Integral equations HW 3, fall 2013

- 1. Assume $K : H_1 \to H_2$ is a compact operator between Hilbert spaces. Given bounded linear maps $A : H \to H_1$ and $B : H_2 \to H$, where H is again Hilbert, prove that KA and BK are compact. Also, prove that the sum $K_1 + K_2$ of two compact operators $K_1, K_2 : H_1 \to H_2$ is compact.
- 2. Assume $K_n : H_1 \to H_2, n = 1, 2, ...,$ are compact and that $||A K_n|| \to 0$ as $n \to \infty$. Here $A \in \mathcal{L}(H_1, H_2)$. Prove that A is compact.
- 3. Assume (a_n) is a sequence of complex numbers converging to zero. Consider the linear map

$$A: \ell^2 \to \ell^2, \quad (x_n) \mapsto (a_n x_n).$$

Prove that K is compact. **Hint:** use the previous exercise with suitable operators K_n having finite dimensional image spaces.

- 4. Give an example of a bounded linear operator between Hilbert spaces whose image is not a closed subspace.
- 5. Assume $K \in \mathcal{L}(H_1, H_2)$ and that for some positive integer n_0 we know that K^{n_0} is compact. What can you say about ker(I K)?
- 6. Assume $A, B \in \mathcal{L}(H, H)$ commute, i.e. AB = BA. If AB is invertible, what can you say about the invertibility of A and B?
- 7. Consider the integral operator

$$\mathcal{K}u(x) = \int_a^b K(x, y)u(y) \, dy, \quad x \in (a, b).$$

Assume that $K \in L^2([a,b])$. Prove that \mathcal{K} is compact $L^2([a,b]) \to L^2([a,b])$.

8. Prove that a compact operator $K : \ell^2(\mathbb{C}) \to \ell^2(\mathbb{C})$ is a norm limit of finite dimensional operators. **Hint**: Let Q_n be the orthogonal projection to span (e_1, \ldots, e_n) , where (e_i) is the standard orthonormal basis of $\ell^2(\mathbb{C})$. Let $K_n = Q_n K$ and prove that $||K - K_n|| \to 0$ by considering a suitable finite covering of the compact set $\overline{K(B)}$ where B is the closed unit ball of $\ell^2(\mathbb{C})$. 9. Let's define the shift operator $S:l^2(\mathbb{C})\to l^2(\mathbb{C})$ by

$$(Sx)_n = \begin{cases} 0, \ n = 0\\ x_{n-1}, \ n = 1, 2, \dots \end{cases}$$

Here $x = (x_n)_{n=1}^{\infty}$. Also let $M : l^2(\mathbb{C}) \to l^2(\mathbb{C})$ be defined by

$$(Mx)_n = (n+1)^{-1}x_n.$$

Show that the product T = MS is a compact operator that has no eigenvalues. Hence the spectrum consists only of $\{0\}$.