INTRODUCTION TO BIFURCATION THEORY

Exercises 5-12-2013

37. (8 points) Consider

$$
\begin{aligned}
\dot{x} & =-y+x z \\
\dot{y} & =x+y z \\
\dot{z} & =-z-x^{2}-y^{2}+z^{2}
\end{aligned}
$$

Determine the stability of the equilibrium at the origin. Hint: after restricting the vector field on the center manifold it will be helpful to use polar coordinates and the identity $r \dot{r}=x \dot{x}+y \dot{y}$, where $x=r \cos \theta, y=r \sin \theta$.
38. (a) (3 points) Consider the saddle-node bifurcation. For the case $\left(\frac{\partial^{2} f}{\partial x^{2}}(0,0) / \frac{\partial f}{\partial \mu}(0,0)\right)>$ 0 , under which conditions the upper part of the curve of equilibria is stable and the lower unstable?
(b) (3 points) Consider the transcritical bifurcation. For the case $\left(\frac{\partial^{2} f}{\partial x^{2}}(0,0) / \frac{\partial^{2} f}{\partial x \partial \mu}(0,0)\right)>$ 0 , under which conditions the curve $x=0$ is stable for $\mu>0$ and the other curve of equilibria unstable?
39. (6 points) Consider $\dot{x}=f(x, \mu), \mu, x \in \mathbb{R}$. Give conditions under which the system undergoes a pitchfork bifurcation. Hint: Use procedures used in lecture notes when deriving conditions for the transcritical and saddle-node bfurcations.
40. (6 points) Consider

$$
\begin{aligned}
& \dot{x}=\mu+x^{2}+y^{2} \\
& \dot{y}=-y+x^{2} .
\end{aligned}
$$

What bifurcation this system undergoes?

