Integral equations

Solutions to the second problem set

1. Give a detailed proof for the convergence of the series defining the resolvent kernel of a Volterra equation of the second kind with a weakly singular kernel.

Solution. So we need to prove that the series

$$
\sum_{n=n_{0}}^{\infty} \lambda^{n-1} K^{(n)}(s, t)
$$

converges absolutely and uniformly. This will follow from the estimate

$$
\left|K^{(n)}(s, t)\right| \leqslant \frac{C^{n} \Gamma^{n}(1-\alpha)}{\Gamma(n(1-\alpha))}|s-t|^{n(1-\alpha)-1}
$$

which holds for all s and t and for each $n \in \mathbb{Z}_{+}$, and where $C \in \mathbb{R}_{+}$is such that

$$
|K(s, t)| \leqslant \frac{C}{|s-t|^{\alpha}}
$$

We shall prove this by induction on n. The case $n=1$ is certainly true, so assume we know the estimate for some $K^{(n)}$, and let us consider $K^{(n+1)}$. By mimicking the computations done in the section on weakly singular kernels in the lecture notes, we get, for $t \leqslant s$,

$$
\begin{aligned}
& \left|K^{(n+1)}(s, t)\right|=\left|\int_{t}^{s} K^{(n)}(s, r) K(r, t) \mathrm{d} r\right| \\
& \quad \leqslant \frac{C^{n+1} \Gamma^{n}(1-\alpha)}{\Gamma(n(1-\alpha))} \int_{t}^{s} \frac{(s-r)^{n(1-\alpha)-1} \mathrm{~d} r}{(r-t)^{\alpha}} \\
& \quad=\frac{C^{n+1} \Gamma^{n}(1-\alpha)}{\Gamma(n(1-\alpha))}(s-t)^{(n+1)(1-\alpha)-1} \int_{0}^{1}(1-w)^{n(1-\alpha)-1} w^{1-\alpha-1} \mathrm{~d} w
\end{aligned}
$$

and the desired estimate follows since

$$
\int_{0}^{1}(1-w)^{n(1-\alpha)-1} w^{1-\alpha-1} \mathrm{~d} w=\mathrm{B}(n(1-\alpha), 1-\alpha)=\frac{\Gamma(n(1-\alpha)) \Gamma(1-\alpha)}{\Gamma((n+1)(1-\alpha))}
$$

The estimate for $s \leqslant t$ is similar.
2. Consider the example from mechanics in Section 1.6 of lecture notes: find the solution in the case when $f(x)=T$, i.e. when a particle is released from height $x>0$, it always takes a constant time $T>0$ to travel along the curve $y=F(x)$ to zero height. Find the equation of F, or at least a series approximation to it.

Solution. So, our task here is to derive a reasonable equation for $F(x)$ from the integral equation

$$
\int_{0}^{x} \frac{\sqrt{1+\left(F^{\prime}(t)\right)^{2}} \mathrm{~d} t}{\sqrt{2 g(x-t)}}=T
$$

We shall use the work done in the lecture notes with the notation

$$
f(x)=\sqrt{2 g} T, \quad G(s, t)=1, \quad \alpha=\frac{1}{2}, \quad \text { and } \quad \varphi(t)=\sqrt{1+\left(F^{\prime}(t)\right)^{2}} .
$$

Then φ satisfies the equation

$$
\int_{0}^{x} K_{1}(x, t) \varphi(t) \mathrm{d} t=f_{1}(x) .
$$

Here, using the substitution $t=x \cos ^{2} u$,

$$
\begin{aligned}
f_{1}(x) & =\int_{0}^{x} \frac{f(t) \mathrm{d} t}{(x-t)^{1 / 2}}=\sqrt{2 g} T \int_{0}^{x} \frac{\mathrm{~d} t}{(x-t)^{1 / 2}}=\sqrt{2 g} T \sqrt{x} \int_{0}^{\pi / 2} \frac{2 \sin u \cos u \mathrm{~d} u}{\sin u} \\
& \left.=2 \sqrt{2 g} T \sqrt{x} \int_{0}^{\pi / 2} \cos u \mathrm{~d} u=2 \sqrt{2 g} T \sqrt{x} \sin u\right]_{0}^{u=\pi / 2}=2 \sqrt{2 g} T \sqrt{x} .
\end{aligned}
$$

In the same vein,

$$
K_{1}(x, t)=\int_{0}^{1} \frac{G(t+r(x-t), t) \mathrm{d} r}{(1-r)^{1 / 2} r^{1 / 2}}=\int_{0}^{1}(1-r)^{-1 / 2} r^{-1 / 2} \mathrm{~d} r=\frac{\pi}{\sin \frac{\pi}{2}}=\pi .
$$

Thus, φ solves the equation

$$
\int_{0}^{x} \varphi(t) \mathrm{d} t=\frac{2 \sqrt{2 g} T \sqrt{x}}{\pi} .
$$

Differentiating this gives

$$
\sqrt{1+\left(F^{\prime}(x)\right)^{2}}=\varphi(x)=\frac{\sqrt{2 g} T}{\pi \sqrt{x}}
$$

and squaring gives

$$
\left(F^{\prime}(x)\right)^{2}=\frac{2 g T^{2}}{\pi^{2} x}-1,
$$

which is a differential equation for F. The curves $y=F(x)$ which arise from this differential equation turn out to be cycloids.
3. Consider a nonlinear Volterra equation of the second kind,

$$
\begin{equation*}
\varphi(s)+\int_{0}^{s} K(s, t, \varphi(t)) \mathrm{d} t=f(s) . \tag{*}
\end{equation*}
$$

Assume the following: the function $K(x, y, z)$ is continuous in the set D defined by

$$
|x|,|y| \leqslant a, \quad|z| \leqslant b,
$$

and that K is uniformly Lipschitz continuous in z,

$$
\left|K\left(x, y, z_{1}\right)-K\left(x, y, z_{2}\right)\right| \leqslant K\left|z_{1}-z_{2}\right|, \quad\left\langle x, y, z_{i}\right\rangle \in D
$$

Also, assume that $f \in C([-a, a]), f(0)=0$, and that f satisfies the Lipschitz condition

$$
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leqslant k\left|x_{1}-x_{2}\right|, \quad\left|x_{i}\right| \leqslant a .
$$

Let

$$
M=\sup _{D}|K| .
$$

Show that the iteration

$$
\varphi_{0}(s)=f(s), \quad \varphi_{n}(s)=f(s)-\int_{0}^{s} K\left(s, t, \varphi_{n-1}(t)\right) \mathrm{d} t
$$

converges in the set

$$
|s| \leqslant a^{\prime}, \quad a^{\prime}=\min \left\{a, \frac{b}{k+M}\right\}
$$

and that the limit is a solution of $(*)$ on the interval $\left[-a^{\prime}, a^{\prime}\right]$.
Solution. We first have to check that each φ_{n} takes values only in the interval $[-b, b]$, because its values will be fed into K. First, for $s \in\left[-a^{\prime}, a^{\prime}\right]$, the Lipschitz property of f implies that

$$
\left|\varphi_{0}(s)\right|=|f(s)-f(0)| \leqslant k|s-0| \leqslant k a^{\prime} \leqslant \frac{k b}{k+M} \leqslant b
$$

Next, assume that $-b \leqslant \varphi_{n}(s) \leqslant b$ for all $s \in\left[-a^{\prime}, a^{\prime}\right]$ for some $n \in \mathbb{Z}_{+} \cup\{0\}$. Then we may estimate for $s \in\left[-a^{\prime}, a^{\prime}\right]$ that $\left|\varphi_{n+1}(s)\right| \leqslant|f(s)|+\left|\int_{0}^{s}\right| K\left(s, t, \varphi_{n}(t)\right)|\mathrm{d} t| \leqslant k a^{\prime}+M a^{\prime} \leqslant \frac{k b}{k+M}+\frac{M b}{k+M}=b$.
Thus the sequence $\left\langle\varphi_{n}\right\rangle_{n=0}^{\infty}$ is a well-defined sequence of continuous functions defined in $\left[-a^{\prime}, a^{\prime}\right]$ and taking values in $[-b, b]$.

We shall prove by induction on n that

$$
\left|\varphi_{n}(s)-\varphi_{n-1}(s)\right| \leqslant \frac{M K^{n-1}|s|^{n}}{n!}
$$

for all $s \in\left[-a^{\prime}, a^{\prime}\right]$ and for each $n \in \mathbb{Z}_{+}$. First we observe that

$$
\left|\varphi_{1}(s)-\varphi_{0}(s)\right|=\left|\int_{0}^{s} K\left(s, t, \varphi_{0}(t)\right) \mathrm{d} t\right| \leqslant|s| M
$$

Next, assuming that we have proved the inequality for some $n \in \mathbb{Z}_{+}$, we estimate

$$
\begin{aligned}
& \left|\varphi_{n+1}(s)-\varphi_{n}(s)\right| \leqslant\left|\int_{0}^{s}\right| K\left(s, t, \varphi_{n}(t)\right)-K\left(s, t, \varphi_{n-1}(t)\right)|\mathrm{d} t| \\
& \quad \leqslant K\left|\int_{0}^{s}\right| \varphi_{n}(t)-\varphi_{n-1}(t)|\mathrm{d} t| \leqslant K\left|\int_{0}^{s} \frac{M K^{n-1}|s|^{n}}{n!} \mathrm{d} t\right|=\frac{M K^{n}|s|^{n+1}}{(n+1)!} .
\end{aligned}
$$

Now the series

$$
\varphi_{0}+\left(\varphi_{1}-\varphi_{0}\right)+\left(\varphi_{2}-\varphi_{1}\right)+\ldots
$$

converges absolutely and uniformly in $\left[-a^{\prime}, a^{\prime}\right]$, and so we know that the sequence $\left\langle\varphi_{n}\right\rangle_{n=0}^{\infty}$ converges uniformly in the interval $\left[-a^{\prime}, a^{\prime}\right]$ to a continuous function, which we shall call φ. We note that φ can only take values in the interval $[-b, b]$ as each of the functions φ_{n} does.

We also have

$$
\int_{0}^{s} K\left(s, t, \varphi_{n}(t)\right) \mathrm{d} t \longrightarrow \int_{0}^{s} K(s, t, \varphi(t)) \mathrm{d} t
$$

uniformly in $s \in\left[-a^{\prime}, a^{\prime}\right]$ as $n \longrightarrow \infty$. This follows from the estimates

$$
\left|\int_{0}^{s} K\left(s, t, \varphi_{n}(t)\right) \mathrm{d} t-\int_{0}^{s} K(s, t, \varphi(t)) \mathrm{d} t\right| \leqslant K|s| \max _{|t| \leqslant|s|}\left|\varphi_{n}(t)-\varphi(t)\right|,
$$

and the fact that $\varphi_{n}(t)$ tends uniformly to $\varphi(t)$.
Thus, in the limit $n \longrightarrow \infty$, the equation which defined φ_{n} in terms of φ_{n-1} becomes

$$
\varphi(s)=f(s)-\int_{0}^{s} K(s, t, \varphi(t)) \mathrm{d} t
$$

and so φ is indeed a solution.
An alternative approach. Let us also show another way of approaching this kind of a problem. The following solution is not strictly speaking a solution unless $a^{\prime} K<1$, or unless we set

$$
a^{\prime}=\min \left\{a, \frac{b}{k+M}, \frac{1}{K+1}\right\},
$$

or so, but it is nonetheless worth giving here. Let us first recall the following important fact from the topology of metric spaces:

The contraction principle. Let X be a closed metric space with metric d, and let $A: X \longrightarrow X$ be a contraction, i.e. assume that there exists a constant $c \in] 0,1[$ such that

$$
d(A(x), A(y)) \leqslant c d(x, y)
$$

for all $x, y \in X$. Then there exists a unique point $y \in X$ such that $A(y)=y$, and furthermore, given any point $x \in X$, the sequence

$$
x, \quad A(x), \quad A(A(x)), \quad A(A(A(x))), \quad \ldots
$$

converges to y.

Proof. Let $y, z \in X$ be such that $A(y)=y$ and $A(z)=z$. Then

$$
d(y, z)=d(A(y), A(z)) \leqslant c d(y, z)
$$

which is only possible if $d(y, z)=0$. Thus the fixed point y, if it exists, must be unique.

Next, let $x \in X$ be arbitrary, and let us consider the sequence

$$
y_{0}=x, \quad y_{1}=A(x), \quad y_{2}=A(A(x)), \quad y_{3}=A(A(A(x))), \quad \ldots
$$

If the sequence $\left\langle y_{n}\right\rangle_{n=0}^{\infty}$ is Cauchy in X, then it converges to some $y \in X$, and in view of the manifest continuity of A, the relation $y_{n}=A\left(y_{n-1}\right)$, which holds for all $n \in \mathbb{Z}_{+}$, becomes $y=A(y)$ in the limit $n \longrightarrow \infty$, thereby establishing the existence of a fixed point.

Therefore, we only have to prove that $\left\langle y_{n}\right\rangle_{n=0}^{\infty}$ is Cauchy. To see this, let $n \in \mathbb{Z}_{+}$and $k \in \mathbb{Z}_{+}$. Then

$$
\begin{aligned}
d\left(y_{n}, y_{n+k}\right) & \leqslant d\left(y_{n}, y_{n+1}\right)+d\left(y_{n+1}, y_{n+2}\right)+\ldots+d\left(y_{n+k-1}, y_{n+k}\right) \\
& \leqslant c^{n} d\left(y_{0}, y_{1}\right)+c^{n+1} d\left(y_{0}, y_{1}\right)+\ldots+c^{n+k-1} d\left(y_{0}, y_{1}\right) \\
& \leqslant\left(c^{n}+c^{n+1}+\ldots\right) d\left(y_{0}, y_{1}\right)=\frac{c^{n}}{1-c} d\left(y_{0}, y_{1}\right)
\end{aligned}
$$

and since the last expression is independent of k and tends to zero as $n \longrightarrow \infty$, we are done.

Now, the idea of the solution is to apply the contraction principle to the space

$$
X=\left\{\varphi \in C\left(\left[-a^{\prime}, a^{\prime}\right]\right) \mid \varphi\left[\left[-a^{\prime}, a^{\prime}\right]\right] \subseteq[-b, b]\right\}
$$

which we shall equip with the metric $d(\varphi, \psi)=\|\varphi-\psi\|_{\infty}$, defined for $\varphi, \psi \in X$. A Cauchy sequence $\left\langle\varphi_{n}\right\rangle_{n=1}^{\infty}$ in X is a Cauchy sequence in the Banach space $C\left(\left[-a^{\prime}, a^{\prime}\right]\right)$, and therefore converges to some $\varphi \in C\left(\left[-a^{\prime}, a^{\prime}\right]\right)$. Since $\left|\varphi_{n}(x)\right| \leqslant b$ for all $s \in\left[-a^{\prime}, a^{\prime}\right]$ and for each $n \in \mathbb{Z}_{+}$, we clearly must also have $|\varphi(s)| \leqslant b$ for all $s \in\left[-a^{\prime}, a^{\prime}\right]$, so that $\varphi \in X$ and X is complete.

Let us next observe that $f \in X$. We know that f is continuous in $\left[-a^{\prime}, a^{\prime}\right]$, so we only have to check that the image of f is contained in $[-b, b]$. This is so because, for $s \in\left[-a^{\prime}, a^{\prime}\right]$, the Lipschitz property of f implies that

$$
|f(s)|=|f(s)-f(0)| \leqslant k|s-0| \leqslant k a^{\prime} \leqslant \frac{k b}{k+M} \leqslant b
$$

We shall define for $\varphi \in X$ an operator A by the formula

$$
(A \varphi)(s)=f(s)-\int_{0}^{s} K(s, t, \varphi(t)) \mathrm{d} t
$$

for all $s \in\left[-a^{\prime}, a^{\prime}\right]$. At first we only know that A maps X into $C\left(\left[-a^{\prime}, a^{\prime}\right]\right)$, but, for $s \in\left[-a^{\prime}, a^{\prime}\right]$, we may estimate
$|(A \varphi)(s)| \leqslant|f(s)|+\left|\int_{0}^{s}\right| K(s, t, \varphi(t))|\mathrm{d} t| \leqslant k a^{\prime}+M a^{\prime} \leqslant \frac{k b}{k+M}+\frac{M b}{k+M}=b$,
and so we have $A \varphi \in X$ and $A: X \longrightarrow X$.
Finally, we only have to prove that A is a contraction. Let $\varphi, \psi \in X$ be arbitrary. Then, for all $s \in\left[-a^{\prime}, a^{\prime}\right]$, we have

$$
\begin{aligned}
|(A \varphi)(s)-(A \psi)(s)| \leqslant & \left|\int_{0}^{s}\right| K(s, t, \psi(t))-K(s, t, \varphi(t))|\mathrm{d} t| \\
& \leqslant\left|\int_{0}^{s} K\right| \psi(t)-\varphi(t)|\mathrm{d} t| \leqslant a^{\prime} K d(\psi, \varphi),
\end{aligned}
$$

and so

$$
d(A \varphi, A \psi) \leqslant a^{\prime} K d(\varphi, \psi)
$$

and A is a contraction, given that $a^{\prime} K<1$.
4. Let $\langle X,\langle\cdot \mid \cdot\rangle\rangle$ be an inner product space and $\|\cdot\|$ the induced norm. Prove that an inner product satisfies the so called parallelogram identity

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}, \quad x, y \in X
$$

Solution. We write the norms in terms of the inner product:

$$
\begin{aligned}
\|x+y\|^{2}+\|x-y\|^{2}= & \langle x+y \mid x+y\rangle+\langle x-y \mid x-y\rangle \\
= & \langle x \mid x\rangle+\langle x \mid y\rangle+\langle y \mid x\rangle+\langle y \mid y\rangle \\
& \quad+\langle x \mid x\rangle-\langle x \mid y\rangle-\langle y \mid x\rangle+\langle y \mid y\rangle \\
= & 2\langle x \mid x\rangle+2\langle y \mid y\rangle=2\|x\|^{2}+2\|y\|^{2} .
\end{aligned}
$$

5. Consider the space $C([a, b])$. Show that the sup-norm

$$
\|f\|_{\text {sup }}=\sup _{x \in[a, b]}|f(x)|
$$

is not determined by any inner product.
Solution. The idea is to pick some functions $f, g \in C([a, b])$ for which the parallelogram identity is not satisfied. One choice could be to choose the function f so that $\|f\|_{\text {sup }}=1$ and that f vanishes in $\left[\frac{a+b}{2}, b\right]$, and the function g so that $\|g\|_{\text {sup }}=1$ and that g vanishes in $\left[a, \frac{a+b}{2}\right]$. Then

$$
\|f+g\|_{\text {sup }}=\|f-g\|_{\text {sup }}=\|f\|_{\text {sup }}=\|g\|_{\text {sup }}=1
$$

and the parallelogram identity clearly can not hold as $1+1 \neq 2+2$.
6. Similarly, consider the L^{p}-norms

$$
\|f\|_{p}=\left(\int_{a}^{b}|f(x)|^{p} \mathrm{~d} x\right)^{1 / p}
$$

where $1 \leqslant p<\infty$. Prove that if $p \neq 2$ then this norm is not induced by any inner product.

Solution. We proceed as in the previous solution: we pick two functions $f, g \in L^{2}([a, b])$ for which the parallelogram identity fails. We write $\ell=\frac{b-a}{2}$, and choose f to be 1 in $[a, a+\ell[$, and 0 in $[b-\ell, b]$. We also choose $g=1-f$. Now

$$
\|f+g\|^{2 / p}+\|f-g\|^{2 / p}=2(2 \ell)^{2 / p}=2 \cdot 2^{2 / p} \ell^{2 / p}
$$

whereas

$$
2\|f\|^{2 / p}+2\|g\|^{2 / p}=4 \ell^{2 / p}
$$

and $2 \cdot 2^{2 / p} \neq 4$ unless $p=2$.
7. Let $\left\langle X_{i},\|\cdot\|\right\rangle$ be normed spaces, $i=1,2,3$. Show that, for the norm of a linear operator $A: X_{1} \longrightarrow X_{2}$, we have

$$
\|A\|=\sup _{0<\|x\|_{1} \leqslant 1} \frac{\|A x\|_{2}}{\|x\|_{1}}=\sup _{\|x\|_{1}=1} \frac{\|A x\|_{2}}{\|x\|_{1}}
$$

Also, let $B: X_{2} \longrightarrow X_{3}$ be linear. Prove that

$$
\|B A\| \leqslant\|B\| \cdot\|A\|
$$

Solution. The first assertion follows from the fact that, for any $x \in X_{1}$ with $0<\|x\|_{1} \leqslant 1$,

$$
\frac{\|A x\|_{2}}{\|x\|}=\frac{\left\|A \frac{x}{\|x\|_{1}}\right\|_{2}}{\left\|\frac{x}{\|x\|_{1}}\right\|_{1}}
$$

and $\left\|\frac{x}{\|x\|_{1}}\right\|_{1}=1$, so that the supremum over those x with $0<\|x\|_{1} \leqslant 1$ is really over the same set of values as the supremum over x satisfying $\|x\|_{1}=1$.

The second assertion follows from the estimates

$$
\|B A x\| \leqslant\|B\| \cdot\|A x\| \leqslant\|B\| \cdot\|A\| \cdot\|x\|
$$

which hold for all $x \in X_{1}$.
8. Consider the integral equation

$$
f(x)+\frac{1}{20} \int_{0}^{1} e^{-|x y|^{2}} \sin \left(x^{2}+y^{2}\right) f(y) \mathrm{d} y=\sin x .
$$

Prove that this has a unique solution $L^{2}([0,1])$, and that in fact this solution is also continuous.

Solution. Let K be the linear operator $L^{2}([0,1]) \longrightarrow L^{2}([0,1])$ defined for a given $f \in L^{2}([0,1])$ by the formula

$$
(K f)(x)=\frac{1}{20} \int_{0}^{1} e^{-|x y|^{2}} \sin \left(x^{2}+y^{2}\right) f(y) \mathrm{d} y
$$

for all $x \in[0,1]$. This is an integral operator with the kernel function

$$
K(x, y)=\frac{1}{20} e^{-|x y|^{2}} \sin \left(x^{2}+y^{2}\right) .
$$

Since clearly

$$
\sup _{x \in[0,1]} \int_{0}^{1}|K(x, y)| \mathrm{d} y \leqslant \frac{1}{20} \quad \text { and } \quad \sup _{y \in[0,1]} \int_{0}^{1} \mid K(x, y) \| \mathrm{d} x \leqslant \frac{1}{20},
$$

Schur's lemma tells us that K is a bounded linear operator of $L^{2}([0,1])$ with operator norm $\|K\| \leqslant \frac{1}{20}$. Thus, the operator $I-K$ is invertible by Neumann series and the equation

$$
f-K f=g
$$

has a unique solution in $L^{2}([0,1])$ for any given $g \in L^{2}([0,1])$.
To satisfy the second demand of the exercise, we will prove that $K f$ is continuous for any $f \in L^{2}([0,1])$. For this purpose, let $x, x^{\prime} \in[0,1]$ be arbitrary. Since K is infinitely smooth, the supremum

$$
M=\sup _{\substack{x \in[0,1], y \in[0,1]}}\left|\left(\partial_{1} K\right)(x, y)\right|
$$

is finite. Now the continuity of $K f$ follows from the estimates

$$
\begin{aligned}
& \left|(K f)(x)-(K f)\left(x^{\prime}\right)\right|=\left|\int_{0}^{1}\left(K(x, y)-K\left(x^{\prime}, y\right)\right) f(y) \mathrm{d} y\right| \\
& \quad \leqslant \int_{0}^{1}\left|\int_{x^{\prime}}^{x}\left(\partial_{1} K\right)(\xi, y) \mathrm{d} \xi\right| \cdot|f(y)| \mathrm{d} y \\
& \quad \leqslant \sqrt{\int_{0}^{1}\left|\int_{x^{\prime}}^{x}\left(\partial_{1} K\right)(\xi, y) \mathrm{d} \xi\right|^{2} \mathrm{~d} y\|f\|_{L^{2}} \leqslant M\left|x-x^{\prime}\right|\|f\|_{L^{2}} .}
\end{aligned}
$$

9. Let H be a Hilbert space, and $A: H \longrightarrow H$ a bounded linear map for which $\left\|A^{n_{0}}\right\|<1$ for some positive integer n_{0}. Prove that $I-A$ is invertible and determine its inverse.

Solution. Let $n \in \mathbb{Z}_{+}$be arbitrary and divide it by n_{0} to get a representation $n=q n_{0}+r$ with $q \in \mathbb{Z}_{+} \cup\{0\}$ and $r \in\left\{0,1, \ldots, n_{0}-1\right\}$. Then, writing

$$
C=\max \left\{1,\|A\|,\left\|A^{2}\right\|, \ldots,\left\|A^{n_{0}-1}\right\|\right\}
$$

we may estimate

$$
\left\|A^{n}\right\| \leqslant\left\|A^{n_{0}}\right\|^{q}\left\|A^{r}\right\| \leqslant C\left\|A^{n_{0}}\right\|^{q} .
$$

By this and the triangle inequality we may estimate

$$
\left\|\sum_{n=0}^{\infty} A^{n}\right\| \leqslant \sum_{n=0}^{\infty}\left\|A^{n}\right\| \leqslant C n_{0} \sum_{q=0}^{\infty}\left\|A^{n_{0}}\right\|^{q}<\infty
$$

so that the series $1+A+A^{2}+\ldots$ converges absolutely to a bounded operator $S: H \longrightarrow H$. Also, we have $\left\|A^{n}\right\| \longrightarrow 0$ as $n \longrightarrow \infty$.

Let us observe next that

$$
(1-A) S=\lim _{N \longrightarrow \infty}(1-A) \sum_{n=0}^{N} A^{n}=\lim _{N \longrightarrow \infty}\left(1-A^{N+1}\right)=1,
$$

as well as

$$
S(1-A)=\lim _{N \longrightarrow \infty} \sum_{n=0}^{N} A^{n}(1-A)=\lim _{N \longrightarrow \infty}\left(1-A^{N+1}\right)=1,
$$

and therefore $1-A$ is invertible with inverse S.

