Integral equations

HW 3, fall 2013

1. Assume $K: H_{1} \rightarrow H_{2}$ is a compact operator between Hilbert spaces. Given bounded linear maps $A: H \rightarrow H_{1}$ and $B: H_{2} \rightarrow H$, where H is again Hilbert, prove that $K A$ and $B K$ are compact. Also, prove that the sum $K_{1}+K_{2}$ of two compact operators $K_{1}, K_{2}: H_{1} \rightarrow H_{2}$ is compact.
2. Assume $K_{n}: H_{1} \rightarrow H_{2}, n=1,2, \ldots$, are compact and that $\left\|A-K_{n}\right\| \rightarrow$ 0 as $n \rightarrow \infty$. Here $A \in \mathcal{L}\left(H_{1}, H_{2}\right)$. Prove that A is compact.
3. Assume $\left(a_{n}\right)$ is a sequence of complex numbers converging to zero. Consider the linear map

$$
A: \ell^{2} \rightarrow \ell^{2}, \quad\left(x_{n}\right) \mapsto\left(a_{n} x_{n}\right)
$$

Prove that K is compact. Hint: use the previous exercise with suitable operators K_{n} having finite dimensional image spaces.
4. Give an example of a bounded linear operator between Hilbert spaces whose image is not a closed subspace.
5. Assume $K \in \mathcal{L}\left(H_{1}, H_{2}\right)$ and that for some positive integer n_{0} we know that $K^{n_{0}}$ is compact. What can you say about $\operatorname{ker}(I-K)$?
6. Assume $A, B \in \mathcal{L}(H, H)$ commute, i.e. $A B=B A$. If $A B$ is invertible, what can you say about the invertibility of A and B ?
7. Consider the integral operator

$$
\mathcal{K} u(x)=\int_{a}^{b} K(x, y) u(y) d y, \quad x \in(a, b)
$$

Assume that $K \in L^{2}([a, b])$. Prove that \mathcal{K} is compact $L^{2}([a, b]) \rightarrow$ $L^{2}([a, b])$.
8. Prove that a compact operator $K: \ell^{2}(\mathbb{C}) \rightarrow \ell^{2}(\mathbb{C})$ is a norm limit of finite dimensional operators. Hint: Let Q_{n} be the orthogonal projection to $\operatorname{span}\left(e_{1}, \ldots, e_{n}\right)$, where $\left(e_{i}\right)$ is the standard orthonormal basis of $\ell^{2}(\mathbb{C})$. Let $K_{n}=Q_{n} K$ and prove that $\left\|K-K_{n}\right\| \rightarrow 0$ by considering a suitable finite covering of the compact set $\overline{K(B)}$ where B is the closed unit ball of $\ell^{2}(\mathbb{C})$.
9. Let's define the shift operator $S: l^{2}(\mathbb{C}) \rightarrow l^{2}(\mathbb{C})$ by

$$
(S x)_{n}=\left\{\begin{array}{l}
0, n=0 \\
x_{n-1}, n=1,2, \ldots
\end{array}\right.
$$

Here $x=\left(x_{n}\right)_{n=1}^{\infty}$. Also let $M: l^{2}(\mathbb{C}) \rightarrow l^{2}(\mathbb{C})$ be defined by

$$
(M x)_{n}=(n+1)^{-1} x_{n} .
$$

Show that the product $T=M S$ is a compact operator that has no eigenvalues. Hence the spectrum consists only of $\{0\}$.

