Integral equations

HW 2

1. Give a detailed proof for the convergence of the series defining the resolvent kernel of a Volterra equation of second kind with a weakly singular kernel.
2. Consider the example from mechanics in Section 1.6 of lecture notes: find the solution in the case when $f(x)=T$, i.e when a particle is released from height $x>0$, it always takes a constant time $T>0$ to travel along the curve $y=F(x)$ to zero height. Find the equation of F, or at least a series approximation to it.
3. Consider a nonlinear Volterra equation of second kind,

$$
\begin{equation*}
\phi(s)+\int_{0}^{s} K(s, t, \phi(t)) d t=f(s) . \tag{0.1}
\end{equation*}
$$

Assmue the following: the function $K(x, y, z)$ is continuous in the set D defined by

$$
|x|,|y| \leq a, \quad|z| \leq b,
$$

and that K is uniformly Lipschitz-continuous in z-variable,

$$
\left|K\left(x, y, z_{1}\right)-K\left(x, y, z_{2}\right)\right| \leq K\left|z_{1}-z_{2}\right|, \quad\left(x, y, z_{i}\right) \in D .
$$

Also, assume that $f \in C([-a, a]), f(0)=0$ and that f satisfies a Lipschitz-condition

$$
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq k\left|x_{1}-x_{2}\right|, \quad\left|x_{i}\right| \leq a .
$$

Let

$$
M=\sup _{D}|K| .
$$

Show that the iteration

$$
\phi_{0}(s)=f(s), \quad \phi_{n}(s)=f(s)-\int_{0}^{s} K\left(s, t, \phi_{n-1}(t)\right) d t
$$

converges in the set

$$
|s| \leq a^{\prime}, \quad a^{\prime}=\min \left\{a, \frac{b}{k+M}\right\} .
$$

and that the limit is a solution of (0.1) on interval $\left[-a^{\prime}, a^{\prime}\right]$.
4. Let $(X,\langle\cdot, \cdot\rangle)$ be an inner product space and $\|\cdot\|$ the induced norm. Prove that an inner product satisfies the so called parallelogram identity

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}, \quad x, y \in X .
$$

5. Consider the space $C([a, b])$. Show that the sup-norm,

$$
\|f\|_{\text {sup }}=\sup _{[a, b]}|f|
$$

is not determined by any inner product.
6. Similarly, consider the L^{p}-norms,

$$
\|f\|_{p}=\left(\int_{a}^{b}|f|^{p} d x\right)^{1 / p}
$$

where $1 \leq p<\infty$. Prove that if $p \neq 2$ then this norm is never determined by an inner product.
7. Let $\left(X_{i},\|\cdot\|_{i}\right)$ be normed spaces, $i=1,2,3$. Show that for the norm of a linear operator $A: X_{1} \rightarrow X_{2}$ we have

$$
\|A\|=\sup _{\|x\|_{1} \leq 1} \frac{\|A x\|_{2}}{\|x\|_{1}}=\sup _{\|x\|_{1}=1} \frac{\|A x\|_{2}}{\|x\|_{1}}
$$

Let also $B: X_{2} \rightarrow X_{3}$ be linear. Prove that

$$
\|B A\| \leq\|B\|\|A\|
$$

8. Consider the integral equation

$$
f(x)+\frac{1}{20} \int_{0}^{1} e^{-|x y|^{2}} \sin \left(x^{2}+y^{2}\right) f(y) d y=\sin x .
$$

Prove that this has a unique solution in $L^{2}([0,1])$, and that in fact this solution is also continuous.
9. Let H be a Hilbert space, and $A: H \rightarrow H$ be a linear map for which $\left\|A^{n_{0}}\right\|<1$ for some positive integer n_{0}. Prove that $I-A$ is invertible and determine its inverse.

