
Integral equations
Solutions to the first problem set

Before looking at the problems, let us recall two useful facts from the lectures:

Lemma. Let F be a continuous function from I × I to R, where I is an open
interval of R containing zero, and assume that F is continuously differentiable
with respect to the first variable. Then we have

d

ds

s∫
0

F (s, t) dt = F (s, s) +

s∫
0

∂

∂s
F (s, t) dt.

for s ∈ I.

Lemma. Let F be a continuous real-valued function in [0, x] × [0, x], where
x ∈ R. Then

x∫
0

t∫
0

F (t, u) dudt =

x∫
0

x∫
u

F (t, u) dtdu.

Proof. This follows easily from Fubini’s theorem if we introduce a function
χ : [0, x]× [0, x] −→ R for s, t ∈ [0, x] by

χ(t, u) =

{
1 if t > u,
0 if t < u,

for then

x∫
0

t∫
0

F (t, u) dudt =

x∫
0

 t∫
0

χ(t, u)F (t, u) du+

x∫
t

χ(t, u)F (t, u) du

 dt

=

x∫
0

x∫
0

χ(t, u)F (t, u) dudt =

x∫
0

x∫
0

χ(t, u)F (t, u) dtdu

=

x∫
0

 u∫
0

χ(t, u)F (t, u) dt+

x∫
u

χ(t, u)F (t, u) dt

 du

=

x∫
0

x∫
u

F (t, u) dtdu.

1. Solve the Volterra equation

ϕ(s)−
s∫

0

(s− t)ϕ(t) dt = 2s.

Solution. The idea of the solution is to reduce the equation to an initial value
problem for a differential equation through repeated differentiation.

The substitution s = 0 shows that a solution must satisfy ϕ(0) = 0. The
equation also implies that ϕ is continuously differentiable as the other two terms
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are, assuming that ϕ is at least, say, continuous. Differentiating the equation
gives

ϕ′(s)−
s∫

0

ϕ(t) dt = 2.

Substituting again s = 0 gives another initial value condition ϕ′(0) = 2, and
the equation implies that ϕ′ must also be continuously differentiable. Taking
derivatives once more we land into the differential equation

ϕ′′(s)− ϕ(s) = 0.

A solution to this must be of the form

ϕ(s) = A cosh s+B sinh s

for some constants A and B.
Since 0 = ϕ(0) = A, we have ϕ(s) = B sinh s for some constant B. Further-

more, since 2 = ϕ′(0) = B, we conclude that the only possible solution to the
original integral equation is

ϕ(s) = 2 sinh s.

Finally, this really is a solution as we know from the lectures that a solution
must exist.

2. Solve the Volterra equation

ϕ(s)− 4

s∫
0

(s− t)ϕ(t) dt = s3.

Solution. We proceed as in the previous solution. The substitution s = 0
gives the initial value condition ϕ(0) = 0. Assuming that the solution is at
least continuous, the integral equation implies that it must be at least once
continuously differentiable. Differentiating the integral equation then gives

ϕ′(s)− 4

s∫
0

ϕ(t) dt = 3s2.

This implies another initial value condition ϕ′(0) = 0 and that ϕ′(s) must be
continuously differentiable, too. Taking derivatives again gives the differential
equation

ϕ′′(s)− 4ϕ(s) = 6s.

Now we have to solve an inhomogeneous initial value problem. One obvious
solution to the differential equation is given by ϕ(s) = − 3s

2 . Thus every classical
solution to the differential equation is of the form

ϕ(s) = A cosh 2s+B sinh 2s− 3s

2

for some constants A and B.

2



We must have 0 = ϕ(0) = A and so a solution to the integral equation must
be of the form

ϕ(s) = B sinh 2s− 3s

2
.

Since ϕ′(s) = 2B cosh 2s− 3
2 , the initial value condition ϕ′(0) = 0 implies that

2B = 3
2 . Thus the only possible solution is

ϕ(s) =
3

4
sinh 2s− 3s

2
.

Finally, this must be a solution as we know from the lectures that a solution
must exist.

3. Let K be a continuous integral kernel. Let us consider the iterated kernels

K(1)(s, t) = K(s, t), K(n)(s, t) =

s∫
t

K(s, r)K(n−1)(r, t) dr,

which were defined in the lectures. Show that

K(n)(s, t) =

s∫
t

K(n−1)(s, r)K(r, t) dr.

Hint: Use induction on n.

Solution. We shall use induction on n as instructed. The claim holds trivially
for n = 2.

Let us assume that the claim holds for some n > 2 so that

K(n)(s, t) =

s∫
t

K(n−1)(s, r)K(r, t) dr.

Then

K(n+1)(s, t) =

s∫
t

K(s, r)K(n)(r, t) dr

=

s∫
t

K(s, r)

r∫
t

K(n−1)(r, u)K(u, t) dudr

=

s∫
t

s∫
u

K(s, r)K(n−1)(r, u) drK(u, t) du

=

s∫
t

K(n)(s, u)K(u, t) du.

4. Let us consider the Fredholm integral equation of the second kind

ϕ(s)− λ
b∫

a

K(s, t)ϕ(t) dt = f(s), a 6 s 6 b, (∗)
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where K ∈ C
(
[a, b] × [a, b]

)
, f ∈ C

(
[a, b]

)
and λ ∈ C. Study what extra

conditions are needed for the kernel K so that the ansatz

ϕ(x) =

∞∑
n=0

λn ϕn(x)

used in the lectures would give a continuous solution to (∗). Will the solution
then be unique?

Solution. We shall prove, using arguments similar to those used in the lectures
for the Volterra equation of the second kind, that if

|λ| < 1

M
, where M = max

a6s6b

b∫
a

|K(s, t)|dt,

then the Fredholm equation of the second kind has a unique solution u ∈
C
(
[a, b]

)
, which is indeed given by the ansatz involving the iterations of in-

tegration against K: the ansatz was

ϕ(s) =

∞∑
n=0

λn ϕn(s)

for all s ∈ [a, b], where ϕ0 = f and

ϕn(s) =

b∫
a

K(s, t)ϕn−1(s) dt

for all s ∈ [a, b] and n ∈ Z+.
The iterate ϕn(s) can be estimated for s ∈ [a, b] by

|ϕn(s)| 6Mnm,

where
m = max

a6s6b
|f(s)| .

This is perhaps easiest to see through induction. By the definition of m, we
certainly have |ϕ0(s)| 6 m. Now, if |ϕn−1(s)| 6 Mn−1m for all s ∈ [a, b] for
some n ∈ Z+, then

|ϕn(s)| =

∣∣∣∣∣∣
b∫

a

K(s, t)ϕn−1(t) dt

∣∣∣∣∣∣ 6
b∫

a

|K(s, t)|dtMn−1m 6Mnm.

Now we can prove that the infinite series converges uniformly for s ∈ [a, b].
This follows by estimating the tail of the series:∣∣∣∣∣∑

n>N

λn ϕn(s)

∣∣∣∣∣ 6 ∑
n>N

|λ|nMnm 6 m
∑
n>N

|λM |n −−−−−−−−→
N−→∞

0.
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Thus ϕ is a well defined continuous function on [a, b]. Also, this allows us to
integrate ϕ against K termwise giving

λ

b∫
a

K(s, t)ϕ(t) dt =

∞∑
n=1

λn ϕn(s),

for all s ∈ [a, b]. Since the infinite series involved converge absolutely, a simple
exchange of the order of summation shows that ϕ indeed solves the Fredholm
equation of the second kind.

Finally, the solution is unique: If there was another solution ψ ∈ C
(
[a, b]

)
,

then the difference ϕ− ψ would satisfy the homogeneous Fredholm equation of
the second kind

ϕ(s)− ψ(s) = λ

b∫
a

K(s, t)
(
ϕ(t)− ψ(t)

)
dt

for s ∈ [a, b]. Let |ϕ− ψ| obtain its maximum at a point s0 ∈ [a, b]. Given the
condition |λ| < 1

M , we see that

|ϕ(s0)− ψ(s0)| 6 |λ|M |ϕ(s0)− ψ(s0)| .

Now ϕ(s0)− ψ(s0) = 0, for otherwise we would have

|ϕ(s0)− ψ(s0)| < |ϕ(s0)− ψ(s0)| .

But then ϕ(s) = ψ(s) for all s ∈ [a, b] and we have shown uniqueness.

5. Reduce the initial value problem

y(3) + 2xy = 0, y(0) = y′(0) = 0, y′′(0) = 1

to an equivalent Volterra equation of the second kind.

Solution. The integral equation is obtained by repeatedly integrating the
equation. The first integration gives simply

y′′(x)− 1 + 2

x∫
0

t y(t) dt = 0.

The second integration gives first

y′(x)− x+ 2

x∫
0

u∫
0

t y(t) dtdu = 0,

and exchanging the integral signs gives

y′(x)− x+ 2

x∫
0

t

x∫
t

du y(t) dt = 0,
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which simplifies to

y′(x)− x+ 2

x∫
0

t (x− t) y(t) dt = 0.

In the same vein, integrating for the third time gives

y(x)− x2

2
+ 2

x∫
0

u∫
0

t (u− t) y(t) dtdu = 0.

Changing again the order of integration gives

y(x)− x2

2
+ 2

x∫
0

t

x∫
t

(u− t) du y(t) dt = 0,

which simplifies to

y(x) +

x∫
0

t (x− t)2 y(t) dt =
x2

2
,

which is a Volterra integral equation of the second kind.
Finally, we see that this Volterra equation implies the original initial value

problem simply by repeatedly substituting x = 0 and differentiating, in the
same way as in the solutions to the problems 1 and 2.

6. Solve the Volterra equation of the first kind

s∫
1

(s+ t)ϕ(t) dt = s3 − 1.

Solution. Let us look again for a continuous solution of the integral equation.
Certainly a solution must be defined in a neighbourhood of 1 in order for the
integral equation to make sense. It will turn out that, in a small neighbourhood
of 1, there is a unique solution, which will extend to all positive reals but tends
to∞ as s −→ 0+. Thus we will ultimately be looking for a continuous function
ϕ : R+ −→ R.

Differentiating the integral equation gives

2sϕ(s) +

s∫
1

ϕ(t) dt = 3s2.

This equation implies both the initial condition ϕ(1) = 3
2 and the continuous

differentiability of ϕ. Differentiating the equation again gives the differential
equation

2ϕ(s) + 2sϕ′(s) + ϕ(s) = 6s.

For s ∈ R+ this has the equivalent form

3

2
s1/2 ϕ(s) + s3/2 ϕ′(s) = 3 s3/2.
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This is just
d

ds

(
s3/2 ϕ(s)

)
= 3 s3/2,

and so

s3/2 ϕ(s) =
6

5
s5/2 + C

for some constant C. Since ϕ(1) = 3
2 , we have C = 3

10 , and the only possible
solution to the integral equation is

ϕ(s) =
6s

5
+

3

10
s−3/2.

Finally, we can easily check that this really is a solution to the original
integral equation:

s∫
1

(s+ t)

(
6t

5
+

3

10
t−3/2

)
dt

=

s∫
1

(
6st

5
+

6t2

5
+

3s

10
t−3/2 +

3

10
t−1/2

)
dt

=

(
3st2

5
+

2t3

5
− 3s

5
t−1/2 +

3

5
t1/2

)]t=s

1

=
3s3

5
− 3s

5
+

2s3

5
− 2

5
− 3

5
s1/2 +

3s

5
+

3

5
s1/2 − 3

5
= s3 − 1.

7. Let us consider the Volterra equation of the first kind

s∫
a

K(s, t)ϕ(t) dt = f(s), (∗)

where K and f are continuous. Let us assume that K(s, s) = 0 for all s ∈ [a, b],
and that the function K has continuous partial derivatives with respect to s up
to order two. Formulate and prove a solvability result for the equation (∗).

Solution. Certainly f must be at least once continuously differentiable because
the left-hand side is. Also, f(a) must vanish. Since K vasnishes of the diagonal,
differentiating the integral equation gives

s∫
a

(
∂1K

)
(s, t)ϕ(t) dt = f ′(s),

where ∂1 denotes differentiation with respect to the first variable of K(·, ·).We
now see that f ′ must be continuously differentiable and vanish at a, too. Dif-
ferentiating the equation again gives

(
∂1K

)
(s, s)ϕ(s) +

s∫
a

(
∂21K

)
(s, t)ϕ(t) dt = f ′′(s).
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Now, if
(
∂1K

)
(s, s) 6= 0 for all s then this is a Volterra integral equation of the

second kind:

ϕ(s) +

s∫
a

(
∂21K

)
(s, t)(

∂1K
)
(s, s)

ϕ(t) dt =
f ′′(s)(

∂1K
)
(s, s)

.

This equation always has a unique continuous solution by the results proved
in the lectures. Also, multiplying this latter equation by

(
∂1K

)
(s, s) and then

integrating the equation twice, we obtain the original Volterra equation of the
first kind. We thus obtain a solvability result:

Proposition. Let K ∈ C
(
[a, b]×[a, b]

)
be twice continuously differentiable with

respect to the first variable, and assume that K(s, s) = 0 and
(
∂1K

)
(s, s) 6= 0

for all s ∈ [a, b]. Also, let f ∈ C2
(
[a, b]

)
satisfy f(a) = f ′(a) = 0. Then the

Volterra integral equation of the first kind

s∫
a

K(s, t)ϕ(t) dt = f(s)

has a unique solution ϕ ∈ C
(
[a, b]

)
.
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