
Integral equations
Solutions to the third problem set

1. Assume that K : H1 −→ H2 is a compact operator between Hilbert spaces.
Given bounded linear maps A : H −→ H1 and B : H2 −→ H, where H is again
Hilbert, prove that KA and BK are compact. Also, prove that the sum K1+K2

of two compact operators K1,K2 : H1 −→ H2 is compact.

Solution. Let X ⊆ H be a bounded set. Then A, as a bounded operator,
maps X into some bounded set A[X] ⊆ H1. Since K is compact, the image
K[A[X]] is inside some compact set in H2. Thus (KA)[X] is inside a compact
set in H2, and KA is therefore compact.

Similarly, given a bounded set Y ⊆ H1, the compact operator K maps Y into
a set K[Y ] which is contained in a compact set Z ⊆ H2. Since B is bounded,
it is continuous, and it maps Z into a compact set B[Z]. Thus (BK)[Y ] is
contained in the compact set B[Z], and the operator BK is also compact.

Given a bounded set W ⊆ H1, the images K1[W ] and K2[W ] are contained
in some compact sets W ′ ⊆ H2 and W ′′ ⊆ H2. The product W ′ × W ′′ is
compact in H2×H2. Since the addition of vectors in H2 is a continuous mapping
H2 × H2 −→ H2, the image +[W ′ ×W ′′] is compact in H2. Thus the image
(K1 +K2)[W ] of the bounded set W under K1 +K2 is contained in the compact
set +[W ′ ×W ′′] in H2, and the operator K1 +K2 is compact.

2. Assume that Kn : H1 −→ H2, n = 1, 2, . . ., are compact, and that we have
‖A−Kn‖ −→ 0 as n −→∞. Here A ∈ L (H1, H2). Prove that A is compact.

Solution. Let 〈xm〉∞m=1 be a bounded sequence in H1. Our goal is to prove
that the sequence 〈Axm〉∞m=1 contains a subsequence which converges in H2.

SinceK1 is compact, the sequence 〈xm〉∞m=1 contains a subsequence 〈x(1)m 〉∞m=1

for which 〈Kx(1)m 〉∞m=1 converges in H2.
In the same vein, the compactness of K2 guarantees that the sequence

〈x(1)m 〉∞m=1 has a subsequence 〈x(2)m 〉∞m=1 for which 〈Kx(2)m 〉∞m=1 converges in H2.
We may continue this construction inductively in the same way: For each

N ∈ Z+, we have a subsequence 〈x(N)
m 〉∞m=1 for which 〈Kjx

(N)
m 〉∞m=1 converges in

H2 for each j ∈ {1, 2, . . . , N}, and by picking a suitable subsequence 〈x(N+1)
m 〉∞m=1

of 〈x(N)
m 〉∞m=1, we know that also 〈KN+1x

(N+1)
m 〉∞m=1 converges in H2.

Now we shall consider the “diagonal” subsequence 〈x(m)
m 〉∞m=1 of 〈xm〉∞m=1.

Given an ε ∈ R+, we may choose a large N ∈ Z+ so that

‖A−KN‖ < ε,

and then another large integer M ∈ Z+ so that∥∥∥KN (x(m)
m − x(n)n )

∥∥∥ < ε

for all integers m and n greater than M .
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Finally, letting R ∈ R+ be a number sufficiently large so that ‖x(m)
m ‖ 6 R

for all m ∈ Z+, we may estimate∥∥Ax(m)
m −Ax(n)n

∥∥
6
∥∥(A−KN )x(m)

m

∥∥+
∥∥KN (x(m)

m − x(n)n )
∥∥+

∥∥(KN −A)x(n)n

∥∥
6 εR+ ε+ εR,

for all integers m and n greater than M , and so 〈Ax(m)
m 〉∞m=1 is Cauchy and

converges in H2.

3. Assume that 〈an〉 is a sequence of complex numbers converging to zero.
Consider the linear map

A : `2 −→ `2, 〈xn〉 7−→ 〈anxn〉 .

Prove that A is compact. Hint: Use the previous exercise with suitable operators
Kn having finite dimensional image spaces.

Solution. Define for each n ∈ Z+ the operator Kn : `2 −→ `2 by

〈xn〉∞n=1 7−→ 〈a1x1, a2x2, . . . , anxn, 0, 0, . . .〉 .

Now each of the operators Kn has a finite-dimensional image and therefore must
be compact. If we can show that ‖A−Kn‖ −→ 0 as n −→ ∞, then the result
of the previous exercise tells us that A is compact.

Let us be given a number ε ∈ R+. Then there exists a number N ∈ Z+ such
that |an| < ε for all integers n > N . For such n, the operator A−Kn : `2 −→ `2

is given by

〈xm〉∞m=1 7−→ 〈0, 0, . . . , 0, an+1xn+1, an+2xn+2, . . .〉 ,

where the sequence on the right-hand side begins with n zeros. Given a vector
〈xm〉∞m=1 ∈ `2, we have

‖(A−Kn) 〈xm〉∞m=1‖`2 =

√√√√ ∞∑
m=n+1

|am|2 |xm|2

6 ε

√√√√ ∞∑
m=n+1

|xm|2 6 ε ‖〈xm〉∞m=1‖`2 ,

and so ‖A−Kn‖ 6 ε for integers n > N .

4. Give an example of a bounded linear operator between Hilbert spaces whose
image is not a closed subspace.

Solution. Let us consider the operator A defined in the previous exercise
with the sequence 〈an〉∞n=1 =

〈
1, 12 ,

1
3 ,

1
4 , . . .

〉
. Then, by the previous exercise,

the resulting operator A is compact. For any given vector with only finite many
nonzero coordinates

x = 〈x1, x2, . . . , xn, 0, 0, . . .〉 ∈ `2,
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the vector 〈x1, 2x2, 3x3, . . . , nxn, 0, 0, . . .〉 ∈ `2 is mapped by A into x. Thus the
image of A contains all vectors of `2 with only finitely many nonzero coordinates,
and the latter vectors form a dense subset of `2. Thus the closure of the image
of A is the entire `2.

On the other hand, the image of A itself is not the entire `2. For instance,
the vector

〈
1, 12 ,

1
3 , . . .

〉
∈ `2 is not in the image of A since its preimage under A

would be the vector 〈1, 1, 1, . . .〉 which is not contained in `2.

5. Assume that K ∈ L (H) and that for some positive integer n0 we know that
Kn0 is compact. What can you say about Ker (1−K)?

Solution. By Riesz’s theorem, 1−Kn0 has a finite-dimensional kernel. Since

1−Kn0 =
(
1 +K +K2 + . . .+Kn0−1

)
(1−K) ,

we have Ker(1 − K) ⊆ Ker(1 − Kn0), and Ker(1 − K) must also be finite-
dimensional.

6. Assume that A,B ∈ L (H,H) commute, i.e. AB = BA. If AB is invertible,
what can you say about the invertibility of A and B?

Solution. Since AB is injective and surjective, A is surjective and B is in-
jective. Since BA = AB is injective and surjective, A is injective and B is
surjective. Thus, both of the operators A and B are bijective. Furthermore,
since

AB(AB)−1 = id and BA(BA)−1 = id,

we have
A−1 = B(AB)−1 and B−1 = A(BA)−1,

and the operators A−1 and B−1 are compositions of bounded linear operators,
and therefore also bounded linear operators. That is, we have shown that A
and B are both invertible.

7. Consider the integral operator

K u(x) =

b∫
a

K(x, y)u(y) dy, x ∈ ]a, b[ .

Assume that K ∈ L2
(
[a, b] × [a, b]

)
. Prove that K is compact L2

(
[a, b]

)
−→

L2
(
[a, b]

)
.

Solution. Let us write I for [a, b] and I2 for [a, b]× [a, b]. Since the continuous
functions C(I2) are dense in the space L2(I2), there exists a sequence of contin-
uous functions C1, C2, . . . ∈ C(I2) such that Cn −→ K in L2(I2) as n −→ ∞.
Let Cn be the bounded operator L2(I) −→ L2(I) defined by

Cnu(x) =

b∫
a

Cn(x, y)u(y) dy

for a.e. x ∈ I for all u ∈ L2(I).
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Now we have

‖K − Cn‖L2(I)−→L2(I) 6 ‖K − Cn‖L2(I2) −→ 0,

as n −→ ∞, and we have proved in the lectures that the operators Cn are
compact operators of L2(I), and so the operator K is the limit of a sequence
of compact operators in the operator norm. The result of exercise 2 now states
that K is compact.

8. Prove that a compact operator K : `2(C) −→ `2(C) is a norm limit of finite
dimensional operators. Hint: Let Qn be the orthogonal projection to span
{e1, . . . , en}, where 〈ei〉 is the standard orthonormal basis of `2(C). Let Kn =
QnK and prove that ‖K −Kn‖ −→ 0 by considering a suitable finite covering
of the compact set K(B), where B is the closed unit ball of `2(C).

Solution. Let us be given an ε ∈ R+, and let us first cover the compact set
K[B] by the open balls B(x, ε), where x ranges over K[B]. By the compacity of
K there is a finite subcovering with, say, balls B(x1, ε), . . . , B(xm, ε) where m ∈
Z+ and x1, . . . , xm ∈ K[B]. What we have now achieved is that each element
ϕ ∈ K[B] can be represented in the form ϕ = x` + ψ for some ` ∈ {1, . . . ,m}
and some vector ψ ∈ `2 with ‖ψ‖ < ε. Now we can estimate

‖K −Kn‖ = ‖(1−Qn)K‖ = sup
x∈B
‖(1−Qn)Kx‖ = sup

ϕ∈K[B]

‖(1−Qn)ϕ‖

6 sup
16`6m

sup
‖ψ‖<ε

‖(1−Qn)(x` + ψ)‖

6 sup
16`6m

‖(1−Qn)x`‖+ sup
‖ψ‖<ε

‖(1−Qn)ψ‖ .

For sufficiently large integers n, we have ‖(1−Qn)x`‖ < ε for any given `,
and since there are only finitely many different values of `, the first supremum
is < ε for sufficiently large integers n.

It is fairly clear that ‖Qn‖ 6 1, and so ‖1−Qn‖ 6 2, and the second
supremum is always 6 2ε.

We can now conclude that ‖K −Kn‖ < 3ε for sufficiently large integers n,
and so we are done.

9. Let’s define the shift operator S : `2(C) −→ `2(C) by

(Sx)n =

{
0 for n = 0,
xn−1 for n = 1, 2, . . .

Here x = 〈xn〉∞n=1. Also, let M : `2(C) −→ `2(C) be defined by

(Mx)n = (n+ 1)−1xn.

Show that the product T = MS is a compact operator that has no eigenvalues.
Hence the spectrum consists only of {0}.

Solution. The operator M is compact by the exercise 3, the operator S is
clearly bounded, and so, by the exercise 1, MS is also compact.
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Suppose that λ ∈ C is an eigenvalue of MS with an eigenvector x =
〈xn〉∞n=0 ∈ `2. Then the equation λx = MSx really says that

λx0 = 0, λx1 =
1

2
x0, λx2 =

1

3
x1, λx3 =

1

4
x2, . . .

If λ 6= 0, then the first equation implies that x0 = 0. Then the second
equation implies that x1 = 0, the third equation implies that x2 = 0, and so on.
In the end we will have x0 = x1 = x2 = . . . = 0, which is not possible.

Thus we can only have λ = 0. But in this case, the second equation implies
that x0 = 0, the third equation implies that x1 = 0, and so on, and again we
will have x0 = x1 = x2 = . . . = 0, which is not possible.
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