Integral equations Solutions to the third problem set

1. Assume that $K: H_1 \longrightarrow H_2$ is a compact operator between Hilbert spaces. Given bounded linear maps $A: H \longrightarrow H_1$ and $B: H_2 \longrightarrow H$, where H is again Hilbert, prove that KA and BK are compact. Also, prove that the sum $K_1 + K_2$ of two compact operators $K_1, K_2: H_1 \longrightarrow H_2$ is compact.

Solution. Let $X \subseteq H$ be a bounded set. Then A, as a bounded operator, maps X into some bounded set $A[X] \subseteq H_1$. Since K is compact, the image K[A[X]] is inside some compact set in H_2 . Thus (KA)[X] is inside a compact set in H_2 , and KA is therefore compact.

Similarly, given a bounded set $Y \subseteq H_1$, the compact operator K maps Y into a set K[Y] which is contained in a compact set $Z \subseteq H_2$. Since B is bounded, it is continuous, and it maps Z into a compact set B[Z]. Thus (BK)[Y] is contained in the compact set B[Z], and the operator BK is also compact.

Given a bounded set $W \subseteq H_1$, the images $K_1[W]$ and $K_2[W]$ are contained in some compact sets $W' \subseteq H_2$ and $W'' \subseteq H_2$. The product $W' \times W''$ is compact in $H_2 \times H_2$. Since the addition of vectors in H_2 is a continuous mapping $H_2 \times H_2 \longrightarrow H_2$, the image $+[W' \times W'']$ is compact in H_2 . Thus the image $(K_1+K_2)[W]$ of the bounded set W under K_1+K_2 is contained in the compact set $+[W' \times W'']$ in H_2 , and the operator $K_1 + K_2$ is compact.

2. Assume that $K_n: H_1 \longrightarrow H_2$, n = 1, 2, ..., are compact, and that we have $||A - K_n|| \longrightarrow 0$ as $n \longrightarrow \infty$. Here $A \in \mathscr{L}(H_1, H_2)$. Prove that A is compact.

Solution. Let $\langle x_m \rangle_{m=1}^{\infty}$ be a bounded sequence in H_1 . Our goal is to prove that the sequence $\langle Ax_m \rangle_{m=1}^{\infty}$ contains a subsequence which converges in H_2 .

Since K_1 is compact, the sequence $\langle x_m \rangle_{m=1}^{\infty}$ contains a subsequence $\langle x_m^{(1)} \rangle_{m=1}^{\infty}$ for which $\langle K x_m^{(1)} \rangle_{m=1}^{\infty}$ converges in H_2 .

In the same vein, the compactness of K_2 guarantees that the sequence $\langle x_m^{(1)} \rangle_{m=1}^{\infty}$ has a subsequence $\langle x_m^{(2)} \rangle_{m=1}^{\infty}$ for which $\langle K x_m^{(2)} \rangle_{m=1}^{\infty}$ converges in H_2 . We may continue this construction inductively in the same way: For each

We may continue this construction inductively in the same way: For each $N \in \mathbb{Z}_+$, we have a subsequence $\langle x_m^{(N)} \rangle_{m=1}^{\infty}$ for which $\langle K_j x_m^{(N)} \rangle_{m=1}^{\infty}$ converges in H_2 for each $j \in \{1, 2, \ldots, N\}$, and by picking a suitable subsequence $\langle x_m^{(N+1)} \rangle_{m=1}^{\infty}$ of $\langle x_m^{(N)} \rangle_{m=1}^{\infty}$, we know that also $\langle K_{N+1} x_m^{(N+1)} \rangle_{m=1}^{\infty}$ converges in H_2 .

Now we shall consider the "diagonal" subsequence $\langle x_m^{(m)} \rangle_{m=1}^{\infty}$ of $\langle x_m \rangle_{m=1}^{\infty}$. Given an $\varepsilon \in \mathbb{R}_+$, we may choose a large $N \in \mathbb{Z}_+$ so that

$$\|A - K_N\| < \varepsilon,$$

and then another large integer $M \in \mathbb{Z}_+$ so that

$$\left\|K_N(x_m^{(m)}-x_n^{(n)})\right\|<\varepsilon$$

for all integers m and n greater than M.

Finally, letting $R \in \mathbb{R}_+$ be a number sufficiently large so that $||x_m^{(m)}|| \leq R$ for all $m \in \mathbb{Z}_+$, we may estimate

$$\begin{aligned} \|Ax_m^{(m)} - Ax_n^{(n)}\| \\ &\leqslant \|(A - K_N) x_m^{(m)}\| + \|K_N(x_m^{(m)} - x_n^{(n)})\| + \|(K_N - A) x_n^{(n)}\| \\ &\leqslant \varepsilon R + \varepsilon + \varepsilon R, \end{aligned}$$

for all integers m and n greater than M, and so $\langle Ax_m^{(m)} \rangle_{m=1}^{\infty}$ is Cauchy and converges in H_2 .

3. Assume that $\langle a_n \rangle$ is a sequence of complex numbers converging to zero. Consider the linear map

$$A \colon \ell^2 \longrightarrow \ell^2, \qquad \langle x_n \rangle \longmapsto \langle a_n x_n \rangle$$

Prove that A is compact. Hint: Use the previous exercise with suitable operators K_n having finite dimensional image spaces.

Solution. Define for each $n \in \mathbb{Z}_+$ the operator $K_n \colon \ell^2 \longrightarrow \ell^2$ by

$$\langle x_n \rangle_{n=1}^{\infty} \longmapsto \langle a_1 x_1, a_2 x_2, \dots, a_n x_n, 0, 0, \dots \rangle$$
.

Now each of the operators K_n has a finite-dimensional image and therefore must be compact. If we can show that $||A - K_n|| \longrightarrow 0$ as $n \longrightarrow \infty$, then the result of the previous exercise tells us that A is compact.

Let us be given a number $\varepsilon \in \mathbb{R}_+$. Then there exists a number $N \in \mathbb{Z}_+$ such that $|a_n| < \varepsilon$ for all integers n > N. For such n, the operator $A - K_n \colon \ell^2 \longrightarrow \ell^2$ is given by

$$\langle x_m \rangle_{m=1}^{\infty} \longmapsto \langle 0, 0, \dots, 0, a_{n+1} x_{n+1}, a_{n+2} x_{n+2}, \dots \rangle$$

where the sequence on the right-hand side begins with n zeros. Given a vector $\langle x_m \rangle_{m=1}^{\infty} \in \ell^2$, we have

$$\|(A - K_n) \langle x_m \rangle_{m=1}^{\infty}\|_{\ell^2} = \sqrt{\sum_{m=n+1}^{\infty} |a_m|^2 |x_m|^2}$$
$$\leqslant \varepsilon \sqrt{\sum_{m=n+1}^{\infty} |x_m|^2} \leqslant \varepsilon \|\langle x_m \rangle_{m=1}^{\infty}\|_{\ell^2}$$

and so $||A - K_n|| \leq \varepsilon$ for integers n > N.

4. Give an example of a bounded linear operator between Hilbert spaces whose image is not a closed subspace.

Solution. Let us consider the operator A defined in the previous exercise with the sequence $\langle a_n \rangle_{n=1}^{\infty} = \langle 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots \rangle$. Then, by the previous exercise, the resulting operator A is compact. For any given vector with only finite many nonzero coordinates

$$x = \langle x_1, x_2, \dots, x_n, 0, 0, \dots \rangle \in \ell^2,$$

the vector $\langle x_1, 2x_2, 3x_3, \ldots, nx_n, 0, 0, \ldots \rangle \in \ell^2$ is mapped by A into x. Thus the image of A contains all vectors of ℓ^2 with only finitely many nonzero coordinates, and the latter vectors form a dense subset of ℓ^2 . Thus the closure of the image of A is the entire ℓ^2 .

On the other hand, the image of A itself is not the entire ℓ^2 . For instance, the vector $\langle 1, \frac{1}{2}, \frac{1}{3}, \ldots \rangle \in \ell^2$ is not in the image of A since its preimage under A would be the vector $\langle 1, 1, 1, \ldots \rangle$ which is not contained in ℓ^2 .

5. Assume that $K \in \mathscr{L}(H)$ and that for some positive integer n_0 we know that K^{n_0} is compact. What can you say about Ker (1 - K)?

Solution. By Riesz's theorem, $1 - K^{n_0}$ has a finite-dimensional kernel. Since

$$1 - K^{n_0} = \left(1 + K + K^2 + \ldots + K^{n_0 - 1}\right) \left(1 - K\right),$$

we have $\operatorname{Ker}(1-K) \subseteq \operatorname{Ker}(1-K^{n_0})$, and $\operatorname{Ker}(1-K)$ must also be finitedimensional.

6. Assume that $A, B \in \mathscr{L}(H, H)$ commute, i.e. AB = BA. If AB is invertible, what can you say about the invertibility of A and B?

Solution. Since AB is injective and surjective, A is surjective and B is injective. Since BA = AB is injective and surjective, A is injective and B is surjective. Thus, both of the operators A and B are bijective. Furthermore, since

$$AB(AB)^{-1} = \mathrm{id}$$
 and $BA(BA)^{-1} = \mathrm{id}$,

we have

$$A^{-1} = B(AB)^{-1}$$
 and $B^{-1} = A(BA)^{-1}$,

and the operators A^{-1} and B^{-1} are compositions of bounded linear operators, and therefore also bounded linear operators. That is, we have shown that Aand B are both invertible.

7. Consider the integral operator

$$\mathscr{K}u(x) = \int_{a}^{b} K(x, y) u(y) \,\mathrm{d}y, \qquad x \in]a, b[.$$

Assume that $K \in L^2([a,b] \times [a,b])$. Prove that \mathscr{K} is compact $L^2([a,b]) \longrightarrow L^2([a,b])$.

Solution. Let us write I for [a, b] and I^2 for $[a, b] \times [a, b]$. Since the continuous functions $C(I^2)$ are dense in the space $L^2(I^2)$, there exists a sequence of continuous functions $C_1, C_2, \ldots \in C(I^2)$ such that $C_n \longrightarrow K$ in $L^2(I^2)$ as $n \longrightarrow \infty$. Let \mathscr{C}_n be the bounded operator $L^2(I) \longrightarrow L^2(I)$ defined by

$$\mathscr{C}_n u(x) = \int_a^b C_n(x, y) \, u(y) \, \mathrm{d}y$$

for a.e. $x \in I$ for all $u \in L^2(I)$.

Now we have

$$\|\mathscr{K} - \mathscr{C}_n\|_{L^2(I) \longrightarrow L^2(I)} \leqslant \|K - C_n\|_{L^2(I^2)} \longrightarrow 0,$$

as $n \to \infty$, and we have proved in the lectures that the operators \mathscr{C}_n are compact operators of $L^2(I)$, and so the operator \mathscr{K} is the limit of a sequence of compact operators in the operator norm. The result of exercise 2 now states that \mathscr{K} is compact.

8. Prove that a compact operator $K: \ell^2(\mathbb{C}) \longrightarrow \ell^2(\mathbb{C})$ is a norm limit of finite dimensional operators. Hint: Let Q_n be the orthogonal projection to span $\{e_1, \ldots, e_n\}$, where $\langle e_i \rangle$ is the standard orthonormal basis of $\ell^2(\mathbb{C})$. Let $K_n = Q_n K$ and prove that $||K - K_n|| \longrightarrow 0$ by considering a suitable finite covering of the compact set $\overline{K(B)}$, where B is the closed unit ball of $\ell^2(\mathbb{C})$.

Solution. Let us be given an $\varepsilon \in \mathbb{R}_+$, and let us first cover the compact set $\overline{K[B]}$ by the open balls $B(x,\varepsilon)$, where x ranges over $\overline{K[B]}$. By the compacity of K there is a finite subcovering with, say, balls $B(x_1,\varepsilon), \ldots, B(x_m,\varepsilon)$ where $m \in \mathbb{Z}_+$ and $x_1, \ldots, x_m \in \overline{K[B]}$. What we have now achieved is that each element $\varphi \in K[B]$ can be represented in the form $\varphi = x_\ell + \psi$ for some $\ell \in \{1, \ldots, m\}$ and some vector $\psi \in \ell^2$ with $\|\psi\| < \varepsilon$. Now we can estimate

$$\begin{aligned} \|K - K_n\| &= \|(1 - Q_n)K\| = \sup_{x \in B} \|(1 - Q_n)Kx\| = \sup_{\varphi \in K[B]} \|(1 - Q_n)\varphi\| \\ &\leq \sup_{1 \leq \ell \leq m} \sup_{\|\psi\| < \varepsilon} \|(1 - Q_n)(x_\ell + \psi)\| \\ &\leq \sup_{1 \leq \ell \leq m} \|(1 - Q_n)x_\ell\| + \sup_{\|\psi\| < \varepsilon} \|(1 - Q_n)\psi\|. \end{aligned}$$

For sufficiently large integers n, we have $||(1 - Q_n)x_\ell|| < \varepsilon$ for any given ℓ , and since there are only finitely many different values of ℓ , the first supremum is $< \varepsilon$ for sufficiently large integers n.

It is fairly clear that $||Q_n|| \leq 1$, and so $||1 - Q_n|| \leq 2$, and the second supremum is always $\leq 2\varepsilon$.

We can now conclude that $||K - K_n|| < 3\varepsilon$ for sufficiently large integers n, and so we are done.

9. Let's define the shift operator $S: \ell^2(\mathbb{C}) \longrightarrow \ell^2(\mathbb{C})$ by

$$(Sx)_n = \begin{cases} 0 & \text{for } n = 0, \\ x_{n-1} & \text{for } n = 1, 2, ... \end{cases}$$

Here $x = \langle x_n \rangle_{n=1}^{\infty}$. Also, let $M \colon \ell^2(\mathbb{C}) \longrightarrow \ell^2(\mathbb{C})$ be defined by

$$(Mx)_n = (n+1)^{-1}x_n.$$

Show that the product T = MS is a compact operator that has no eigenvalues. Hence the spectrum consists only of $\{0\}$.

Solution. The operator M is compact by the exercise 3, the operator S is clearly bounded, and so, by the exercise 1, MS is also compact.

Suppose that $\lambda \in \mathbb{C}$ is an eigenvalue of MS with an eigenvector $x = \langle x_n \rangle_{n=0}^{\infty} \in \ell^2$. Then the equation $\lambda x = MSx$ really says that

$$\lambda x_0 = 0, \quad \lambda x_1 = \frac{1}{2}x_0, \quad \lambda x_2 = \frac{1}{3}x_1, \quad \lambda x_3 = \frac{1}{4}x_2, \quad \dots$$

If $\lambda \neq 0$, then the first equation implies that $x_0 = 0$. Then the second equation implies that $x_1 = 0$, the third equation implies that $x_2 = 0$, and so on. In the end we will have $x_0 = x_1 = x_2 = \ldots = 0$, which is not possible.

Thus we can only have $\lambda = 0$. But in this case, the second equation implies that $x_0 = 0$, the third equation implies that $x_1 = 0$, and so on, and again we will have $x_0 = x_1 = x_2 = \ldots = 0$, which is not possible.