

Feasibility of identifying genetic variants by risk allele frequency and strength of genetic effect (odds ratio).

TA Manolio et al. Nature 461, 747-753 (2009) doi:10.1038/nature08494

Key advances behind the GWA success

- Technology
- unbiased and relatively cheap high-throughput genotyping
- Design and analysis
- large scale population-based study designs, collaboration
- control for confounding and false positive risks
- Computation
- reliable algorithms for genotyping
- haplotype clustering
- genotype imputation
- association testing and estimation

Task: Screen for loci associated with disease

Simple?

1. Collect cases and controls and compare genotype frequencies, or
2. Compare phenotype distributions in genotype classes

Challenge \#1: Number of markers

Challenge \#2b: Definition of a disease

What level of single gene effects can we assume for common alleles?

- $\mathrm{OR}<1.2$
- differences in means $<0.2 *_{\text {sd }}$

Best case power

- Assuming:
- effect size=0.2*sd
- allele frequency $=0.5$
- no genotyping error
- no confounding
- GWA-threshold $=10^{-7}$
- Power:
- $n=1000: 19 \%$
- $\mathrm{n}=\mathrm{I} 500: 56 \%$

$$
n=2000
$$

Simple maths for power

Allele	Case	Cont rol
C	a	b
c	c	d

$\mathrm{OR}=\mathrm{cb} / \mathrm{ad}$
$\operatorname{var}(\mathrm{OR})=1 / \mathrm{a}+1 / \mathrm{b}+1 / \mathrm{c}+1 / \mathrm{d}$

Case common allele MAF=0.5

Allele	Case	Cont rol	
C	400	500	OR $=600 * 500 / 400 * 500=1.5$
	600	500	var(OR) $=1 / 400+1 / 500+1 / 500+1 / 600=$ 0.00817

Allele	Case	Cont rol
C	865	900
	145	100

$$
\begin{gathered}
\mathrm{OR}=145 * 900 / 865 * 100=1.5 \\
\operatorname{var}(\mathrm{OR})=1 / 865+1 / 900+1 / 100+1 / 145= \\
0.019 \\
\mathrm{Cl}=[1.14,1.97]
\end{gathered}
$$

MAF=0.I

Case rare allele,

 MAF=0.01| Allele | Case | Cont
 rol |
| :---: | :---: | :---: |
| C | 985 | 990 |
| | 15 | 10 |

$$
\begin{gathered}
\mathrm{OR}=15 * 990 / 985 * 10=1.5 \\
\operatorname{var}(\mathrm{OR})=0.808+0.0000+0 / 1(6-0.06 \mathrm{~B}= \\
0.169 \\
\mathrm{Cl}=[0.67,3.36]
\end{gathered}
$$

Finland:
Population history and genetic resources
Population isolate

- Small number of founders
- Bottleneck: Less private and rare variants
- Fast population growth
- Enrichment of LoF variants in $0.5-5 \%$ allele frequency
Genetic resources:
- DNA biobank of 200000 individuals
- 5000+ WGS \& WES samples (Finrisk, Botnia)
- 50,000 GWAS samples (many cohorts)

Outcome of GWAS studies: lipids

Teslovich 2010:
$\mathrm{N}=101,000$
95 loci
Aulchenko/
ENGAGE 2009:
$\mathrm{N}=22,500$
22 loci

Willer 2013: $\mathrm{N}=188,578$ 157 loci

Allele freq and effect size

Study design

Willer et al 2013 Nat Genet

Overlap with Mendelian lipid genes

Heritability and explained variance

Key questions

1. How much variability does chrX explain?
2. Can we find any associated loci in chrX?
3. Are the loci fully dosage compensated?

Association analysis: Three new X-
chromosomal loci

Evidence for incomplete dosage compensation in ITM2A

+ Association data consistent with no dosage compensation
+ Higher ITM2A expression in women in whole blood ($\mathrm{N}=513$)
+ ITM2A known to variably escape from XCl

Carrel L et al. Nature (2005) 434, 400-4 56% of cells express ITM2A from Xi_{i} | ITM2A | Integral membrane protein 2A | $5 / 9$ |
| :--- | :--- | :--- |

Gene expression from the

Case: ITM2A

- Nearby SNPs associate with height
- Implicated in chodrogenesis
- Cis-eQTL: expression \uparrow height \downarrow
- Escapes from X chromosome inactivation

Case: ITM2A

- Nearby SNPs associate with height
- Implicated in chodrogenesis
- Cis-eQTL: expression \uparrow height \downarrow
- Escapes from X chromosome inactivation
\rightarrow ITM2A contributes to the sexual dimorphism in height? \rightarrow yes, explains 1.5% of malefemale differences

Conclusions

ChrX harbors new loci and interesting biology:

- Variance estimates: $\sim 3 \%$ of GWAS loci may be X-chromosomal
- Association analysis: Low-hanging fruits and more to discover in chrX
- Dosage compensation: Clues to sexually dimorphic traits?

Heritability and explained variance

 I. Survey ChrX
2. Survey low frequency variants 3. Detailed phenotyping / multivariate analysis

Our strategies to further discovery:

Feasibility of identifying genetic variants by risk allele frequency and strength of genetic effect (odds ratio).

Genotype imputation Referenne haplotypes: A
 Own data haplotype:

Further variance explained

Heritability and explained variance

```
Estimated in NFBC66 cohort
```

Would comprehensive metabolic and genetic characterization provide further insight?

Detailed metabolomics profile

Dense coverage of variation in the lipid loci

$300 \mu \mathrm{l}$ fasting serum, 15 minutes
Serum NMR metabolomics ${ }^{1,2}$

Lipoprotein subclasses
74 lipoprotein subclass measures

117 metabolites

Amino acids and small molecules
Valine, isoleucine, tyrosine etc.
Lipid measures
Fatty acids, sphingomyelin, phosphocholine etc.
Selected ratios of metabolites and derived measures E.g. Alanine:glutamine, average HDL particle size
alyst. 2009; 134(9): 1781-5.
Inouye et al. Mol Syst Biol. 2010; 6: 441.

Materials and methods

Dense map of variants 440000 SNPs in the lipid loci

\rightarrow
Association analyses

Statistically independently associated variants?
OXL-hdL-TG

LIPC region in chr 15 Genomic position (b36)

Conclusions: Discovery studies

There seems to be a lot to harvest from the low frequency variants in the coding regions of the identified GWAS loci, at least for lipids
On top of detailed marker set, detailed phenotyping may help in fine mapping
Statistical methods for testing multivariate phenotypes need development
Large-scale studies are needed to identify low frequency variants, with access to the individual level data

Outline

- Predicting CHD events with traditional risk factors
- Tens of CHD associated common genetic variants identified using Genome-wide association studies (GWAS)
- Association vs. prediction: results with 13 SNP score, 28 SNP score and 100+ SNP score
- Potential in screening for high risk individuals

Emmi Tikkanen
Thesis defense Nov 8th @ noon Kytösuontie 9, Ih 1

Framingham risk score at baseline:
age, sex, total cholesterol, HDL, BMI, systolic blood pressure, blood pressure treatment, current smoking status, diabetes mellitus, family history of CHD

Risk loci identified in GWA studies

- GWA studies have identified >30 loci modifying CHD risk
- > 200 loci associated with major risk factors lipids, blood pressure, BMI, diabetes, smoking
- Causal variants and functional genes often unknown
- Potential to discover new causal pathways for CHD
- Particularly as CHD poorly modeled in mice and other model organisms
- But, maybe they could also be used for prediction?

Genetic risk score base on 13 SNPs

GRS distribution compared to risk factor distributions

Prediction over FRS:
Prediction over C index: $p=0$.
NRI: $p=0.18$

Reclassification: 13 SNP score

Reclassification of individuals in the FINRISK 1992 and 1997 cohorts on the basis of 10 -year predicted risk of coronary heart disease with and without genetic risk score

Including further risk factor associated SNPs to GRS

- Women's Genome Health Study (Paynter et al, JAMA 2010):
- 777 incident CVD events, 101 SNP score
- No association, no predictive value over FRS
- CAREMA Study (Vaarhorst et al, Circ Cardiovasc Genet 2012):
- 742 incident CHD cases, 179 SNP score
- Association yes, no predictive value over FRS
- Framingham Heart Study (Thanassoulis et al, Circ Cardiovasc Genet 2012):
- 537 incident CVD events (182 CHD events), 102 SNP score
- Association yes, no predictive value over FRS

Not completely surprising given that

1)The risk factors explain only a fraction of the risk variation
2)The identified risk-factor SNPs together explain only a small proportion of the risk factor variance

From 13 to 28 SNP risk score

- 28 CHD SNPs genotyped in FINRISK 92, 97, 02 and Health 2000 cohorts
- 24,124 individuals
- 1093 CHD (5\%), 1552 CVD (6\%) and 731 ACS (3\%) cases
- median follow-up time of 12 years (IQR 8.75-15.25 years)
Similar shape of GRS risk distribution for CHD, CVD and ACS
Hazard Raio(95% (c)

genetic risk score

	20\%						
Trait	HR (95\% Cl$)^{*}$	P-value	Top 20\% of GRS (95\% Cl)	Top 10% of GRS (95\% Cl)	Top 5\% of GRS (95\% Cl)	N events	N
CHD	1.27 (1.20, 1.35)	<. 001	171.42, 2.06)	2.07 (1.68, 2.56)	122 (1.62, 2.77)	1093	24124
Acs	1.27) (1.18, 1.37)	<. 001	1.57($1.25,1.97)$	1.84(1.42, 2.40)	$2.00(1.43,2.79)$	731	24124
cvo	1.18 ((1.12, 1.24)	201	$1.59(1.36,1.86)$	1.87 (1.56, 2.24)	1.72 ($1.35,2.18$)	1552	24124
*per SD of GRS. Cox regression models were adjusted for sex, total cholesterol, high-density lipiprotein (HDL) cholesterol, body-mass index, systolic blood pressure, antihypertensive treatment, smoking and type 2 diabetes; age was used as the timescale. Abbreviations: CHD, coronary heart disease; ACS, acute coronary syndrome; CVD, cardiovascular disease; GRS, genetic risk score; HR, Hazard ratio; CI, confidence interval; N , number of individuals							

Prediction: Changes in C-index when adding GRS to FRS prediction

Reclassification: 28 SNP score

Framingham scores and genetic risk scores for individuals

Assuming:

-20% risk reduction with statin treatment
-Treatment compliance and efficacy similar in Stage 1 and Stage 2 high risk groups
$>694^{*} 0.2=139$ cases prevented in 14 years / 100,000 individuals (119 in 10 years)
$>$ Compared to 17 for Ip(a) (Di Angelantonio, JAMA 2012) and 30 for CRP (Kaptoge, NEJM 2012)

Conclusions

- Genetic screens continue to provide new risk variants for CHD, and refine the associations in known risk loci
- These loci will incrementally jointly bring better predictive power over the traditional risk factors
- GRS based on currently known loci offers a small but significant improvement in both CHD risk discrimination and reclassification over and above the traditional risk factors
- GRS screening of individuals in intermediate risk could help to prevent future cases through more accurate statin allocation
- The assumptions and the clinical utility needs to be tested

