



λ1
. . .

λk1
B1

. . .
Bk2


where all other entries are zero and

Bj =

(
αj βj
−βj αj

)
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Then the general solution of Ẋ = AX is TY (t) where

Y (t) =



c1e
λ1t

...
ck1e

λk1 t

a1e
α1t cos β1t+ b1e

α1t sin β1t
−a1eα1t sin β1t+ b1e

α1t cos β1t
...

ak2e
αk2

t cos βk2t+ bk2e
αk2

t sin βk2t
−ak2eαk2

t sin βk2t+ bk2e
αk2

t cos βk2t


Remark: The columns of T consists of eigenvectors and the real and imaginary
parts of the eigenvectors associated to each eigenvalue.

We deal with the case of repeated eigenvalues later if needed.

6.2. The Exponential of a Matrix. Recall that for x ∈ R, ex =
∑∞

k=0
xk

k!
=

1 + x + x2

2!
+ . . . , where the series converges for each x ∈ R. Lets define the

exponential of a matrix as follows

Definition 8. Let A be an n × n matrix. We define the exponential of A to be
the matrix given by

eA =
∞∑
k=0

Ak

k!
= I + A+

A2

2!
+ . . .

This series is convergent for all square matrices A (proof not given here).

Here are some properties

Proposition 8. Let A,B and T be n× n matrices. Then

(1) If B = T−1AT , then eB = T−1eAT

(2) If AB = BA, then eA+B = eAeB

(3) e−A = (eA)−1 (inverse)

Proofs elsewhere.

Proposition 9.
d

dt
eAt = AeAt

Proof elsewhere.
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Theorem 8. Consider

(6.2) Ẋ = AX, with X(0) = X0

and where A is a n× n matrix. Then (6.2) has a unique solution

X(t) = eAtX0.

Proof Analog to the proof given in model solutions of exercise 1.

Let us look at some examples how to manipulate exponentials of matrices.

Example Let

A =

(
λ 0
0 µ

)
.

Then

Ak =

(
λk 0
0 µk

)
and

eA =
∞∑
k=0

[
1

k!

(
λk 0
0 µk

)]
=

( ∑
λk

k!
0

0
∑ µk

k!

)
=

(
eλ 0
0 eµ

)
Example Consider Ẋ = AX, where

A =

(
λ 0
0 µ

)
.

and X(0) = X0. Then the solution is X(t) = eAtX0. Using the above example, we
get

X(t) =

(
eλt 0
0 eµt

)
X0.

If X0 = (α, β) we have

X(t) = αeλt
(

1

0

)
+ βeµt

(
0

1

)
.
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Lecture 12: Monday 28th of October

7. Nonlinear systems: when do we get ”nice” solutions?

Previously, we looked at class of dynamical systems that were linear first-order
autonomous ordinary differential equations

(7.1) Ẋ = AX, X ∈ Rn

where A is an n × n matrix. We showed, that we can always find an explicit
solution

X(t) = eAtX0, X(t0) = X0

which is unique. Furthermore, for 2× 2 matrices A, we gave a complete classifica-
tion of the phase portraits (i.e. we showed all the possible dynamics of (7.1)).

Next, we start investigating a much larger class of dynamical systems, the nonlin-
ear autonomous first-order ODE’s

(7.2) Ẋ = F (X), X ∈ Rn.

Remarks (i) We get a linear system from (7.2) if F (X) = AX. (ii) In general,
nonlinear systems may (a) not have solutions whatsoever to a given initial value
problem (b) have many solutions. Also, knowing one explicit solution may not
reveal anything about the nature of solutions nearby (the possibility of chaotic
systems)

However, despite the horrific picture painted in remark (ii), many many nonlin-
ear systems do have nice solutions. The task of this section is to find out what
conditions (7.2) has to satisfy in order to get these so called ”nice” solutions.

Recall, that function is continuously differentiable, denoted with C1, if all the
partial derivatives exist and are continuous.
In Lecture 9 we gave the following definition

Definition 9. A smooth dynamicals system on Rn is a continuously differentiable
function φ : R× Rn → Rn, such that, for each t ∈ R, φ(t, ·) = φt(·) satisfies

(1) φ0 = id

(2) φt ◦ φs = φt+s, t, s,∈ R

Remarks (i)inverse of φt exists and is given by φ−t (ii) above definition says that
φt and φ−t are C1.

Exercise Show that function φt(X0) = eAtX0 defines a smooth dynamical system
on Rn, where A is an n× n matrix.
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7.1. The existence and uniqueness of solutions. Consider the system

(7.3) Ẋ = F (X),

where F : Rn → Rn. The solution of (7.3) is a function

X : J → Rn

defined in some interval J ∈ R s.t. for all t ∈ J
Ẋ(t) = F (X(t)).

An initial condition/value for X : J → Rn is X(t0) = X0 where t0 ∈ J and
X0 ∈ Rn. As before, we may take t0 = 0.

Next, we will present several important Theorems for the system (7.3). As our
main focus is elsewhere, we won’t do the proofs here. Proofs can be found in any
textbook on ordinary differential equations.

Theorem 9. (The existence and uniqueness theorem) Consider the system (7.3)
with X(t0) = X0 ∈ Rn. Suppose F : Rn → Rn is C1. Then (A) there exists a
solution (B) the solution is unique. More precisely, there exists a > 0 and a unique
solution

X : (t0 − a, t0 + a)→ Rn

of (7.3) satisfying X(t0) = X0.

Remarks: Above is a local theorem, that is, the solution exists and is unique in
the neighborhood of X0.

What if some of the requirements for the Theorem to be applicable are not satis-
fied?
Example (F not continuous) Consider

ẋ =

{
1 for x < 0
−1 for x ≥ 0

The proposed solutions are

x(t) =

{
x0 + t for x < 0
x0 − t for x ≥ 0

But, as for strictly positive x the solutions are decreasing and for strictly negative
x the solutions are increasing, the only thing that would make sense is to have
an equilibrium at 0, which we don’t have. Consequently, there is no solution that
satisfies the initial condition x(0) = 0.

Example (F not differentiable) Consider ẋ = 3x2/3. Note that this function is not
differentiable at the origin. Furthermore, x(t) = 0 with x(0) = 0 is a solution,
but so is x(t) = t3 with x(0) = 0. Hence it doesn’t have a unique solution with
x(0) = 0.
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Remarks: The above observations are true in general: the existence of solutions
requires continuity and uniqueness requires (in fact, continuous) differentiabil-
ity.

7.2. Continuous dependence of solutions.

Theorem 10. Consider (7.3) where F : Rn → Rn is C1. Suppose that X(t) is a
solution of (7.3) which is defined on the closed interval [t0, t1] with X(t0) = X0.
Then there is a neighborhood U ⊂ Rn of X0 such that if Y0 ∈ U then there is a
unique solution Y (t) also defined on [t0, t1] with Y (t0) = Y0. Moreover, there is a
constant K such that Y (t) satisfies

|Y (t)−X(t)| ≤ K|Y0 −X0|eK(t−t0)

for all t ∈ [t0, t1].

Remarks: (i) What the theorem says is, that if X(t) and Y (t) start out close
to each other, then they also stay close to each other (well, close means that
they don’t diverge faster than exponentially). (ii) Note that if Y0 → X0 then
Y (t)→ X(t).

From the latter remark immediately follows

Corollary 2. (Continuous dependence on initial conditions) Let φ(t,X) be the
flow of (7.3) with F ∈ C1. Then φ is a continuous function of X.

Now, an important consequence for us is the following. Suppose that the system
depends on parameters µ ∈ Rk. We may write the system as

Ẋ = Fµ(X)

where Fµ(X) = (f1(x1, . . . , xn, µ1, . . . , µk), . . . , fn+k(x1, . . . , xn, µ1, . . . , µk)), and
hence the system can be rewritten as

ẋ1 = f1(x1, . . . , xn, µ1, . . . , µk)

...

ẋn = fn(x1, . . . , xn, µ1, . . . , µk)

µ̇1 = 0

...

µ̇k = 0.

We have an autonomous system of n + k differential equations. The previous
corollary can then be extended:
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Theorem 11. (Continuous dependence on parameters) Let Ẋ = Fµ(X) be a sys-
tem of differential equations for which Fµ(X) is C1 in X and µ. Then the flow φ
depends continuously on µ as well.
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Lecture 13: Wednesday 30th of October

Lets recall some concepts from analysis which are essential in understanding the
methods in following sections.

7.3. Taylor expansion. The Taylor expansion of a real/complex valued function
f(x) that is C∞ at some point x = a is the series

f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + . . .

=
∞∑
n=0

f (n)(a)

n!
(x− a)n.

The above expansion is useful if it converges to f(x), at least in some neighborhood
about a. If it does, this function is called analytic/regular/holomorphic. More
precisely, a function f(x) is analytic in some open neighborhood U if and only if
its Taylor expansion about x = a ∈ U converges to the function f(x) for all x ∈ U .
That is, f(x) is analytic in U if and only if

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n

for all x ∈ U .

Remarks: If f(x) is equal to its Taylor expansion for all x in the (real line) complex
plane, it is called (real) entire.

Below we have some examples of expansions of some famous functions about 0 (so
called Maclaurin series)
Example

ex = e0 +
e0

1!
(x− 0) +

e0

2!
(x− 0)2 + · · · = 1 + x+

1

2
x2 + · · · =

∞∑
n=0

xn

n!
, ∀x ∈ R (entire)

sinx = x− x3

3!
+
x5

5!
+ · · · =

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
∀x ∈ R (entire)

√
1 + x = 1 +

1

2
x− 1

8
x2 + · · · =

∞∑
n=0

(−1)n(2n)!

(1− 2n)(n!)24n
xn for |x| ≤ 1

1

1− x
= 1 + x+ x2 + · · · =

∞∑
n=0

xn for |x| < 1

Exercise Show that polynomials are entire functions.



56

Remarks: (i) As mentioned earlier, if f is not entire, then its Taylor expansion
converges only in some neighborhood of the point a (see Figure 12 for entire
function vs. Figure (13) for not entire function)(ii) In general, we need to be bit
careful when using the taylor expansion: not even all C∞ are analytic, for example
f(x) which equals to e−1/x for x > 0 and to 0 for x ≤ 0. (iii) Luckily many many
functions are analytic, especially those which arise in applications. And usually
it is enough that they are analytic in some neighborhood. Hence, at least in this
course, we won’t need to worry about convergence.

Figure 12. Taylor expansions (gray) of sin x (black) about x = 0.

Upper left: sinx ≈ x. Upper right: sin x ≈ x − x3

3!
. Down left:

sinx ≈
∑12

n=0
(−1)nx2n+1

(2n+1)!
. Down right: sinx ≈

∑50
n=0

(−1)nx2n+1

(2n+1)!
. If we

would take the summation to infinity, the Taylor expansion would
converge to the function sinx for all x (as its an entire function).

Taylor expansion of f(x, y) in two variables about (x, y) = (a, b) is

f(a, b) +
fx(a, b)

1!
(x− a) +

fy(a, b)

1!
(y − b)+

+
1

2!

[
fxx(a, b)(x− a)2 + 2fxy(a, b)(x− a)(y − b) + fyy(a, b)(y − b)2

]
+ . . .
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Figure 13. Taylor expansions (gray) of 1
1−x (black) about 0. Upper

left: 1
1−x ≈ x + 1. Upper right: 1

1−x ≈ x2 + x + 1. Down left:
1

1−x ≈ x3+x2+x+1. Down right: 1
1−x ≈

∑49
n=0 x

2. Notice that even
if we would take the summation to infinity, the Taylor expansion
would converge to the function 1

1−x only in the neighborhood U of
0 where U is the interval (−1, 1) (its not an entire function).

where fx is the derivative with respective to x and fy with respective to y.

When taking the Taylor expansion of a system of equations we simply expand each
function separately. Using the above, we take the expansion of

F (X) =

(
f1(x, y)

f2(x, y)

)
about X̂ = (x̂, ŷ):(

f1(x̂, ŷ)

f2(x̂, ŷ)

)
+

(
f1,x(x̂, ŷ) f1,y(x̂, ŷ)
f2,x(x̂, ŷ) f2,y(x̂, ŷ)

)(
x− x̂
y − ŷ

)
+ h.o.t

or using the vector and matrix notation we have

(7.4) F (X̂) +DF (X̂)(X − X̂) + h.o.t
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where fi,x denotes the derivative of function fi with respect to x and fi,y with

respect to y. DF (X̂) is called the Jacobian of F evaluated at X̂. The second
and higher order terms can be easily obtained by applying formulas for single and
two variable expansions given above (or just search the web, there is plenty of
information about Taylor expansions).

7.4. Stability of trajectories. Let X̄(t) be any solution of (7.3). Then, roughly
speaking, X̄(t) is stable if solutions that start close to X̄(t) at some given time
stay close for all later times. It is asymptotically stable if closeby solutions not
only stay close, but also converge to X̄(t) as t→∞. More precisely

Definition 10. (Liapunov stability) X̄(t) is said to be stable (or Liapunov stable)
if for every ε > 0 there exists a δ = δ(ε) such that for any other solution Y (t) of
(7.3) satisfying |X̄(t0)− Y (t0)| < δ, we have |X̄(t)− Y (t)| < ε for t > t0, t0 ∈ R.

Remarks: Solution that is not stable is called unstable. That is, there exists at least
one solution that doesn’t satisfy the requirements of the above definition.

x

X(t)ε

Y(t)

Figure 14. Liapunov stability.

Definition 11. (Asymptotic stability) X̄(t) is said to be asymptotically stable if it
is Liapunov stable and for any other solution Y (t) of (7.3) there exists a constant
c such that if |X̄(t0)− Y (t0)| < c then limt→∞ |X̄(t)− Y (t)| = 0.

Remarks: (i) Note that the above definitions are formulated in terms of trajec-
tories of any solutions, not necessarily trajectories of equilibrium solutions (yes,
equilibrium solution defines a trajectory as well!) (ii) Above definitions imply
that we have information on the infinite time existence of solutions. This is not
problematic for example for equilibria as they are defined for all t (iii) Asymptotic
stability does require stability! Indeed, otherwise we could have a scenario as in
Figure 16 (iv) In linear systems, the origin is asymptotically stable in the ”sink”
case, and unstable in the case of a ”saddle” and a ”source”. The origin is stable,
but not asymptotically stable, in the case of a ”center”. Nearby solutions stay
nearby but don’t converge to the origin.
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xx X(t)

x
x

X0

_

Y0c

Y(t)
_

Figure 15. Asymptotic stability.

X(t)
_

Figure 16. Above figure shows why the definition of asymptotic
stability requires the Liapunov stability. If it wouldn’t, then as the
figure demonstrates, stability can fail even if any nearby solution
converges to X̄(t). Stability fails because in every neighborhood of
X̄(t0) there is a nearby solution that leaves this neighborhood.

7.5. Variational equation. How to determine the stability of a solution X̄(t)?
Let X(t) be a solution that starts near X̄(t),

(7.5) X(t) = X̄(t) + U(t).

Note that U(t) gives the ”distance” between nearby solutions X(t) and X̄(t).
Substituting (7.5) into (7.4) and Taylor expanding about X̄(t) we get

Ẋ(t) = ˙̄X(t) + U̇(t)

= F (X(t))

= F (X̄(t)) +DF (X̄(t))(X(t)− X̄(t)) + h.o.t

= F (X̄(t)) +DF (X̄(t))U(t) + h.o.t

Now, as ˙̄X(t) = F (X̄(t)) we get

(7.6) U̇ = DF (X̄(t))U + h.o.t.

Clearly, if U(t) is the solution to (7.6) and it remains small for all t, then the
solution X(t) stays close to X̄(t) for all t, which implies stability of X̄(t)!

Intuitively (which will be made formal later!), for small U , the linear terms of (7.6)
play a bigger role than the higher order terms (you can think of f(x) = x + x2:
for small x the function f(x) ≈ x as x2 is veery close to zero). Therefore, it
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seems reasonable, at least if some additional criteria are satisfied, that the stability
question could be answered by studying the linear system

(7.7) U̇ = DF (X̄(t))U.

The question of stability of X̄(t) then involves two steps:

(1) Determine if the U = 0 solution to (7.7) is stable (i.e. whether nearby
solutions U(t) - solutions U(t) that are small - approach the origin, hence
get even smaller)

(2) Show that the stability of the U = 0 solution of (7.7) implies the stability
of X̄(t). (i.e. whether it is enough to study the linearized system (7.7)
instead of the nonlinear system (7.6))

The first step may be equally difficult as our original problem of solving (7.6) since
there are no general analytical methods for finding the solution of linear ODE’s
with time-dependent coefficients. But (!), if X̄(t) is an equilibrium solution, i.e

X̄(t) = X̂ for all t, then DF (X̄(t)) = DF (X̂) which makes (7.7) just a simple
autonomous linear ODE. For these systems we know that a unique solution can
be found and written as

(7.8) U(t) = eDF (X̂)tU0.

Thus U = 0 is (asymptotically) stable if all eigenvalues of DF (X̂) have negative
real parts (this answers the question 1.). To be continued ..
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Lecture 14: Monday 4th of November

To answer question 2 we have the following theorem

Theorem 12. (Liapunov 1892) Suppose all of the eigenvalues of DF (X̂) have

negative real parts. Then the equilibrium solution X̂ of the nonlinear vector field
(7.3) is asymptotically stable.

Proof See Wiggins (2004). Not very difficult one, using so called Liapunov func-
tions.

What the above says, is that to know whether an equilibrium of a nonlinear system
is stable, it is enough to study the linear term of its Taylor expansion (provided
the equilibrium is hyperbolic). This is nice! However, we are after something even
more general: we would like to know under which conditions all kinds of phase
portraits of a nonlinear system are similar to its linear parts.

7.6. Linearization. Next, we give four examples that demonstrate when and how
nonlinear and linearized systems are similar to each other and when not.

Example 1 Consider

(7.9)
ẋ = x+ y2 = f1(x, y)

ẏ = −y = f2(x, y)

The origin X̂ = (x̂, ŷ) = (0, 0) is an equilibrium. The linearized system evaluated

at X̂ is
Ẋ = DF (X̂)(X − X̂) =

=

(
∂f1(x,y)
∂x

∂f1(x,y)
∂y

∂f2(x,y)
∂x

∂f2(x,y)
∂y

)
X=X̂

X =

(
1 2y
0 −1

)
X=X̂

X

=

(
1 0
0 −1

)(
x

y

)
that is,

(7.10)
ẋ = x

ẏ = −y.

Notice, that we could’ve obtained the linearized system just by dropping the higher
order terms and leaving the linear ones. Lets analyze the phase portraits around
the equilibrium of both systems.

Linearized system (7.10) The eigenvalues are λ1 = 1 and λ1 = −1, and the associ-
ated eigenvectors are V1 = (1, 0) and V2 = (0, 1). This is the case of a saddle with
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the general solution

X(t) = x0e
t

(
1

0

)
+ y0e

−t
(

0

1

)

Figure 17. Example 1: Phase portraits of the original system
(left) and the linearized system (right). Left phase portrait can
be transformed into the right one by applying the nonlinear map
F (x, y) = (x+ 1

3
y2, y).

Nonlinear system (7.9) We can solve this system explicitly. From the second
equation we get y(t) = y0e

−t and hence ẋ = x + (y0e
−t)2. This is a first-order

nonautonomous equation. We can guess a particular solution to be x(t) = ce−2t.
Differentiating this and equating it with the previous equation we find c = −1

3
y20.

We hence found a solution x(t) = −1
3
y20e
−2t with a specific initial value −1

3
y20. Any

function x(t) = cet − 1
3
y20e
−2t is then a solution, from which we get c = x0 + 1

3
y20.

The general solution is thus

x(t) = (x0 +
1

3
y20)et − 1

3
y20e
−2t

y(t) = y0e
−t

How does the phase portrait look like?

First, notice that if y0 = 0 (x−axis), then y is constant and the dynamics of x(t)
is governed only by (x+

1
3
y20)et. All solutions starting at the x−axis stay on the

axis and tend away from the origin. This line is hence called an unstable curve
(manifold).

Second, notice that for all the initial points (x, y) that satisfy x0+ 1
3
y20 = 0 constrain

the dynamics on that curve and the dynamics will be given by x(t) = −1
3
y20e
−2t

and y(t) = y0e
−t. As these solutions tend to the origin the curve given by x(t) +

1
3
y(t)2 = 0 is called the stable curve (manifold). See the phase portrait (Figure

17). Therefore, at least near the origin, the two phase portraits resemble each
other.

In fact, the phase portraits resemble each other globally as well(!): we can find
change of variables that convert the nonlinear system to the linear one. Set u =
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x + 1
3
y2 and v = y. Differentiating and substituting to the original equation we

get
u̇ = u

v̇ = −v
which is just the linearization! We have then that the nonlinear change of variables
F (x, y) = (x+ 1

3
y2, y) converts the original nonlinear system to the linearized one.

Hence, the resemblance is global.

In general, it is impossible to find a map which transforms the whole nonlinear
system to a linear one.

Example 2 Consider

(7.11)
ẋ =

1

2
x− y − 1

2
(x3 + y2x)

ẏ = x− 1

2
y − 1

2
(y3 + x2y)

which has an equilibrium at the origin, and the linearization is

(7.12)
ẋ =

1

2
x− y

ẏ = x− 1

2
y

which is in canonical form. The eigenvalues are α± iβ = 1
2
± i, and hence we have

a spiral source spiraling counterclockwise. However, the nonlinear system (can be
solved explicitly by changing to polar coordintates) has a so-called stable limit
cycle (a closed orbit which does not spiral to or away from the equilibrium) where
solutions starting near the origin and solution starting far away from the origin
spiral towards it (see Figure). Therefore there is no way to find a global change of
coordinates to put the nonlinear system to the linear one.

Figure 18. Example 2: Phase portraits of the original system (left)
and the linearized system (right).

Despite of not having global resemblance, we can find a conjugacy in a sufficiently
close neighborhood to the origin (conjugate map is h(x, y) = ψ−t ◦ φt(x, y), where



64

ψ, φ are flows of the nonlinear and linear systems, resp.). This guarantees local
resemblance!

However, there might not be resemblance between nonlinear system and its lin-
earization whatsoever!

Example 3 Consider

(7.13)
ẋ = −y + ε(x3 + y2)

ẏ = x+ ε(x2 + y2)

which again has an equilibrium at the origin, and the linearization is

(7.14)
ẋ = −y
ẏ = x

Linearization is in its canonical form with eigenvalues ±i. This linear system is
thus a center. However, the nonlinear system spirals away from the origin for ε > 0
and towards the origin for ε < 0.

Figure 19. Example 3: Phase portraits of the original system with
ε > 0 (left), ε < 0 (center) and the linearized system (right).

Example 4 Consider

(7.15)
ẋ = x2

ẏ = −y
which again has an equilibrium at the origin, and the linearization is

(7.16)
ẋ = 0

ẏ = −y
The linear system has an equilibrium at each point on the x-axis, while all other
solutions are straight lines approaching this line. However the nonlinear system
has a phase portrait as depicted in Figure 20.

Summarizing, we noticed that the first two examples had linearized systems with
hyperbolic eigenvalues while the other two had nonhyberbolic eigenvalues. The
linear systems with nonhyperbolic eigenvalues didn’t resemble the original system
but the ones with hyperbolic eigenvalues did. Coincidence? Not at all!
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Figure 20. Example 4: Phase portraits of the original system (left)
and the linearized system (right).

Theorem 13. (Linearization Theorem - Hartman and Grobman Theorem) Sup-

pose the nonlinear system (7.3) has an equilibrium point X̂ that is hyperbolic. Then
the flow generated by (7.3) is conjugate to the flow of the linearized system in the

neighborhood of X̂.

Remark This theorem says, that if a nonlinear system is linearized about a hy-
perbolic equilibrium, then in some neighborhood of this equilibrium the phase
portraits of both systems are qualitatively the same!

Sketch of the proof - case: sink Here we give a sketch of the proof when the
linearization is a sink. First, shift the equilibrium of the nonlinear system to the
origin and suppose that the eigenvalues of the linearization satisfy −λ < −µ < 0.
Changing the coordinates, the nonlinear system becomes

ẋ = −λx+ h1(x, y)

ẏ = −µy + h2(x, y).

Since h’s have terms that are at least quadratic we have that lim(x,y)→(0,0)
hj(x,y)

r
=

0, where r = x2 + y2. The linear system is

ẋ = −λx
ẏ = −µy.

Our aim is to show, that on a sufficiently close circle around the origin, both
systems have flows pointing inside that circle. If this is so, we may then find a
conjugacy between these two systems (as both have a similar phase portrait close
to the origin) and our proof is done.

Hence, recall that the angle between two vectors is greater than 90 degrees (and
smaller than 270o) if the dot product of these vectors (V1 · V2 = ||V1||||V2|| cos θ) is
negative. If we take these two vectors be the normal vector of this circle (which
is just the location (x, y) on that circle) and the vector given by our ODE’s (yes,
they define at each point (x, y) a vector which gives the direction of the flow!) we
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want that the angle between them is greater than 90o and smaller than 270o for the
flow to point inside the circle (Figure 21). Take first the linear system. The vector
field on Sr points inside this circle, as (−λx,−µy) · (x, y) = −λx2−µy2 < 0.

(x,y)

θ

Figure 21.

Now, lets look at the nonlinear one: let q(x, y) be the dot product. We then
have

q(x, y) = (−λx+ h1(x, y),−µy + h2(x, y)) · (x, y)

= −µ(x2 + y2) + (µ− λ)x2 + xh1(x, y) + yh2(x, y)

≤ −µr2 + xh1(x, y) + yh2(x, y)

since (µ− λ)x2 ≤ 0. Above is equivalent to

q(x, y)

r2
≤ −µ+

xh1(x, y) + yh2(x, y)

r2
.

As the right hand side goes to −µ when r → 0, we have that q(x, y) is negative
for sufficiently small r. Thus the flow on Sr of the nonlinear system and the linear
one point inside this circle �.
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Lecture 15: Monday 11th of November

8. Invariant Sets, Subspaces and Manifolds

Consider

(8.1) Ẋ = F (X), X ∈ Rn

Definition 12. (Invariant set) Let S ⊂ Rn be a set. Then S is said to be invariant
(under the vectorfield (8.1)) if for any X0 ∈ S we have φ(t,X0) ∈ S for all t.

Remarks: (i) trajectories starting in the invariant set remain in the invariant set.
(ii) If we restrict ourselves to t ≥ 0 (t < 0), then S is called positively (negatively)
invariant.

Suppose X = X̂ is an equilibrium of (8.1). Lets introduce the following two
invariant sets:

W s(X̂) = {X|φt(X)→ X̂, t→ +∞}

W u(X̂) = {X|φt(X)→ X̂, t→ −∞}
where φt is the flow associated to (8.1).

Definition 13. W s(X̂) is called the stable set of X̂, while W u(X̂) is called the

unstable set of X̂.

Definition 14. (Invariant Manifold) An invariant set S ⊂ Rn is said to be Cr

(r ≥ 1) invariant manifold if S has the structure of a Cr differentiable manifold.

Remarks What is differentiable manifold? We will only need a rough idea what
it is: a set which locally has the structure of Euclidean space. For example a
sphere Sn = {X ∈ Rn+1|

∑n
i=1X

2
i = 1} is a differentiable manifold. Think of the

following

• Linear setting: a linear vector subspace of Rn

• Nonlinear setting: a surface embedded in Rn which can be locally repre-
sented as a graph.

Consider Ẋ = AX, X ∈ Rn and where A is a n×n matrix. Rn can be represented
as the direct sum of three subspaces

Es = span{V1, . . . , Vs}
Eu = span{Vs+1, . . . , Vs+u}
Ec = span{Vs+u+1, . . . , Vs+u+c}, s+ u+ c = n,
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where {V1, . . . , Vs} are the (generalized) eigenvectors of A corresponding to the
eigenvalues with negative real part, {Vs+1, . . . , Vs+u} are the (generalized) eigen-
vectors of A corresponding to the eigenvalues with positive real part, and where
{Vs+u+1, . . . , Vs+u+c} are the (generalized) eigenvectors of A corresponding to the
eigenvalues with zero real part. Es, Eu, Ec are referred to as the stable, unstable
and center subspaces, resp. They are examples of invariant manifolds.

8.1. Stable, unstable and center manifolds for equilibria of Ẋ = F (X).
Recall, that our motivation to study

(8.2) U̇ = AU, U ∈ Rn

where A = DF (X̂), was to obtain information about the phase portrait (”nature

of solutions”) near X̂ of the nonlinear system

(8.3) Ẋ = F (X), X ∈ Rn.

Lets transform (8.3) to a ”simpler” (standard) form. First, lets take the equilib-

rium X = X̂ to the origin by U = X − X̂. Then (8.3) becomes

(8.4) U̇ = F (U + X̂), U ∈ Rn.

Then taking the Taylor expansion of F (U + X̂) about X̂ we get

(8.5) U̇ = F (X̂)U +R(U),

where R(U) = O(|U |2) (i.e. quadratic and higher order terms). We can find a
linear map T which transforms the linear part of (8.9) into the block diagonal
(”canonical” , as was done previously) form u̇

v̇
ẇ

 =

 As 0 0
0 Au 0
0 0 Ac

 u
v
w


where T−1U = Y = (u, v, w) ∈ Rs × Ru × Rc, s + u + c = n, and As is an s × s
matrix having eigenvalues with negative real part, Au is an u × u matrix having
eigenvalues with positive real part, and Ac is an c × c matrix having eigenvalues
with zero real part. Notice that those 0’s are blocks of zeros, not scalars.

Using the same map T , we transform the whole system (8.9) into

(8.6)

u̇ = Asu+Rs(u, v, w)

v̇ = Auv +Ru(u, v, w)

ẇ = Acw +Rc(u, v, w)

where Rs, Ru and Rc are the first s, u, c components of T−1R(U). Now, remem-
ber from the previous section that the linear system (8.11) has invariant sub-
spaces/manifolds Es, Eu, Ec all intersecting at the origin. Our questions is, how
does this structure change when the nonlinear terms are considered?
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Theorem 14. (Local stable, unstable and center manifolds of equilibria) Suppose
(8.6) is Cr, r ≥ 2. Then the equilbrium (u, v, w) = (0, 0, 0) of (8.6) possesses a Cr

s-dimensional local invariant stable manifold W s
loc(0, 0, 0), a Cr u-dimensional lo-

cal invariant unstable manifold W u
loc(0, 0, 0) and a Cr c-dimensional local invariant

center manifold W c
loc(0, 0, 0), all intersecting at (u, v, w) = (0, 0, 0). These mani-

folds are all tangent to the respective invariant subspaces (Es, Eu, Ec) of (8.11) at
(0, 0, 0) and hence locally representable as graphs. We have

W s
loc(0, 0, 0) ={(u, v, w) ∈ Rs × Ru × Rc|v = hsv(u), w = hsw(u);

Dhsv(0) = 0, Dhsw(0) = 0; |u| sufficiently small}
W u

loc(0, 0, 0) ={(u, v, w) ∈ Rs × Ru × Rc|u = hsu(v), w = hsw(v);

Dhsu(0) = 0, Dhsw(0) = 0; |v| sufficiently small}
W c

loc(0, 0, 0) ={(u, v, w) ∈ Rs × Ru × Rc|u = hsu(w), v = hsv(w);

Dhsu(0) = 0, Dhsv(0) = 0; |w| sufficiently small}
where h’s are Cr functions. Furthermore, trajectories in W s

loc(0, 0, 0) and W u
loc(0, 0, 0)

have the same asymptotic properties as trajectories in Es and Eu, resp. That is,
trajectories of (8.6) with initial conditions in W s

loc(0, 0, 0) (W u
loc(0, 0, 0) ) approach

the origin at an exponential rate asymptotically as t→ +∞ (t→ −∞).

Proof: Fenichel (1977), Wiggins (1994).

Remarks (i) In general, the behavior of trajectories in W c
loc(0, 0, 0) cannot be de-

scribed based on the behavior of trajectories in Ec (ii) They are called manifolds of
a particular equilibrium. Otherwise it wouldn’t make sense to give them asymp-
totic properties, as an invariant manifold can be (for example) connected to two
equilibria, one stable and one unstable. It is then a stable manifold of the stable
equilibrium and an unstable manifold of the unstable equilibrium. (iii) Dh(0) = 0
means they are tangent to the corresponding linear subspace/invariant manifold
E. (iv) If Ec = ∅, then the trajectories of the nonlinear system close to (0, 0, 0)
behave the same as in the linearized system (cause the equilibrium is then hyper-
bolic!) (v) We find W s(0, 0, 0) and W u(0, 0, 0) by following solutions that lie on
W s

loc(0, 0, 0) and W u
loc(0, 0, 0), resp., forward and backward in time.
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Lecture 16: Wednesday 13th of November

Lets look at an example. For clarification purposes, we will follow all the steps
of transforming this system to a ”simple” (standard) form, as instructed in the
previous lecture, even if this is not always necessary.

Example Consider Ẋ = F (X) which is of the form

(8.7)
ẋ = x+ y2

ẏ = −y,

where X = (x, y). First we shift the equilibrium to the origin by U = X − X̂

(notice that this is not necessary as the equilibrium X̂ is already at the origin!).
Then (8.7) becomes

U̇ = F (U + X̂) = F (U)

or

(8.8)
ẋ = x+ y2

ẏ = −y

where U = (x, y). Taking the Taylor expansion of F (U + X̂) = F (U) about

X̂(= Û) we get

(8.9) U̇ = DF (X̂)U +R(U)

where

DF (X̂) =

(
1 0
0 −1

)
, R(U) =

(
y2

0

)
The linear system U̇ = DF (X̂)U has eigenvalues λ1 = −1, λ2 = 1 with associated
eigenvectors V1 = (0, 1), V2 = (1, 0). The map T is thus

T =

(
0 1
1 0

)
which transforms the linear system U̇ = DF (X̂)U into Ẏ = BY , where

B = T−1DF (X̂)T =

(
−1 0

0 1

)
=

(
As 0
0 Au

)
and where T−1U = Y = (u, v) ∈ R×R, and As = −1 (1×1 matrix with eigenvalues
with negative real part) and Au = 1 (1× 1 matrix with eigenvalues with positive
real part).
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Next, we apply T to the whole nonlinear system (8.9). As T−1R(U) = T−1R(TY ) =

T−1R(v, u) = T−1
(
u2

0

)
=
(
0
u2

)
, we get the final ”simpler” (standard) form

(8.10)
u̇ = −u
v̇ = v + u2

and its linearization

(8.11)
u̇ = −u
v̇ = v.

As the linearized system has eigenvalues λ1 = −1, λ2 = 1 and eigenvectors V1 =
(1, 0), V2 = (0, 1), the subspaces are

Es = span{V1} = {(u, v)|v = 0}
Eu = span{V2} = {(u, v)|u = 0}
Ec = ∅

The nonlinear system (8.10) has a solution (see Example 1 Lecture 14)

(8.12)
u(t) = u0e

−t

v(t) = (v0 +
1

3
u20)e

t − 1

3
u20e
−2t.

All solutions with initial values (u0, v0) that satisfy (v0 + 1
3
u20) approach origin as

t → +∞. This curve thus defines the (local) stable invariant manifold: we can
represent W s

loc(0, 0) by a graph v = hsv(u) = −1
3
u2. Notice that it is indeed tangent

to Es, since Dhsv(0) = 0, and, it passes the origin hsv(0) = 0. We thus have

W s
loc(0, 0) = {(u, v) ∈ Rs × Ru × Rc|v = hsv(u) = −1

3
u2; |u| sufficiently small}.

So, indeed: As the Theorem says, W s
loc(0, 0) (i) exists (ii) is tangent to Es (iii)

shares the same asymptotic properties with Es.
As solutions with initial conditions that satisfy u0 = 0 move along the v-axis away
from the origin, we have

W u
loc(0, 0) = {(u, v) ∈ Rs × Ru × Rc|u = huu(v) = 0; |v| sufficiently small}.

In fact, both W s
loc(0, 0) and W u

loc(0, 0) can be defined globally, thus they define also
the global stable and unstable manifolds (sets) W s(0, 0) and W u(0, 0). �

In the above example, we were able to find explicit solutions for both invariant
manifolds. In general this is not possible, however, they may be approximated by
Taylor expansion.
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8.1.1. Computing invariant manifolds using Taylor expansions. Once we know
there exists a Cr invariant manifold, we can try to approximate it with its Taylor
expansion.

Take the previous example

(8.13)
u̇ = −u
v̇ = v + u2

(In this example we actually were able to get the explicit forms of invariant man-
ifolds, but lets try to approximate them with this method!) By linearizing and
finding the eigenvalues (one negative, one positive) we know there exists a lo-
cal stable and unstable invariant manifold (by applying the previous Theorem!).
Suppose the graph v = h(u) is the stable invariant manifold. Then

v̇ = Dh(u)u̇

or

(8.14) Dh(u)u̇− v̇ = 0.

Since v = h(0) = 0 (the invariant manifold passes through the equilibrium) and
Dh(0) = 0 (the invariant manifold is tangent to Es, i.e. to the u-axis) then
v = h(u) can be written as

(8.15) v = h(u) = au2 + bu3 + cu4 + . . .

Substituting (8.15) and (8.13) into (8.14) we get

−Dh(u)u− (v + u2) = −Dh(u)u− h(u)− u2 = 0

⇐⇒
−u(2au+ 3bu2 + 4cu3 + . . . )− au2 − bu3 − cu4 + · · · − u2 = 0

⇐⇒
(3a+ 1)u2 + 4bu3 + 5cu4 + . . . = 0

We thus have that a = −1
3

and b = c = 0 and hence v = h(u) = −1
3
u2. Our Taylor

approximation thus coincides with the result obtained previously.

8.1.2. Restricting vectorfields to invariant manifolds. This extremely useful ”tech-
nique” will reveal its true power when considering bifurcations and center mani-
folds. Now, the aim is just to demonstrate how do we find the asymptotic proper-
ties of solutions that start on invariant manifolds. Of course, the previous Theorem
gives us this information in the case of stable and unstable manifolds, but as you
may have guessed, this technique may be used also for center manifolds, and conse-
quently can be used to determine the stability of equilibria that are nonhyperbolic!
We will come back to this in later sections.
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Just to see how this works, lets again look at the example

u̇ = −u
v̇ = v + u2.

Substituting v = hsv(u) = −1
3
u2 we get

u̇ = −u

v̇ = −1

3
u2 + u2 =

2

3
u2.

In fact, it is enough to see what happens to u-coordinates as the v-coordinates we
get from v = hsv(u). From u̇ = −u we see that solutions that start for positive
values of u have u̇ < 0 and thus decrease all the way to 0, and solutions that start
with negative initial values will increase to 0. Thus the solutions on this invariant
manifold approach 0 and hence is stable (which we of course already knew).
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Lecture 17: Monday 18th of November

9. Structural stability

The aim of this section is to give only a rough idea what we mean by structural
stability.

Previously, we looked at the stability of trajectories, mainly equilibria. Why are
stable equilibria important? We claim that in some sense only stable equilibria
have a physical (or biological or what not) meaning. Of course it is important to
know about unstable equilibria as well, as they may give some general information
about the phase portrait of the full system. But lets stick to our claim and give a
motivating example.
Consider the SIR model given in the beginning of this course. When there are
absolutely no infected individuals, then all the individuals are susceptible, that is,
the population is at the equilibrium (S, I) = (1−p, 0) (see Lecture 2). If the initial
value is that all individuals are susceptible and there are no infected ones, then
the population is at that equilibrium and will remain there forever. Unless, for
some reason (which is not depicted in the model), one person gets infected. What
happens then? Will more people get sick, or no?
We may answer this question by studying what happens to solutions that start
close to the equilibrium (S, I) = (1 − p, 0) since almost all individuals are still
susceptible. That is, we try to figure out the stability of this equilibrium! If
we find that it is stable, solutions with initial values close to the equilibrium
will stay close by; if the equilibrium is unstable, solutions move away from the
equilibrium. That is, even if we perturb initial values of nearby solutions away
from initial values at a stable equilibrium, the population will nevertheless stay
nearby. But, population will leave the neighborhood of an unstable equilibrium
and will never come back! (okay, in some special cases it may come back, but
lets ignore that possibility) In this sense, an unstable equilibrium doesn’t have a
practical interpretation as, in our example, the state of the population, will not
stay very long in this neighborhood.

We conclude, that when perturbing initial conditions in the neighborhood of an
equilibrium the key concept is the stability of trajectories.

Looking at a bigger picture, any model, whether it is about movement of parti-
cles or dynamics of monetary value, is just an approximation of reality. If we are
lucky, then the true dynamics of a particle etc. can be captured when we add some
terms here and there to the model, in other words, when we perturb the whole
model (and not just the initial values). Now, the question is whether this per-
turbed model has similar dynamics than the original one. It would be nice to have
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some tools to answer this very important question: is the model whatever you are
considering robust under perturbations? This is where the concept of structural
stability comes into play.

If the above text wasn’t very clear (or just too long to read) lets hope the next
example will clarify the issue a bit.
Example Consider a simple (no damping, friction) harmonic oscillator

ẋ = y

ẏ = −ω2
0x

where ω0 > 0. We investigated this model in detail in the exercises. The eigen-
values are λ1,2 = ±iω0, and hence we have a center. The solutions move around
the origin in closed orbits. The origin is stable, as nearby solutions stay nearby
(or as formulated above, if we perturb the initial state of the oscillator away from
the equilibrium state but stay in its neighborhood, the solutions will stay in the
neighborhood). But what if we perturb the whole model? What if we try to make
it ”more realistic”? We may try to add a term that considers friction, i.e.

ẋ = y

ẏ = −ω2
0x− εy

where ε = 2ζω0. (we may think that ε controls how much we perturb the original

simple system). The eigenvalues of this system are λ1,2 = 1
2
(−ε±

√
ε2 − 4ω2

0), and
hence for ε > 0 eigenvalues have negative real part, and for ε < 0 eigenvalues have
a positive real part. That is, for ε > 0 we have a spiral sink and all solutions spiral
towards the equilibrium, and for ε < 0 solutions spiral away from the equilibrium.
We have, that perturbing the simple original model even a little bit (by perturbing
ε away from zero) the phase portraits are qualitatively different. Hence, perturbing
the simple model will change the nature of solutions. We say that the model of
simple harmonic oscillator is not structurally stable.

Figure 22. Phase portraits. In the middle: simple harmonic os-
cillator (ε = 0); Left: simple harmonic oscillator is perturbed to
a damped harmonic oscillator with ε < 0; Right: simple harmonic
oscillator is perturbed to a damped harmonic oscillator with ε < 0.
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This motivates us to give the following informal definition: ”A dynamical system
is said to be structurally stable if nearby systems have qualitatively the same dy-
namics”. The concept of structural stability was introduced by Andronov and
Pontryagin in 1937.

Notice, that in the simple model the equilibrium was nonhyperbolic. When the
model was perturbed, the nonhyperbolic equilibrium became hyperbolic and the
dynamics around it changed. But what if a model has a hyperbolic equilibrium
at the onset. Will any perturbation change the nature of solutions around this
equilibrium? The next section will answer this question.

9.1. Persistence of hyperbolic equilibria. Suppose that X̂ is a hyperbolic
equilibrium of

(9.1) Ẋ = F (X), X = Rn,

where F is sufficiently smooth. Lets perturb the whole system (9.1) so that

(9.2) Ẋ = F (X) + εG(X), X = Rn,

where G is also smooth and ε is small. Notice that setting ε = 0 brings system
(9.2) to (9.1) .

We claim (A) that the system (9.2) has an equilibrium X(ε) for all sufficiently

small ε, s.t. X(0) = X̂ (B) the equilibrium X(ε) stays hyperbolic for sufficiently
small ε. Why is this interesting? Well, at least one consequence is, that using
the Linearization theorem we may determine the stability of the equilibrium of
an unperturbed system, as well as the equilibrium of the system after (a small)
perturbation! In fact, this leads to a more important consequence, but lets first
prove our claim.

Proof : An equilibrium of (9.2) satisfies

H(X, ε) = F (X) + εG(X) = 0

withH(X̂, 0) = 0 (because X̂ is an equilibrium of (9.1)!). Also, we haveDXH(X̂, 0) =

DF (X̂), where DF (X̂) is the Jacobian of (9.1) at X̂. (The notation DX just
clarifies the fact that the derivatives are taken with respect to X, and not ε).

Because X̂ is hyperbolic, then detDF (X̂) 6= 0 (Exercise). As detDF (X̂) =

detDxH(X̂, 0) 6= 0, the implicit function theorem (see Appendix for a heuris-
tic explanation) guarantees the existence of a smooth unique function X(ε) with

X(0) = X̂ satisfying

H(X(ε), ε) = 0

for ε in some neighborhood of 0. Ok, this guarantees the existence of the equilib-
rium for small ε. What about hyperbolicity?
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Because F,G and X(ε) are smooth, the Jacobian of (9.2) evaluated at X(ε)

Aε = (DF (X) + εDG(X))X=X(ε)

depends smoothly on ε, and Aε = DF (X̂) at ε = 0. Therefore, the eigenvalues

belonging to (9.2) change smoothly! Now, as DF (X̂) has no eigenvalues at the
imaginary axis (its hyperbolic!), thenAε has neither, at least for sufficiently small ε.
We have, that X(ε) is hyperbolic for small ε. Furthermore, as the eigenvalues don’t
cross the imaginary axis, the number of eigenvalues with positive and negative real
parts stays the same. Hence, systems (9.1) and (9.2) are topologically equivalent
(i.e. phase portraits look similar) near the equilibrium X(ε). �.

We have, that hyperbolic equilibria are structurally stable under smooth perturba-
tions. This is indeed an important consequence: even if the model is perturbed,
the phase portraits near hyperbolic equilibria remain qualitatively similar.

9.2. Bifurcations and bifurcation diagrams. Consider a vector field that de-
pends on parameters. We will write

(9.3) Ẋ = F (X,µ), X ∈ Rn, µ ∈ Rp.

As the parameter values change, the phase portraits will change. There are two
options: (i) after varying parameters the system remains topologically equivalent
to the original one (ii) the topology of the system changes. This motivates to give
the following definition

Definition 15. The appearance of topologically nonequivalent phase portrait un-
der variation of parameters is called a bifurcation.

A bifurcation is a change in the topological type of the system as the parameters
pass a so-called bifurcation (critical) value.
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Lecture 18: Wednesday 20th of November

In this course we will be mainly interested in bifurcations of equilibria. That
is, we will be interested how the phase portrait of a system, in a neighborhood
of an equilibrium, changes when parameters pass a bifurcation value. From the
previous section we know that for a bifurcation to occur, the equilibrium must be
nonhyperbolic. The question is, is this a sufficient condition? Lets look at some
examples.

All examples will be considering systems of type

ẋ = f(x, µ), x ∈ R1, µ ∈ R1.

with a nonhyperbolic equilibrium at (x, µ) = (0, 0).

Example 1 Consider

(9.4) ẋ = f(x, µ) = µ− x2, x ∈ R1, µ ∈ R1.

We verify that

f(0, 0) = 0 equilibrium at (x, µ) = (0, 0)

and
∂f

∂x
(0, 0) = 0 equilibrium is nonhyperbolic at (x, µ) = (0, 0)

All equilibria of the system are given by µ − x2 = 0 or x = ±√µ. For negative
µ there are no equilibria for µ = 0 there is one and for µ > 0 there are two. The
stability we get, for example, by drawing ẋ = f(x, µ) for different values of µ (see
Figure 23) and look for values of x for which ẋ is positive, i.e. where x increases,
and for which ẋ is negative, i.e. where x decreases.

x
.

x

μ < 0

x
.

x

μ = 0

x
.

x

μ > 0

Figure 23. Example 1.

We may also represent the above with a so-called bifurcation diagram (see Figure
24).
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x

μ

Figure 24. Bifurcation plot for Example 1.

Bifurcation diagram/plot shows the curve of equilibria in a (µ, x)-plot, and indi-
cates the stability. We see for fixed µ what is the dynamics of x: For µ < 0 x
decreases everywhere, for µ = 0 x decreases for positive initial values as well as
negative initial values while zero is an equilibrium, and for µ > 0 there are two
equilibria given by the curve µ = x2 where the positive equilibrium is always stable
and the negative unstable.

As the phase portraits are qualitatively different when passing µ = 0, this system
undergoes a bifurcation at (x, µ) = (0, 0). This type of bifurcation is called a
saddle-node, fold, limit point, turning point or tangent bifurcation.

Example 2 Consider

(9.5) ẋ = f(x, µ) = µx− x2, x ∈ R1, µ ∈ R1.

We verify that

f(0, 0) = 0 equilibrium at (x, µ) = (0, 0)

and
∂f

∂x
(0, 0) = 0 equilibrium is nonhyperbolic at (x, µ) = (0, 0).

Moreover, from x(µ−x) = 0 we see that there are two equilibria, x = 0 and µ = x,
for each µ. The stability of the equilibria we get by drawing a plot of ẋ = f(x, µ),
see Figure 25.

We also draw a bifurcation diagram (see Figure 26).

Again, we see that the phase portraits qualitatively change when passing µ = 0.
This bifurcation is called the transcritical bifurcation.
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x
.

x

μ < 0

x
.

x

μ = 0

x
.

x

μ > 0

Figure 25. Example 2.

x

μ

Figure 26. Bifurcation plot for Example 2.

Example 3 Consider

(9.6) ẋ = f(x, µ) = µx− x3, x ∈ R1, µ ∈ R1.

We verify that

f(0, 0) = 0 equilibrium at (x, µ) = (0, 0)

and
∂f

∂x
(0, 0) = 0 equilibrium is nonhyperbolic at (x, µ) = (0, 0).

The equilibria are obtained from x(µ − x2) = 0, that is, they are given by x = 0
and x = ±√µ. To see their stability we draw figure 27.

The bifurcation diagram is plotted in Figure 28.

This bifurcation is called the pitchfork bifurcation.

Example 4 Consider

(9.7) ẋ = f(x, µ) = µ− x3, x ∈ R1, µ ∈ R1.
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x
.

x

μ < 0

x
.

x

μ = 0

x
.

x

μ > 0

Figure 27. Example 3.

x

μ

Figure 28. Bifurcation plot for Example 3.

We verify that

f(0, 0) = 0 equilibrium at (x, µ) = (0, 0)

and
∂f

∂x
(0, 0) = 0 equilibrium is nonhyperbolic at (x, µ) = (0, 0).

The equilibria are given by µ − x3 = 0 or x = 3
√
µ. We have thus only one

equilibrium for any µ. Plotting the vector field (see Figure 29) and a ”bifurcation
diagram” (see Figure 30) we notice that for this system the phase portraits are
similar for every µ.

The bifurcation diagram is plotted in Figure 30. There is always only one equilib-
rium and all trajectories approach it. Here, despite of a nonhyperbolic equilibrium
at (x, µ) = (0, 0), the system doesn’t undergo a bifurcation at µ = 0.

We conclude that having a nonhyperbolic equilibrium gives us a necessary but not
a sufficient condition for a bifurcation to occur.
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x
.

x

μ < 0

x
.

x

μ = 0

x
.

x

μ > 0

Figure 29. Example 3.

x

μ

Figure 30. Bifurcation plot for Example 3.

Examples 1 to 3 depict three different types of bifurcations. At first look it would
seem that these are very special types of bifurcations, after all, we were looking
at a one-dimensional vector field with some lower order polynomials. However, we
will shortly see that these bifurcations are in some sense the simplest bifurcations
of any dimensional systems, and of any degree of nonlinearity (or any degree of
polynomials). But first, we need to have a bit closer look at invariant manifolds
of an important kind: the center manifolds.

10. Center Manifolds

Lot of the theory is developed in Pliss 1964. Proofs for the theorems we present
can be found in Carr 1981.

First, consider
Ẋ = AX, X ∈ Rn

where A is a n × n matrix. Recall, that it has invariant subspaces (eigenspaces)
Es, Eu, Ec, corresponding to the span of generalized eigenvectors, which in turn are
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associated to eigenvalues having negative, positive and zero real parts, respectively.
Solutions starting in Es approach zero as t→∞, solutions in Eu approach infinity
as t → ∞ and solutions in Ec neither decrease nor increase (exponentially) as
t → ∞. Now, if Eu = ∅, then any solution will approach Ec. Hence, if we are
interested in long-time behavior, e.g. stability, we need only to study the system
restricted to Ec.

It would be nice, if nonlinear systems would have a similar ”reduction” princi-
ple!

Consider

(10.1)
Ẋ = AX + F (X, Y )

Ẏ = BY +G(X, Y ), (X, Y ) ∈ Rc × Rs

where F (0, 0) = 0 = G(0, 0) and DF (0, 0) = 0 = DG(0, 0). Previously, we showed
how to transform any system to the above standard form. Here A is a c × c
matrix having eigenvalues with zero real parts and B is an s × s matrix having
eigenvalues with negative real parts. The equilibrium under investigation is at the
origin. Functions F and G are Cr, r > 1.

Recall, that an invariant manifold is called a center manifold for (10.1) if it can be
represented as

W c
loc = {(X, Y ) ∈ Rc × Rs|Y = h(X), |X| < δ, h(0) = 0, Dh(0) = 0}

for sufficiently small δ. The following theorems are very useful:

Theorem 15. (Existence) There exists a Cr center manifold for (10.1). The
dynamics of (10.1) restricted to the center manifold is given by the c-dimensional
vector field

(10.2) Ẋ = AX + F (X, h(X)), X ∈ Rc

for sufficiently small x.

Remarks It should be emphasized that the restriction of the vector field to the
center manifold is a vector field on a nonlinear surface. Therefore, often the dy-
namics restricted to this manifold is written in different coordinate system, just to
make this point clear. But no worries, there is no damage to use (X, Y ) coordinate
system as long as this is clear.

Theorem 16. (Stability) (i) Suppose the zero equilibrium of (10.2) is stable/asymptotically
stable/unstable; then the zero equilibrium of (10.1) is also stable/asymptotically
stable/unstable.
(ii) Suppose the zero equilibrium of (10.2) is stable. Then, if (X1(t), Y1(t)) is a so-
lution of (10.1) with initial values close to the zero equilibrium, there is a solution
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X2(t) of (10.2) s.t. as t→∞ then

(10.3)
X1(t) = X2(t) + O(e−γt)

Y1(t) = h(X2(t)) + O(e−γt)

where γ > 0.

Remarks (i) In other words, for initial values of (10.1) sufficiently close to the
origin, the solution through them asymptotically approach a trajectory on the
center manifold. This is what we wanted as now the direction of the flow near
the origin is completely determined by the flow on the center manifold. (ii) An
important point for bifurcation theory: Equilibria (as well as small periodic orbits
etc) sufficiently close to the origin are contained in the center manifold. Hence, for
example, a bifurcation where an equilibrium collides with an equilibrium at the
origin is captured by the vector field restricted on the center manifold.
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Lecture 19: Monday 25th of November

10.1. Dynamics on the center manifold. If we manage to obtain/find the cen-
ter manifold Y = h(X), we can use above Theorems, and determine the stability
of nonhyperbolic equilibria. But, first we need to be able to compute the center
manifold.

Suppose we know that W c(0, 0) exists. Then
1. The (X, Y ) coordinates of any point on W c(0, 0) satisfy

Y = h(X).

2. Differentiating above with respect to time, we get

(10.4) Ẏ = Dh(X)Ẋ.

3. Any point on W c(0, 0) obeys the dynamics generated by (10.1). Therefore,
substituting

(10.5)
Ẋ = AX + F (X, h(X))

Ẏ = Bh(X) +G(X, h(X))

into (10.4) we obtain

(10.6) M(h(X)) = Dh(X) [AX + F (X, h(X))]−Bh(X)−G(X, h(X)) = 0.

Alrighty, to find h(X) only thing we need to do is to solve (10.6). Unfortunately,
this might be a superdifficult task! But, no worries, we may approximate the
solution h(X) of (10.6) by Taylor expansion;

Theorem 17. (Approximation) Let γ : Rc → Rs be a sufficiently smooth function

with γ(0) = Dγ(0) = 0, s.t. M(γ(X)) = O(|X|q) as X → 0 (”X → X̂”) for some
q ≥ 2. Then

|h(X)− γ(X)| = O(|X|q) as X → 0.

Remark If γ solves (10.6) up to q:th order terms, then it agrees with the true
center manifold h up to the same degree q. That is, if we insert γ into M and take
the taylor expansion so that it results having the first q − 1 terms be zero, then
the difference between γ and the true solution of M , the center manifold h, also
has the first q − 1 terms zero.

Example Consider
ẋ = x2y − x5

ẏ = −y + x2.

Is the origin at the equilibrium stable?
The system is in its standard form (10.1) with A = 0, B = −1, F (x, y) = x2y −
x5, G(x, y) = x2. The linearization has eigenvalues 0 and 1 with eigenvectors
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(1, 0) and (0, 1). Since the equilibrium is nonhyperbolic the stability can’t be
determined by using the Linearization theorem. We need to use the center manifold
theory.

The existence theorem says there exists a center manifold which can be represented
as

W c
loc = {(x, y) ∈ R× R|y = h(x), |x| < δ, h(0) = 0, Dh(0) = 0}

for small δ. Lets approximate h with its Taylor expansion about x = 0:

γ(x) = 0 + 0 + ax2 + bx3 + O(x4)

Substituting this into (10.6) we get

M(γ(x)) = (2ax+ bx3 + . . . )[x2(ax2 + bx3 + . . . )−x5] + (ax2 + bx3 + . . . )−x2 = 0

or
M(γ(x)) = (a− 1)x2 + bx3 + O(x4) = 0.

We thus have that a = 1 and b = 0 so that

γ(x) = x2 + O(x4)

which approximates the true center manifold up to 4th order terms. Using the
existence theorem, the vector field restricted to the center manifold is

ẋ = F (x, γ(x)) = x2(x2 + O(x4))− x5 = x4 + O(x5).

As this is a parabola opening upward (see left panel of Figure 31), ẋ is positive for
all x except at the origin. That is, x increases for all x except at 0 and hence the
equilibrium is unstable. Now, the stability Theorem says that if the equilibrium
of a vector field restricted to the center manifold is unstable, then the equilibrium
of the original system is also unstable. The origin of this system is thus unstable.
The phase portrait looks locally as in Figure 31.

x

x
.

x

y

Es

Ws(0,0)

Wc(0,0)

Ec

Figure 31. Example. Left: vector field restricted to the center
manifold. Right: phase plane for the original system, indicating
the invariant manifolds of the system and the eigenspaces of the
linearzation.



87

Remarks: (i) We may include in (10.1) also linearly ustable directions, i.e. ż =
Cz + H(X, Y, Z) where C has eigenvalues with positive real part. All of the the-
ory applies (okay, obviously not the stability part)! But, if we are interested in
stability, we don’t need to study center manifolds, as these unstable directions im-
mediately imply instability of the equilibrium! Nevertheless, in bifurcation theory
it is important to know what changes happen on the center manifold, as this will
give us information on the type of bifurcation we are dealing with.
(ii) Center manifold may not be unique (stable and unstable manifolds are!). This
is not a problem, however, as all the center manifolds belonging to some equilib-
rium differ at most in transcendentally small terms. Thus the Taylor expansion of
any two center manifolds agree to all degrees! Hence center manifold is unique to
all orders of the Taylor expansion.
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Lecture 20: Wednesday 27th of November

10.2. Center manifolds depending on parameters. This section is important
in bifurcation theory, as it gives a method on how to study changes in dynamics
on a center manifold when parameters are varied.

Suppose (10.1) depends on a vector of parameters µ ∈ Rp. Considering parameters
as variables, we may rewrite the system as

(10.7)

Ẋ = AX + F (X, Y, µ)

µ̇ = 0

Ẏ = BY +G(X, Y, µ), (X,µ, Y ) ∈ Rc × Rp × Rs

where F (0, 0, 0) = 0 = G(0, 0, 0) and DF (0, 0, 0) = 0 = DG(0, 0, 0). Note that this
system is already in its standard form. Now, system (10.7) has c + p eigenvalues
with zero real part and s eigenvalues with negative real parts. Therefore, the
center manifold will be represented as a graph over X and µ, i.e.

Y = h(X,µ)

for small X,µ. The existence Theorem then states that the vector field on center
manifold is given as

Ẋ = AX + F (X, h(X,µ), µ)

µ̇ = 0.

Essentially, we are just adding p new center directions that have no dynamics.
The advantage of this formulation is, that now the center manifold exists in the
neighborhood of X = 0 and µ = 0. For example, we may study the dynamics of
the system when in the neighborhood of a bifurcation value µ = 0.

Lets compute the center manifold. Locally, we have

W c
loc(0, 0, 0) = {(X,µ, Y ) ∈ Rc×Rp×Rs|Y = h(X,µ), |X| < δ, |µ| < δ̃, h(0, 0) = 0, Dh(0, 0) = 0}

for sufficiently small δ, δ̃. Taking the time derivative of Y = h(X,µ) we get

Ẏ = Dxh(X,µ)Ẋ +Dµh(X,µ)µ̇.

After substitutions we get

M(h(X,µ)) = Dxh(X,µ)[AX+F (X, h(X,µ), µ)]−Bh(X,µ)−G(X, h(X,µ), µ) = 0.

We may approximate the center manifold with its Taylor expansion and the pre-
vious Theorems can be applied.

Remarks (i) As before, we could’ve (should’ve) included the unstable directions.
The calculations are exactly the same. We can fix this minor incompleteness by
saying that the matrix B contains eigenvalues with negative and positive real
parts.
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(ii) Note that in the above formulation all the terms with µX, µY are now nonlin-
ear, as are XY,XY 2, . . . .

Lets see how this works.
Example Consider

ẋ = y

ẏ = −µx+ y + x2.

We notice, that this system has an equilibrium at the origin, and that the equi-
librium is nonhyperbolic at µ = 0. We wish to examine the system when µ is
perturbed away from zero, which potentially is a bifurcation point (recall that
nonhyperbolicity is a necessary, but not sufficient, condition for a bifurcation to
happen). We thus want to find a center manifold which is also a function of µ.
Lets rewrite the above system as

ẋ = y

ẏ = −µx+ y + x2.

µ̇ = 0.

Note that when studying this system we may in fact ignore the last row as no
dynamics happens in the µ direction. We can add this ”direction” after the much
quicker analysis of the two dimensional system is done (this is indeed just to make
it quicker, you can analyze the full system as well!!). The Jacobian of the bigger
system is  0 1 0

0 1 0
0 0 0


and of the smaller system (

0 1
0 1

)
which has eigenvalues 0 and 1 with corresponding eigenvectors (1, 0) and (1, 1). As
Ec is the (x, µ)-plane, the center manifold can be locally represented as y = h(x, µ)
with h(0, 0) = 0 = Dh(0, 0). The approximation is (i will use the same notation
for the approximation as for the true manifold)

y = h(x, µ) = ax2 + bµx+ cµ2 + O(3).

After substitutions into (10.7), we get

(2ax+ bµ)[ax2 + bµx+ cµ2] + µx− (ax2 + bµx+ cµ2)− x2 = 0

or
(a+ 1)x2 + (b− 1)µx+ cµ2 = 0 + O(3).

We get that a = −1, b = 1 and hence the (approximation of the) center manifold
is

y = h(x, µ) = −x2 + µx+ O(3)
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and the vector field restricted to the center manifold is

ẋ = µx− x2

µ̇ = 0.

This is in fact the same system as in the section ”Bifurcations and bifurcation
diagrams”, Example 2. The vector field restricted to the center manifold can
then be represented with the (bifurcation) plot (Figure 32) in the neighborhood
of (x, µ) = (0, 0)!

x

μ

Figure 32. Vectorfield restricted to the center manifold. Notice
that the solutions move only vertically as µ̇ = 0, i.e. µ is constant.

We have then that this system undergoes a transcritical bifurcation when µ passes
zero. How does the phase portrait of the original system looks like? And what
about when adding the µ direction? (independent exercise).

The above example hopefully demonstrates a very important point: if a system
has a single eigenvalue with zero real part, and a scalar parameter, we can always
reduce the system to a one dimensional system (or more precisely to two dimensions
if we count the constant µ direction). This is the key motivation for the next
section.
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11. Bifurcation of equilbria

Consider the (parameterized) vector field

(11.1) Ẏ = G(Y, η), Y ∈ Rn, η ∈ Rp.

Suppose (11.1) has an equilbrium at (Y, η) = (Ŷ , η̂), i.e.

G(Ŷ , η̂) = 0.

The linearization about (Ŷ , η̂) is

Ẏ = DYG(Ŷ , η̂)(Y − Ŷ )

or
U̇ = DYG(Ŷ , η̂)U, where U = Y − Ŷ .

11.1. A single zero eigenvalue. Suppose that DYG(Ŷ , η̂) has a single identically
zero eigenvalue with the remaining eigenvalues having nonzero real parts. Then the
center manifold is 1-dimensional, and the vector field restricted to this manifold
can be written as

ẋ = f(x, µ), x ∈ R1, µ ∈ Rp

where µ = η − η̂. As the equilibrium is nonhyperbolic, we know that

f(0, 0) = 0

∂f

∂x
(0, 0) = 0

must be satisfied.

Our task is to derive general conditions for vector fields under which they undergo
bifurcations presented in the section ”Bifurcations and bifurcation diagrams”.
These conditions should be formulated in terms of f . If the model has more
than one parameter we consider all except one fixed, i.e. µ ∈ R.

11.1.1. The saddle-node bifurcation. Recall that in the saddle-node bifurcation a
unique curve of equilibria (parameterized by x) passes through (x, µ) = (0, 0)
tangentially to the x-axis. We will denote this curve with µ(x) and it must sat-
isfy

• dµ
dx

(0) = 0 ( µ(x) is tangent to x-axis)

• d2µ
dx2

(0) 6= 0 (µ(x) lies only on one side of the x-axis)

In addition, we also require that

(11.2)

f(0, 0) = 0

∂f

∂x
(0, 0) = 0.
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If we have

(11.3)
∂f

∂µ
(0, 0) 6= 0,

then, by the implicit function theorem there exist a unique function

µ = µ(x), µ(0) = 0

such that

(11.4) f(x, µ(x)) = 0

for sufficiently small x. Condition (11.3) thus guarantees that a unique curve of
equilibria passes the origin. Differentiating (11.4) with respect to x we get

(11.5) 0 =
df

dx
(x, µ(x)) =

∂f

∂x
(x, µ(x)) +

∂f

∂µ
(x, µ(x))

dµ

dx
(x).

Evaluating it at the origin we get

(11.6)
dµ

dx
(0) = −

∂f
∂x

(0, 0)
∂f
∂µ

(0, 0)

Since ∂f
∂µ

(0, 0) 6= 0 and ∂f
∂x

(0, 0) = 0, then dµ
dx

(0) = 0 as required. That is, µ(x) is

tangent to the x-axis.

Let us differentiate (11.4) again:

(11.7)

0 =
d2f

dx2
(x, µ(x)) =

∂2f

∂x2
(x, µ(x)) +

∂2f

∂µ∂x
(x, µ(x))

dµ

dx
(x)+

+ [
∂2f

∂x∂µ
(x, µ(x)) +

∂2f

∂µ2
(x, µ(x))

dµ

dx
(x)]

dµ

dx
(x)+

+
∂f

∂µ
(x, µ(x))

d2µ

dx2
(x).

Evaluating at the origin and using the fact that dµ
dx

(0) = 0 we get

∂2f

∂x2
(0, 0) +

∂f

∂µ
(0, 0)

d2µ

dx2
(0) = 0

or

(11.8)
d2µ

dx2
(0) = −

∂2f
∂x2

(0, 0)
∂f
∂µ

(0, 0)
.

Since we want that d2µ
dx2

(0) 6= 0, we require

∂2f

∂x2
(0, 0) 6= 0.
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Finally, we have the necessary conditions under which the two requirements set in
the beginning are satisfied.
For saddle-node bifurcation to happen at (x, µ) = (0, 0) we must have

(11.9)

f(0, 0) = 0

∂f

∂x
(0, 0) = 0.

∂f

∂µ
(0, 0) 6= 0

∂2f

∂x2
(0, 0) 6= 0.

Remarks: The sign of d2µ
dx2

(0) determines on which side of the x-axis the curve
of equilibria lies. We leave it as an exercise to determine the stability of the
branches.

11.1.2. The transcritical bifurcation. Recall from previous sections, that in trans-
critical bifurcation two curves of equilibria intersect each other and at the inter-
section the stability along each curve changes. We require

• two curves of equilibria pass (x, µ) = (0, 0)

• both curves exist on both sides of x-axis

• the stability along each curve changes at µ = 0.

Again, we have a nonhyperbolic equilibrium at the origin, i.e.

(11.10)

f(0, 0) = 0

∂f

∂x
(0, 0) = 0.

Also, necessarily

(11.11)
∂f

∂µ
(0, 0) = 0

as otherwise implicit function theorem would say that there exists a unique curve
of equilibria passing the origin.
Lets set x = 0 to be one curve of equilibria that passes the origin. Then, we may
write

ẋ = f(x, µ) = xF (x, µ)

where

F (x, µ) =

{
f(x,µ)
x

for x 6= 0
∂f
∂x

(0, µ) for x = 0
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The case where x = 0 comes from the definition of the derivative: ∂f
∂x

(0, µ) =

limx→0
f(x,µ)−f(0,µ)

x−0 . We verify, that

(11.12)

F (0, 0) = 0

∂F

∂x
(0, 0) =

∂2f

∂x2
(0, 0)

∂2F

∂x2
(0, 0) =

∂3f

∂x3
(0, 0)

and
∂F

∂µ
(0, 0) =

∂2f

∂x∂µ
(0, 0)

Because x = 0 gives one curve of equilibria, F needs to define the other curve. As
it needs to be unique, we require

(11.13)
∂F

∂µ
(0, 0) 6= 0.

Then, by the implicit function theorem there exists a unique µ(x), s.t. F (x, µ(x)) =
0 for small x. We don’t want it to be the x = 0 curve, and, we want it to exist on
both sides of the x-axis:

(11.14) 0 < |dµ
dx

(0)| <∞.

Implicitly differentiating 0 = F (x, µ(x)), we get

dµ

dx
(0) = −

∂F
∂x

(0, 0)
∂F
∂µ

(0, 0)

or using f we have

(11.15)
dµ

dx
(0) = −

∂2f
∂x2

(0, 0)
∂2f
∂x∂µ

(0, 0)
.

For (11.14) to be satisfied we need ∂2f
∂x∂µ

(0, 0) = ∂F
∂µ

(0, 0) 6= 0, which is true, and
∂2f
∂x2

(0, 0) 6= 0.
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Summarizing, for the transcritical bifurcation to happen at (x, µ) = (0, 0) we
need

f(0, 0) = 0

∂f

∂x
(0, 0) = 0

∂f

∂µ
(0, 0) = 0

∂2f

∂x∂µ
(0, 0) 6= 0

∂2f

∂x2
(0, 0) 6= 0.

Remarks: The sign of dµ
dx

(0) determines whether the nontrivial curve of equilibria
µ(x) is increasing or decreasing. We leave it as an exercise to determine the
stability of the branches.

11.1.3. The pitchfork bifurcation. The derivation of conditions for the pitchfork
bifurcation (see section ”Bifurcations and bifurcation diagrams”) is similar to the
previous two discussions and derivations. We leave it thus as an exercise and
just give the conditions under which pitchfork bifurcation happens. For a vector
field

ẋ = f(x, µ), x ∈ R1, µ ∈ R1

pitchfork bifurcation happens at (x, µ) = (0, 0) when

f(0, 0) = 0

∂f

∂x
(0, 0) = 0

∂f

∂µ
(0, 0) = 0

∂2f

∂x2
(0, 0) = 0

∂2f

∂x∂µ
(0, 0) 6= 0

∂3f

∂x3
(0, 0) 6= 0.
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Lecture 21: Monday 2nd of December

11.2. A single pair of pure imaginary eigenvalues. .
Example Consider Ẋ = F (X,µ), X = (x, y), where

ẋ = µx− y − x(x2 + y2)

ẏ = x+ µy − y(x2 + y2).

There is an equilibrium at the origin X̂ = (0, 0), and the linearization about it
is

Ẋ = DxF (X̂, µ)X

where

DxF (X̂, µ) =

(
µ −1
1 µ

)
We see directly that the eigenvalues are λ1,2 = µ ± i, so the equilibrium is non-
hyperbolic at µ = 0.To find out what happens in the neighborhood of µ = 0 we
transform the system to polar coordinates (x = r cos θ, y = r sin θ):

ṙ = µr − r3

θ̇ = 1.

Note that r = 0 is the only equilibrium as θ̇ 6= 0.
µ < 0: in this case we have ṙ = µr − r3 < 0, for all r > 0, so that the origin is a
sink.
µ > 0: the equilibrium is a source. Also, from r(µ− r2) = 0 we see that ṙ = 0 for

r = 0 (equilibrium), and for µ = r2 or r =
√
µ, i.e. the distance away from the

origin remains constant when r =
√
µ. This is a periodic solution. Furthermore,

if 0 < r <
√
µ, then ṙ > 0, and if

√
µ < r, then ṙ < 0. Hence, all other solutions

spiral towards this periodic solution.

We have that for µ < 0 the origin is a sink and for µ > 0 it is a source with a
periodic orbit around it. As the phase portraits are not similar, bifurcation has
occurred. This type of bifurcation, where eigenvalues pass the imaginary axis and
a periodic solutions is born out of an equilibrium, is called a Poincare-Andronov-
Hopf bifurcation (or just Hopf-bifurcation).

Theorem 18. (Hopf Bifurcation) Any generic system

Ẋ = F (X,µ), X ∈ R2, µ ∈ R

having at µ = 0 an equilibrium X = 0 with eigenvalues

λ1,2(0) = ±iω(0), ω(0) > 0,
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is topologically equivalent near the origin to one of the following systems

(11.16)

(
u̇

v̇

)
=

(
β −1
1 β

)(
u

v

)
± (u2 + v2)

(
u
v

)
.

The conditions under which this system is generic are

• l1(0) 6= 0, where l1 is the first lyapunov coefficient evaluated at µ = 0

• Dα(0) 6= 0

Above, we use λ1,2(µ) = α(µ)± iω(0).

Remarks: (i) First lyapunov coefficient is a certain combination of second and
third order derivatives of the system (ii) The system (11.16) is a so-called normal
form for Hopf-bifurcation (see next section)
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12. Appendix

12.1. Implicit function theorem. Consider F (X, Y ) where

(12.1) F : Rn × Rm → Rn

is a smooth function defined in a neighborhood of (X, Y ) = (X̂, Ŷ ) such that

F (X̂, Ŷ ) = 0. Let DXF (X̂, Ŷ ) denote the matrix of first partial derivatives of F

with respect to X evaluated at (X̂, Ŷ ).

Theorem 19. If detDXF (X̂, Ŷ ) 6= 0, then there is smooth locally defined function
Y = f(X) such that

F (X, f(Y )) = 0,

for all X in some neighborhood of (X̂, Ŷ ).

Simply, this gives us a condition under which the curve of equilibria can be (locally)
given as a function Y = f(X).
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