Integral equations
 Solutions to the third problem set

1. Assume that $K: H_{1} \longrightarrow H_{2}$ is a compact operator between Hilbert spaces. Given bounded linear maps $A: H \longrightarrow H_{1}$ and $B: H_{2} \longrightarrow H$, where H is again Hilbert, prove that $K A$ and $B K$ are compact. Also, prove that the sum $K_{1}+K_{2}$ of two compact operators $K_{1}, K_{2}: H_{1} \longrightarrow H_{2}$ is compact.

Solution. Let $X \subseteq H$ be a bounded set. Then A, as a bounded operator, maps X into some bounded set $A[X] \subseteq H_{1}$. Since K is compact, the image $K[A[X]]$ is inside some compact set in H_{2}. Thus $(K A)[X]$ is inside a compact set in H_{2}, and $K A$ is therefore compact.

Similarly, given a bounded set $Y \subseteq H_{1}$, the compact operator K maps Y into a set $K[Y]$ which is contained in a compact set $Z \subseteq H_{2}$. Since B is bounded, it is continuous, and it maps Z into a compact set $B[Z]$. Thus $(B K)[Y]$ is contained in the compact set $B[Z]$, and the operator $B K$ is also compact.

Given a bounded set $W \subseteq H_{1}$, the images $K_{1}[W]$ and $K_{2}[W]$ are contained in some compact sets $W^{\prime} \subseteq H_{2}$ and $W^{\prime \prime} \subseteq H_{2}$. The product $W^{\prime} \times W^{\prime \prime}$ is compact in $\mathrm{H}_{2} \times \mathrm{H}_{2}$. Since the addition of vectors in H_{2} is a continuous mapping $H_{2} \times H_{2} \longrightarrow H_{2}$, the image $+\left[W^{\prime} \times W^{\prime \prime}\right]$ is compact in H_{2}. Thus the image $\left(K_{1}+K_{2}\right)[W]$ of the bounded set W under $K_{1}+K_{2}$ is contained in the compact set $+\left[W^{\prime} \times W^{\prime \prime}\right]$ in H_{2}, and the operator $K_{1}+K_{2}$ is compact.
2. Assume that $K_{n}: H_{1} \longrightarrow H_{2}, n=1,2, \ldots$, are compact, and that we have $\left\|A-K_{n}\right\| \longrightarrow 0$ as $n \longrightarrow \infty$. Here $A \in \mathscr{L}\left(H_{1}, H_{2}\right)$. Prove that A is compact.

Solution. Let $\left\langle x_{m}\right\rangle_{m=1}^{\infty}$ be a bounded sequence in H_{1}. Our goal is to prove that the sequence $\left\langle A x_{m}\right\rangle_{m=1}^{\infty}$ contains a subsequence which converges in H_{2}.

Since K_{1} is compact, the sequence $\left\langle x_{m}\right\rangle_{m=1}^{\infty}$ contains a subsequence $\left\langle x_{m}^{(1)}\right\rangle_{m=1}^{\infty}$ for which $\left\langle K x_{m}^{(1)}\right\rangle_{m=1}^{\infty}$ converges in H_{2}.

In the same vein, the compactness of K_{2} guarantees that the sequence $\left\langle x_{m}^{(1)}\right\rangle_{m=1}^{\infty}$ has a subsequence $\left\langle x_{m}^{(2)}\right\rangle_{m=1}^{\infty}$ for which $\left\langle K x_{m}^{(2)}\right\rangle_{m=1}^{\infty}$ converges in H_{2}.

We may continue this construction inductively in the same way: For each $N \in \mathbb{Z}_{+}$, we have a subsequence $\left\langle x_{m}^{(N)}\right\rangle_{m=1}^{\infty}$ for which $\left\langle K_{j} x_{m}^{(N)}\right\rangle_{m=1}^{\infty}$ converges in H_{2} for each $j \in\{1,2, \ldots, N\}$, and by picking a suitable subsequence $\left\langle x_{m}^{(N+1)}\right\rangle_{m=1}^{\infty}$ of $\left\langle x_{m}^{(N)}\right\rangle_{m=1}^{\infty}$, we know that also $\left\langle K_{N+1} x_{m}^{(N+1)}\right\rangle_{m=1}^{\infty}$ converges in H_{2}.

Now we shall consider the "diagonal" subsequence $\left\langle x_{m}^{(m)}\right\rangle_{m=1}^{\infty}$ of $\left\langle x_{m}\right\rangle_{m=1}^{\infty}$. Given an $\varepsilon \in \mathbb{R}_{+}$, we may choose a large $N \in \mathbb{Z}_{+}$so that

$$
\left\|A-K_{N}\right\|<\varepsilon
$$

and then another large integer $M \in \mathbb{Z}_{+}$so that

$$
\left\|K_{N}\left(x_{m}^{(m)}-x_{n}^{(n)}\right)\right\|<\varepsilon
$$

for all integers m and n greater than M.

Finally, letting $R \in \mathbb{R}_{+}$be a number sufficiently large so that $\left\|x_{m}^{(m)}\right\| \leqslant R$ for all $m \in \mathbb{Z}_{+}$, we may estimate

$$
\begin{aligned}
& \left\|A x_{m}^{(m)}-A x_{n}^{(n)}\right\| \\
& \quad \leqslant\left\|\left(A-K_{N}\right) x_{m}^{(m)}\right\|+\left\|K_{N}\left(x_{m}^{(m)}-x_{n}^{(n)}\right)\right\|+\left\|\left(K_{N}-A\right) x_{n}^{(n)}\right\| \\
& \quad \leqslant \varepsilon R+\varepsilon+\varepsilon R,
\end{aligned}
$$

for all integers m and n greater than M, and so $\left\langle A x_{m}^{(m)}\right\rangle_{m=1}^{\infty}$ is Cauchy and converges in H_{2}.
3. Assume that $\left\langle a_{n}\right\rangle$ is a sequence of complex numbers converging to zero. Consider the linear map

$$
A: \ell^{2} \longrightarrow \ell^{2}, \quad\left\langle x_{n}\right\rangle \longmapsto\left\langle a_{n} x_{n}\right\rangle .
$$

Prove that A is compact. Hint: Use the previous exercise with suitable operators K_{n} having finite dimensional image spaces.

Solution. Define for each $n \in \mathbb{Z}_{+}$the operator $K_{n}: \ell^{2} \longrightarrow \ell^{2}$ by

$$
\left\langle x_{n}\right\rangle_{n=1}^{\infty} \longmapsto\left\langle a_{1} x_{1}, a_{2} x_{2}, \ldots, a_{n} x_{n}, 0,0, \ldots\right\rangle
$$

Now each of the operators K_{n} has a finite-dimensional image and therefore must be compact. If we can show that $\left\|A-K_{n}\right\| \longrightarrow 0$ as $n \longrightarrow \infty$, then the result of the previous exercise tells us that A is compact.

Let us be given a number $\varepsilon \in \mathbb{R}_{+}$. Then there exists a number $N \in \mathbb{Z}_{+}$such that $\left|a_{n}\right|<\varepsilon$ for all integers $n>N$. For such n, the operator $A-K_{n}: \ell^{2} \longrightarrow \ell^{2}$ is given by

$$
\left\langle x_{m}\right\rangle_{m=1}^{\infty} \longmapsto\left\langle 0,0, \ldots, 0, a_{n+1} x_{n+1}, a_{n+2} x_{n+2}, \ldots\right\rangle,
$$

where the sequence on the right-hand side begins with n zeros. Given a vector $\left\langle x_{m}\right\rangle_{m=1}^{\infty} \in \ell^{2}$, we have

$$
\begin{aligned}
\left\|\left(A-K_{n}\right)\left\langle x_{m}\right\rangle_{m=1}^{\infty}\right\|_{\ell^{2}} & =\sqrt{\sum_{m=n+1}^{\infty}\left|a_{m}\right|^{2}\left|x_{m}\right|^{2}} \\
& \leqslant \varepsilon \sqrt{\sum_{m=n+1}^{\infty}\left|x_{m}\right|^{2}} \leqslant \varepsilon\left\|\left\langle x_{m}\right\rangle_{m=1}^{\infty}\right\|_{\ell^{2}}
\end{aligned}
$$

and so $\left\|A-K_{n}\right\| \leqslant \varepsilon$ for integers $n>N$.
4. Give an example of a bounded linear operator between Hilbert spaces whose image is not a closed subspace.

Solution. Let us consider the operator A defined in the previous exercise with the sequence $\left\langle a_{n}\right\rangle_{n=1}^{\infty}=\left\langle 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\rangle$. Then, by the previous exercise, the resulting operator A is compact. For any given vector with only finite many nonzero coordinates

$$
x=\left\langle x_{1}, x_{2}, \ldots, x_{n}, 0,0, \ldots\right\rangle \in \ell^{2},
$$

the vector $\left\langle x_{1}, 2 x_{2}, 3 x_{3}, \ldots, n x_{n}, 0,0, \ldots\right\rangle \in \ell^{2}$ is mapped by A into x. Thus the image of A contains all vectors of ℓ^{2} with only finitely many nonzero coordinates, and the latter vectors form a dense subset of ℓ^{2}. Thus the closure of the image of A is the entire ℓ^{2}.

On the other hand, the image of A itself is not the entire ℓ^{2}. For instance, the vector $\left\langle 1, \frac{1}{2}, \frac{1}{3}, \ldots\right\rangle \in \ell^{2}$ is not in the image of A since its preimage under A would be the vector $\langle 1,1,1, \ldots\rangle$ which is not contained in ℓ^{2}.
5. Assume that $K \in \mathscr{L}(H)$ and that for some positive integer n_{0} we know that $K^{n_{0}}$ is compact. What can you say about $\operatorname{Ker}(1-K)$?

Solution. By Riesz's theorem, $1-K^{n_{0}}$ has a finite-dimensional kernel. Since

$$
1-K^{n_{0}}=\left(1+K+K^{2}+\ldots+K^{n_{0}-1}\right)(1-K)
$$

we have $\operatorname{Ker}(1-K) \subseteq \operatorname{Ker}\left(1-K^{n_{0}}\right)$, and $\operatorname{Ker}(1-K)$ must also be finitedimensional.
6. Assume that $A, B \in \mathscr{L}(H, H)$ commute, i.e. $A B=B A$. If $A B$ is invertible, what can you say about the invertibility of A and B ?

Solution. Since $A B$ is injective and surjective, A is surjective and B is injective. Since $B A=A B$ is injective and surjective, A is injective and B is surjective. Thus, both of the operators A and B are bijective. Furthermore, since

$$
A B(A B)^{-1}=\mathrm{id} \quad \text { and } \quad B A(B A)^{-1}=\mathrm{id}
$$

we have

$$
A^{-1}=B(A B)^{-1} \quad \text { and } \quad B^{-1}=A(B A)^{-1}
$$

and the operators A^{-1} and B^{-1} are compositions of bounded linear operators, and therefore also bounded linear operators. That is, we have shown that A and B are both invertible.
7. Consider the integral operator

$$
\left.\mathscr{K} u(x)=\int_{a}^{b} K(x, y) u(y) \mathrm{d} y, \quad x \in\right] a, b[
$$

Assume that $K \in L^{2}([a, b] \times[a, b])$. Prove that \mathscr{K} is compact $L^{2}([a, b]) \longrightarrow$ $L^{2}([a, b])$.

Solution. Let us write I for $[a, b]$ and I^{2} for $[a, b] \times[a, b]$. Since the continuous functions $C\left(I^{2}\right)$ are dense in the space $L^{2}\left(I^{2}\right)$, there exists a sequence of continuous functions $C_{1}, C_{2}, \ldots \in C\left(I^{2}\right)$ such that $C_{n} \longrightarrow K$ in $L^{2}\left(I^{2}\right)$ as $n \longrightarrow \infty$. Let \mathscr{C}_{n} be the bounded operator $L^{2}(I) \longrightarrow L^{2}(I)$ defined by

$$
\mathscr{C}_{n} u(x)=\int_{a}^{b} C_{n}(x, y) u(y) \mathrm{d} y
$$

for a.e. $x \in I$ for all $u \in L^{2}(I)$.

Now we have

$$
\left\|\mathscr{K}-\mathscr{C}_{n}\right\|_{L^{2}(I) \longrightarrow L^{2}(I)} \leqslant\left\|K-C_{n}\right\|_{L^{2}\left(I^{2}\right)} \longrightarrow 0
$$

as $n \longrightarrow \infty$, and we have proved in the lectures that the operators \mathscr{C}_{n} are compact operators of $L^{2}(I)$, and so the operator \mathscr{K} is the limit of a sequence of compact operators in the operator norm. The result of exercise 2 now states that \mathscr{K} is compact.
8. Prove that a compact operator $K: \ell^{2}(\mathbb{C}) \longrightarrow \ell^{2}(\mathbb{C})$ is a norm limit of finite dimensional operators. Hint: Let Q_{n} be the orthogonal projection to span $\left\{e_{1}, \ldots, e_{n}\right\}$, where $\left\langle e_{i}\right\rangle$ is the standard orthonormal basis of $\ell^{2}(\mathbb{C})$. Let $K_{n}=$ $Q_{n} K$ and prove that $\left\|K-K_{n}\right\| \longrightarrow 0$ by considering a suitable finite covering of the compact set $\overline{K(B)}$, where B is the closed unit ball of $\ell^{2}(\mathbb{C})$.

Solution. Let us be given an $\varepsilon \in \mathbb{R}_{+}$, and let us first cover the compact set $\overline{K[B]}$ by the open balls $B(x, \varepsilon)$, where x ranges over $\overline{K[B]}$. By the compacity of K there is a finite subcovering with, say, balls $B\left(x_{1}, \varepsilon\right), \ldots, B\left(x_{m}, \varepsilon\right)$ where $m \in$ \mathbb{Z}_{+}and $x_{1}, \ldots, x_{m} \in \overline{K[B]}$. What we have now achieved is that each element $\varphi \in K[B]$ can be represented in the form $\varphi=x_{\ell}+\psi$ for some $\ell \in\{1, \ldots, m\}$ and some vector $\psi \in \ell^{2}$ with $\|\psi\|<\varepsilon$. Now we can estimate

$$
\begin{aligned}
\left\|K-K_{n}\right\| & =\left\|\left(1-Q_{n}\right) K\right\|=\sup _{x \in B}\left\|\left(1-Q_{n}\right) K x\right\|=\sup _{\varphi \in K[B]}\left\|\left(1-Q_{n}\right) \varphi\right\| \\
& \leqslant \sup _{1 \leqslant \ell \leqslant m\|\psi\|<\varepsilon}\left\|\left(1-Q_{n}\right)\left(x_{\ell}+\psi\right)\right\| \\
& \leqslant \sup _{1 \leqslant \ell \leqslant m}\left\|\left(1-Q_{n}\right) x_{\ell}\right\|+\sup _{\|\psi\|<\varepsilon}\left\|\left(1-Q_{n}\right) \psi\right\| .
\end{aligned}
$$

For sufficiently large integers n, we have $\left\|\left(1-Q_{n}\right) x_{\ell}\right\|<\varepsilon$ for any given ℓ, and since there are only finitely many different values of ℓ, the first supremum is $<\varepsilon$ for sufficiently large integers n.

It is fairly clear that $\left\|Q_{n}\right\| \leqslant 1$, and so $\left\|1-Q_{n}\right\| \leqslant 2$, and the second supremum is always $\leqslant 2 \varepsilon$.

We can now conclude that $\left\|K-K_{n}\right\|<3 \varepsilon$ for sufficiently large integers n, and so we are done.
9. Let's define the shift operator $S: \ell^{2}(\mathbb{C}) \longrightarrow \ell^{2}(\mathbb{C})$ by

$$
(S x)_{n}= \begin{cases}0 & \text { for } n=0 \\ x_{n-1} & \text { for } n=1,2, \ldots\end{cases}
$$

Here $x=\left\langle x_{n}\right\rangle_{n=1}^{\infty}$. Also, let $M: \ell^{2}(\mathbb{C}) \longrightarrow \ell^{2}(\mathbb{C})$ be defined by

$$
(M x)_{n}=(n+1)^{-1} x_{n}
$$

Show that the product $T=M S$ is a compact operator that has no eigenvalues. Hence the spectrum consists only of $\{0\}$.

Solution. The operator M is compact by the exercise 3, the operator S is clearly bounded, and so, by the exercise $1, M S$ is also compact.

Suppose that $\lambda \in \mathbb{C}$ is an eigenvalue of $M S$ with an eigenvector $x=$ $\left\langle x_{n}\right\rangle_{n=0}^{\infty} \in \ell^{2}$. Then the equation $\lambda x=M S x$ really says that

$$
\lambda x_{0}=0, \quad \lambda x_{1}=\frac{1}{2} x_{0}, \quad \lambda x_{2}=\frac{1}{3} x_{1}, \quad \lambda x_{3}=\frac{1}{4} x_{2}, \quad \ldots
$$

If $\lambda \neq 0$, then the first equation implies that $x_{0}=0$. Then the second equation implies that $x_{1}=0$, the third equation implies that $x_{2}=0$, and so on. In the end we will have $x_{0}=x_{1}=x_{2}=\ldots=0$, which is not possible.

Thus we can only have $\lambda=0$. But in this case, the second equation implies that $x_{0}=0$, the third equation implies that $x_{1}=0$, and so on, and again we will have $x_{0}=x_{1}=x_{2}=\ldots=0$, which is not possible.

